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1. Introduction

The Ricci flow on surfaces, compact and noncompact, has been an intense
subject of study since the appearance of Hamilton’s seminal work [19], where
the asymptotic behavior of the flow is studied on closed surfaces, and it is
used as a tool towards giving a proof of the Uniformization Theorem via
parabolic methods. In addition to its obvious geometric appeal, it is of note
that the study of the Ricci flow on surfaces is related to the study of the
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logarithmic diffusion equation, and hence, the interest on this problem goes
beyond its geometric applications (see [22]).

However, not much is known about the behavior of the Ricci flow on
manifolds with boundary. One of the main difficulties in studying this prob-
lem arises from the fact that even trying to impose meaningful boundary
conditions for the Ricci flow, for which existence and uniqueness results can
be proved so interesting geometric applications can be hoped for, seems to
be a challenging task. For the reader to get an idea of the difficulty of the
problem, we recommend the interesting works of Y. Shen [34], S. Brendle [4],
A. Pulemotov [32, 33], and P. Gianniotis [17, 18]. In the case of the boundary
conditions imposed by Shen [34], satisfactory convergence results have been
given for manifolds of positive Ricci curvature and totally geodesic bound-
ary, and also when the boundary is convex and the metric is rotationally
symmetric. In the case of surfaces, the Ricci flow is parabolic, and imposing
natural geometric boundary conditions is not difficult: one can for instance
control the geodesic curvature of the boundary. In this case, Brendle [4]
has shown that when the boundary is totally geodesic, then the behavior
is completely analogous to the behavior of the Ricci flow in closed surfaces
([8, 19]). In this case, also for non totally geodesic boundary, the first au-
thor has proved, under the hypothesis of rotational symmetry of the metrics
involved, results on the asymptotic behavior of the Ricci flow in the case of
positive curvature and convex boundary, and for certain families of metrics
with non convex boundary ([12]).

The purpose of this paper is to contribute towards the understanding
of the behavior of the Ricci flow on surfaces with boundary. To be more
precise, let M be a compact surface with boundary (∂M 6= ∅), endowed
with a smooth metric g0; we will study the equation

(1)


∂g
∂t = −Rgg in M × (0, T )

kg (·, t) = ψ (·, t) on ∂M × (0, T )

g (·, 0) = g0 (·) in M,

where Rg represents the scalar curvature of M and kg the geodesic curvature
of ∂M , both with respect to the time evolving metric g, and ψ is a smooth
real valued function, which is constant in space, defined on ∂M × [0,∞),
and which satisfies the compatibility condition ψ (·, 0) = kg0 .

The short-time existence theory of equation (1) is well understood. In-
deed, since the deformation given by (1) is conformal, if we write g (p, t) =
eu(p,t)g0, problem (1) is equivalent to a nonlinear parabolic equation with
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Robin boundary conditions, and initial data u (p, 0) = 1. Hence, via the In-
verse Function Theorem and standard methods from the theory of parabolic
equations [26], it can be shown that (1) has a unique solution for a short
time, and that this solution is in the parabolic Hölder space H2+α,1+α

2 ,
0 < α < 1, on M × [0, T ), and smooth away from the corner.

Before we state the results we intend to prove in this paper, we must
introduce a normalization of (1). As it is well known, the solution to (1)
can be normalized to keep the area of the surface constant. This is done as
follows: Let us assume without loss of generality that the area of M with
respect to g0 is 2π, and choose φ (t) such that φ (t)Ag (t) = 2π, where Ag (t)
is the area of the surface at time t with respect to the metric g. Then define

(2) t̃ (t) =

∫ t

0
φ (τ) dτ and g̃ = φg.

If the family of metrics g (t) satisfies (1), then the family of metrics g̃
(
t̃
)

satisfies the evolution equation

(3)


∂g̃
∂t̃

=
(
r̃g̃ − R̃g̃

)
g̃ in M ×

(
0, T̃

)
kg̃ (·, t) = ψ̃

(
·, t̃
)

on ∂M ×
(

0, T̃
)

g̃ (·, 0) = g0 (·) on M,

where ψ̃ is the normalization of the function ψ, R̃g̃ is the scalar curvature
of the metric g̃, and

r̃g̃ =

∫
M R̃g̃ dAg̃∫
M dAg̃

=
1

2π

∫
M
R̃g̃ dÃg.

Here dAg̃ denotes the area element of M with respect to the metric g̃. We
refer to (3) as the normalized Ricci flow.

We can now state our first result.

Theorem 1.1. Let
(
M2, g0

)
be a compact surface with boundary with pos-

itive scalar curvature (Rg0 > 0), and such that the geodesic curvature of its
boundary is a nonnegative constant (kg0 ≥ 0), and assume that ψ, as defined
above, is nonnegative, constant in space with ψ (0) = kg0, and also satisfies
that d

dtψ ≤ 0. Let g (t) be the solution to (1) with initial condition g0. Then
the corresponding solution to the normalized flow, g̃

(
t̃
)
, exists for all time,

and for any sequence t̃n →∞, there is a subsequence t̃nk →∞ such that
the metrics g̃

(
t̃nk
)

converge smoothly to a metric of constant curvature and
totally geodesic boundary.
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Theorem 1.1 partially extends results on the asymptotic behavior of
solutions to the Ricci flow known for S2 (Hamilton [20] and Chow [8]), and
for the case of surfaces with totally geodesic boundary (Brendle [4]) and
with rotational symmetry ([12]).

Before going any further, let us give an outline of the proof of Theo-
rem 1.1. First of all, given an initial metric g0 of positive scalar curvature
and convex boundary, it can be shown that the curvature of g (t) blows up
in finite time, say T <∞; the idea then is to take a blow-up limit of the
solution (M, g (t)) as t→ T , and to show that the only possibility for this
blow-up limit is to be a round hemisphere: this would, essentially, give a
proof of Theorem 1.1. It remains then to remove two technical difficulties:
we must be able to produce this blow-up limit, and hence, on the one hand,
we will have to show how to bound derivatives of the curvature in terms
of bounds on the curvature; and, on the other hand, we must show how to
estimate the injectivity radius of the surface, and, because it has boundary,
we are required to show that there are no geodesics hitting the boundary
orthogonally that are too short with respect to the inverse of the square
root of the maximum of the curvature. The first technical difficulty is dealt
with using the recent work of Gianniotis [18] (here is where the hypothesis
of the constancy in space of ψ is needed; we thank the referee who referred
us to Gianniotis’ paper). To deal with the second technical difficulty, we
have introduced an extension procedure for surfaces with boundary that
allows to have some control over the maximum curvature and the size of
the extension, and which reduces the estimation of the injectivity radius of
the original surface to the same problem but in a closed surface where it
is embedded (this part of the proof does not depend on the hypothesis of
constancy in space of the geodesic curvature of the boundary).

At this point it might be convenient to compare Theorem 1.1 with the
main result (Theorem 3) in [13]. As a matter of fact, Theorem 1.1 is the two-
dimensional version of the main theorem of [13], and the general arguments
employed to prove both results are essentially the same. However, in contrast
to the three-dimensional case (which is the one dealt with in [13]), in the
two-dimensional case we have been able to avoid assuming constant geodesic
curvature of the boundary (which corresponds to the hypothesis of weak
umbilicity of the boundary in [13]) to obtain the injectivity radius estimate
needed in the blow-up arguments. Also, whereas in the three-dimensional
case a pinching estimate is needed to rule out unwanted possible blow-up
limits in the blow-up argument, in the case studied in this paper it is Perel-
man’s formula that is used to rule out the unwanted possible blow-up limits
in the blow-up argument: this shows that the proof of Theorem 1.1 presented
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here does not follow as an immediate application of the techniques employed
in [13].

Our second result is concerned with the behavior of the Ricci flow when
the geodesic curvature of the boundary is nonpositive. Again, using blow
up analysis techniques, we prove the following theorem, which generalizes
similar results from [12] (notice that we make no requirements on the sign
of R).

Theorem 1.2. Let g0 be a rotationally symmetric metric on the two-ball.
Assume that kg0 ≤ 0, and that the boundary data is given by ψ = kg0. Then
the normalized flow corresponding to the solution to (1) with initial data g0

and boundary data ψ exists for all time.

The layout of this paper is as follows. In Section 2 we prove the basic
evolution equation for the scalar curvature when the metric evolves under
(1), and show that under certain conditions the curvature R blows up in
finite time; in Section 3 we prove a monotonicity formula for Perelman’s
functionals on surfaces with boundary; in Section 4 it is shown that it is
possible to take blow up limits for solutions to (1), by proving that we can
control the injectivity radius of the surface in terms of the scalar curvature
and the geodesic curvature of the boundary, and then using a compactness
theorem for sequences of pointed Ricci flows on manifolds with boundary
due to Gianniotis [18]; in Section 5 we use the results from the previous
sections to give a proof of Theorem 1.1. Finally, in Section 6 we give a proof
of Theorem 1.2. This paper is complemented by an appendix where among
other things we discuss a procedure to obtain bounds on the derivatives
of the conformal factor of solutions to (1) -and hence to (3)- in terms of
bounds on the curvature and the boundary data (and its derivatives), and
a doubling procedure for the Ricci flow on surfaces with boundary.

Parts of this paper are part of the PhD Thesis of the second author. He
wants to thank his advisor (the first named author of this paper) and his
home institution (while completing his PhD), Universidad de los Andes, for
their support and encouragement during his studies. We must also give our
deepest thanks to the referees for the great care they showed when reading
this manuscript (pointing out mistakes, inaccuracies, miscalculations, and
suggesting clarifications and references): no doubt they played a very im-
portant role in this endeavour. Finally, we want to dedicate this work to
Darwin, Esteban, Jarlinson, Nairo and Rigoberto for making us believe.
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2. Evolution equations

In the following proposition, which is stated in [12] without proof, we com-
pute the evolution of the curvature of a metric g when it is evolving under
(1).

Proposition 2.1. Let (M, g (t)) be a solution to (1). The scalar curvature
satisfies the evolution equation{

∂Rg
∂t = ∆gRg +R2

g in M × (0, T )
∂R
∂ηg

= kgRg − 2k′g = ψRg − 2ψ′ on ∂M × (0, T )

where ηg is the outward pointing unit normal with respect to the metric g,
and the prime (′) represents differentiation with respect to time.

Proof. Since the evolution equation satisfied by R in the interior of M is
known ([20]), we will just compute its normal derivative, with respect to
the outward normal, at the boundary. To do so, we choose local coordinates(
x1, x2

)
at p ∈ ∂M such that x2 = 0 is a defining function for ∂M , so that the

corresponding coordinate frame {∂1, ∂2} is orthonormal at p ∈ ∂M and time
t = t0 (i.e., the point and instant where and when we want to compute the
normal derivative), and so that ∂2 coincides with the outward unit normal to
the boundary in the whole coordinate patch (this also at time t = t0 > 0).
Since the deformation is conformal, ∂2 remains normal to the boundary.
Therefore the geodesic curvature is given (as long as the flow is defined for
t ≥ t0) by the formula

kgg11 = − Γ2
11

(g22)
1

2

= − (g22)
1

2 Γ2
11.

Computing the time derivative, the previous identity yields

(kgg11)′ = − 1

2 (g22)
1

2

(g22)′ Γ2
11 − (g22)

1

2

(
Γ2

11

)′
=

1

2
Rg (g22)

1

2 Γ2
11 − (g22)

1

2

(
Γ2

11

)′
.

Let us calculate
(
Γ2

11

)′
(as is customary ∇j denotes covariant differentiation

with respect to ∂j , and recall that g12 = 0 and gii = 1)
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(
Γ2

11

)′
=

1

2
g2j
(
∇1g

′
1j +∇1g

′
1j −∇jg′11

)
=

1

2
g22 (−2∇1 (Rgg12) +∇2 (Rgg11))

=
1

2
g22 (∂2Rg) g11 =

1

2
g22 (∂2Rg) .

Therefore

k′gg11 − kgRg11 = −1

2
kgR−

1

2 (g22)
1

2

∂2Rg = −1

2
kgRg −

1

2

∂Rg
∂ηg

,

and the result follows. �

As a consequence from Hopf Maximum Principle, since k′g = ψ′ ≤ 0 in
the case we are considering, we obtain the following result.

Proposition 2.2. Let (M, g (t)), M compact, be a solution to (1). Assume
that ψ, the boundary data, satisfies ψ′ ≤ 0. Then, if Rg ≥ 0 at time t = 0, it
remains so as long as the solution exists. Furthermore, if the initial data has
positive scalar curvature, then Rg remains strictly positive. Also, if Rg > 0
at t = 0 and ψ ≥ 0 then Rg blows up in finite time.

Proof. We leave the proof that R remains strictly positive to the reader, and
show that the solution of (1) must blow-up in finite time. By Hopf Maximum
Principle, from the hypotheses at the boundary we have

∂R

∂η
≥ 0,

so the minimum Rmin (t) of R at time t occurs in the interior of M . Hence,
Rmin satisfies a differential inequality

d

dt
Rmin ≥ R

2
min.

Therefore, comparing with the solution of the ODE

du

dt
= u2, u (0) = Rmin (0) ,

we have that Rmin ≥ u, and since u > 0, u blows up in finite time, and so
must Rmin. �
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We must point out that if R ≥ 0 at time t = 0, and it is strictly positive
at a point, under the assumption ψ ≥ 0, ψ′ ≤ 0, it becomes strictly posi-
tive instantaneously, so the hypotheses in the previous proposition may be
relaxed a bit.

2.1.

In view of Proposition 2.2, this seems a good place to discuss the following
fact. Let (0, T ) be the maximal interval of existence of a solution to (1), with
0 < T <∞, then

lim sup
t→T

(
sup
p∈M

Rg (p, t)

)
=∞.

First of all if g0 is the initial metric, then as the Ricci flow preserves the
conformal structure, we have that the evolving metric can be represented
as g = eug0. Hence, if Rg0 is the scalar curvature of the initial metric, at
a fixed (but arbitrary) time, we have that u satisfies the elliptic boundary
value problem

(4)

{
∆g0u+Rg0 = Rge

u in M,
∂

∂ηg0
u+ 2kg0 = 2kg0e

u

2 on ∂M.

To reach a contradiction assume that Rg remains uniformly bounded on
(0, T ). A consequence of this assumption is that eu remains bounded away
from 0 and uniformly bounded above on (0, T ). Now, since from bounds on
the curvature and also on the geodesic curvature of the boundary (i.e., on
ψ) and its derivatives, we can obtain bounds on the derivatives of u (see
Theorems A.1 and A.2 in the Appendix), u and its derivatives (including
those with respect to t) are uniformly bounded on (0, T ), and consequently
u (·, t) converges as t→ T to a smooth function, say û. If we start the Ricci
flow at t = T with initial data eûg0 and the same boundary data, then we
would be able to continue the original solution past T , which contradicts the
hypothesis. Therefore, if the Ricci flow (1) cannot be extended past T <∞,
the curvature blows up. We invite the reader to consult the recent work
of Gianniotis [17], where this property of the Ricci flow on manifolds with
boundary is discussed in a more general context.
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2.2.

There are other interesting cases when solutions to (1) blow up. We have
for instance the following proposition.

Proposition 2.3. Let (M, g0) be a compact surface with boundary, and
assume that

∫
M Rg0 dAg0 +

∫
∂M 2kg0 dsg0 > 0 with kg0 ≤ 0. Let ψ ≤ 0 be such

that ψ = kg0 at t = 0. Then the solution to (1), with initial condition g0 and
boundary data ψ, blows up in finite time.

Proof. Let g (t) be the solution to (1) with initial data g0 and boundary data
ψ. If A (t) represents the area of M with respect to g (t), we can calculate

dA

dt
= −

∫
M
Rg dAg = −4πχ (M) + 2

∫
∂M

kg dsg ≤ −4πχ (M) < 0.

Therefore, the area cannot remain positive for all time, hence a singularity
must occur in finite time. �

3. Monotonicity of Perelman’s Functionals on surfaces with
boundary

The purpose of this section is to show a monotonicity formula for Perelman’s
celebrated F andW functionals (see [29]) in the case of surfaces with bound-
ary. The results in this section are stated, although with no carefully crafted
proofs, more or less in the same way as it is done here, in [12] (the reader is
also advised to consult the interesting work [33], which was pointed out to
us by a referee, and where a monotonicity formula for Perelman’s function-
als is proved for certain manifolds with boundary). As usual, all curvature
quantities, scalar products and operators depend on the time-varying metric
g (some of them will not bear a subindex to show this dependence). We will
use the Einstein summation convention freely, and the raising and lowering
of indices is done, by means of the metric g, in the usual way.

In order to proceed, recall the definition of Perelman’s F-functional:

F (gij , f) =

∫
M

(
Rg + |∇f |2

)
exp (−f) dVg,

where dVg represents the volume (in the case of a surface, area) element
of the manifold M with respect to the metric g. Let us compute the first
variation of this functional on a manifold with boundary.



i
i

“5-Cortissoz” — 2019/8/16 — 23:40 — page 386 — #10 i
i

i
i

i
i

386 J. C. Cortissoz and A. Murcia

Proposition 3.1. Let δgij = vij , δf = h, gijvij = v. Then we have,

δF =

∫
M

exp (−f)
[
−vij (Rij+∇i∇jf)+

(v
2
−h
)(

2∆gf−|∇f |2+Rg

)]
dVg

−
∫
∂M

[
∂v

∂ηg
+ (v − 2h)

∂f

∂ηg

]
exp (−f) dσg

+

∫
∂M

exp (−f)∇ivijηj dσg −
∫
∂M
∇j exp (−f) vijηi dσg.

Here, Rij represents the Ricci tensor of the metric g,
∂

∂ηg
(= ηi∂i in local co-

ordinates) is the outward unit normal to ∂M with respect to g, ∇ represents
covariant differentiation with respect to the metric g, and dσg represents the
volume element of ∂M .

Proof. As in [23], we have that

δF (vij , h) =

∫
M
e−f
[
−∆gv +∇i∇jvij −Rijvij

− vij∇if∇jf + 2g (∇f,∇h) +
(
Rg + |∇f |2

)(v
2
− h
)]
dVg.

We must compute the integrals on the righthand side of the previous identity,
using as our main tool integration by parts. We start by calculating∫

M
e−f (−∆gv) dVg

= −
∫
M

∆ge
−fv dVg +

∫
∂M

v
∂e−f

∂ηg
dσg −

∫
∂M

e−f
∂v

∂ηg
dσg

= −
∫
M

∆ge
−fv dVg −

∫
∂M

(
∂v

∂ηg
+ v

∂f

∂ηg

)
exp (−f) dσg.

Now we compute∫
M
e−f∇i∇jvij dVg = −

∫
M
∇ie−f∇jvij dVg +

∫
∂M

e−f∇jvijηi dσg

=

∫
M
∇i∇je−fvij dVg −

∫
∂M
∇ie−fvijηj dσg

+

∫
∂M

e−f∇jvijηi dσg.
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Finally,

2

∫
M
e−fg (∇f,∇h) dVg = −2

∫
M
g
(
∇e−f ,∇h

)
dVg

= 2

∫
M

(
∆ge

−f
)
h dVg −

∫
∂M

h
∂e−f

∂ηg
dσg.

Putting all these calculations together proves the result. �

Consider the evolution equations on a surface with boundary given by

(5)



∂

∂t
gij = −Rggij = −2Rij in M × (0, T ) ,

kg (·, t) = ψ (·) on ∂M × (0, T ) ,
∂f

∂t
= −∆gf + |∇f |2 −Rg in M × (0, T ) ,

∂

∂ηg
f = 0 on ∂M × (0, T ) .

A formula for
d

dt
F is given by the following result.

Theorem 3.1. Under (5) the functional F satisfies

d

dt
F = 2

∫
M
|Rij +∇i∇jf |2 exp (−f) dAg

+

∫
∂M

(
kgRg − 2k′g

)
exp (−f) dsg

+ 2

∫
∂M

kg

∣∣∣∇>f ∣∣∣2 exp (−f) dsg,

and here ∇>f represents the component of ∇f tangent to ∂M , dAg the area
element of the surface, and dsg the length element of the boundary.

Proof. Let us first introduce some notation and conventions. Since parts of
these computations apply to manifolds of higher dimensions, in this proof
we will fix coordinates x1, x2, . . . , xn−1, xn at a boundary point and at fixed
(but arbitrary) time t, so that xn = 0 is a defining function for ∂M . We

will assume that on ∂M ,
∂

∂xn
=

∂

∂ηg
represents the outward unit normal,

and hence we will denote by a subscript or superscript n quantities that are
evaluated, at a boundary point, with respect to the outward unit normal.
By a greek letter we will represent indices running from 1, 2, 3, . . . , n− 1,



i
i

“5-Cortissoz” — 2019/8/16 — 23:40 — page 388 — #12 i
i

i
i

i
i

388 J. C. Cortissoz and A. Murcia

and therefore at a boundary point the vector fields
∂

∂xα
are tangent to the

boundary. Let us transform the evolution equations given by (5) using the
one-parameter family of diffeomorphisms ϕt generated by −∇f ; notice that
the boundary is sent to itself via this family of diffeomorphisms due to the

fact that
∂f

∂ηg
= 0. Now, by defining f (·, t) = f (ϕt (·) , t) and g = (ϕt)∗ g

(forgive the abuse of notation), instead of (5) we must take the variations
given by

vij = δgij = −2 (Rij +∇i∇jf) , h = δf = −∆gf −R.

For a moment let us denote with a subindex (ϕt)∗ g the quantities that
depend on the pullback metric. Observe that then we have

∂

∂η(ϕt)∗g
R(ϕt)∗g

(·, t) =
(
kgRg − 2k′g

)
(ϕt (·) , t) ,

so keeping on with the abuse of notation, we will write, for the metric g =
(ϕt)∗ g,

∂R

∂ηg
= kgRg − 2k′g,

where the prime (′) now means that we differentiate kg (or ψ) with respect
to its second variable (t) and then it is evaluated at (ϕt (·) , t). Notice that

for the pullback metric we still have
∂f

∂ηg
= 0.

We will now compute each of the boundary integrals in the first varia-
tion of Perelman’s functional given by Proposition 3.1, which will prove the
theorem, since the computations for the integrals over M are known from
the work of Perelman. We change the notation from the previous proposition
as follows: dVg = dAg and dσg = dsg. We start with∫
∂M

[
∂v

∂ηg
+ (v − 2h)

∂f

∂ηg

]
exp (−f) dsg, and

∫
∂M

exp (−f)∇ivijηj dsg.

To compute these integrals, let us first calculate ∇ivijηj . We have

∇ivin = −2∇iRin − 2∇i∇i∇nf
= −∇nRg − 2∆g∇nf (by the contracted Bianchi identity).
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By the Ricci identity, using the fact that at the boundary ∇nf = 0 and also
Rαn = 0, we obtain

∆g∇nf = ∇n∆gf +R k
n ∇kf = ∇n∆gf,

and therefore,

∇ivin = −∇nRg − 2∇n∆gf.

Using the evolution equation ft = −∆gf −R, we get, at the boundary,

∇n∆gf = −∇nRg.

This last identity has two consequences. On the one hand, it implies that

∇ivin = −∇nRg + 2∇nR = ∇nRg = kgRg − 2k′g,

which shows that∫
∂M

exp (−f)∇ivijηj dsg =

∫
∂M

(
kgRg − 2k′g

)
exp (−f) dsg.

On the other hand, it implies that
∂v

∂ηg
= 0, so we obtain

∫
∂M

[
∂v

∂ηg
+ (v − 2h)

∂f

∂ηg

]
exp (−f) dsg = 0.

Let us now compute the integral

II = −
∫
∂M
∇i exp (−f) vijηj dsg = −

∫
∂M
∇i exp (−f) vin dsg.

Under the previous conventions,

II =

∫
∂M
∇αf exp (−f) vαn dsg +

∫
∂M
∇nf exp (−f) vnn dsg.

Using the fact that ∇nf = ∂nf = 0 on ∂M , we can compute

∇α∇nf∇αf = −A
(
∇>f,∇>f

)
,

where A denotes the second fundamental form of the boundary. Hence, using
the definition of vαn, we get

II =

∫
∂M

2A
(
∇>f,∇>f

)
exp (−f) dsg =

∫
∂M

2kg

∣∣∣∇>f ∣∣∣2 exp (−f) dsg,
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and the formula is proved. �

Next, we consider Perelman’s W-functional, namely,

W (g, f, τ) =

∫
M

[
τ
(
|∇f |2 +Rg

)
+ f − 2

]
(4πτ)−1 exp (−f) dAg.

Under the unnormalized Ricci flow (1), and the evolution equations

(6)


∂f

∂t
= −∆gf + |∇f |2 −Rg +

1

τ
in M × (0, T ) ,

dτ

dt
= −1 in (0, T ) ,

∂f

∂ηg
= 0 on ∂M × (0, T ) ,

we have the following formula, which shows a monotonicity property as long
as kg ≥ 0 and k′g = ψ′ ≤ 0, for the functional W.

Theorem 3.2.

d

dt
W =

∫
M

2τ

∣∣∣∣Rij +∇i∇jf −
1

2τ
gij

∣∣∣∣2 (4πτ)−1 exp (−f) dAg

+
1

4π

(∫
∂M

(
kgRg − 2k′g + 2kg

∣∣∣∇>f ∣∣∣2) exp (−f) dsg

)
.

Proof. Using the fact that

0 =

∫
∂M

∂e−f

∂ηg
dsg =

∫
M

∆ge
−f dAg =

∫
M

(
|∇f |2 −∆gf

)
e−f dAg,

and recalling that under (6), δ
(

1
4πτ e

−fdAg
)

= 0 ([23, Eq. 12.3]), we can
compute the contribution to the formula due to the variation of the term

1

4πτ

∫
M

(f − 2) exp (−f) dAg.

From this, and the computations in the proof of Theorem 3.1, the theorem
easily follows. �
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4. Controlling the injectivity radius of a surface with
boundary

4.1. An extension procedure

Here we show an extension procedure for surfaces with boundary of pos-
itive scalar curvature and convex boundary that allows us to control the
maximum of the curvature of the extension (compare with the results in
[25]).

Theorem 4.1. Let (M, g) be a compact surface with boundary, and assume
that its Gaussian curvature and the geodesic curvature of its boundary are
strictly positive. Let z0 > 0 be arbitrary. Then there exists a closed surface(
M̂, ĝ

)
, ĝ a C2 metric, such that M is isometrically embedded in M̂ , the

Gaussian curvature K̂ of M̂ is strictly positive and satisfies

0 < K̂ ≤ K+ +
2α+

z0
,

where K+ is the maximum of the Gaussian curvature of M , and α+ is the
maximum of the geodesic curvature of ∂M .

Proof. Let θ ∈ ∂M . Given K (θ) > 0 the (Gaussian) curvature function of
M restricted to ∂M , define the following family of functions. First for y < 0:

Ky (θ, ζ) =


K (θ) +

yK (θ)

z0
ζ if 0 ≤ ζ < z0

1− y
,

K (θ)

1− y
if

z0

1− y
≤ ζ ≤ z0,

and for y ≥ 0:

Ky (θ, ζ) = K (θ) + yζ, 0 ≤ ζ ≤ z0.

Observe that for a given α > 0 there exists exactly one member of the
previously defined family, say Ky(α), such that

(7) α (θ) =

∫ z0

0
Ky(α) (θ, ζ) dζ.

Indeed, notice that for fixed θ we have that

Ky1 (θ, ζ) < Ky2 (θ, ζ) , ζ > 0, whenever y1 < y2,
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∫ z0

0
Ky (θ, ζ) dζ → 0 as y → −∞,

∫ z0

0
Ky (θ, ζ) dζ →∞ as y →∞,

and also, for θ fixed, if α′ ≤ α, the corresponding functions Ky(α′) and Ky(α)

(which satisfy (7) for α′ and α respectively) satisfy

Ky(α′) (θ, ζ) ≤ Ky(α) (θ, ζ) .

We are ready to extend the metric from a convex surface with bound-
ary to a compact closed surface, keeping control over the maximum of the
curvature. Define the warping function

f (θ, z) = 1 + α (θ) z −
∫ z

0

∫ ζ

0
Ky(α(θ)) (θ, ξ) dξ dζ,

where α (θ) is the geodesic curvature of ∂M at the point θ ∈ ∂M . Notice

that z0 > 0 can be chosen arbitrarily, and also that
∂f

∂z
≥ 0 on 0 ≤ z ≤ z0

and hence f ≥ 1 on the same interval.
If g∂M is the metric of M restricted to its boundary, we define a metric

ĝ on N = ∂M × [0, z0] by

ĝ = dz2 + f2g∂M .

This metric defines an extension of the metric on the surface M to the
surface M̂0 = M ∪N where ∂M ⊂M is identified with ∂M × {0} ⊂ N . It
is clear that this metric is C2, that ∂M̂0 = M × {z0}, and that it is totally
geodesic.

Let us now estimate the maximum of the curvature in our extension.
Define

K+ (ζ) = K+ +
2α+

z2
0

ζ,

i.e., take from the family of functions defined above, in the case when y ≥ 0,

K (θ) = K+ and y =
2α+

z2
0

. Observe that

∫ z0

0
K+ (ζ) dζ = K+z0 + α+ > α+.
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Therefore, by the properties discussed above for the family of functions Ky,
we have

Ky(α(θ)) (θ, ζ) ≤ K+ +
2α+

z2
0

ζ.

Notice now that Ky(α(θ)) = − ∂2

∂z2
f (z) and hence, by taking ζ = z0, we ob-

tain

− ∂2

∂z2
f (z) ≤ K+ +

2α+

z0
.

Since f ≥ 1, it follows that the Gaussian curvature of M̂0, which is equal to

−fzz/f , is at most K+ +
2α+

z0
. Given the fact that the produced extension

M̂0 is a surface with a C2 metric and with a totally geodesic boundary, we
can double it to obtain a closed surface endowed with a C2 metric of positive

Gaussian curvature which is bounded above by K+ +
2α+

z0
. �

From the proof of the previous theorem we can extract the following
useful corollary.

Corollary 4.1. If there is a geodesic in M of length l that hits the boundary
orthogonally at both its endpoints, then there is a closed geodesic (which is
C3) in the extension M̂ (as constructed in the proof of Theorem 4.1) of
length 2l + 2z0.

4.2.

Let (M, g) be a compact surface with boundary. We will assume that its
scalar curvature is positive as well as the geodesic curvature of its boundary.
We will assume that the bounds 0 < R ≤ 2K+ and 0 ≤ kg ≤ α+ hold, and
also, without loss of generality as this is all that is needed in the applications,
that K+ ≥ 1.

Before we state the main result of this section, let us review the concept
of injectivity radius of a surface with boundary. We shall need the following
definitions:

Definition 4.1. Let M be a manifold with boundary and p a point in its
interior (p ∈M \ ∂M). Define ιint (p) as the supremum of r > 0 such that
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if

γ : [0, tγ ] −→M

is a normal geodesic with γ (0)=p, then it is minimizing from 0 to min {tγ , r},
where tγ is the first time that γ intersects ∂M .

We define the interior injectivity radius of M as

ιint := inf
{
ιint (p) : p ∈M \ ∂M

}
.

Definition 4.2. For a Riemannian manifold with boundary M , and p ∈
∂M , define ι∂(p) as the supremum r > 0 such that any minimizing geodesic
γ issuing from p normally to ∂M uniquely minimizes distance to ∂M up to
distance r (i.e., γ(0) = p and dist(γ(r), ∂M) = r).

Define i∂(M) the boundary injectivity radius of M (as opposed to the in-
jectivity radius of the boundary) as

ι∂ (M) = inf{i∂(p) : p ∈ ∂M}.

The injectivity radius ιM of the surface is defined as

ιM = min
{
ι∂ , ιint

}
.

From the definition of the injectivity radius for a surface with boundary, and
the Klingenberg estimates for the injectivity radius of a compact surface of
positive curvature (see Theorem 1.114 in [11] and [24, §6]), one can conclude
that in the case of a surface with boundary, we have an estimate from below
for the injectivity radius ιM of a surface with boundary given by

ιM ≥ min

{
Foc (∂M) ,

1

2
l,

c√
K+

}
,

where Foc (∂M) is the focal distance of ∂M , l is the lenght of the shortest
geodesic meeting ∂M at its two endpoints at a right angle, and c > 0 is a
universal constant. For the benefit of the reader, let us recall the definition
of the focal distance of ∂M :

Let ν be the normal bundle of ∂M , and denote by ν− denote the bundle
of inward pointing normal vectors. Then we can define the exponential map

exp : ν− −→M,
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as

exp (p) = γp (1) ,

where γp is a geodesic starting at p whose velocity vector is normal to ∂M
and points inwards. For a compact surface, there is a δ > 0 for which this
map is well defined when restricted to normal vectors to ∂M of length at
most δ, so we will think of this map as defined over this subset of ν−, which
we will denote by ν− (δ). We say that p ∈M is a focal point of ∂M if p is
a critical point of the exponential map. The focal distance is the minimal
distance of a focal point of ∂M to ∂M .

Since it is also well known from comparison geometry that (see [24, §6])

Foc (∂M) ≥ 1√
K+

arctan

(√
K+

α+

) (
≥ π

2
√
K+

if α+ = 0

)
,

our estimate on the injectivity radius reduces to

ιM ≥ min

{
1

2
l,

c√
K+

}
,

for a new constant c.
Our wish now is to show that along the Ricci flow (1), with initial and

boundary data satisfying the requirements of Theorem 1.1, on any finite
interval (0, T ) of time where it is defined there is a constant κ > 0, which
may depend on T but which is otherwise independent of time, such that at
any time t ∈ (0, T )

(8) ι(M,g(t)) ≥
κ√

Rmax (t)
where Rmax (t) = max

p∈M
Rg (p, t) .

The desired estimate is then a consequence of the following estimate, which is
an analogue of Klingenberg’s Lemma for surfaces of positive scalar curvature
and convex boundary.

Proposition 4.1. Let (M, g) be a compact surface with boundary. Assume
that the scalar curvature of M satisfies 0 < R ≤ 2K+, K+ ≥ 1, and that the
geodesic curvature of the boundary satisfies 0 ≤ kg ≤ α+. Let l be the length
of the shortest geodesic in M whose both endpoints are orthogonal to the

boundary. There is a constant κ := κ (α+) > 0 such that l ≥ κ√
K+

.
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Proof. For this proof we may assume kg > 0, as we can deal with the case
kg ≥ 0 by considering, instead of M ,

M (ε) = {p ∈M : ρ (p) ≥ ε} ,

where ρ is the distance function to ∂M ; for any ε > 0 small enough, if R > 0
and kg ≥ 0, it is not difficult to show that M (ε) has boundary with strictly
positive geodesic curvature. Indeed, recall that the geodesic curvature kg of
a level curve of ρ (see [12, Proposition 6.2]) satisfies

∂kg
∂ρ

=
R

2
+ k2

g .

The proposition will be proved in this case by noticing that a geodesic hitting
the boundary of M (ε) orthogonally at both of its endpoints is at most 2ε
shorter than a geodesic with the same property in M , for ε as small as
desired.

Now, let l be the length of the shortest geodesic that hits the bound-

ary of M orthogonally. Let z0 =
α+

2C
√
K+

, C > 0 a constant to be chosen, in

Theorem 4.1 and Corollary 4.1. By Corollary 4.1 and Klingenberg’s injectiv-
ity radius estimate applied to M̂ , the extension of M given by Theorem 4.1,
we have that

2l +
α+

C
√
K+
≥ c′√

K+ + C
√
K+

,

where c′ is a universal constant. Hence we have an estimate for l:

l ≥ c′

2
√
K+ + C

√
K+

− α+

2C
√
K+
≥ c′

2
√

1 + C
√
K+

− α+

2C
√
K+

,

and to get the last inequality we have used that K+ ≥ 1. If α+ ≤ c′

4 , we can

choose C = 1. If α+ > c′

4 , choose C > 0 so that

c′

2
√

1 + C
√
K+

− α+

2C
√
K+
≥ α+

2C
√
K+

,

by taking, for instance, C =
4α2

+ +
√

16α4
+ + 16 (c′α+)2

2 (c′)2 . This shows the

proposition. �
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4.3. Compactness for Ricci flows

In this section we shall state the compactness result, due to Gianniotis [18],
we need in order to prove Theorem 1.1, and then we will use it to prove a
compactness theorem for Ricci flows in surfaces with boundary.

For the convenience of the reader, in this section we shall adopt Giannio-
tis’ notation, which is described below. In particular, notice that his ib is our
i∂ as defined above, and that gT is the restriction of g to ∂M . Following [18],
first we fix local coordinates around a point, defined onto B (0, r), the open
ball in Rd of radius r centered at the origin. Then we define the following
quantities in Qr = B (0, r)×

[
0, r2

]
, 0 < α < 1 (the derivatives are defined

with respect to the chart, and the norms with respect to the Euclidean
metric in the chart; see [18, §2]).

〈u〉α,x = sup
(x, t) ,

(
x′, t

)
∈ Qr

|u (x, t)− u (x′, t)|
|x− x′|µ

,

〈u〉α,t = sup
(x, t) ,

(
x′, t

)
∈ Qr

|u (x, t)− u (x, t′)|
|t− t′|α

.

For an integer j define

〈u〉(j)Qr =
∑

2s+|β|=j

sup
Qr

∣∣∣∂st ∂βxu (x, t)
∣∣∣ .

Given l = m+ α, m a positive integer, large enough and which is fixed from
now on, define

|u|∗l,r =
∑

2v+|β|=m

rl
〈
∂vt ∂

β
xu
〉
α,x

(9)

+
∑

0<l−2v−|β|<2

rl
〈
∂vt ∂

β
xu
〉
l−2v−|β|

2
,t

+

m∑
j=0

rj 〈u〉(j)Qr .

Before we state Gianniotis’ Compactness Theorem, we must introduce
the definition of Λ-controlled boundary (a definition also due to Gianniotis:
see Definition 3.1 in [18]; notice also that Gianniotis considers the possiblity
of noncomplete manifolds and Ricci flows, for us, all manifolds and Ricci
flows are complete).
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Definition 4.3. A (complete) Ricci flow on a (d+ 1)-dimensional manifold
with boundary (M, g (t)), t ∈ (a, b], has a boundary with Λ-controlled con-
formal class and mean curvature in the interval (a, b], if there is a smooth
one parameter family γ (t) of metrics on ∂M such that

(1)
[
gT (t)

]
= [γ (t)] and Λ−2γ (t) ≤ gT (t) ≤ Λ2γ (t) for all t ∈ (a, b].

(2) For every
(
x, t
)
∈ ∂M × (a, b], set γ̃ (s) = γ

(
s+ t− r2

)
and H (s) =

H
(
g
(
s+ t− r2

))
, where H (g) denotes the mean curvature of the boundary

with respect to the metric g. We require that for any r ≤ ρΛ ≤ Λ−1 there
exists γ

(
t
)
-harmonic coordinates u : U −→ B (0, r) around x such that

(a) Q−1δ ≤ γ̃ (s) ≤ Qδ, in B (0, r) and s ∈
[
0, r2

]
,

(b) |γ̃αβ|∗l,r ≤ Q, where α, β = 1, 2, . . . , d,

(c)
∣∣H (s)

∣∣∗
l−1,r

≤ Q.

Here δ denotes the Euclidean metric. Such triplet (M, g (t) , γ (t)) will be
called a Ricci flow with Λ-controlled boundary in (a, b].

Gianniotis’ Compactness Theorem (Theorem 4.1 in [18]) can be now
stated as follows.

Theorem 4.2. Let (Mk, pk) be a sequence of pointed manifolds with com-
pact boundary, and (gk (t) , γk (t)) be complete Ricci flows on Mk, t ∈ (a, b]
with Λ-controlled boundary in (a, b]. Assume

(1) |Rm (gk)|gk ≤ K in Mk × (a, b],
(2) |A (gk)|gTk ≤ K in ∂Mk × (a, b] (here A denotes the second funda-

mental form of the boundary),
(3) ιb,gk(0) ≥ ι0,

for all k. Then there is a pointed manifold with boundary (M∞, p∞), a (com-
plete) Ricci flow g∞ (t) on Mk and a family of metrics γ∞ (t) such that up
to a subsequence

(Mk, gk (t) , γk (t) , pk)→ (M∞, g∞ (t) , γ∞ (t) , p∞) ,

in the Cm−3 topology.

Notice that in the statement of the previous theorem we can assume that
the k-th flow is defined in an interval ak < 0 < bk with either ak → −∞, or
bk →∞ (or both), since a diagonal procedure can be used to extend the
result to these cases.

The careful reader must have noticed that Gianniotis states in his the-
orem that the limit manifold has boundary (in the discussion below we
assume a < 0 < b), as this is the case he seems to be most interested in,
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so he seems to be tacitly assuming that either pk ∈ ∂Mk or dgk(0) (pk, ∂Mk)
remains uniformly bounded from above (or at least along a subsequence),
where dgk(0) (pk, ∂Mk) represents the distance of pk to ∂Mk with respect to
the metric gk (0). However, it might happen that rk = dgk(0) (pk, ∂Mk)→∞.
In this case, we show in the next two paragraphs that the limit is a complete
Ricci flow defined in a noncompact manifold without boundary.

Consider the metric space Xk = Bk

(
pk,

rk
2

)
, the closed ball of radius

rk/2 centered at pk in (Mk, gk (0)), with the metric generated by the Rie-
mannian structure gk (0). Assuming uniform bounds on the curvature of
the Mk’s, the sequence (Xk, pk) converges in the pointed Gromov-Hausdorff
sense to a complete pointed metric space (X , p) (Fact 4, page 174 in [31]).
We show that, assuming a uniform lower bound ι0 > 0 on the injectivity ra-
dius of each Mk with respect to gk (0), and uniform bounds on the curvature
and its covariant derivatives (with respect to gk (0) and independent of k),
this metric space is a manifold.

Indeed, given x ∈ X , there is a sequence xk ∈ Xk such that xk → x (in
the Gromov-Hausdorff sense, see page 307 in [30]), and for which, by our
assumption on a uniform lower bound on the injectivity radius, there exist
normal coordinates around xk for k large enough, say ϕk : B (0, ι0) −→ Xk
(here B (0, ι0) is the open ball of Rd+1 of radius ι0 centered at the origin).
The assumed curvature bounds in Theorem 4.2 (which, by Shi’s estimates,
gives bounds on the covariant derivatives of the curvature) imply that the
sequence of ϕk’s converges to a ϕ : B (0, ι0) −→ X which is a chart around
x in X , and also that the transition functions between charts converge to
smooth transition functions in the limit. Also, we have, that along a sub-
sequence, the Riemannian metrics gk (0) converge to a metric g∞ (0) in X .
Finally, again by the curvature bounds, applying the arguments in Section
2 of [20], we have a complete (noncompact and boundaryless) Ricci flow
g∞ (t) defined in X × (a, b] to which a subsequence of the (Mk, gk (t) , pk)
converges.

We have then the following compactness theorem.

Theorem 4.3. Let (Mn, pn) be a sequence of pointed surfaces with compact
boundary, and gn (t) be complete Ricci flows on Mn, t ∈ (a, b], a < 0 < b.
Assume

(1) |Rgn |gn ≤ K in Mn × (a, b],
(2) kgn, the geodesic curvature of ∂Mn with respect to gn and the outward

unit normal, only depends on t (i.e., it is constant in space in ∂Mn × (a, b]),

(3) for every nonnegative integer j,

∣∣∣∣djkgndtj

∣∣∣∣ ≤ Kj on ∂Mn × (a, b],
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(4) the length of the boundary with respect to gn (0) is at least λ,
(5) ιM,gn(0) ≥ ι0,

for all n. Then there is a pointed surface (M∞, p∞), a complete Ricci flow
g∞ (t) on Mn such that up to a subsequence

(Mn, gn (t) , pn)→ (M∞, g∞ (t) , p∞) ,

in the Cm−3 topology.

Proof. The proof is an application of Gianniotis’ Compactness Theorem and
the comments made right before its statement. Indeed, if

lim inf
n→∞

dgn(0) (pn, ∂Mn)→∞,

then we can form a blow up limit and it will be a noncompact complete
Ricci flow without boundary.

Otherwise, we can apply Giannotis’ Compactness Theorem directly. First,
notice that hypothesis (2) in Theorem 4.2 follows from hypothesis (3) of the
statement of the theorem and from the fact that the second fundamental
form of the boundary of a surface is given by kgg

T , where kg is the geodesic
curvature of the boundary, and gT is the metric of the surface restricted
to the boundary. So we must verify that in the case of a surface, as long
as the geodesic curvature of the boundary remains constant in space and
we have uniform bounds on the curvature, the Ricci flow is Λ-controlled.
Indeed, we can take γ as the restriction of g to ∂M , i.e., γ = gT . Given
a point x ∈ ∂M at time t let U ⊂ ∂M be an open neighborhood of x and
w : (−r, r) −→ ∂M be an arclength parametrization of U with w (0) = x. It
is clear that u = w−1 are γ-harmonic coordinates around x. Notice that if
the length of the boundary is uniformly bounded from below by λ′ on (a, b],
then we can define these γ-harmonic coordinates for all r ≤ λ′/4 (so we can
take Λ−1 = min {λ′/4, 1} to satisfy Definition 4.3). In the coordinates thus
defined, it is not difficult to show that γ is the Euclidean metric, so (a) in
Definition 4.3 holds with Q = 1, and it is immediate that (b) also holds.
Moreover, from (3) and (4) we also have (c) (with a Q conveniently defined,
and which only depends on the Kj ’s, j = 0, 1, 2, 3, . . . ,m+ 1, α, and λ′, see
equation (9) above).

To finish the proof, we only need to show how to obtain a uniform lower
bound on the length of ∂Mn with respect to gn (t), for t ∈ (a, b], independent
of both t and n (that is, we must show that λ′ exists). To this end, notice
that if in a given (finite) time interval I = (a, b] at t0 ∈ I we have such lower
bound on the length of the boundary, a uniform bound on the curvature gives
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a lower bound on the length of the boundary on the whole time interval I,
and this lower bound depends only on the bound on the curvature, on the
lower bound on the length of ∂Mn with respect to gn at t = t0, and on a
bound on the length of the time interval (in this case b− a); since we are
assuming that we have a uniform bound from below for the length of ∂Mn

with respect to gn (0) (namely λ), the theorem is proved. �

4.4. Application to blow-up limits of the Ricci flow

Recall that a blow-up limit is constructed as follows: if (0, T ), 0 < T <∞,
is the maximal interval of existence for a solution to (1), we pick a sequence
of times tj → T and a sequence of points such that

λj := Rg (pj , tj) = max
M×[0,tj ]

Rg (x, t) ,

and then we define the dilations

gj (t) := λjg

(
tj +

t

λj

)
, −λjtj < t < λj (T − tj) .

By the procedure just described, from a solution to (1) we can define a
sequence (Mn, gn (t) , pn) of pointed Ricci flows. So assume that we have a
solution to (1), which satisfies the hypothesis of Theorem 1.1. As proved
above, this solution will blow up in finite time; we will show that we can
construct blow-up limits, via an application of Theorem 4.3:

The bound on the curvature is obvious from the construction. The
needed control over the injectivity radius of the surface and its boundary
injectivity radius at t = 0 are provided by the results in Section 4.1. On the
other hand when the boundary is convex, a bound from below on ιM gives
a bound from below on the length of the boundary (and hence we have such
control at t = 0). Further, the smoothness of ψ (= kg) on ∂M × [0,∞), the
fact that it rescales as

kλjg =
kg√
λj
,

and that we are assuming λj →∞, gives hypotheses (2) and (3) of the
statement of Theorem 4.3.

Therefore, applying Theorem 4.3, we have that there is solution to the
Ricci flow (M∞, g∞ (t) , p∞), defined on an interval −∞ < t < Ω, such that

(Mn, gn (t) , pn)→ (M∞, g∞ (t) , p∞) ,
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on any compact interval of time in the Cm−3 topology for any m, and hence,
using a diagonal procedure, smoothly.

5. Proof of Theorem 1.1

As shown in the previous section, given (M, g (t)) a solution to (1) in a max-
imal time interval 0 < t < T <∞, which satisfies the hypothesis of Theo-
rem 1.1, we can produce blow-up limits.

In our case, we can classify the possible blow-up limits we may obtain.
We have the following result which, with minor modifications, is essentially
proved in [12].

Proposition 5.1. Let (M, g (t)), M a compact surface with boundary, be
a solution to (1). Let (0, T ), T <∞, be the maximal interval of existence of
g (t). Assume that there is an ε > 0 such that for all 0 < t < T , Rg > −ε,
and that kg is bounded. There are two possible blow-up limits for (M, g (t))
as t→ T . If the blow-up limit is compact, then it is a homotetically shrinking
round hemisphere with totally geodesic boundary. If the blow-up limit is non
compact then it is (or its double is) a cigar soliton.

Proof. Just notice that any blow-up limit of (M, g (t)) as t→ T , will have
nonnegative scalar curvature, which is strictly positive at one point, a totally
geodesic boundary, or no boundary at all, and will be defined in an interval
of time (−∞,Ω) (and Ω could be ∞). Then, by doubling the manifold if
needed (which as discussed in Appendix B.1, gives a smooth solution to
the Ricci flow), everything reduces to the boundaryless case, and [21, Thm.
26.1 and Thm. 26.3 ] can be applied to give the proposition. �

Now we proceed with the proof of Theorem 1.1. In what follows, we let
(M, g0) be a compact surface with boundary of positive scalar curvature,
and such that ∂M has nonnegative geodesic curvature, ψ be as described in
the statement of Theorem 1.1, and we let (M, g (t)) be the solution to (1)
associated to the initial data g0 and the boundary data ψ. By Proposition 2.2
we have R > 0 and R blows up in finite time, say T , and as discussed in the
last paragraph of the previous section, we are allowed to take blow-up limits
of (M, g (t)) as t→ T . Hence, from Proposition 5.1, and the monotonicity
formula in §3 (Theorem 3.2), it follows that along a sequence of times tk → T ,
it holds that

(10) lim
k→∞

Rmax (tk)

Rmin (tk)
= 1,
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where

Rmax (t) = max
p∈M

Rg (p, t) and Rmin (p, t) = min
p∈M

Rg (p, t) .

Indeed, as is the case of closed surfaces, the monotonicity formula provided
by Theorem 3.2 (as long as ψ ≥ 0 and ψ′ ≤ 0) precludes the cigar as a blow
up limit (see [12, § 7.1] and [10, Corollary D.48]). To see this more clearly,
double the blow-up limit: it is an ancient solution to the Ricci flow (now with-
out boundary), and hence it is smooth (see the discussion in Appendix B.1);
so we have two possible scenarios. The obtained ancient solution is a Type
I solution, in which case it must be a sphere; or it is a Type II solution. In
this case, as the curvature of the solution assumes its maximum at an origin,
it must be the cigar. But then, this origin must be located at the boundary
of the original blow up limit (before doubling) for otherwise the curvature
would assume two maximums, which does not happen in the cigar; so this
blow-up type II limit is half a cigar (as cut along a radial geodesic) if it has a
boundary, or just a cigar (if the limit is boundaryless). Hence, we can apply
the arguments in [12, § 7.1, pp. 45-46] and define a family of functions φ
in half the cigar (restricting the definition of φ given for the whole cigar in
the obvious way) or in the whole cigar (if the limit is boundaryless) to show
that the functional W has as its infimum −∞, a contradiction with the fact
that the original Ricci flow (the one we extracted the limit from) cannot
have this infimum to be −∞ as W is monotone along the Ricci flow (Theo-
rem 3.2), and at time t = 0 this infimum is finite. Therefore the only possible
blow-up limit is the round hemisphere with totally geodesic boundary, which
implies (10).

The following interesting estimate on the evolution of the area A (t) :=
Ag(t) (M) of M under the Ricci flow (1), with initial data g0, can now be
proved.

Proposition 5.2. There are constants c1, c2 > 0 such that

c1 (T − t) ≤ A (t) ≤ c2 (T − t) .

Proof. Since in our case any blow up limit is compact, we must have

lim
t→T

A (t) = 0.
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Since R > 0, and
∫
∂M kg dsg is nonincreasing, by the Gauss-Bonnet Theorem

we have the inequalities

−2π ≤ dA

dt
≤ −c,

and the result follows by integration. �

As a consequence of the previous proposition and from the normaliza-
tion (2) we can immediatly conclude the following.

Corollary 5.1. The normalized flow exists for all time.

Proof. The normalized flow exists up to time

lim
t→T−

∫ t

0

1

A (τ)
dτ =∞,

by Proposition 5.2. �

Also, an estimate for the maximum of the scalar curvature can be de-
duced.

Proposition 5.3. There are constants c1, c2 > 0 such that

c1

T − t
≤ Rmax (t) ≤ c2

T − t
.

Proof. By the Gauss-Bonnet theorem and the fact that, under the hypothesis

of Theorem 1.1,

∫
∂M

kg dsg is nonincreasing, we have that

∫
M
Rmax (t) dAg ≥ C,

and from Proposition 5.2, there is a c′ > 0 such that

c′Rmax (t) (T − t) ≥ C,

so the left inequality follows.
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To show the other inequality we proceed by contradiction. Assume that
there is no constant c2 > 0 for which

Rmax (t) ≤ c2

T − t

holds. Then we can find a sequence of times tj → T such that

Rmax (tj) (T − tj)→∞,

and hence along this sequence the blow-up limit would not be compact, as
it would have infinite area due to Proposition 5.2, and this would contradict
the arguments given right after Proposition 5.1. �

Corollary 5.3 shows that along any sequence of times we can take a
blow-up limit since for any sequence of times, the curvature is blowing up at

maximal rate (i.e. ∼ 1

T − t
). By the arguments following Proposition 5.1 this

blow-up limit is a round homotetically shrinking hemisphere. This proves the
following theorem.

Theorem 5.1. Let (M, g0) be a compact surface with boundary, of positive
scalar curvature and such that the geodesic curvature of ∂M is nonnegative,
and let ψ be as in the statement of Theorem 1.1. Then, the solution to the
Ricci flow (1) with initial condition g0 blows up in finite time T , and for the
scalar curvature R we have that

lim
t→T

Rmax (t)

Rmin (t)
= 1.

As a consequence, under the corresponding normalized flow we obtain that

R̃max

(
t̃
)
− R̃min

(
t̃
)
→ 0 as t̃→∞.

So far we have shown that, in the normalized flow, as t̃→∞ the curva-
ture uniformizes. Now we argue why given any sequence of times t̃n →∞,
we can find a subsequence along which the metric is converging smoothly. In-
deed, to each time t̃n corresponds a tn in the unnormalized flow; by the esti-
mates given in Corollary 5.3, we can produce a blow-up limit, taking as time
origins each of the tn. Hence, λng (tn), where λn = maxp∈M R (p, tn), con-
verges smoothly to a metric g of constant curvature. Observe that g̃

(
t̃n
)

=

cnλng (tn). As g̃
(
t̃n
)

=
1

A (tn)
g (tn), where A (tn) is the area of the surface

with respect to the metric g (tn), and by our previous arguments 1/A (tn) ∼
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λn, we can infer that cn > 0 is a bounded sequence (which is also bounded
away from 0). Therefore, we can choose a sequence nk →∞ such that
cnk → c. It is clear then that along this subsequence g̃

(
t̃nk
)
→ cg smoothly,

and it is clear that cg has constant curvature.
Thus we have proved that for any sequence t̃n →∞, there is a subse-

quence of times t̃nk →∞ such that g̃
(
t̃nk
)

is converging to a metric of con-
stant curvature (these metrics may be different according to the sequence
considered). Notice that the metrics g̃ (t) have their maximum curvatures
uniformly bounded from below, by Propositions 5.2 and 5.3 (this precludes
the flat cylinder as a possible limit), and hence the curvature approaches a
positive constant -along any sequence of times. To be able to conclude that
these limit metrics are isometric to that of a standard hemisphere, we must
also show that the geodesic curvature of the boundary approaches 0. Let us
now conclude the proof of Theorem 1.1.

Finishing the proof of Theorem 1.1. The only part of the statement
that has not been proved in the previous discussion is that regarding the
behavior of the geodesic curvature. Notice that

c

T − t
≤ φ (t) ≤ C

T − t
,

where φ is the normalizing factor defined in the introduction, and hence

T − t ≤ Te−ct̃,

which shows that

kg̃ ≤ C
√
T − tψ ≤ ce−ct̃ψ.

Since ψ ≥ 0 and ψ′ ≤ 0, it remains bounded, and the theorem follows. �

6. Proof of Theorem 1.2

In this section we let g (t) be the solution to (1) in the two-ball D, with
initial and boundary data as described in the hypotheses of Theorem 1.2. It
is clear, from uniqueness, that this solution is also rotationally symmetric.
Let A (t) := Ag(t) (D) be the area of D with respect to g (t). Given the fact
that

dA

dt
= −4π + 2

∫
∂M

kg dsg,
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it is not difficult to conclude that there are positive constants c, C such that

−c ≤ d

dt
A ≤ −C < 0.

Therefore, to show that the normalized flow does exists for all time, all we
must prove is that A (t)→ 0 as t→ T , as this would show that A (t) ∼ T − t.

First notice that the scalar curvature of the solution to (1), with initial
data g0 and boundary data ψ as in Theorem 1.2, blows up in finite time
by Proposition 2.3. Let us denote by R (t) the radius of D with respect to

g (t); by comparison geometry we have that at any time R ≥ π

2
√
Rmax (t)

,

so the boundary injectivity radius is conveniently bounded from below. Us-
ing Hamilton’s arguments (see [8, § 5]), it can be shown that for points at
distance at least 1

4R from the boundary, the injectivity radius is also conve-
niently bounded from below. The fact that we have good lower bounds on
the length of the boundary is given by Corollary 1.2 (c) in [1]. Finally, as
the geodesic curvature of the boundary remains constant in space, it is not
difficult to show (as we did before) that for any 0 < T ′ < T , the boundary
is Λ controlled on (0, T ′].

The arguments in the previous paragraph show that we can take a blow-
up limit of (M, g (t)) as t→ T . This blow-up limit might be compact, and
in this case it is a round hemisphere, and as we did before, it can be shown
then that A (t)→ 0 as t→ T , and we would be done. If this blow-up limit is
non compact it must be the cigar. In this case, it is not difficult to prove that
we can take as an origin for the blow up limit the center of D (otherwise, in
the limit surface there would be a radial geodesic along which the curvature
is constant, and this does not happen in the cigar). To study this case we
define the following quantities which depend on g (t):

I (r, t) =
Lg (∂Dr)

2

Ag (Dr)
, I (t) = inf

0≤r≤R
I (r, t) ,

where Dr ⊂ D is the geodesic ball of radius r centered at the center of D,
Lg (∂Dr) is the length of ∂Dr and Ag (Dr) is the area of Dr both with respect
to the metric g (t). There are two cases to be considered. The first case to
be considered is when there is a δ > 0 such that this infimum is attained at
r (t) ∈ [0,R) on the time interval (T − δ, T ). If r = 0, then I = 4π; if r > 0,
we have the following formula.
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Lemma 6.1. If I at time t is attained at r ∈ (0,R) then I satisfies an
evolution equation

(11)
∂

∂t
log I (r, t) =

∂2

∂r2
log I (r, t) +

1

Ag (Dr)
(4π − I (r, t)) .

Proof. We let L = Lg (∂Dr), A = Ag (Dr), k be the geodesic curvature of
∂Dr and K be the Gaussian curvature of D. We have the following set of
formulas

∂L

∂r
=

∫
∂Dr

k ds = kL,
∂2L

∂r2
= −

∫
∂Dr

K ds =
∂L

∂t
,

and

∂A

∂r
= L,

∂2A

∂r2
=

∫
∂Dr

k ds,
∂A

∂t
= −4π + 2

∫
∂Dr

k ds.

Notice that at the value of r where the infimum is attained we have

0 =
∂

∂r
log I =

2

L

∂L

∂r
− 1

A

∂A

∂r
, so we have,

2

L

∂L

∂r
=

1

A

∂A

∂r
.

Formula (11) now follows from all these identities by a straightforward cal-
culation. �

Clearly Lemma 6.1, under the assumption that I is always attained at r ∈
(0,R), precludes the fact that I → 0 (even along a subsequence of times),
since it does imply that I increases if I < 4π. Therefore, the blow-up limit
in this case cannot be the cigar, hence it is a round hemisphere, and we
would be done. We are left with one more possibility: I is reached at r = R
for a sequence of times of times tk → T ; if this is so, then since for the cigar
I = 0, if A (t) 6→ 0 as t→ T , we must have L (∂D)→ 0 as t→ T . Under the
hypotheses of Theorem 1.2, using the Maximum Principle, it is not difficult
to show that the scalar curvature remains uniformly bounded from below on
(0, T ), and therefore R remains uniformly bounded above throughout the
flow in 0 < t < T <∞. But then we have the following lemma (see [12]).

Lemma 6.2. Let gk be a sequence of rotationally symmetric metrics on the
two-ball D. Assume that there is a constant ε > 0 such that Rgk ≥ −ε and
kgk ≥ −ε, and that the radius of D with respect with this sequence of metrics
is uniformly bounded from above by ρ > 0. Then if the length of the boudary
of D with respect to gk, Lgk (∂D), goes to 0 as k →∞, then Agk (D)→ 0.



i
i

“5-Cortissoz” — 2019/8/16 — 23:40 — page 409 — #33 i
i

i
i

i
i

Ricci flow on surfaces with boundary 409

Proof. By rescaling we may assume that ε = 1. Hence a comparison argu-
ment shows that,

Agk (D) ≤ 2π

∫ ρ

0
Lgk (∂D) er dr ≤ 2πeρρLgk (∂D) ,

and the conclusion of the lemma follows. �

The previous lemma shows that we must have A (t)→ 0 as t→ T . This
proves that, in any case, A (t)→ 0 as t→ T and the theorem follows.

Appendix A. Derivative estimates

In this section of the appendix we shall show how to bound the derivatives
of the conformal factor in terms of bounds on the the curvature and of
the geodesic curvature. We will make use of the of the following result of
Gianniotis [18, Thm. 1.2] (in fact, we will only need the case j = 1 of the
theorem, which might be of interest to the reader).

Theorem A.1. Let (M, g (t) , γ (t)), t ∈ [0, T ], be a complete Ricci flow with
Λ-controlled boundary in (0, T ]. Suppose

(1) |Rm (g (t))|g(t) ≤ K in M and |A (g (t))|gT (t) ≤ K on ∂M for all t.
(2) ib,g(0) ≥ i0.
For any j = 1, 2, . . . ,m− 2 and τ > 0, there exists a constant

C = C (n, τ, T,Λ, l, j,K, i0) > 0

such that for any t ∈ [τ, T ]∣∣∇jRm (g (t))
∣∣ ≤ C in M,∣∣∇j+1A (g (t))
∣∣ ≤ C in ∂M.

Gianniotis’ Theorem applies to the problems studied in this paper, since
we are assuming constant in space geodesic curvature throughout the evo-
lution, and, as discussed before, from this fact (assuming bounds on the
curvature) follows that the boundary is Λ-controlled.

Let us write as usual g = eug0 for a solution on the Ricci flow on the
surface. We shall show how to bound derivatives of u when restricted to a
Fermi chart. So, let (U,ϕ) be a Fermi chart, namely, we let U = (−ε, ε)×



i
i

“5-Cortissoz” — 2019/8/16 — 23:40 — page 410 — #34 i
i

i
i

i
i

410 J. C. Cortissoz and A. Murcia

[0, δ)

ϕ : U −→M,

where if p = ϕ (x, s), then s is the distance from p to the boundary. In Fermi
coordinates the metric is written as

g = dx2 + f (x, s)2 ds2.

Since the Laplace operator is written as

∆ = e−u
1√
|g0|

∂i

(
gij0
√
|g0|∂j

)
,

in Fermi coordinates we have

∆g0 =
∂2

∂s2
− kg0 (x, s)

∂

∂s
+
fx
f

∂

∂x
+

1

f2

∂2

∂x2
,

where kg0 represents the geodesic curvature of the curve at distance s from

the boundary with respect to
∂

∂s
.

The main idea we shall employ to obtain estimates on u is to use classical
regularity results (Schauder estimates) for parabolic equations with oblique
boundary conditions ([26, Chapter IV]). To be able to use these results and
start a bootstrapping argument, we need to have uniform control in time
over the Hölder norm of the partial derivatives of u in the Fermi chart. Our
main tool to obtain this control will be Theorem 4.1 in [27], so we must
verify the structure conditions imposed as assumptions in this theorem for
the following elliptic operator

∆g0u−Rg0 −Reu,

with boundary condition

−∂u
∂s
− 2kge

u

2 − 2kg0 .

In order to verify these structure conditions, we must have control over R,
Rg0 , and their first derivative in the chart, and on kg0 , kg, and certain Hölder
norms of their first derivatives in the chart. We will assume bounds on the
Ck seminorms of g0 in a Fermi chart (U,ϕ) (this takes care of the needed
control on Rg0 and kg0), and we will also are assume bounds on kg and
its derivatives on ∂M × (0, T ), and on R and ∇R (via Theorem A.1) on
M × (0, T ). Notice that the bound given for ∇R, once we have control over
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u and g0, gives control over ∂iR, the derivatives of R, in the chart. Indeed,
If in the chart we have that

Λ−2δij ≤ g0ij ≤ Λ2δij ,

and |u| < M , then

|∂iR| ≤
∣∣∣eu (g0)ij ∇

jR
∣∣∣ ≤ Λ2eM |∇R| .

These assumptions are enough to verify the structure conditions in Theo-
rem 4.1 in [27]. We leave the verification of these structure conditions to the
interested reader.

As before, we shall use the notation

‖g‖Ck(U,ϕ) = sup
x∈U

∑
|β|≤k

∣∣∣∂βg (x)
∣∣∣

to denote the Ck-norm of the metric g written in local coordinates, and a
few times for a function u

‖u‖Ckτ (U,ϕ)

to denote the same Ck-norm with t = τ fixed (as u depends also on t). The
Hölder spaces Ck,α (U,ϕ) are defined as usual.

We will also make use of the parabolic Hölder spaces H(l) = H l, l
2 (as

defined in pages 6-9 in [26]; we defined similar norms before in this very
same paper, but for the convenience of the reader, and to adopt the notation
in [26], let us do it again):

Let QT = Ω× (0, T ), ρ0 > 0 and 0 < α < 1 fixed. Define

〈u〉(α)
x,QT

= sup
(x, t) ,

(
x′, t

)
∈ QT ,∣∣x− x′∣∣ < ρ0

|u (x, t)− u (x′, t)|
|x− x′|α

,

〈u〉(α)
t,QT

= sup
(x, t) ,

(
x′, t

)
∈ QT ,∣∣t− t′∣∣ < ρ0

|u (x, t)− u (x, t′)|
|t− t′|α

.

For an integer j define

〈u〉(j)QT =
∑

2r+|β|=j

sup
QT

∣∣∣∂rt ∂βxu (x, t)
∣∣∣ .
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Given l + α, l a positive integer as before and 0 < α < 1, define

‖u‖H(l+α)(QT ) =
∑

2r+|β|=l

〈
∂rt ∂

β
xu
〉(α)

x,QT
(A.1)

+
∑

0<l+α−2r−|β|<2

〈
∂rt ∂

β
xu
〉( l+α−2r−|β|

2 )

t,QT
+

l∑
j=0

〈u〉(j)QT .

The dependence of these norms on ρ0 > 0 is not important in our case, as
different choices produce equivalent norms. We can then define the space
H(l+α)

(
QT
)

as the space of all functions with finite norm (A.1). Finally the

set H(l+α) (QT ) as the space of functions belonging to H(l+α)
(
Q′
)

for any
subdomain Q′ such that Q′ ⊂ Q. In our notation (for these parabolic spaces)
we will suppress the dependence on ϕ.

We are ready to state an proof the following:

Theorem A.2. Write g = eug0 on M × [0, T ). Let (U,ϕ) be a Fermi chart
with respect to g0 of size (ε, δ). Assume that u and R are uniformly bounded
on U × (0, T ), and that we have bounds for all integers l > 0 and 0 < α <
1 on ‖kg‖Hl+α(((−ε,ε)×{0})×(0,T )) (recall kg = ψ in (1)). Let τ be such that

0 < τ < T , and U ′ be an open subset of U such that U ′ ⊂ U . Then for each
integer k > 0 there is a Ck which depends only on the bound on R, on the
bounds on kg and its derivatives, on bounds on ‖g0‖Cl(U,ϕ), on U ′ and on τ
and T , such that ∣∣∣∂ku (x, t)

∣∣∣ ≤ Ck on U ′ × [τ, T ) ,

where U ′ =
(
− ε

2 ,
ε
2

)
×
[
0, δ2
)

and ∂ represents partial differentiation in the
chart.

Proof. Using the chart, we shall work now in the set U ⊂ R2
+. Define the

following sets

Uk =

(
−ε
(

1

2
+

1

2k+1

)
, ε

(
1

2
+

1

2k+1

))
×
[
0, δ

(
1

2
+

1

2k+1

))
,

∂′Uk =

(
−ε
(

1

2
+

1

2k+1

)
, ε

(
1

2
+

1

2k+1

))
× {0} ,

and

W k = Uk × (τk, T ) , τk = τ

(
1

2
− 1

2k+1

)
.
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Fix τ1 > 0. Then for any t ≥ τ1, having control over Rg0 and ∂Rg0 (as we
are assuming this control over the metric g0), and over R and ∇R (and this
control is uniform in t for 0 < τ1 ≤ t < T once we have fixed τ1) from the
elliptic equation

∆g0u−Rg0 = Reu

with oblique boundary condition

∂u

∂ηg0
= 2kge

u

2 − 2kg0 ,

we can obtain an estimate on the C1,α norm of u at any time t > 0 (see
Theorem 4.1 in [27] and the paragraph right after the statement of the the-
orem). To be more precise, we obtain, for any t ≥ τ1 > 0, a bound (uniform
in t)

‖∂u‖Cαt (U1,ϕ)

≤ C1,α

(
U,U1, µ0, µ1, ‖kg‖H(1+α)(((−ε,ε)×{0})×(0,T )) , ‖g0‖C2,α(U,ϕ) , τ1, T

)
,

were µ0 is a bound on R and µ1 is a bound on ∂R on U × (τ1, T ), From
Theorem A.1, we can even suppress the dependence on µ1 as we can give it
in terms of µ0, and on τ1 and T . Also, from the bounds on R, and equation

∂u

∂t
= −R,

we find a bound on
∂u

∂t
. This shows that u ∈ H(1+α)

(
W 1
)
, and that bounds

in this parabolic Hölder space are controlled by bounds on R and on g0 and
its derivatives.

Now we use standard parabolic estimates for the problem (in particular
Theorem 10.1 in [26, Chapter IV]: For the relevant definitions please consult
also [26, Chapter I-§1])

∂u

∂t
= e−u (∆g0u−Rg0) in U × (0, T )

∂u

∂η
= 2kge

u

2 − 2kg0 on ((−ε, ε)× {0})× (0, T ) .

As we have H(1+α) bounds on the boundary terms (here we use again our
assumptions on kg), this gives us a bound on ‖u‖H(2+α)(W 2) and of course
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this bound depends on all the previous bounds, namely

‖u‖H(2+α)(W 2)

≤ C
(
W 1,W 2, ‖u‖H(1+α)(W 1) , ‖kg‖H(1+α)((∂′U1)×(τ1,T )) , ‖g0‖C2,α(U,ϕ)

)
From this bound on ‖u‖H(2+α)(W 2) we can obtain bounds on ‖u‖H3+α(W 3),
and this bounds also depend only on R. We can continue this process (boot-
strapping), by repeated applications of Theorem 10.1 in in [26, Chapter IV],
to obtain bounds on higher Hölder norms of u. Indeed, given a bound on
‖u‖H(n+α)(Wn), [26, Theorem 10.1, Chapter IV] gives a bound

‖u‖H(n+2+α)(Wn+1)

≤ C
(
Wn,Wn+1, ‖u‖H(n+α)(Wn) , ‖kg‖H(n+1+α)((∂′Un)×(τn,T )) , ‖g0‖Cn+2,α(U,ϕ)

)
.

So we finally can bound any number of derivatives of u in terms of bounds on
R, on kg and its derivatives, and on g0 and its derivatives in the chart (U,ϕ)
(in ever smaller domains, but this is not a problem, as all these domains
contain U ′ × [τ, T )). This proves the Theorem.

�

Appendix B. On the double of a surface

Here we discuss the regularity of the metric of the double of a manifold.
Given M a manifold with boundary, we define its double as follows:

We let Mj = M × {j}, j = 0, 1, and define an equivalence relation

(m, i) ∼ (m, j)

if i = j, or if i 6= j and m ∈ ∂M . Then the double is the set

M̃ = (M0 ∪M1) / ∼

endowed with the quotient topology. To give a smooth structure to M̃ , given
a chart

ψ : U ⊂ Rn+ −→M

we define a chart on M̃ as follows. If U ∩ {xn = 0} = ∅, we obtain two charts
by defining

ψ̃j = (ψ (x) , j) .
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If U ∩ {xn = 0} 6= ∅, let U∗ ⊂ Rn− be defined as

U∗ =
{
x :
(
x1, . . . , xn−1,−xn

)
∈ U

}
,

and define

ψ̃ : U ∪ U∗ −→ M̃

as

ψ̃
(
x1, . . . , xn

)
=

{
(ψ (x) , 0) if xn ≥ 0

(ψ (x) , 1) if xn ≤ 0

This gives a smooth structure to M̃ . We call M̃ the double of M .
However, when M is also endowed with a metric, the regularity of the

double metric is a different matter, and in general it might not be smooth.
Let us first review how to double the metric. We shall explain the con-
struction near the boundary, being relatively obvious how the construction
proceeds away from it.

Pick a Fermi chart on M ,

ϕ : (−ε, ε)× [0, δ) −→M,

and as explained above, construct the double chart. In this new chart the
metric is written as

g = ds2 + f (x, s)2 dx2, if s ≥ 0,

and

g = ds2 + f (x,−s)2 dx2, if s ≤ 0.

We shall write

g11 = 1, g22 = f2, g12 = 0 = g21.

Notice that at ∂M , g is the Euclidean metric (i.e. f (x, 0) = 1). So we have
obtained at least a continuous metric on the double. However, if we assume
that the original metric is smooth we can show the following:

Proposition B.1. Assume that kg = 0, then the metric on the double is at
least C2,1. Here C2,1 is the space of functions twice differentiable and whose
second derivatives are locally (i.e., in the chart) Lipschitz continuous.
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Proof. Let (U,ϕ) be a Fermi chart around a point p ∈ ∂M . Then the metric
is written as a 2× 2 positive definite matrix gij , as shown above. All we must
prove is that when doubled, each of these functions is C2,1. The fact that
kg = 0 implies that the metric is C2 (see [16], the argument in pp 43-44),
and as we already know that the gij ’s are smooth away from ∂M (being the
original metric smooth), the proposition will follow from Lemma B.1. �

Before stating and proving Lemma B.1, let us introduce some notation.
Given a point x =

(
x1, x2

)
, define

‖x‖ =

√
(x1)2 + (x2)2,

and for a fixed r > 0 we let

B+ =
{
x | ‖x‖ < r, x2 ≥ 0

}
,

and in the same way define B−. Given x =
(
x1, x2

)
define x∗ =

(
x1,−x2

)
.

For a pair of functions f+ : B+ −→ R and f− : B− −→ R which coincide
over

{
x2 = 0

}
define

f+ ∪ f− : B+ ∪B− −→ R

as

f+ ∪ f− (x) = f± (x) if x ∈ B±.
Then we have the following elementary lemma.

Lemma B.1. Let f+ : B+ −→ R and f− : B− −→ R be Lipschitz . Asume
that f+ = f− on B+ ∩

{
x2 = 0

}
. Then f+ ∪ f− is also Lipschitz.

Proof. Let x =
(
x1, x2

)
∈ B− and y =

(
y1, y2

)
∈ B+. Then we have the fol-

lowing inequalities∣∣∣f̃ (x)− f̃ (y)
∣∣∣ =

∣∣∣f̃ (x1, x2
)
− f̃

(
y1, y2

)∣∣∣
=
∣∣f (x1, 0

)
− f

(
x1, x2

)∣∣+
∣∣f (x1, 0

)
− f

(
y1, 0

)∣∣
+
∣∣f (y1, 0

)
− f

(
y1, y2

)∣∣
≤ C

∣∣x2
∣∣+ C

∣∣y2
∣∣+ C

∣∣y1 − x1
∣∣

= C
(
−x2 + y2

)
+ C

∣∣x1 − y1
∣∣

= C
∣∣y2 − x2

∣∣+ C
∣∣x1 − y1

∣∣
≤ 2C ‖y − x‖ .

�
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Regarding the procedure and regularity results described above, the
reader is advised to consult the references [28, 35] (again, we thank the
referee who pointed out these references).

B.1. An application: doubling and regularity for the Ricci flow

Let g be a solution to the Ricci flow on M × (A,B) with kg ≡ 0. Let M̃ be
the double of M , then from the solution g we obtain in an obvious way a
solution g̃ of the Ricci flow on M̃ × (A,B). Let us show that g̃ is smooth. Pick
t0 ∈ (A,B); by Proposition B.1 we know that g̃ (t0) is C2,1, and smooth away
from ∂M (in this case we shall refer as ∂M to the subset of M̃ corresponding
to the equivalence class of ∂M × {0}).

Consider p ∈ ∂M ⊂ M̃ . Let Rg̃(t0) be the curvature of the double at time
t = t0. By our considerations, Rg̃(t0) is Lipschitz. Then the equation

∆g̃(t0)u0 = Rg̃(t0),

has a C2,α solution on a perhaps even smaller neighbourhood of p (see [15,
Theorem 2.3]). Notice that eu0 g̃ (0) is flat, and hence in a coordinate system
around p we have that eu0 g̃ (0) can be written as the Euclidean metric, that
we will denote again by gE (another way of proving this is by using the
existence of isothermal coordinates, see [6]). Hence, we have a solution to
the Ricci flow g̃ with initial condition g̃ (t0), so we have a solution, in a small
neighbourhood of p, to (writing g̃ = eugE)

∂u

∂t
= e−u∆gEu, u (·, t0) = u0,

and u0 is at least C2,α, for any 0 < α < 1. Therefore by parabolic regularity
([26, Theorem 10.1, Chapter IV]), u is smooth, and so is the metric g̃ = eugE ,
since gE is smooth. This means that the solution to the Ricci flow becomes
smooth for t > t0. This justifies, at least in the case of surfaces the doubling
procedure: the solution to the Ricci flow becomes smooth instantaneously,
so all the results on long time behaviour proved for smooth solutions apply.
In particular, if we double an ancient solution along its totally geodesic
boundary, we obtain a smooth ancient solution to the Ricci flow.
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Bogotá DC, Colombia

E-mail address: jcortiss@uniandes.edu.co

E-mail address: a.murcia256@uniandes.edu.co

Received January 28, 2015

Accepted March 7, 2017


	Introduction
	Evolution equations
	Monotonicity of Perelman's Functionals on surfaces with boundary
	Controlling the injectivity radius of a surface with boundary
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Appendix Derivative estimates
	Appendix On the double of a surface
	References

