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Inverse curvature flow in anti-de
Sitter-Schwarzschild manifold

SIYUAN LU

In this paper, we consider inverse hessian quotient curvature flow
with star-shaped initial hypersurface in anti-de Sitter-Schwarzschild
manifold. We prove that the solution exists for all time and the sec-
ond fundamental form converges to identity exponentially fast.

1. Introduction

Curvature flows of compact hypersurfaces in Riemannian manifolds have
been extensively studied in the last 30 years. In the case of Euclidean space,
for contracting flow, Huisken [13] considered

(1.1) X = —Hu,

where H is the mean curvature and v is the outward unit normal of the hy-
persurface. He proved that the solution exists for all time and the normalized
flow converges to a round sphere if the initial hypersurface is convex.

This result was later generalized by Andrews [1] for a large class of
curvature flow. More specificly, Andrews considered

(1.2) X =—Fv,

where F'is a concave function of homogeneous degree one, evaluated at the
principal curvature.
For expanding flow, Gerhardt [7] and Urbas [20] considered

. v
1.3 X =—
(13) -
where F' is a concave function of homogeneous degree one, evaluated at the
principal curvature. They proved that the solution exists for all time and
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466 Siyuan Lu

the normalized flow converges to a round sphere if the initial hypersurface
is star-shaped and lies in a certain convex cone.

A natural question is whether these results remain true if the ambient
space is no longer Euclidean space. For contraction flow and ,
Huisken [I4] and Andrews [2] generalized their results to certain ambient
space respectively.

The case of expanding flow is in fact more subtle as the assumption
on initial hypersurface is weaker. In the case of space form, Gerhardt [8] [9]
proved the solution exists for all time and the second fundamental form
converges in hyperbolic space and sphere space, see also earlier work by
Ding [6]. More recently, Brendle-Hung-Wang [3] and Scheuer [19] proved
that the same results hold in anti-de Sitter-Schwarzschild manifold and a
class of warped product manifold for inverse mean curvature flow, which is

. v
(1.4) X = I

However, as pointed out by Neves [17] and Hung-Wang [15], for inverse mean
curvature flow, the rescaled hypersurface is not necessarily a round sphere
in anti-de Sitter-Schwarzschild manifold and in hyperbolic space.

Inverse curvature flows can be used to prove various inequalities. Guan-
Li [10] generalized Alexandrov-Fenchel inequalities for star-shaped k-convex
hypersurface in Euclidean space using inverse curvature flow in Eu-
clidean space. Recently, Brendle-Hung-Wang [3] generalized Alexandrov-
Fenchel inequality for £ = 1 (which they call Minkowski inequality) in anti-
de Sitter-Schwarzschild manifold by inverse mean curvature flow . The
inequality was further used to prove a Penrose inequality in General Relativ-
ity in [4]. More recently, Li-Wei-Xiong [16] and Ge-Wang-Wu[12] generalized
the hyperbolic Alexandrov-Fenchel inequality using inverse curvature flow
in hyperbolic space.

Motivated by the results above, we consider inverse curvature flow in
anti-de Sitter-Schwarzschild manifold. The anti-de Sitter-Schwarzschild man-
ifold is a manifold N = S™ X [sg, 00) equipped with the following Riemannian
metric

1

2 2

g:

where s is the unique positive solution of the equation 1 — ms'™" + 52 = 0.
By a change of variable, we have
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where ¢ satisfies ¢/ = \/1 — m@l—" + ¢2.

The anti-de Sitter-Schwarzschild manifold is thus a special case of warped
product manifolds. Moreover, the sectional curvature of (NV,g) approach
—1 near infinity exponentially fast and the scalar curvature is of constant
—n(n + 1). This feature will play an essential role in the proof of our theo-
rem.

To state our theorem, we need the following definition of Garding’s I'y
cone I'y = {(k;) € R"|o; > 0,0 < j <k}, where o is the j-th elementary
symmetric function. We say a hypersurface is k-convex if the principal cur-
vature (k;) € T'k.

We now state our main theorem:

Theorem 1.1. Let X be a star-shaped, k-convex closed hypersurface in
N where N™1 is an anti-de Sitter-Schwarzschild manifold, consider
the evolution equation

1.5 X =,
(1.5) z
where v is the outward unit normal and F = n%o‘k’: which is evaluated
at the principal curvature of 3;. Then the solution exists for all time t, and

the second fundamental form satisfies

|né — 8| < Cent,
where C' depends on the Xg,n, k.

The organization of the paper is as follows: in section 2, we give some
preliminaries about warped product space and anti-de Sitter-Schwarzschild
manifold, we also prove the C° estimate. In section 3, we derive the evolution
equations and give the C! estimate. In section 4 and 5, we estimate the
bound for F' and the principal curvature respectively. In section 6, we prove
that the second fundamental form converges to identity.

After submitting the paper, we have learned that Chen-Mao [5] inde-
pendently proved the main theorem above.

2. Preliminaries

In this section, we give some basic properties of hypersurface in warped
product space. Let N1 be a warped product space, with the metric

(2.1) gV =ds® = dr?® + ¢2(7’)0ij,
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where 0;; is the standard metric of S™.
Define

" 0
o) = [ G)dp. V=l
0 T
We state some well-known lemmas, see [11] with some modification.

Lemma 2.1. The vector field V' satisfies D;V; = ¢’(7“)gf}[, where D is the
covariant derivative with respect to the metric g’ .

Lemma 2.2. Let X" be a closed hypersurface in N™ Tt with induced metric
g, then ®|x satisfies,

ViVj(I) = ¢/(T)gij - hij <V7 V) 5

where V is the covariant derivative with respect to g, v is the outward unit
normal and h;; is the second fundamental form of the hypersurface.

We now state the Gauss and Codazzi equation,

(2.2) Rijii = Rijii + (hirhji — hihji)

Vihij — Vjihik = Ryijk,
and the interchanging formula

(24) ViVjihg = ViVihi; — " (himhi; — hijhme) — B3 (hmibg — hithmg)
+ Wi Rikjm + ' Rigim + Vi Rijy + ViRjy.

Define the support function v = (V,v), and we have
Lemma 2.3.

Viu = g"hp V@,
ViVju = g"VihigVi® + ¢'hiy — (h*)iju + " Vi@ Ry i,

where (hz)ij = gklhikhﬂ and R,,jkl- s the curvature of ambient space.



Inverse curvature flow 469

Proof. We only need to prove the equality at one point, thus we have g;; = J;;
and VZU = Di <V, I/> = <D(I), DZ'I/> = hika(I).
viv]‘u = VihjkaCIJ + hjkVNkcb

= VihjxVi® + hji(¢' gir, — hiru)

= (Vkhij + Rujri) Ve® + ¢'hij — (h?)ju,
where Codazzi equation ([2.3)) is used in the last equality, thus by the tensorial
property, we have the lemma. Il

As to the curvature, we have the following curvature estimates, for proof,

we refer readers to [3].
Lemma 2.4. The sectional curvature satisfies
R(9;,0;,0k,0;) = ¢* (1 - ¢'2) (ik0j1 — OilO k),
R(9;,0r,05,0) = —p¢" 035,
where 0; 1is the standard frame on S"™ and o;; is the standard metric of S™.
Now, back to our case that N is an anti-de Sitter-Schwarzschild manifold.

Lemma 2.5. Let N be an anti-de Sitter-Schwarzschild manifold, we have

(2.5) ¢(r) = sinh(r) + sinh™"(r) 4+ O(sinh ™" 2(r)),

_m
2(n+1)
and

RO‘B’W = _55“75/3/1 + 504‘657 + O(e—(n—kl)r)’
VpRapy, = O(e~ (Y,

where {e} is an orthonormal frame in N.
We also need the following two lemmas regarding to ox. These two lem-
mas are well known, for completeness, we add the proof here.

Lemma 2.6. Let F = nCéZ: 2= and (X\;) € I'y, we have

n

2
Sopiae >
n

)
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Proof. We first consider the term Ufi)\?, we have

(2.6) oii\2 = o107 — (1 + 1)op41.

Let G = -2 by 1' and Newton-MacLaurin inequality, we have

Ok—1’

ZGii)\% _ Z ( Jlii B nglici_1> )\12

2
Ok—1 Tj—1

o010 — (k+1)ory Ok (010k—1 — ko)

Ok-1 o
ko? — (k+1)ok—10k41
- TPy
kaﬁ
(n—k+1)o?_,

()
- CE \oy

. (jk—l 2 ok 2 1?2
FiX} >n (-2 -
Srven(Tr) () =5

k—1
Cn Ok

Lemma 2.7. Let F'=n=4;

Thus

and (\;) € Ty, we have

Ok—1

n < ZF“ < nk.
i

Proof. Let G = ;%-, we have

G — O Tk0k_1
E = E .
k-1

i ; Ok—1
:(n—k:+1)—(n—k:+2)gsgk_2
k—1
>n—k‘—|—1’
=k

by Newton-Maclaurin inequality.
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For the second inequality,

Y Gi=Y" Ok TKTky
- 2
% 7

k-1 Ok
—(n—k+1)— (n—k+2)2kTE=2
k-1
<n-k+1,
as (A\;) € I'x. The lemma then follows. O

Since the initial hypersurface is star-shaped, we can consider it as a
graph on S", i.e. X = (x,r) where x is the coordinate on S", r is the radius,
by taking derivatives, we have
(2.7) Xi = 0; + 10,

2
9ij = Tirj + 9705,

and
1 7
(2.8) V== <—¢28i + 8r) ;
where v is the unit normal vector, v = (1 + \V¢;|2 )é, note that all the deriva-

tives are on S”.
Thus

dr 1 v 7

it Fv T T g Fy
and we have
or dr S
2.9 or_ar i Y
(2:9) ot dt "
By a direct computation, c.f. (2.6) in [6] we have
2¢,TZ‘T]'>

(2.10) hij = J

1
" (-sz + ¢¢ o +

Now we consider a function

(2.11) o= /

-1~
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We have

/
T N Tij ng TZ‘T’]‘

(2.12)

If we write everything in terms of ¢, we have

(213) S u=(+IDe)
and
(2.14) gis = Plpigs + 1), gl = 62 <O.ij N 90;9207'> .
Moreover,
(2.15) hij = % ((b'(aij + pip;) — S%‘) )
hi = g% hy; = q‘f;é;i - (blvaik@kj:
where 6% = o — %.

We now give the C° estimate.
Lemma 2.8. Let 7(t) = supg. r(-, t) and r(t) = infsn r(-,t), then we have

(2.16) ¢(r(t))

Proof. Recall that % = 4, where F'is a normalized operator on (h;) At

the point where the function r(-,¢) attains its maximum, we have Vr =
0, (145) <0, from ([2.12)), we deduce that Vo = 0, (¢;;) < 0 at the maximum

point. From ([2.15)), we have (h;) > %5; , where we may assume (g;;) and

(hij) is diagonalized if necessary. Since F' is homogeneous of degree 1, and
F(1,---,1) = n, we have

vV =1+4|VelP =1, F(h}) >

Thus



Inverse curvature flow 473

i.e.

S|

£ 1og(r(1)) <

which yields the first inequality. Similarly, we can prove the second inequal-
ity. The lemma is now proved. ]

3. Evolution equations and C! estimate

Before we go on with the estimate, let us derive some evolution equations
first.

.2k gUFe
(31) gl] = TJ7 v = F2 ]7

Together with the interchanging formula ([2.4)), we have

FPUS Ry hesj  2FPUhpg' F™ hyg;
F? F3

;i Lok L =

vjv

gtipr "
+ T (hkj,pq - hq (hkmhpj - hkjhmp)
- hT(hmthq - hkqhmp)
+ thRkpjm + h;-anpqm + Vkaqjl, + kaquu>,
where FJ = (B?T}; and FP9"S = %.
For support function u = (¢0,,v) = %, we have

G @ 99V Fir;

(3.4) s+ E

Now, we need to consider the curvature term. By Lemma (2.7) and
(2.8), we have

_ 1 2rpr; | Vr|?
(35 Ruuge = (oatis + 2t + ) (-607)
(IVr|?0; — rirj)
+ (252’1)2

1-¢),
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Tnéjk

Rujor = 2 (9" — (1= (¢)%)) + 220 (" + (1 - ).

v
Note that ¢™" = ¢—2 (O‘mn — v2¢2 ) thus
_ Vr26. —rir
(3.6) 9"V @Ry = <‘|(;Z3]k> <—¢¢” - (1- ¢’2)) .
Lemma 3.1. Along the flow, |¢| < C, where C' only depends on ¥g,n, k.
Proof. By (2.13)) and (2.15)), we have
9o _ v _
ot F(¢’5zj — % prj)

then

2

Ql -

. 1 L
ij i ~17
G __EF}U .

Thus
o G 1
o =~ = magm (Ve —v*C o — Flog').
By maximum principle, we conclude that |¢| is bounded above. O

Lemma 3.2. Along the flow, |V| < C, where C only depends on ¥g, n, k.
In addition, if F is bounded above, we have |Vy| < Ce™ where o only
depends on sup F' and n.

Proof. By (2.13) and ([2.15]), we have

0 o

at - F((;S,(Sij — 5’ik(pkj) o

ij _ 0G kE _ 0G
Let G _65%-’G —8%,then

Ql~

g 1 . .
GY = —— Fj5".
v27 !
Let w = %]Vgp|2, we have

ow
E G2 VkG

1 o .
ez (FI596 i — v2GPo — 2Flge'w)
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We want to write the term &% ©iji in terms of second derivative of w.
Note that

wij = Prij " + <Pm'<P§
= ‘Pijk%ok + (Uijakp - UikUjp)Sf’p@k + (Pki@?
= ije” + 03|V ol* — s + prigh,

and
G (04| Veol? — wip;) = 8L Ve|* — i

Thus we have

ow 1 Pl ; ; j
ot 02G2 (Flzo'ljwij — F}|Vol* + Floip' — v*GFuy, — 2Fz‘l¢¢”w>
1
T 02G2 F 5 prip}.

Note that —F!|Vy|? + Fipip! <0 and —Fli&ljgpkigpg‘? <0, thus by the
maximum principle, we have

w(:,t) < supwo.

More precisely, if F' < C, consider the test function @ = we™, thus at
the maximum point of &, we have

0 —2F pg"
0< a—je*t oweM < wet (U;gfb + /\>
_ AeSAY Y
PF?(h3)
_ans/l
S weAt <z + )\) S 0,
PF2(h%)

fo< A< Suff; = < qbz;‘f; =, we have used Lemma in last line. By maxi-

mum principle,
V| < Ce™™,

n
WhereO<a§5up72F. O
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4. Bound for F

Lemma 4.1. Along the flow, F' < C, where C only depends on ¥, n, k.

Proof. By (3.2), we have

; j 1 i1k i 1 i
F=F <—Fhkhj =~ V'V <F> Rl/]y)

(1 . . VIV;F _VFV,;F 1
=5 <_Fh”“hj+ o i Flav)

By Lemma we have

. F i (VV,F IFV;F 1
F§—+Fg<vvf V'V, —R’ )
n

2 3 vjv

By Lemma we know that R;jy is uniformly bounded, together with
Lemma, we have

~F/Rl,, <CY F'<C.

It follows that

2
Frzn,a:c < _7F72nax C?
which gives
max <C. O

Lemma 4.2. Along the flow, F' > ¢, where ¢ only depends on Xy, n, k.

Proof. Consider the function —log F' — log @, where @ = ue~*/", by Lemma
% is uniformly bounded. At the maximum point, we have

Fz’ U; Fij FiFj Uij ’LLZ"LL]'

_— = — = - LA A — — L K
F u 0, F + F? u + u? =0,
F/ u 1



Inverse curvature flow 477

By (3.2), (3.4) and the critical equation, we have

Fl/ 1. , 1 ¢ bgIEr: 1
0< —=L(—=hent - ViV, (= ——RZ S R AT
= F< Khy = VIV <F> ”J”) Fu Fu ' n

) lel] (_ij Fk-Fj> ¢ b9 Fyr; n 1

i pk )
(h B+ Rl,) + T +2 -

F F2 Fu F2y n

] ) QkiFijUkj ¢ pgiFr; 1

viv F2 y Fu Fy n’

(hz hk + Rz

By Lemma we have

Fj
0<% (hl s+ R,ﬁjy)
ngFi] mn / 2 mn D,
m (g hkjm(brn + ¢ hkj - (h )kju +g vm(pRujnk)

¢ 9gUFr; 1

Fu F2y n

+

FJR; ki _ 1
ju g
- F2 + F27; gmnvmq)Rujnk + ﬁa

By (3.5) and ([3.6)), we have

ki g 2
g™~ F; 1 2rgr;  rEri|Vr
0 S < (025k] 4 J 4 ]| | (_¢¢/1)

2 2@ T 24
MOACAESTRN
v (‘w’ f}g’;z, ””“) (—g9" - (1- qs""))) +%
- gl;fj (%- + T;?) (~68")+
< OByl C41

we have used the Lemma[2.7]in last line. Now we conclude that F is bounded
below. O

Remark 4.3. For the lower bound, we only need the first inequality of

Lemma which is satisfied by a class of concave functions with homoge-
neous degree one, for example F' = U;/ k.
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5. Bound for principal curvature

Lemma 5.1. Along the flow, |k;| < C, where k; is the principal curvature
of ¥t and C only depends on ¥g,n, k.

—t/n

Proof. Define 4 = ue™"/", consider the test function log(n) — log(a), where

n = sup{h;;€'¢ : g;;€'¢ =1}

Without loss of generality, we suppose that at the maximum point 1 =
hl, and we have

i

U 1
5.1 g _Z24Z2>0
(5-1) hi u+n_’
and
(5.2) h—%i—ﬂ—o h%"j<%
' Al w7 Al T o

By (3.3)), (3.4) and the critical equation, we have

1 L1k qu’mhpqlhrsl 2quhpqumhrsl 1o
(53) 0= E < - Fhkhl * F? B 3 B FRuly
k1
Fpa
T QT(hkl,pq — hg' (hemhbpr — b1 hmp)

- hqn(hmkhpq - hkqhmp) + hZLRk:plm + hrianpqm
+ vakqlu + kalpqy)>

¢ b9 Fir; n 1

Fu F2y n

Consider the term I;;q h,i‘fq, by li and Lemma [2.3] we have
1
(5.4) FPihipg _ FPupg
’ F?2 nl = F?2 u

FPq _
~ 2y (9klhquq)l + @' g — (h2)pq“ + gklvlq)Rl/pkq) .
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Insert (5.4) into ((5.3)), together with the concavity of F', yields

1 1 1 - k1 g _
(55) 0< Al < - fhllfhlf - fRzlxlu + QT( — W1 hnihpg + hg' Ripim
1
+ hganpqm + Vkaqh, + Vlepq,,)>
kl rpq
gvF _ 1
VPR, —.
+ F2y v phq + n

Using the fact 1 — ¢/ + ¢¢” > 0, together with (3.6)

2 _
(5.6) gV @Ry = (W) (—o0" - (1- ) <0.

Thus we have

1 2 1 -
61 0 (- Snnt - 1AL,
1
glepq - o B ) )
+ T2 (hq Ripim + hY Ripgm + VpRiq1, + kalpqu)> 4 .

By Lemma all terms involving curvature terms of the ambient space
are uniformly bounded, i.e.

hi" Ripim + B Rigpgm + VpRiqry + ViRipgy < Chy + C.

By Lemma [2.7] and Lemma

gkl FP4
2

Plug into (5.7)), together with Lemma yields

0 < —Ch} +C,

(A0 Ripim + P Ripgm + VpRiqiy + ViRipgy) < Chy + C.

i.e. h} < C. The lemma is now proved.
O

Corollary 5.2. The solution of the inverse curvature flow exists for all
time.

Proof. We have established up to C? a priori estimate, by Lemma Fis
uniformly elliptic, by Evans-Krylov theorem, we have C*“ estimate, together
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with Schauder estimate, we have all the high order estimates, the corollary
now follows. O

6. Asymptotic behaviour of second fundamental form

In this section, we consider the asymptotic behaviour of second fundamental
form, the test function was first considered by Scheuer in [18].

Lemma 6.1.

limsupsup k; < 1,
t—o0 7

where k; is the principal curvature of ¥.
Proof. Let us consider the test function w = (logn — log @ + r — log 2) ¢, where
n = sup{hi;£'¢ : g€’ =1},
Noting that
(—logt+r —log2)t = (logv —log¢p+r —log2)t.

By Lemma [3.2] and Lemma [2.5] we have
T

tlogv < C, ¢ > % —Ce™",

Thus

T

(—logop+r—log2)t < tlogeii <tlog (14 Ce ) < C,
er —Ce™"

ie.

(6.1) (—logu+r—log2)t <C.
Similarly,

(6.2) (—logu+r—1log2)t > —C.

Without loss of generality, we suppose that at the maximum point of w,
say (zo,t0), n = hi, and we have

hlood
(6.3) 0<(}ﬁ—Z—l—f)t+(logh%—logﬂ+r—log2),
1
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and
hi, ;
(6.4) h—ll Y=o,
h1 hi.hl. '
R uﬂ;] +ri; <0
u

ht () w

By (2.9), (3.3)), (3.4) and the critical equation, we have

FP by st 2FPUhy ' F by R

0 S ﬁ < — 7hk’h1 + F2 F3 viv
k’lppq
T(hkl,pq hg' (hmlipt — hgthomp) — B (Ringhipg — Bgghanp)
+ h Rkplm + A" Rkpqm +V quly + Vlequ >
to (¢ | o9 Fir; vtp 1
" <F + ja2 + i + (logh —loga log2),
i.e.
65 o< Zppe R O R
. h r k"1 v T 2 k1,pq q "VE1ltmp

+ h Rk:plm + hl Rkpqm +V quly + kalpqu)>

to (¢ ¢g”Fir;
Y <F F2 + 5 F -+ C.

Consider the term P;f;q ;Lf’q, by (2.10)), Lemma and the critical equa-

tion we have

(6.6) by I (upq gt _ 2oty _ w)

F2ohi R\ u o ()P

_ ( g1 + ¢ hpg — (h?)pgu + gklvl(I)RVpkq>
};‘I;q (hpqv — $¢0pg — 2¢/;prq>

[Pa (h%ph%q upuq>

F2uy
+

RN O
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Plug into (6.5)), we have

t 2
(67) 0<% ( — Shihi — Rm
1
klppq
+ T (hg' Rigpim + WY Ripgm + VpRig1y + Vlequ))
togh FPa _ tOF 2¢'r,r
+ Fi%vlq)RVpkq ¢¢ 51711 ¢p .

toFPa (hi hl Uy, 20t
+ 0 ; lp1 1q _ p2q + 0 +C.
F (h)? u F

By Lemma and Lemma we have

glepq _ _ _ _
T (thRkplm + thanpqm + vakqlu + Vlepql/)
FP
=73 P(—hb + h1) + O(e ")
1 —aty
:7F+F2h 14 O(e ).
Similarly,
1 —at lepq —at

RVlV = + O( O) VZ‘I)RVqu - O( O)

F2y
Plug into (6.7)), we have

toF 2¢'rpry toFP4 h%ph%q Uplyg
2 <¢¢5pq+ o )T bz e )

By the critical equation, we have

FPa h%ph%q Upllg FPa 2upTy N
— — =— |- Ty | .
F2 \ (hi)? u? F? u b

Since

Viu = g"hipVi® = gFhior,
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together with Lemma we have

to P (h%ph%q _ up“‘]) <C

RN

Thus

~ hi F

to P4
OF <¢¢ Opq + 2¢ ;prq> .

Again by Lemma and the relation ¢/ = ¢ + O(1), we have

to 2 F? 2to toF¥
0< (—h}ﬂh’HFZhi) + = +C0-=F

t 2 Fy 20t
0<°<-h,§h’f ”h1> e

- h1 F F?
= h C.
F +
Thus
C
ht—-1<—.
to
We have
C -
w<tplog |1+ o +to(—logu+7—1log2) <C.
0
Thus

(logh]]LL —loga+ 7 — log2) t<C,
for any t, together with (6.2]), we have

lim sup sup &; (¢, ) < 1.
t—o0 7 O

Lemma 6.2. Along the flow, F > n — Cte~2*, where C and o only depend
on Xo,n, k.
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Proof. Consider the test function w = %, thus ¢ = é = %, we have

ow (lp ;.9
5 _¢8t +o9'p

Let G¥Y = aaf , Gk = 8@ , then

1
ij __ zl]
G =gt

Similar to Lemma we have

Bw_ QZ) ~j . 2 I 1/ qb, 2
3 = e (HoYey —v*Ghox — Flod'e) + Tu

2 !
— i ~1j E .2k E I SV é 2
m(F (¢>ij e <¢>k FZ"”’)W“’

w? 2 .
= F FIw; — SF G w¢; — 2GRy,
02¢2 ( ij ¢ ! 1] )
’LU2 2w l] l] W
+ Tbg <¢2 ¢1¢] - EF ¢2] ¢ —G ¢k>
& 2 1¢// .
T T g

First, note that w is bounded by our previous estimate, thus we only

need to consider the second line.
By Lemma We have

F‘ll l]¢z¢] < Ce(iia)

¢2
Now by
bij = ¢'rij + ¢"rir;
= 6'pi; + 6 (0 + 00") pigs
Thus

~F{60y = —00 FaV oy - 0 (67 + 60") FoV i,
< —60/F} (¢/0} = guhl) + Celi 2o,
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By Lemma [2.7]
—Fj5"g; < —¢¢' (nd — puF) + Cela=2t
— o4’ <“2¢ - "¢’> + Celnmal,
w
ie.
EFZ ¢ < pp'v? n¢’2w + Celn200,
Now, consider G¥, we have

Fipy ¢t Flogopiph F
k L¥ij IR k
G 7l —21)490

v2 p2 v2 v
Since h; is bounded, by , we have |p;;| < C’e%, thus
G*or = 69/ G ox
= o/ < L (pjsol ¢ [Vol® — 2IVs0|2>

Put all together, we have

) 2 . 2
2 2 ¢/ 2 'i(b// 3 2
2¢2 <¢¢, n¢, ’IU)—|—¢’UJ —7z2¢w +O€_at
2 o 2
S Uzui& <Fl 5l]wij — aFlZ&l]wi¢j — ’U2kak>
/ "y /2 B
I

By Lemma [3.2] and Lemma we have

—2at
7 Wmaz < 2wl . — 2nwd . + Ce™2o,

By Lemma we have Wpqe > %, thus

d 2 2 _
%wmax < E - Ewmax +Ce Qat‘
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Thus
1
Winaze < — + Cte 29,
n

It follows that
F>n— Cte 2, O
Put Lemma [6.1] and Lemma [6.2] together, we have

Corollary 6.3.

lim |k} — 65| = 0.

t—o00
Now let us compute the convergence rate, we have the following lemma.
Lemma 6.4.
]h; — 5;] < O(e »h).
Proof. Consider the test function
1 i i j i\ At
G=5> (-3 (n = o7) .
ij
We have
G=n (n = ol) M 4G,
j

For each ¢, G attains maximum at some point xg, at xg
> oniy (n - o7) =0,
ij

Z h;kl (hi - 55) + hé‘khgz <0.
ij

Thus
: 1o FPhypg'hegy  2FPIhy ' F™hey 1
“" (‘ Pt =
gkinq
+ 2 (hkjqu - hgl(hkmhm - hkjhmp) - hT(hmkhpq - hkqhmp)

+ hq' Ripjm + B Rypgm + VpRigju + Vkijq,,)> (hf — 523) M+ AG.
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By the critical equation, we have

qu’”hpqihrsj B 2quhptiTshrsj
F?2 F3

: 1 i1k

FE m
72 ( — hq (hkmhpj — hkjhmp) — hj (hmkhpq - hkqhmp)

L =
_FR

vjv

4 thRkpjm + h}”kam + Vkaqju + VkijV)) (hi - 63) e

FPL i e
By Corollary all the terms involving the derivatives of h;- can be

controlled by —£Thi R . thus

s 1 ) 1 D gkinq m
G < (— Zhih = =Ry, + T (= B by = highimy)

— h;-n(hmkhpq — hkqhmp) + thRkpjm + h;anpqm

+ V' Rigj + kaquy)> (n = o7) e + 2.

Without loss of generality, we may assume
9ij = 0ij,  hij = Kidij, K1 < < K,

together with Lemma Lemma [3.2] and Lemma [6.1] we have

. 1 PP 2
G < ( — F/ﬁ% + T (Famg — K2Kp + I€i> + cent> (ki — 1) eM 4+ A\G

2 FrP 2
= (— T (Ii? — K) + Z i (kp —1)% + cent> (ki — 1) M+ )G
PP

4 F
< <—Fﬁi+)\+2F2

Kilki — 1|>G +c(ki—1) asld
Thus if we ch00§e A small enough, we conclude that G is bounded, i.e.
|h§~ — 5;| = O(e™2") for small .

Now if we choose G' = sup %|h§ — 5§|2e%, we have

~ 4 4 rrp ~ At
G < (F/ii+n+2F2m|m1|)G+ce E

At ~
<ce G +ce 2.



488

Siyuan Lu

Write \Fé = f, we have

f < cefgf + 067%

It follows that f < C'. The lemma is now proved. O
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