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Four-dimensional cohomogeneity one

Ricci flow and nonnegative

sectional curvature

Renato G. Bettiol and Anusha M. Krishnan

We exhibit the first examples of closed 4-manifolds with nonneg-
ative sectional curvature that lose this property when evolved via
Ricci flow.

1. Introduction

Several great successes in Geometric Analysis continue to be achieved
through Ricci flow, a technique introduced by Hamilton [18] around 35 years
ago. This is a way of evolving Riemannian metrics g on a manifold M via
the geometric PDE

(1.1)
∂g

∂t
= −2 Ricg

where Ricg is the Ricci tensor of g. The underlying theme in applications
of this technique is that the Ricci flow of Riemannian metrics, similarly
to the heat flow of temperature distributions and other diffusion processes,
should have regularizing properties that eventually evolve a metric to some
canonical or best metric on M , whose existence allows to draw topological
conclusions about M .

A fundamental step to carry out geometric applications is understand-
ing the behavior of curvature conditions along the flow. In his seminal
paper [18], Hamilton proved that (1.1) preserves nonnegative Ricci cur-
vature (Ric ≥ 0) and nonnegative sectional curvature (sec ≥ 0) on closed
3-manifolds, as well as nonnegative scalar curvature in closed manifolds of
all dimensions. Hamilton also proved that positive-semidefiniteness of the
curvature operator is preserved in closed manifolds of all dimensions [19],
and nonnegative isotropic curvature is preserved on closed 4-manifolds [20].
Independently, Brendle and Schoen [10] and Nguyen [28] generalized the lat-
ter to closed manifolds of all dimensions. An elegant and unified approach
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to proving invariance of all the above curvature nonnegativity conditions
under the Ricci flow was developed by Wilking [35].

On the opposite side, several curvature conditions have been shown not
to be preserved by (1.1). For instance, Máximo [26, 27] constructed Kähler
metrics on 4-manifolds with Ric ≥ 0 or Ric > 0 (but without sec ≥ 0) that
evolve to metrics with mixed Ricci curvature. Böhm and Wilking [9] ex-
hibited homogeneous metrics with sec > 0 that develop mixed Ricci curva-
ture in dimension 12, and mixed sectional curvature in dimension 6. The
latter behavior was shown to be generic among homogeneous metrics on
these manifolds by Abiev and Nikonorov [1]. Finally, noncompact examples
of complete manifolds with sec ≥ 0 that develop mixed sectional curvature
in all dimensions ≥ 4 were found by Ni [29]. Nevertheless, the existence of
closed manifolds exhibiting such behavior in dimensions 4 and 5 remained
unsettled. The main result of this paper is that many such examples exist:

Theorem. There exist metrics with sec ≥ 0 on S4, CP 2, S2 × S2, and
CP 2#CP 2 that immediately lose this property when evolved via Ricci flow.

By taking products of the above manifolds with spheres, one easily con-
cludes:

Corollary. Ricci flow does not preserve sec ≥ 0 on closed manifolds of
any dimension ≥ 4.

We remark that the 4-manifolds listed in the Theorem, together with
CP 2#CP 2, are the only closed simply-connected 4-manifolds currently
known to admit metrics with sec ≥ 0. Conjecturally, this list is complete.
Furthermore, the manifolds in the Theorem are the only closed simply-
connected 4-manifolds that carry a cohomogeneity one action, i.e., an iso-
metric action whose orbit space is 1-dimensional. The metrics with sec ≥ 0
used as initial data were introduced by Grove and Ziller [16] and are invariant
under these large isometry groups, hence so are their Ricci flow evolution.
Exploiting the fact that isometries are preserved, one may translate the Ricci
flow equation (1.1) into a more accessible system of coupled PDEs in only
2 variables (one for time and one for space), see Proposition 4.4. This al-
lows us to explicitly compute the first variation of the sectional curvature of
certain initially flat planes and determine it is negative, hence the manifold
immediately acquires some negatively curved planes under the flow. Simi-
lar cohomogeneity one frameworks were previously employed by Böhm [6]
and Dancer and Wang [13] to construct Einstein metrics and Ricci solitons,
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by Pulemotov [32] to study Ricci flow on manifolds with boundary, and
implicitly in several other recent works including [3, 11, 14, 21, 25, 33].

It is our hope that this unifying viewpoint of cohomogeneity one Ricci
flow will be more systematically studied in the future, mirroring the ongoing
study of homogeneous Ricci flow pioneered by Lauret [23], Böhm [7], Böhm
and Lafuente [8], and others, in which the Ricci flow equations (1.1) reduce
to an ODE. In some sense, this is the next step in a symmetry program
approach to understanding Ricci flow.

There are several general issues to be addressed, e.g., determining under
which conditions the more restrictive diagonal cohomogeneity one Ansatz is
preserved (see Proposition 4.1 for the particular case at hand in this paper,
and Remark 4.5). Similar issues were confronted by Lauret and Will [24]
in the case of Ricci flow on Lie groups, and by Dammerman [12] for coho-
mogeneity one Einstein manifolds. Other natural future directions include
investigating the long-term behavior of cohomogeneity one Ricci flow and
the types of singularities that it may develop.

This paper is organized as follows. A recollection of facts about cohomo-
geneity one manifolds is given in Section 2. Section 3 has a detailed account
of the 4-dimensional examples. The behavior of these manifolds and their
sectional curvature under Ricci flow is addressed in Section 4, where the
Theorem is proved.

Acknowledgements

We thank Wolfgang Ziller for many helpful discussions, and Dan Knopf and
Ricardo Mendes for comments and suggestions.

2. Cohomogeneity one manifolds

In this section, we briefly review basic aspects of cohomogeneity one mani-
folds. The simply-connected 4-dimensional examples and relevant nonnega-
tively curved metrics are described in the next section. For more details, we
refer to [2, 16, 17, 36].

2.1. Cohomogeneity one structure

A group G acting isometrically on a Riemannian manifold (M, g) is said to
act with cohomogeneity one if the orbit space M/G is one-dimensional. If M
is compact, then M/G with the induced orbital distance is either isometric
to a circle S1 or to a closed interval [0, L]. We shall focus on the latter case,
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in which M is topologically more interesting. For each r ∈M/G, 0 < r < L,
the preimage π−1(r) ⊂M is a principal orbit, that is, a (codimension 1)
hypersurface in M . The preimages of the endpoints, B− = π−1(0) and B+ =
π−1(L), are nonprincipal orbits, which are called singular (if the codimension
is ≥ 2), or exceptional otherwise. Nonprincipal orbits on simply-connected
cohomogeneity one manifolds are always singular.

Pick a point x− ∈ B− and consider a minimal geodesic γ(r) in M joining
x− to B+, meeting it at x+ = γ(L); that is, γ is a horizontal lift of the
interval [0, L] to M . Denote by K± the isotropy group at x±, and by H
the isotropy at an interior point γ(r). The principal isotropy H remains the
same group at all γ(r), for r ∈ (0, L), and is a subgroup of K±. This gives a
decomposition of M as the union of orbits G(γ(r)), 0 ≤ r ≤ L, each of which
is a homogeneous space; G/H at interior points r ∈ (0, L), and G/K± at the
endpoints r = 0 and r = L.

By the Slice Theorem, the tubular neighborhoods D(B−) = π−1
([

0, L2
])

and D(B+) = π−1
([
L
2 , L

])
of the singular orbits are disk bundles over B−

and B+. Let Dl±+1 be the normal disks to B± at x±, so that l± + 1 is the
codimension of B±. Then K± acts transitively on the boundary ∂Dl±+1,
with isotropy H, so ∂Dl±+1 = Sl± = K±/H, and the K±-action on ∂Dl±+1

extends to a K±-action on all of Dl±+1. Moreover, there are equivariant
diffeomorphisms of the disk bundles:

D(B±) ∼= G×K± D
l±+1.

The manifold M is the union of the above disk bundles, glued along their
common boundary G/H. One associates to such a manifold M the group dia-
gram H⊂{K−,K+}⊂G. Conversely, given a group diagram H⊂{K−,K+} ⊂
G, where K±/H are spheres, there exists a cohomogeneity one manifold M
given as the union of the above disk bundles.

The full isometry group of a cohomogeneity one manifold (M, g) is often
strictly larger than the group G that acts with cohomogeneity one, and we
make frequent use of this fact in what follows.

2.2. Cohomogeneity one metrics

Since G acts on (M, g) by isometries, the metric g is completely determined
by its restriction to the geodesic γ(r), which meets all orbits orthogonally.
Furthermore, it suffices to determine g on the open and dense subsetM \B±,
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corresponding to γ(r), r 6= 0, L. On this subset, we write:

(2.1) g = dr2 + gr, 0 < r < L,

where gr is a 1-parameter family of homogeneous metrics on G/H. Con-
versely, in order to define a cohomogeneity one metric g by means of the
above equation, certain smoothness conditions must be fulfilled at the end-
points r = 0 and r = L.

We henceforth only consider cohomogeneity one metrics that are diago-
nal, in a sense slightly stronger than in [17]. More precisely, let {vi} be a basis
of the Lie algebra of G which is adapted to the inclusions H ⊂ {K−,K+} ⊂ G
and orthonormal with respect to a fixed bi-invariant metric. Consider the in-
duced action fields Xi(r) = d

ds exp(s vi) · γ(r)
∣∣
s=0

. A metric (2.1) is diagonal
if it satisfies

gr
(
Xi(r), Xj(r)

)
= fi(r)

2δij ,

that is, gr is the diagonal matrix diag(f21 , . . . , f
2
k ) in the basis {Xi}, where

k = dimM − 1. Note that fi(r) is hence the length of the Killing field Xi(r),
and this Killing field vanishes at r = 0 or r = L if and only if vi belongs to the
Lie algebra of the corresponding isotropy subgroup K±. In this situation, the
smoothness conditions translate into conditions on the Taylor series of fi(r)
at r = 0 and r = L. Details on how to compute such smoothness conditions
in terms of the algebraic data in the cohomogeneity one group diagram can
be found in [34], see also [15, Appendix] and [17, Sec. 2].

Remark 2.1. Not all cohomogeneity one manifolds admit diagonal metrics
in the above sense. A sufficient condition for the existence of such metrics is
for the isotropy representation of H to split as a sum of pairwise inequivalent
representations.

3. On the 4-dimensional examples

The only closed simply-connected 4-manifolds that admit cohomogeneity
one structures are S4, CP 2, S2 × S2, and CP 2#CP 2, see [30]. Their group
diagrams, corresponding to the cohomogeneity one actions that we use to
describe metrics on these manifolds, are listed in Table 1. We denote by
SO(2)1,2 the upper block diagonal embedding of SO(2) in SO(3), and identify
Sp(1) ∼= S3 ⊂ H with the group of unit quaternions.

Note that the only Lie groups G in Table 1 are SO(3) and Sp(1), which
have the same Lie algebra g ∼= su(2). Moreover, the groups K± consist of
finitely many copies of SO(2) ∼= S1, and the principal isotropy group H is
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M H ⊂ {K−,K+} ⊂ G

S4 S(O(1)O(1)O(1)) ⊂ {S(O(2)O(1)), S(O(1)O(2))} ⊂ SO(3)

CP 2 Z2 = 〈diag(−1,−1, 1)〉 ⊂ {S(O(1)O(2)), SO(2)1,2} ⊂ SO(3)

S2 × S2 Zn =
〈
e2πi/n

〉
⊂
{
{eiθ}, {eiθ}

}
⊂ Sp(1), n even

CP 2#CP 2 Zn =
〈
e2πi/n

〉
⊂
{
{eiθ}, {eiθ}

}
⊂ Sp(1), n odd

Table 1. Group diagrams for cohomogeneity one 4-manifolds.

finite, so its Lie algebra is trivial. In particular, on the regular part M \
B±, there are 3 linearly independent Killing vector fields X1, X2, and X3,
which are action fields corresponding to a basis of g. More precisely, Xi(p) =
d
ds exp(s vi) · p

∣∣
s=0

, where {vi} is the basis {I, J,K} in the case of Sp(1), and
{E23, E31, E12} in the case of SO(3), where Ejk is the skew-symmetric matrix
with a +1 in the (j, k) entry, a −1 in the (k, j) entry, and zeros elsewhere.
Thus, fixing a horizontal geodesic γ(r), a diagonal metric (2.1) on M is of
the form

(3.1) g = dr2 + ϕ(r)2dx21 + ψ(r)2dx22 + ξ(r)2dx23, 0 < r < L,

where dxi is the 1-form dual to Xi. The singular orbits B± = G/K± in
all above examples are 2-dimensional, which means that only one of the
functions ϕ, ψ, and ξ, vanishes at each of the endpoints r = 0 and r = L.
Since the codimension of B± is equal to 2, by the work of Grove and
Ziller [16], these manifolds support G-invariant diagonal metrics gGZ with
sec ≥ 0. These are the nonnegatively curved metrics used to prove the The-
orem.

We now discuss some details about these metrics, following [36, Sec. 2]
and [2]. Some features common to all of them (originating from the gluing in
the Grove-Ziller construction), are the presence of flat planes at all points,
including planes along γ(r) that contain the tangent direction γ′(r), see
also Remark 4.6. Moreover, the functions among ϕ, ψ, and ξ that do not
vanish at the endpoint corresponding to a singular orbit B± are equal and
constant in a neighborhood of that endpoint, while the remaining functions
vanish with nonvanishing first derivative. Finally, there are sufficiently many
isometries to ensure that the Ansatz (3.1) is preserved along the Ricci flow.
These features are key in the proof of the Theorem in the Introduction.
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3.1. S4

The SO(3)-action on S4 is the restriction to the unit sphere of the action by
conjugation on the space V of symmetric traceless 3× 3 real matrices. The
singular orbits B± are Veronese embeddings of RP 2 formed by matrices with
2 equal eigenvalues of the same sign; while principal orbits are diffeomorphic
to the real flag manifold W 3 = S3/(Z2 ⊕Z2) and formed by generic matrices
in V . The horizontal geodesic joining x− = 1√

6
diag(1, 1,−2) ∈ B− to x+ =

1√
6

diag(2,−1,−1) ∈ B+ is

γ(r) = diag
(
cos r√

6
+ sin r√

2
, cos r√

6
− sin r√

2
, −2 cos r√

6

)
∈ V, 0 < r < π

3 .

In this description, the round metric on S4 takes the form (3.1) where

(3.2) ϕ(r) = 2 sin r, ψ(r) =
√

3 cos r + sin r, ξ(r) =
√

3 cos r − sin r.

The metric gGZ is also of the form (3.1), with functions ϕ, ψ, and ξ that
satisfy the same smoothness conditions as the above at r = 0 and r = π

3 .
However, they are constant away from a neighborhood of the vanishing locus
(see Figure 1).

0
π

6

π

3

3

0
π

6

π

3

3

Figure 1. The functions ϕ, ψ, and ξ corresponding to the round metric (left)
and to the Grove-Ziller metric gGZ (right).

More generally, given any SO(3)-invariant metric g on S4, there are
isometries given by hi ∈ H,

h1 = diag(1,−1,−1),

h2 = diag(−1, 1,−1),

h3 = diag(−1,−1, 1),
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that fix each point γ(r) and such that dhi(γ(r)) : Tγ(r)S
4 → Tγ(r)S

4 are re-
spectively

(3.3)

dh1(γ(r)) = diag(1, 1,−1,−1),

dh2(γ(r)) = diag(1,−1, 1,−1),

dh3(γ(r)) = diag(1,−1,−1, 1),

with respect to the frame
{
∂
∂r , X1, X2, X3

}
at γ(r). Thus, g must be of the

form (3.1), i.e.,
{
∂
∂r , X1, X2, X3

}
is a g-orthogonal frame along γ(r). Indeed,

for i 6= j,

(3.4)
g(Xi, Xj) = g

(
dhi(Xi),dhi(Xj)

)
= −g(Xi, Xj)

g
(
∂
∂r , Xj

)
= g
(
dhi
(
∂
∂r

)
, dhi

(
Xj

))
= −g

(
∂
∂r , Xj

)
.

Remark 3.1. An alternative way of verifying the above claim is that γ
is a component of the fixed point set of the discrete group N(H)/H, which
consists of totally geodesic submanifolds. Thus, γ is a horizontal geodesic
(up to reparametrization) with respect to any metric g invariant under these
isometries. Moreover, the vertical part gr of such a metric g must be diagonal
with respect to the above frame as it corresponds to an Ad(H)-invariant
tensor on su(2), which decomposes as the direct sum of 3 inequivalent 1-
dimensional representations spanned by the Xi.

3.2. CP 2

The SO(3)-action on CP 2 is obtained as the subaction of the transitive
SU(3)-action. The singular orbit B− is the totally real RP 2 ⊂ CP 2, and
B+
∼= S2 is the quadric

{
[z0 : z1 : z2] ∈ CP 2 :

∑
j z

2
j = 0

}
. The horizontal

geodesic joining x− = [1 : 0 : 0] ∈ B− to x+ =
[

1√
2

: i√
2

: 0
]
∈ B+ is

γ(r) = [cos r : i sin r : 0], 0 < r < π
4 .

In this description, the Fubini-Study metric on CP 2 takes the form (3.1)
where

(3.5) ϕ(r) = sin r, ψ(r) = cos 2r, ξ(r) = cos r,

while gGZ corresponds to functions ϕ, ψ, and ξ that are qualitatively similar
to those in the previous example.
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Consider the complex conjugation map

(3.6) c : CP 2 → CP 2, c
(
[z0 : z1 : z2]

)
= [z0 : z1 : z2],

which clearly commutes with the SO(3)-action and is an involution with fixed
point set B−. It is easy to show that φ = g ◦ c, where g = diag(1,−1,−1) ∈
SO(3), is a diffeomorphism that fixes the above geodesic γ(r) pointwise
and whose linearization at any such point is the linear transformation on
Tγ(r)CP

2 with matrix φ∗ = diag(1, 1,−1,−1) with respect to the frame{
∂
∂r , X1, X2, X3

}
. In particular, this linear transformation is orthogonal with

respect to any metric of the form (3.1), including gGZ. It thus follows that
c, and hence φ = g ◦ c, are isometries of (CP 2, gGZ). Indeed, given any
p ∈ CP 2, there exists gp ∈ SO(3) such that gp · p lies in γ, and hence one
may write c(p) = (ggp)

−1ggp · c(p) = (ggp)
−1g · c(gp · p) as a composition of

diffeomorphisms whose linearization is isometric.
We claim that if g is any SO(3)-invariant Riemannian metric on CP 2

such that φ is an isometry, then
{
∂
∂r , X1, X2, X3

}
is g-orthogonal and hence

g must also be of the form (3.1). Indeed, using φ in conjunction with
diag(−1,−1, 1) ∈ H, one can produce sufficiently many isometries of (CP 2, g)
that fix each point γ(r) and act on Tγ(r)CP

2 just as (3.3), so that an argu-
ment analogous to (3.4) may be carried out.

3.3. S2 × S2 and CP 2#CP 2

The Sp(1)-actions on S2 × S2 and CP 2#CP 2 are induced by quaternionic
left-multiplication on the first factor of S3 × S2 ⊂ H⊕ C⊕R after taking
the quotient by the diagonal circle action eiθ · (q, z, x) =

(
q eiθ, z einθ, x

)
. The

orbit space Mn = (S3 × S2)/S1 of this circle action is diffeomorphic to S2 ×
S2 if n is even, and to CP 2#CP 2 if n is odd. The singular orbits B± are both
diffeomorphic to S2, and lift to S3 × {±N} ⊂ S3 × S2 where N =

(
0, 12
)
∈

S2
(
1
2

)
⊂ C⊕R is the North Pole, while principal orbits are diffeomorphic

to the Lens space S3/Zn. The horizontal geodesic joining x− =
[
1, 0,−1

2

]
to

x+ =
[
1, 0, 12

]
is

γ(r) =
[
1, 12 sin 2r,−1

2 cos 2r
]
∈Mn, 0 < r < π

2 ,

where brackets indicate the coordinates induced by H⊕ C⊕R in the quo-
tient space. Similarly to the previous examples, in this description, the met-
ric gGZ on Mn is of the form (3.1) with ϕ, ψ, and ξ satisfying analogous
properties.
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Consider the involutions given by conjugation by j, k ∈ Sp(1),

φj , φk : Mn →Mn, φj ([q, z, x]) = [−j q j, z, x],(3.7)

φk ([q, z, x]) = [−k q k, z, x].

It is easy to see that the above maps are well-defined diffeomorphisms
that leave invariant the Sp(1)-orbits and act on them via conjugation, that
is, the restrictions of φj and φk to G(γ(r)) ∼= G/H = Sp(1)/Zn are given
by φj(gH) = −jgjH and φk(gH) = −kgkH; recall that j, k ∈ N(H). Further-
more, φj and φk fix the geodesic γ(r) pointwise and their linearizations
at any such point are the linear transformations on Tγ(r)Mn with matrices
(φj)∗ = diag(1,−1, 1,−1) and (φk)∗ = diag(1,−1,−1, 1) with respect to the
frame

{
∂
∂r , X1, X2, X3

}
. In particular, these linear transformations are or-

thogonal with respect to any metric of the form (3.1), including gGZ. It thus
follows that φj and φk are isometries of (Mn, gGZ). Indeed, given any p ∈Mn,
there exist gp, g

′ ∈ Sp(1) such that gp · p lies in γ and φj(gp · p) = (g′)−1φj(p),
so one may write φj(p) = g′ · φj(gp · p) as a composition of diffeomorphisms
whose linearizations are isometric, and analogously for φk.

Similarly to the previous example, we claim that if g is any Sp(1)-
invariant Riemannian metric on Mn such that φj and φk are isometries,
then g must also be of the form (3.1). Indeed, using φj and φk, one can pro-
duce sufficiently many isometries of (Mn, g) so that an argument analogous
to (3.4) may be carried out.

Remark 3.2. When we make reference to the Grove-Ziller metric on S2 ×
S2 or CP 2#CP 2, we mean a Grove-Ziller metric gGZ on any of the (infinitely
many) cohomogeneity manifolds Mn where n has the appropriate parity.

4. Evolution under Ricci flow

In this section, we analyze the Ricci flow evolution of the cohomogeneity one
4-manifolds with sec ≥ 0 discussed above, showing that the diagonal Ansatz
(3.1) is preserved (Proposition 4.1), computing explicitly the Ricci flow equa-
tions (1.1) for such metrics (Proposition 4.4) and proving the Theorem in
the Introduction.

4.1. Flow behavior

As a consequence of uniqueness of the solution to the Ricci flow on a closed
manifold (M, g0), all isometries of (M, g0) remain isometries of (M, g(t))
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for all t > 0. It is actually also known that the isometry group of (M, g(t))
remains constant, that is, no other isometries are created in finite time, as a
consequence of backwards uniqueness [22]. In particular, cohomogeneity one
metrics evolve via Ricci flow through other metrics invariant under the same
cohomogeneity one action. Nevertheless, the horizontal geodesic γ joining
the singular orbits, and hence the description (2.1) of the cohomogeneity
one metric, may in general change with time. We now show that this is not
the case for the Grove-Ziller metrics in the 4-dimensional examples discussed
above, using their additional isometries.

Proposition 4.1. The Ricci flow evolution g(t) of the metric gGZ = g(0)
on each of S4, CP 2, S2 × S2, and CP 2#CP 2, is through other diagonal
metrics

(4.1) g(t) = ζ(r, t)2dr2+ϕ(r, t)2dx21+ψ(r, t)2dx22+ξ(r, t)2dx23, 0<r<L,

along the gGZ-geodesic γ(r), where ζ, ϕ, ψ, and ξ, are smooth functions of
r and t.

Proof. The metric gGZ is a diagonal metric of the form (3.1), and γ(r) is
a gGZ-geodesic parametrized by arclength. Since isometries are preserved,
the Ricci flow evolution of gGZ is through metrics g(t) which are invariant
under the G-action as well as under (3.6) on CP 2 and (3.7) on S2 × S2 and
CP 2#CP 2. As discussed in Subsections 3.1, 3.2, and 3.3, by means of these
isometries, the frame

{
∂
∂r , X1, X2, X3

}
along γ(r) must be g(t)-orthogonal.

In particular, g(t) are diagonal cohomogeneity one metrics of the form (4.1)
along γ(r), which is g(t)-orthogonal to the G-orbits and hence a horizontal
g(t)-geodesic (up to reparametrization). �

Remark 4.2. A surprising consequence of Proposition 4.1 is that the curve
γ(r), which at time t = 0 is normal to all orbits, stays normal to all orbits,
and hence remains a geodesic in the evolving metric g(t). There is no a priori
reason why this should be true. It is worth noting that the Killing vector
fields Xi are mutually orthogonal only along γ(r), and not on all of M . In
that sense, Proposition 4.1 is an interesting instance of a property which is
local in nature, yet is preserved under the Ricci flow.

Remark 4.3. The Grove-Ziller metric gGZ is smooth but not real-analytic,
as there are points where all derivatives of ϕ, ψ, and ξ vanish, but these
functions are not globally constant. However, the metrics g(t), t > 0, are real-
analytic by Bando [4]. Moreover, since real-analyticity is preserved under
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Ricci flow, there does not exist a solution to the backwards Ricci flow with
gGZ as terminal condition.

Proposition 4.4. Let (M, g) be a 4-manifold with a cohomogeneity one
action of a Lie group G whose Lie algebra is isomorphic to su(2). Assume
that g is a diagonal metric of the form (3.1) and that its Ricci flow evolution
g(t) is through other diagonal metrics, as in (4.1). Then the functions ζ(r, t),
ϕ(r, t), ψ(r, t), and ξ(r, t) satisfy the degenerate parabolic system of partial
differential equations

(4.2)

ζt = −
(
ϕr
ϕ

+
ψr
ψ

+
ξr
ξ

)
ζr
ζ2

+

(
ϕrr
ϕ

+
ψrr
ψ

+
ξrr
ξ

)
1

ζ

ϕt =
1

ζ2
ϕrr +

1

ζψξ

(
ψξ

ζ

)
r

ϕr −
2

ψ2ξ2
ϕ3 +

2(ψ2 − ξ2)2

ψ2ξ2
1

ϕ

ψt =
1

ζ2
ψrr +

1

ζϕξ

(
ϕξ

ζ

)
r

ψr −
2

ϕ2ξ2
ψ3 +

2(ϕ2 − ξ2)2

ϕ2ξ2
1

ψ

ξt =
1

ζ2
ξrr +

1

ζϕψ

(
ϕψ

ζ

)
r

ξr −
2

ϕ2ψ2
ξ3 +

2(ϕ2 − ψ2)2

ϕ2ψ2

1

ξ

where subscripts denote derivative with respect to that variable.

Proof. The Ricci tensor of (4.1) is diagonal on the frame
{
∂
∂r , X1, X2, X3

}
.

It can be computed using [17, Prop. 1.14], the structure constants of su(2),
and replacing ∂

∂r with 1
ζ
∂
∂r to account for the g(t)-arclength parameter of

γ(r) for t > 0, resulting:

Ricg(t)
(
∂
∂r ,

∂
∂r

)
= −ϕrrζ − ϕrζr

ϕζ2
− ψrrζ − ψrζr

ψζ2
− ξrrζ − ξrζr

ξζ2

Ricg(t)(X1, X1) =
2ϕ4 − 2(ψ2 − ξ2)2

ψ2ξ2
− ϕrϕψrξ + ϕrϕξrψ

ψξζ2
− ϕrrϕζ − ϕrϕζr

ζ3

and expressions analogous to the latter in the directions X2 and X3. Since
metric g(t) and its Ricci tensor Ricg(t) are diagonal in the same basis (by
Proposition 4.1), the system (4.2) is obtained equating the corresponding
diagonal entries of ∂g

∂t and −2 Ricg(t). �

Remark 4.5. A natural question is whether the hypothesis that g(t) re-
tains the diagonal form (4.1) is necessary. For instance, proving existence
of solutions to (4.2) with the appropriate smoothness (boundary) condi-
tions, would, by uniqueness of solutions to Ricci flow, imply that the diag-
onal Ansatz is preserved. Nevertheless, these translate into overdetermined
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boundary conditions for (4.2), and determining well-posedness seems to be
beyond the reach of standard methods.

4.2. Curvature evolution

We are now ready to analyze the evolution of sectional curvatures of gGZ

under Ricci flow, proving the Theorem in the Introduction.

Proof of Theorem. Let M be any of the cohomogeneity one 4-manifolds dis-
cussed in Section 3, and equip it with the Grove-Ziller metric gGZ. By Propo-
sitions 4.1 and 4.4, the Ricci flow evolution of g(0) = gGZ is through other
diagonal metrics of the form (4.1), satisfying (4.2).

The initial metric g(0) is such that, near each singular orbit B±, the
two functions among ϕ, ψ, and ξ corresponding to the two noncollapsing
directions among X1, X2, and X3 are equal and constant. Up to relabeling,
assume these are X1 and X2 near B−, so that

(4.3) ϕ(r, 0) = ψ(r, 0) = const. > 0, for all 0 < r < ε,

while ξ(0, t) = 0 for all t ≥ 0. Fix 0 < r0 < ε and let σ ⊂ Tγ(r0)M be the

tangent plane spanned by ∂
∂r and X1. The sectional curvature of σ is given

by

secg(t)(σ) = − 1

ϕζ

(
ϕr
ζ

)
r

=
ϕrζr
ϕζ3

− ϕrr
ϕζ2

computed at r = r0. As a consequence of (4.3), this plane σ is flat at time
t = 0. Moreover, as ζ(r, 0) ≡ 1, we have that

(4.4)
d

dt
secg(t)(σ)

∣∣∣
t=0

= −ϕrrt
ϕ

∣∣∣
r=r0,t=0

.

The evolution equation for ϕ in (4.2) simplifies enormously due to (4.3),
yielding

ϕt
∣∣
t=0

=
2(ψ2 − ξ2)2 − 2ϕ4

ϕψ2ξ2
, 0 < r < ε.

Differentiating the above expression in r twice and using (4.3) once more,
we have

ϕrrt
∣∣
r=r0,t=0

=
4(ξ2r + ξrrξ)

ϕ3

∣∣∣
r=r0,t=0

.

Up to a constant (determined by the ineffective kernel of the action of X3 on
the normal disk to B−), the function ξ(r, t) is the length of ∂

∂θ for a rotation-
ally symmetric metric ζ(r, t)2dr2 + ξ(r, t)2dθ2 on the normal disk to B− at
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x−. Thus, by the smoothness conditions for such a metric, ξr = a ζ at r = 0,
for some a ∈ Z>0 depending on the group diagram of M , and ξ is an odd
function of r; in particular, ξrr(0, t) = 0. Therefore, up to choosing an even
smaller 0 < r0 < ε, we have ξ2r (r0, 0) > 0, while both ξ(r0, 0) and ξrr(r0, 0)
are arbitrarily close to 0. It hence follows that (4.4) is strictly negative, so
secg(t)(σ) < 0 for all t > 0 sufficiently small, concluding the proof. �

Remark 4.6. More can be said about the evolution of sectional curvatures
on the manifolds discussed in the above proof. First, the tangent plane σ at
γ(r0) could have instead been chosen as the plane spanned by ∂

∂r and any
linear combination of the noncollapsing directions X1 and X2. Of course,
a similar situation also takes place near the other singular orbit B+. This
means there is a circle’s worth of initially flat planes at each point near
a singular orbit that become negatively curved for small t > 0. As a side
note, these tangent planes actually integrate to totally geodesic flat strips
in (M, gGZ) with an arrangement in the regular part of M reminiscent of an
open book decomposition, where the binding is any horizontal geodesic and
the (2-dimensional) pages are flat strips. These are the so-called Perelman
flat strips, constructed in the proof of the Soul Conjecture [31], on either
“half” of (M, gGZ), i.e., on either convex side of a totally geodesic principal
orbit.

The behavior of some of these flat planes is the opposite near the middle
of (M, gGZ), where they immediately acquire positive curvature for any t >
0 small. We warn the reader that, in the derivation of formula (4.4) for
d
dt secg(t)(σ)

∣∣
t=0

, we made extensive use of (4.3), so this expression is not
valid on the entire length of γ(r), in particular in the latter region. However,
the above claim can be verified with an argument similar to [5, Sec. 4.4] using
that these planes are tangent to totally geodesic flats, which implies that∫
γ

d
dt secg(t)(γ

′ ∧X)
∣∣
t=0

= 0, where X is a vertical direction along γ that
does not collapse at either singular orbit.
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[6] C. Böhm, Inhomogeneous Einstein metrics on low-dimensional spheres
and other low-dimensional spaces, Invent. Math. 134 (1998), 145–176.
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