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Conjecturally, there are only finitely many Heegaard Floer L-space
knots in S3 of a given genus. We examine this conjecture for twist
families of knots {Kn} obtained by twisting a knot K in S3 along
an unknot c in terms of the linking number ω between K and
c. We establish the conjecture in the case of |ω| 6= 1, prove that
{Kn} contains at most three L-space knots if ω = 0, and address
the case where |ω| = 1 under an additional hypothesis about Seifert
surgeries. To that end, we characterize a twisting circle c for which
{(Kn, rn)} contains at least ten Seifert surgeries. We also pose a
few questions about the nature of twist families of L-space knots,
their expressions as closures of positive (or negative) braids, and
their wrapping about the twisting circle.
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744 K. L. Baker and K. Motegi

1. Introduction

The Heegaard Floer homology ĤF(M) of a rational homology 3–sphere M

satisfies rk ĤF(M) ≥ |H1(M ;Z)|. When this is actually an equality so that

rk ĤF(M) = |H1(M ;Z)|, then M is an L-space. The set of L-spaces includes
the lens spaces (except S1 × S2) and all 3–manifolds with finite fundamental
group [56, Proposition 2.3] as well as many other Seifert fibered spaces [42,
56].

A knot K in the 3–sphere S3 is called an L-space knot if K(r), the result
of r–surgery on K, is an L-space for some r ∈ Q. A non-trivial L-space knot
is positive or negative according to the sign of r; only the unknot has both
positive and negative L-space surgeries.

Recall that the knot Floer homology of a knot K ⊂ S3 is a bi-graded,
finitely generated abelian group ĤFK(K) that categorifies the Alexander
polynomial ∆K(t) [55, 60], and that the knot Floer homology of an L-space
knot has a particularly simple, constrained structure [56].

This article takes motivation from a “botany” conjecture about the knot
Floer homology of L-space knots of Hedden and Watson.

Conjecture 1.1 ([33, Conjecture 6.7]). Let K be an L-space knot and

with knot Floer homology ĤFK(K). Then there are only finitely many other
knots whose knot Floer homology is isomorphic (as bi-graded groups) to

ĤFK(K).

We recast this as a conjecture about genera of L-space knots.

Conjecture 1.2. Given an integer N ≥ 0, there are only finitely many L-
space knots K with g(K) = N .

Proof of equivalence of Conjectures 1.1 and 1.2.Assume that Conjecture 1.1
holds. Suppose for a contradiction that there are infinitely many L-space
knots K with g(K) = N for some non-negative integer N . If necessary, by
taking mirrors, we may assume that such L-space knots are positive. Since
the degree of their Alexander polynomials is bounded above by 2g(K) = 2N ,
and their non-zero coefficients are ±1 [56, Corollary 1.3], there are only
finitely many Alexander polynomials. Moreover, the Alexander polynomial
of a positive L-space knot determines its ĤFK [56, Theorem 1.2]; see also

[43]. Thus infinitely many L-space knots share the same ĤFK, contradicting
the assumption.
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Twist families of L-space knots 745

To prove the converse we assume Conjecture 1.2 holds, and suppose for
a contradiction that there is an L-space knot K for which there are infinitely
many knotsKi (i = 1, 2, . . . ) with ĤFK(Ki) ∼= ĤFK(K) as bi-graded groups.

By the rational surgery formula [57], any knot with ĤFK isomorphic to that
of an L-space knot as bi-graded groups is also an L-space knot, and hence
Ki (i = 1, 2, . . . ) is also an L-space knot. Also, since knot Floer homology
detects genus [54], this also implies that g(K) = g(K1) = g(K2) = · · · . This
shows that infinitely many L-space knots have the same genus, contradicting
the assumption. �

1.1. Twist families of knots

In this article we examine Conjecture 1.2 for twist families of knots. The
twist family of knots {Kn} obtained by twisting a knot K along a disjoint
unknot c is the sequence of knots that are the images of K upon (− 1

n)–
surgery on c for n ∈ Z. In the following we always assume that c neither
bounds a disk disjoint from K nor is a meridian of K. Then it follows from
[39] that for each integer m, there are only finitely many integers n such that
Kn is isotopic to Km, in particular, the twist family {Kn} contains infinitely
many distinct knots. Then Conjecture 1.2 for twist families of L-space knots
is stated as:

Conjecture 1.3. For any twist family of knots {Kn} and any integer N ≥
0 there are only finitely many L-space knots Kn such that g(Kn) = N .

Towards this conjecture, we first develop Theorem 2.1 which describes
an asymptotic behavior of genera of knots under twisting in the general
setting according to the linking number of K and c. This theorem has the
following direct consequence when the linking number is greater than 1.

Theorem 1.4. Let {Kn} be a twist family of knots obtained by twisting
K along c. If |`k(K, c)| > 1, then g(Kn)→∞ as |n| → ∞. In particular,
Conjecture 1.3 is true for any twist family of L-space knots with |`k(K, c)| >
1.

When the linking number is 0, Theorem 3.1 constrains the contact struc-
tures supported by the fibered knots and their mirrors in the twist family.
The next theorem follows from this together with the fact that an L-space
knot or its mirror is a fibered knot supporting the tight contact structure
on S3 [32, Corollary 1.4 and Proposition 2.1].
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746 K. L. Baker and K. Motegi

Theorem 1.5. Let {Kn} be a twist family of knots obtained by twisting K
along c. If `k(K, c) = 0, then Kn is an L-space knot for at most three integers
n. Furthermore, if Km and Kn are L-space knots, then |m− n| ≤ 2.

In Theorem 1.5 we actually expect that there are at most two such
integers m,n with |m− n| ≤ 1. In contrast, for each integer ω > 1 there are
infinitely many twist families {Kn} each of which contains infinitely many
L-space knots with |`k(K, c)| = ω; see [47, Theorem 1.8] and Subsection 6.2.

Added in proof. The first author and Taylor have shown that

lim
n→∞

g(Kn) =∞

for a twist family {Kn} obtained by twisting K along c with ω = |`k(K, c)| >
0 (unless c is a meridian of K) [3, Theorem 5.1]. In particular, this resolves
the remaining case of Conjecture 1.3 with ω = |`k(K, c)| = 1. Furthermore,
it answers Question 2.2 affirmatively.

1.2. Twist families of surgeries

Given a slope r for K, then twisting along c produces the twist family
of knot-slope pairs {(Kn, rn)} called the twist family of surgeries, and the
twist family of Dehn surgered manifolds {Kn(rn)}. We call a knot-slope pair
(K, r) an L-space surgery if K(r) is an L-space. Note that if ω = `k(K, c),
then rn = r0 + nω2.

Remark 1.6. Given a twist family of surgeries {(Kn, rn)}, there is a linear
function of n that bounds the genus of Kn from above whenever Kn(rn) is
an L-space. This is due to the relation of genus and L-space surgery slope
of Ozsváth-Szabó [57]. In particular, g(Kn) ≤ 1

2(1 + |r0 + nω2|).

Let us specify Conjecture 1.3 in terms of a twist family of surgeries.

Conjecture 1.7. Let {(Kn, rn)} be a twist family of surgeries. Then for
any integer N ≥ 0 there are only finitely many L-space surgeries (Kn, rn)
such that g(Kn) = N .

Theorems 1.5 and 1.4 verify Conjecture 1.3 and hence Conjecture 1.7
for twist families obtained by twisting K along c when |`k(K, c)| 6= 1. In the
case `k(K, c) = 1, we prove:
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Proposition 1.8. Let {(Kn, rn)} be a twist family obtained by twisting
(K, r) along an unknot c with |`k(K, c)| = 1. If this family contains infinitely
many L-space surgeries, then

(1) ∆K∪c(x, y)
.
= ∆K(x)

.
= ∆Kn

(x) for all n ∈ Z,

and there is an integer N such that

(2) ĤFK(Kn) ∼= ĤFK(KN ) for infinitely many integers n, and in par-
ticular

(3) g(Kn) = g(KN ) for infinitely many integers n.

Corollary 1.9. Let {(Kn, rn)} be a twist family of surgeries with |`k(K, c)|
= 1. If g(Kn)→∞ as |n| → ∞, then {(Kn, rn)} contains only finitely many
L-space surgeries.

1.3. Twist families of Seifert fibered L-space surgeries

Common examples of twist families of surgeries containing infinitely many L-
space surgeries have infinitely many L-space surgeries in which the resulting
manifolds are Seifert fibered; see [47] for such examples.

Convention 1.10. Throughout this article, we permit Seifert fibrations
to have “degenerate” fibers (i.e. index zero fibers). Accordingly, a Seifert
fibered space is a 3–manifold admitting a Seifert fibration with or without
degenerate fibers. When we discuss surgeries, following the convention in
[14], we call a knot-slope pair (K, r) a Seifert surgery if K(r) is a Seifert
fibered space in our generalized sense. See Section 2 in [14] for degenerate
Seifert fibrations. Since connected sums of lens spaces are Seifert fibered
L-spaces (in our sense), (Tp,q, pq) is an L-space surgery and a Seifert surgery
as well.

The next result shows finiteness of L-space surgeries in a twist family
{(Kn, rn)} which contains at least 10 Seifert surgeries:

Theorem 1.11. Let {(Kn, rn)} be a twist family of surgeries obtained by
twisting (K, r) along an unknot c with |`k(K, c)| = 1. Assume that (Kn, rn)
is a Seifert surgery for at least ten integers n. Then there are only finitely
many L-space surgeries in the family.

In the course of the proof of Theorem 1.11, we characterize a twist
family of surgeries which contains a large number of Seifert surgeries. In
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doing so, we extend the foundational work of [14] on seiferters. See Section 4
for terminology and background regarding seiferters and pseudo-seiferters.
Notably, we prove the following theorem.

Theorem 1.12. Let {(Kn, rn)} be a twist family of surgeries obtained by
twisting (K, r) along an unknot c that is neither split from K nor a meridian
of K. If (Kn, rn) is a Seifert surgery for at least 10 integers n, then c is
a seiferter or pseudo-seiferter for (K, r). Consequently, (Kn, rn) is then a
Seifert surgery for all integers n.

Proposition 4.6 gives the constraint that a pseudo-seiferter c for a knot
K in S3 must satisfy |`k(K, c)| 6= 1. However, we have not actually found
any example of a pseudo-seiferter for a knot in S3.

Question 1.13. Does there exist a pseudo-seiferter for a Seifert surgery
on a knot in S3?

1.4. Notation and organization

Throughout the paper we will use N(∗) to denote a tubular neighborhood
of ∗ and use N (∗) to denote the interior of N(∗) for notational simplicity.

The rest of the paper is organized as follows. In Section 2 we investigate
behavior of genera of knots under twisting operation using Alexander poly-
nomials, and prove Theorem 2.1 which immediately implies Theorem 1.4.
Proposition 1.8 will be also proved in Section 2. Section 3 treats twist fam-
ilies of knots obtained by twisting K along an unknot c with `k(K, c) = 0,
and prove Theorem 1.5 as a corollary of the more general result Theorem 3.1.
In Section 4 we will extend the foundational work of [14] on seiferters, and
establish Theorem 1.12 and Proposition 4.6, which studies the linking of
pseudo-seiferters. The proof of Theorem 1.11 will be given in Section 5. In
Section 6, we study Conjectures 1.2 and 1.3 from a viewpoint of braids, and
provide examples of twist families of L-space knots whose twisting circles
are not braid axes, but each L-space knot can be re-arranged as closures of
positive or negative braids. Finally, in the last section, we will pose a few
questions about the nature of twist families of L-space knots, their expres-
sions as closures of positive (or negative) braids, and their wrapping about
the twisting circle.
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2. Alexander polynomials and genera of knots in
twist families

In this section we first prove the general result Theorem 2.1 below, which
describes the behavior of the genera of knots under the twisting operation.
Then we will prove Proposition 1.8 after preparing Lemma 2.5.

Theorem 2.1. Let {Kn} be the twist family of knots in a homology sphere
obtained by twisting the knot K along an unknot c. Then one of the following
occurs:

(1) `k(K, c) = 0 and g(Kn) is constant for all but at most one n for
which g(Kn) may be less,

(2) |`k(K, c)| = 1 and ∆K∪c(x, y)
.
= ∆K(x), or

(3) |`k(K, c)| ≥ 1 and g(Kn)→∞ as |n| → ∞.

Here ∆L denotes the multivariable Alexander polynomial of the link
L and

.
= signifies equivalence up to multiplication by a unit in the corre-

sponding Laurent polynomial ring. For situations such as Theorem 2.1(2),
we regard Z[x±1] as the natural subring of Z[x±1, y±1].

Question 2.2. Observe that if c is a meridian of K then ∆K∪c(x, y)
.
=

∆K(x) and Kn = K for all n. If |`k(K, c)| = 1, ∆K∪c(x, y)
.
= ∆K(x), and

g(Kn) ≤ N for some constant N , then must c be a meridian of K?

Remark 2.3. Conclusion (2) can occur even when c is not a meridian of
K. Figure 2.1 shows a link K ∪ c with |`k(K, c)| = 1 such that ∆K∪c(x, y) =
3x−1 − 5 + 3x. Hence ∆Kn

(t) = 3t−1 − 5 + 3t for all integers n. Is there an
upper bound on the genera of these knots?

Remark 2.4. Conclusion (3) with |`k(K, c)| = 1 does occur. For exam-
ple, let us take the two-bridge link B(18, 7) (which is 722 in Rolfsen’s ta-
ble and L7a5 in Thistlethwaite’s table [38, 61]). Since both components
are unknotted, one may choose either component to be K and the other
to be c. Then |`k(K, c)| = 1 and the multivariable Alexander polynomial
is ∆(x, y)

.
= (x+ y − 1)(xy − x− y) [11, 38]. Since bry ∆(x, y) = 2 (the y–

breadth of ∆(x, y), defined below), the proof of Theorem 2.1 shows that
g(Kn)→∞ as |n| → ∞.



i
i

“1-Baker” — 2019/9/20 — 23:29 — page 750 — #8 i
i

i
i

i
i

750 K. L. Baker and K. Motegi

K
n

c

n twists

Figure 2.1: The knots Kn all have the same Alexander polynomial.

Before proving Theorem 2.1, we prepare some notation. For a non-zero
Laurent polynomial p(t) ∈ Z[t±1], its breadth br(p(t)) is the difference be-
tween the minimum degree and maximum degree of t in p(t). For a non-zero
Laurent polynomial p(x, y) ∈ Z[x±1, y±1], its y–breadth bry(p(x, y)) is the
difference between the minimum degree and maximum degree of y in p(x, y).
We similarly define brx(p(x, y)). (The breadth, y–breadth, and x–breadth
of the zero polynomial are defined to be −∞.)

Let K be a knot in a homology sphere M with Alexander polynomial
∆K(t) ∈ Z[t±1] and Seifert genus g(K). Then we have the inequality:

br(∆K(t)) ≤ 2g(K).

Let L1 ∪ L2 be an oriented link in a homology sphere M and E the exte-
rior M −N (L1 ∪ L2) of L1 ∪ L2. The two variable Alexander polynomial of
L1 ∪ L2 is ∆L1∪L2

(x, y). With the Laurent polynomial ring Λ = Λ[x±1, y±1],
this records the structure of H1(Ẽ) as a Λ module with respect to the basis
〈[µ1], [µ2]〉 of H1(E) where µi is an oriented meridian of Li, [µ1] 7→ x and
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[µ2] 7→ y, and the additive structure in H1(E) maps to the multiplicative
structure in Λ (i.e. a[µ1] + b[µ2] 7→ xayb).

Torres [68] gives fundamental properties of the two-variable Alexander
polynomial of an oriented link L1 ∪ L2 with `k(L1, L2) = ω and its relation
to the Alexander polynomial of a component:

∆L1∪L2
(x, y) = xmyn∆L1∪L2

(x−1, y−1) for some m,n ∈ Z,(T1)

∆L1∪L2
(t, 1)

.
=
tω − 1

t− 1
∆L1

(t), and(T2)

∆L1∪L2
(1, 1) = ±ω.(T3)

Note that reversing a component of an oriented link reverses the orienta-
tion of its meridian and hence inverts the corresponding variable in the Lau-
rent polynomial ring. By the Torres Formula (T1), the Alexander polynomial
of a two component link L1 ∪ L2 is preserved up to equivalence upon revers-
ing both components, so ostensibly a two component link has two inequiv-
alent multivariable Alexander polynomials. In the following, as a matter of
convenience, we choose orientations of L1 and L2 so that ω = `k(L1, L2) ≥ 0.
When ω = 0 we content ourselves with any choice of orientation.

Proof of Theorem 2.1. We choose orientations of K and c so that `k(K, c) =
ω ≥ 0. (This choice has no impact on the conclusions of the Theorem.) When
ω = 0, the result follows from work of Gabai [16, Corollary 2.4]. Henceforth
assume ω ≥ 1.

Let E = M −N (K ∪ c) denote the exterior of K ∪ c where M is the ho-
mology sphere containing K ∪ c. Then H1(E) = 〈[µK ], [µc]〉 ∼= Z⊕ Z where
µK and µc are oriented meridians of K and c respectively. Let λc be the
preferred (oriented) longitude of c. Observe that [λc] = ω[µK ] in H1(E).

Now consider the family of links Kn ∪ cn with exterior En obtained by
(− 1

n)–surgery on c. Observe that En ∼= E where µKn
7→ µK and µcn 7→ µc −

nλc. Thus, using that [λc] = ω[µK ] = ω[µKn
] so that [µc] 7→ −nω[µK ] + [µcn ]

in H1(E), we have

∆Kn∪cn(xn, yn) = ∆K∪c(xn, x
nω
n yn).

Applying the Torres Formula (T2) and the preceding equation, we ob-
tain:

(?)
tω − 1

t− 1
∆Kn

(t)
.
= ∆Kn∪cn(t, 1) = ∆K∪c(t, t

nω).
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Since ω ≥ 1, we have

(??) 2g(Kn) ≥ br(∆Kn
(t)) = br(∆K∪c(t, t

nω))− (ω − 1).

Thus the genus of Kn will eventually increase with |n| provided that we have
bry(∆K∪c(x, y)) > 0.

Since c is the unknot, ∆c(y) = 1. Therefore

∆K∪c(1, y)
.
=
yω − 1

y − 1
∆c(y) =

yω − 1

y − 1

and thus ∆K∪c(x, y) has positive y–breadth when ω ≥ 2. Hence conclusion
(3) holds when ω ≥ 2.

If ω = 1, then ∆K∪c(1, y)
.
= ∆c(y) = 1, which implies that ∆K∪c(x, y) 6=

0. However, if bry(∆K∪c(x, y)) = 0, then ∆K∪c(x, y) is expressed as f(x)yk

for some polynomial f(x) and integer k, and hence ∆K∪c(x, y)
.
= f(x). There-

fore (?) implies that ∆K∪c(x, y)
.
= ∆K∪c(x, 1) = ∆K(x) and moreover that

∆Kn
(x) = ∆Kn∪cn(x, 1) = ∆K∪c(x, x

nw)
.
= ∆K∪c(x, 1) = ∆K(x) for all n ∈

Z. Thus if ω = 1, then either ∆K∪c(x, y)
.
= ∆K(x)

.
= ∆Kn

(x) for all n ∈ Z
and conclusion (2) holds or bry(∆K∪c(x, y)) > 0 and conclusion (3) holds.

�

Lemma 2.5. Let L1 ∪ L2 be an oriented link with `k(L1, L2) = ω > 0. Then,
working mod 2, we have

brx(∆L1∪L2
(x, y)) ≡2 bry(∆L1∪L2

(x, y)) ≡2 ω − 1.

Proof. This is an application of the Torres Formulas. First observe that
∆L1∪L2

(x, y) 6=0 by (T3) because ω>0. Hence the y–breadth of ∆L1∪L2
(x, y)

is a non-negative integer. If bry(∆L1∪L2
(x, y)) = n, then by multiplying by

powers of x and y we may write ∆L1∪L2
(x, y) =

∑n
i=0 ai(x)yi, where a0(x) 6=

0 and an(x) 6= 0 (and possibly 0 = n). Then by (T1) we have

n∑
i=0

ai(x)yi = ∆L1∪L2
(x, y) = xmyn∆L1∪L2

(x−1, y−1)

= xmyn
n∑
i=0

ai(x
−1)y−i = xm

n∑
i=0

ai(x
−1)yn−i

= xm
n∑
i=0

an−i(x
−1)yi
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so that ai(x) = xman−i(x
−1). Hence ai(1) = an−i(1), and therefore

bry(∆L1∪L2
(x, y)) ≡2 br(∆L1∪L2

(1, y)).

By (T2), br(∆L1∪L2
(1, y)) = br(∆L2

(y)) + ω − 1. Since the breadth of the
Alexander polynomial of a knot is always even, br(∆L1∪L2

(1, y)) ≡2 ω − 1.
Thus bry(∆L1∪L2

(x, y)) ≡2 ω − 1.
A similar proof shows brx(∆L1∪L2

(x, y)) ≡2 ω − 1. �

Proposition 1.8. Let {(Kn, rn)} be a twist family obtained by twisting
(K, r) along an unknot c with |`k(K, c)| = 1. If this family contains infinitely
many L-space surgeries, then

(1) ∆K∪c(x, y)
.
= ∆K(x)

.
= ∆Kn

(x) for all n ∈ Z,

(2) ĤFK(Kn) ∼= ĤFK(KN ) for infinitely many integers n, and in par-
ticular

(3) g(Kn) = g(KN ) for infinitely many integers n.

Remark 2.6. Of course, as in Question 2.2, we know of no examples of
twist families that satisfy all the hypotheses of Proposition 1.8 for which c
is not a meridian of K.

Proof. Note that the assertion of the proposition holds for {(Kn, rn)} if and
only if that holds for the family {(K∗−n,−rn)} obtained by taking mirrors.
So we may assume that there is an integer N > 0 such that (Kn, rn) is
an L-space surgery for infinitely many n ≥ N . In the following we choose
orientations of K and c so that ω = `k(K, c) = 1. Then, since rn = r0 + n,
by increasing N if necessary we may assume rn > 0 so that Kn is a positive
L-space knot for infinitely many n ≥ N .

Since Kn is a positive L-space knot, then rn ≥ 2g(Kn)− 1 [57]. Then
equation (??) above (with ω = 1) yields

r0 + n ≥ br(∆K∪c(t, t
n))− 1.

Recall that, as in the proof of Lemma 2.5, if bry(∆K∪c(x, y)) = `, then

we may write ∆K∪c(x, y) =
∑`

i=0 ai(x)yi where the ai(x) are polynomials
such that a0(x) 6= 0, a`(x) 6= 0, and xkai(x

−1) = a`−i(x) for all i for some
integer k.

If ` = 0, then br(∆K∪c(t, t
n)) = br a0(t), which is constant, the difference

between deg a0(t) and the smallest exponent of t occurring in deg a0(t). If
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` > 0, then ∆K∪c(t, t
n) = a0(t) + · · ·+ a`(t)t

n` and, for sufficiently large n(≥
N), br(∆K∪c(t, t

n)) = n`+ C where C is the difference between deg a`(t)
and the smallest exponent of t occurring in deg a0(t). So the formula works
for ` ≥ 0. Thus the inequality above becomes

n(1− `) ≥ C − 1− r0.

For this inequality to be true for sufficiently large n ≥ N , we must have
1− ` ≥ 0, i.e. 0 ≤ ` ≤ 1. In particular, since ω = 1 and ` do not have the
same parity by Lemma 2.5, ` = bry(∆K∪c(x, y)) = 0. This implies

∆K∪c(x, y)
.
= ∆K(x)

and thus, as in the proof of Theorem 2.1, ∆K(x)
.
= ∆Kn

(x) for all n ∈ Z,
giving (1).

Since Alexander polynomials of positive L-space knots determine their
ĤFK, (2) now follows from (1) and the hypothesis that the twist family
contains infinitely many L-space knots. Since knot Floer homology detects
genus [54, Theorem 1.2], (3) follows from (2). �

3. L-space knots in twist families with linking number zero

As shown in Theorem 2.1, twisting K along an unknotted circle c with
`k(K, c) = 0, we obtain an infinite family of knots of bounded genus. If this
family contains infinitely many L-space knots, Conjecture 1.2 turns out to be
not true. However Theorem 1.5 below, which follows from Theorem 3.1 and
the fact that an L-space knot or its mirror is a tight fibered knot [32, Corol-
lary 1.4 and Proposition 2.1], excludes this possibility. (For convenience, we
say a fibered knot whose associated open book decomposition supports the
positive tight contact structure on S3 is a tight fibered knot.)

Theorem 1.5. Let {Kn} be a twist family of knots obtained by twisting
K along c. If `k(K, c) = 0, then Kn is an L-space knot for at most three
integers n. Furthermore, if Km and Kn are L-space knots, then |m− n| ≤ 2.

Proof. By Ni [48, 49] (cf. [19, 37]), if K is an L-space knot, then K is a fibered
knot. If K is an L-space knot with a positive L-space surgery, then g(K) =
τ(K) [56] (see also [32, Corollary 1.4]) and the open book decomposition
associated to K supports the (positive) tight contact structure on S3 [32,
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Proposition 2.1]. That is, K is a tight fibered knot. Similarly, if K is an L-
space knot with a negative L-space surgery, then the mirror of K is a tight
fibered knot. The result now follows from Theorem 3.1 below. �

Theorem 3.1. Let {Kn} be a twist family of knots obtained by twisting K
along c. If `k(K, c) = 0, then Kn or its mirror is a tight fibered knot for at
most three integers n. Furthermore, if Km and Kn are two such knots, then
|m− n| ≤ 2.

Proof. If for any integer n, neither Kn nor its mirror is a tight fibered
knot, then there is nothing to prove. So we may assume, if necessary by
a reparametrization, that K = K0 and either K or its mirror is a tight
fibered knot. It follows from [16, Corollary 2.4] that K has a Seifert surface
F ⊂ E(K) = S3 −N (K) which is disjoint from c so that g(Kn) ≤ g(F ) with
equality for all but at most one integer n, say n0. (Cf. Theorem 2.1(1).) In
particular, the image of F under (− 1

n)–surgery on c gives a minimal genus
Seifert surface for Kn in those cases of equality.

Case I. g(K) = g(F ), i.e. F is a fiber surface of K.
Since F is a fiber surface, by cutting the exterior E(K) along F one

obtains a product manifold F × [0, 1]. Assume thatKn (and hence its mirror)
is also a fibered knot for some integer n 6= 0, n0. Thus Kn is a fibered knot
with g(Kn) = g(F ), and since a fiber surface for a fibered knot is unique up
to isotopy (e.g. [15, Lemma 5.1] or [67]), F becomes a fiber surface Fn of
Kn after (− 1

n)–surgery on c. Hence (− 1
n)–surgery on c takes the exterior of

K ∪ F to the exterior of Kn ∪ Fn; i.e. this is a cosmetic surgery of F × [0, 1]
such that F × ∂[0, 1] is preserved. Then Ni [51, Theorem 1.1] shows that
c may be isotoped so that in the projection π : F × [0, 1]→ F , either (i)
the projection of c has no crossings, or (ii) the projection of c has just one
crossing.

The immersed annulus π−1(π(c)) intersects ∂N(c) in two longitudes and
two meridians for each crossing of π(c). The slope of these longitudes is
referred to as the blackboard framing.

Assume first that the situation (i) happens. Let us assume that Kn is a
fibered knot as above for two integers n = n1, n2 other than 0 and n0. Then
we have:

Lemma 3.2. The blackboard framing is the preferred longitude of c.

Proof. Let γ be the blackboard framing of c. Then γ = xµ+ λ for some
integer x, where (µ, λ) is a preferred meridian longitude pair of c in S3.
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By [51, Theorem 1.1] the distance between the surgery slope − 1
n and γ is

one. Thus |1 + nx| = 1 for the nonzero integers n = n1, n2. This then implies
x = 0, i.e. γ = λ. �

Now isotope c into the fiber surface F for K; we continue to use the same
symbol c to denote the isotoped one. Then c is essential in F , for otherwise, c
bounds a disk disjoint from K, contradicting the assumption. Since c ⊂ F is
unknotted in S3 and its framing by F is its preferred longitude (Lemma 3.2),
c is a “twisting loop” as in [72, Definition 2.1].

An essential loop c in a surface F is called isolating if it is the only
boundary component of a connected subsurface of F . We note that [72,
Theorem 1.1(2)] is missing the hypothesis that the twisting loop is non-
isolating which is necessary for its proof. To apply this theorem, we need
the following lemma.

Lemma 3.3. If there is a twisting loop in an embedded surface F ⊂ S3,
then there is a twisting loop in F that is non-isolating.

Proof. Assume there is an isolating twisting loop in a surface F . Among
such loops, let c be one that bounds the smallest genus of subsurfaces. Let
Fc be the subsurface bounded by c. Among disks that c bounds, let D be
one that intersects Fc transversally and minimally. Since the framing of c by
F and D agree, minimality ensures that intD ∩ Fc = ∅ in a neighborhood of
c. If intD ∩ Fc is not empty, then it consists of simple closed curves whose
framings by D and Fc agree. Of these curves, let c′ be an innermost one in
D. If c′ is parallel to c in Fc, we can find another disk bounded by c which
intersects Fc in fewer components, contradicting the assumption. By the
minimality assumption (of genus of subsurfaces), c′ must be non-isolating in
Fc and hence in F . Since it bounds a subdisk of D, it is also a twisting loop.

On the other hand, if intD ∩ Fc is empty, then D ∪ Fc is a closed surface
of positive genus which must compress in S3. Let D′ be a compressing disk
for D ∪ Fc which we may take to be disjoint from D. Then the framing of
∂D′ by D′ and Fc agree. Since ∂D′ is an essential curve in Fc and hence also
in F , it is a twisting loop. Because D′ is a compressing disk for D ∪ Fc, ∂D′
is not parallel to ∂Fc. Therefore, by the minimality assumption (of genus of
subsurfaces), ∂D′ is non-isolating in Fc and in F . �

Then it follows from Lemma 3.3 and [72, Theorem 1.1] that any contact
structure supported by the open book with page F will be overtwisted.
Similarly, since the mirror of F also contains a twisting loop, the mirror of
c, any contact structure it supports will also be overtwisted. This contradicts
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our choice of K = K0. (Indeed, one may show that in the supported contact
structures the non-isolating twisting loop can be isotoped to a Legendrian
unknot that bounds an overtwisted disk.) Hence Kn can be fibered for at
most one integer n1 ( 6= 0, n0), where K0 or its mirror is a tight fibered
knot. Therefore there are at most two non-zero integers n0 and n1 such that
K0,Kn0

and Kn1
, or their mirrors are tight fibered knots in the family {Kn}.

Remark 3.4. Let us drop the condition of K0 being a “tight” fibered knot
for the moment. Then our argument shows that if Kn is a fibered knot for
at least two integers n1, n2 (other than 0, n0), then c is a curve in F along
which one may do a “Stallings twist” [64]. It then further follows that for
every member of the twist family {Kn} the knot Kn is fibered with fiber Fn
in which c continues to be a twisting loop.

Next assume that the situation (i) does not occur. Then we must have
the situation (ii). Recall that K = K0 is assumed to be a fibered knot.
First we observe that F is incompressible in E(Kn) for all integers n. It is
sufficient to show that F = F × {0} and F = F × {1} remain incompressible
in the resulting 3–manifold Xn obtained from F × [0, 1] after (− 1

n)–surgery
on c for all integers n. By symmetry, we show this only for F = F × {0}.
Assume for a contradiction that F = F × {0} compresses in Xn after (− 1

n)–
surgery on c for some n. Then [51, Theorem 1.5] or [63, Theorem 0.1] (see
also [50, Theorem 1.4]) implies that the projection of c has no crossings,
contradicting the hypothesis of situation (ii). Next we show that there is at
most one non-zero integer n such that Kn is also fibered. If Kn is also a
fibered knot for n 6= 0, then since F is incompressible in E(Kn) as observed
above, g(Kn) = g(F ) and the fiber F of K becomes a fiber surface Fn for
Kn after (− 1

n)–surgery on c [15, Lemma 5.1] ([67]). Thus (− 1
n)–surgery on

c is also a cosmetic surgery of F × [0, 1]. Since the cosmetic surgery slope is
exactly the blackboard framing [51, Theorem 1.1], this non-zero integer n is
unique. Note that each projection gives the unique blackboard framing, i.e. a
cosmetic surgery slope. Now we suppose that after an isotopy in F × [0, 1], c
may have another projection with exactly one crossing. Since its blackboard
framing may be distinct from the previous one, each slope is expressed as
xµ+ λ and yµ+ λ for some integers x and y using the preferred meridian
longitude pair (µ, λ) of c in S3. Since the cosmetic surgery slope on c, which
coincides with the blackboard framing, corresponds to a twisting, x and y
must be ±1. Thus even if c has multiple projections each of which has just
one crossing, the blackboard framing is +1 or −1. Therefore there are at
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most two integers n0, n1 with {n0, n1} = {−1, 1} such that K0, Kn0
and

Kn1
are fibered knots in the family {Kn}.

Finally let us prove that if Km and Kn or their mirrors are tight fibered
knots, then |m− n| ≤ 2. We reparametrize the family {Kn} so that K = K0

or its mirror is a tight fibered knot as above and then take a closer look at
the values n0 and n1.

First we assume the situation (i) happens; hence the projection of c in
F × I to F has no crossings.

Recall that (− 1
n)–surgery on c compresses F for at most one integer

n which we denote as n0 should it exist; such a surgery is a ∂–reducing
surgery in F × I. Since the blackboard framing of c is the only slope of a
Dehn surgery on c in which F compresses (see [51, Theorem 1.5] or [63,
Theorem 0.1]), the slope − 1

n0
must be the blackboard framing. Hence if

(− 1
n0

)–surgery on c compresses F , then − 1
n0

is an integer, and thus n0 = ±1.

Recall that (− 1
n1

)–surgery is a cosmetic surgery of F × [0, 1] and n1( 6= 0)
satisfies |1 + n1x| = 1 for some integer x. If x = 0, then the blackboard fram-
ing is the preferred longitude of c (so there is no n0 for which (− 1

n0
)–surgery

on c compresses F ) and neither K0 nor its mirror is a tight fibered knot;
see the argument just before Remark 3.4. This contradicts the assumption.
So x 6= 0 and the equality implies n1 = ±1,±2. Summarizing, we see that if
Kn or its mirror is a tight fibered knot, then n ∈ {−2,−1, 0, 1, 2}. If none of
K−2, K2, or their mirrors are tight fibered knots, then Kn or its mirror can
be a tight fibered knot for at most three integers n = −1, 0, 1 providing the
desired result. Suppose that K2 or its mirror is a tight fibered knot. Since −1

2
is not the slope of a ∂–reducing surgery, g(K2) = g(F ) and we can replace
K2 with K = K0 by reparametrization and apply the same argument to con-
clude that if Kn or its mirror is a tight fibered knot, then n ∈ {0, 1, 2, 3, 4}.
Taking the previous restriction, we have only three integers n = 0, 1, 2 for
which Kn or its mirror can be a tight fibered knot. In the case where K−2
or its mirror is a tight fibered knot, a similar argument shows that Kn or its
mirror can be a tight fibered knot for at most three integers n = −2,−1, 0. It
follows that if Km and Kn or their mirrors are tight fibered knots (without
any reparametrization), then |m− n| ≤ 2.

Suppose next that the situation (ii) does not happen, i.e. we have the
situation (ii). Recall that {n0, n1} = {−1, 1}. Hence Kn or its mirror can be
a tight fibered knot for at most three integers 0,−1, 1.

Case II. g(K) < g(F ), i.e. F is not a fiber surface of K and the fiber surface
of K cannot be made disjoint from c. Then it turns out that g(Kn) = g(F )
for any integer n 6= 0 as we mentioned above. In this situation n0 = 0 and
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K(= K0 = Kn0
) or its mirror is a tight fibered knot. We may assume that

Kn1
or its mirror is also a tight fibered knot for some n1 6= 0, for otherwise

K is a unique knot in {Kn} such that K itself or its mirror is tight fibered.
Apply the argument in Case I to Kn1

instead of K = K0, we see that there
are at most three knots including K,Kn1

that themselves or their mirrors
are tight fibered knots, and if Km and Kn are two such knots (without any
reparametrization), then |m− n| ≤ 2. �

Example 3.5. Let K ∪ c be the Whitehead link depicted in Figure 3.1.
Then the linking number between K and c is zero and the twist family
{Kn} contains exactly two L-space knots K = K0 and K1. Even though
K−1 is also fibered, both K−1 and its mirror support overtwisted contact
structures. Hence K−1 cannot be an L-space knot.

K

c

Figure 3.1: The linking number between K and c is zero; K = K0 is a trivial
knot, K1 is a trefoil knot, and K−1 is the figure eight knot.

4. Twist families of Seifert surgeries; seiferters and
pseudo-seiferters

In this section we study when a twist family of surgeries may have a large
number of Seifert surgeries without constraining the linking number `k(K, c).
In doing so, we review and extend the foundations of [14]. Recall that the
term Seifert surgery means a knot-slope pair (K, r) in S3 such that the result
K(r) of r–Dehn surgery on K is a manifold that admits a Seifert fibration,
possibly with degenerate fibers. If an unknot c in the exterior of K becomes
isotopic to a fiber in a Seifert fibration of K(r), then c is called a seifer-
ter: twisting the Seifert surgery (K, r) along c produces a 1–parameter twist
family {(Kn, rn)} of Seifert surgeries. Typically it is assumed that any disk
bounded by c is intersected by K at least twice; otherwise c is either split
from K or a meridian of K, sometimes called an “irrelevant” seiferter.
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Let c be a seiferter for a Seifert surgery (K, r). The exterior of c is a
solid torus V = S3 −N (c) containing K so that the manifold V (K; r) re-
sulting from r–Dehn surgery on K in V has a Seifert fibration. If K(r) has
a non-degenerate Seifert fibration, the main result of [46] (see also [14, The-
orem 2.2]) shows that either r ∈ Z or K is a torus knot in V or a cable
of a torus knot in V . Hence the situation when c is a seiferter for a (non-
degenerate) Seifert surgery (K, r) with r 6∈ Z is well understood. Thus [14]
focuses upon integral Seifert surgeries (K,m) where m ∈ Z. As we will ob-
serve in the proof of Lemma 5.1, even when K(r) has a degenerate Seifert
fibration, we see that r ∈ Z or K is a torus knot. (In reference to notation for
surgery slopes, we always take m ∈ Z while in general r ∈ Q.) Theorems 3.2
and 3.19 of [14] classify seiferters for integral Seifert surgeries (K,m).

One generalization of a seiferter is that of a pseudo-seiferter, cf. [47,
Definition 8.4]. Given a Seifert surgery (K, r), an unknot c in the exterior of
K is a pseudo-seiferter if c is not a seiferter but c is isotopic to the cable of
a fiber in some Seifert fibration of K(r) where the preferred longitude λ of
c in S3 becomes the cabling slope of c in K(r). In particular, the manifold
V (K; r) is a graph manifold that is the union along a torus of a Seifert fibered
space X and a cable space W ; the slope λ ⊂ ∂V ⊂ ∂W is the cabling slope
of the cable space.

In the definition of a pseudo-seiferter, the condition that λ becomes the
cabling slope of W is precisely what’s needed for Wn = W ∪− 1

n
N(c), the

filling corresponding to (− 1
n)–surgery on c, to be a solid torus. This allows

the Seifert fibration of X to extend to a Seifert fibration of Kn(rn). Hence
again, twisting the Seifert surgery (K, r) along c produces a 1–parameter
family {(Kn, rn)} of Seifert surgeries.

In the following two subsections we show that if a twist family of surgeries
{(Kn, rn)} obtained from a surgery (K, r) by twisting along an unknot c
contains ten Seifert surgeries, then

• (Theorem 1.12) c is either a seiferter or a pseudo-seiferter and so
each surgery (Kn, rn) is a Seifert surgery; and thence

• (Proposition 4.6) there is no pseudo-seiferter c for (K, r) with
|`k(K, c)| = 1.

Remark 4.1. The Seifert fibrations in this article are permitted to have
degenerate exceptional fibers. Do note, however, that a Seifert fibered space
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obtained by surgery on a knot in S3 cannot have more than one degener-
ate fiber unless the knot is trivial and the surgery is the 0–slope. See [14,
Proposition 2.8].

4.1. Seifert surgeries in twist families

Let {(Kn, rn)} be a twist family in S3 obtained by twisting (K, r) along
an unknot c. Recall that c neither bounds a disk disjoint from K nor is a
meridian of K. Let us write:

S = {n ∈ Z | Kn(rn) is a (possibly degenerate) Seifert fibered space}.

If S 6= ∅, by reparametrization we assume K(r) is a (possibly degenerate)
Seifert fibered space.

The goal of this subsection is to prove Theorem 1.12, though phrased
slightly differently for its presentation here.

Theorem 1.12. If |S| > 9, then c is either a seiferter or a pseudo-seiferter
for (K, r) and S = Z.

Proof. By the Inheritance Property [14, Proposition 2.6], c is a seiferter (or
a pseudo-seiferter) for (K, r) if and only if (Kn, rn) is a Seifert surgery for
which c remains a seiferter (or a pseudo-seiferter) for any n ∈ Z. So showing
that c is a seiferter or pseudo-seiferter implies that S = Z. Hence we assume
that |S| > 9 and aim to show that c is a seiferter or pseudo-seiferter.

Let V = S3 −N (c) be the solid torus exterior of c which contains the
knot K, and let V (K; r) = K(r)−N (c). Use the preferred meridian-
longitude slopes µ and λ for ∂N(c) to parametrize slopes in both ∂V and
∂V (K; r). Then observe that Kn(rn) is the result of filling V (K; r) along
the slope µ− nλ, i.e. Kn(rn) = V (K; r) ∪− 1

n
N(c).

Scharlemann’s [62] strengthening of Gabai’s work on surgeries on knots
in solid tori [18] shows that either

(1) V (K; r) is a solid torus (and so either K is a 0–bridge braid in V or
K is a 1–bridge braid in V , see also [5]);

(2) V (K; r) ∼= W#L(p, q), K is a (p, q)–cable knot in V , p ≥ 2, r is the
cabling slope of K, and W is some 3–manifold with ∂W = ∂V ; or

(3) V (K; r) is irreducible and ∂–irreducible.
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Since Kn(rn) = V (K; r) ∪− 1

n
N(c) is a Seifert fibered space for more

than nine integers n, V (K; r) is not hyperbolic [41, Theorem 1.2], cf. [1].1

Therefore V (K; r) is either reducible, ∂–reducible, Seifert fibered (with non-
degenerate Seifert fibration), or toroidal. If V (K; r) is Seifert fibered, then
c is a seiferter; so let us assume V (K; r) is not Seifert fibered. If V (K; r)
is ∂–reducible but not reducible, then it is a solid torus and hence Seifert
fibered. Thus we have two cases to consider: Either

Case I: V (K; r) is reducible (as in (2) above), or

Case II: V (K; r) is toroidal, irreducible, ∂–irreducible, and not Seifert fibered.

Case I: V (K; r) is reducible.
If V (K; r) is reducible, it has a lens space summand L(p, q) with p ≥ 2, K is
a cabled knot in V , and r is the cabling slope. Say K is a cable of a knot J
in V ; J is not a core of V because V (K; r) is not Seifert fibered. Hence Kn is
a cable of the knot Jn obtained by twisting J along c, and rn is the cabling
slope. Since the unknot c does not bound a disk that is either disjoint from
J or intersected by J just once, Jn becomes a trivial knot in S3 for at most
two integers n [18] (cf. [39, 44]). In the following we take n ∈ S so that Jn
is not a trivial knot in S3. So assuming Kn(rn) is Seifert fibered, either it is
irreducible and thus just the lens space L(p, q) or it is reducible and either
L(2, 1)#L(2, 1) with no degenerate fibers or a connected sum of two lens
spaces with one degenerate fiber (cf. [14, Proposition 2.8]). For homological
reasons, Kn(rn) cannot be L(2, 1)#L(2, 1).

Assume that Kn(rn) is a lens space for some n ∈ S. Then we appeal to
the classification of lens space surgeries on satellite knots [6, Theorem 1].
Since Jn is non-trivial in S3, then it is a torus knot. Therefore Kn is a cable
of this torus knot in S3 and rn is an integral slope intersecting the cabling
slope once. Yet since a non-trivial knot cannot be expressed as a non-trivial
cable of Jn in more than one way, rn cannot also be a cabling slope. This is
a contradiction.

1Indeed, Thurston’s Hyperbolic Dehn Surgery Theorem [4, 7, 58, 65, 66] implies
that if Kn(rn) is not hyperbolic for infinitely many n, then V (K; r) is not hyper-
bolic. However explicit bounds have been obtained on the number of non-hyperbolic
fillings a hyperbolic manifold may have. While [41] determines the optimal bound
for hyperbolic manifolds with one cusp, as suggested by [1] it is conceivable fewer
Seifert fibered fillings are needed for our particular situation. Our argument also
requires a bound for filling multiple cusps, in which case the distance between two
non-hyperbolic filling is less than or equal to 8; see [24, Table 2.1].
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Hence Kn(rn) is a connected sum of lens spaces for n ∈ S. Greene showed
that Kn must be the cable of a torus knot where the surgery is along the
cabling slope [30]. Since we have chosen n so that Jn is nontrivial, this implies
that Jn is a nontrivial torus knot in S3 for each n ∈ S. Let us determine the
position of J in V .

Claim 4.2. J is a 0–bridge braid in V . In particular, K is a cable of a
0–bridge braid in V .

Proof. If V −N (J) is Seifert fibered, then it is a cable space and we have
the desired conclusion. So we exclude the remaining possibilities of V −
N (J) being hyperbolic, reducible, or toroidal. If hyperbolic, following [28,
Corollary 1.2], there are at most four integers n such that Jn is a nontrivial
torus knot, a contradiction. If reducible, then J must be contained in a
ball in V ; thus c bounds a disk disjoint from K, a contradiction. Thus we
assume that V −N (J) is toroidal. Let T be a family of tori that gives
the torus decomposition of V −N (J) in the sense of Jaco-Shalen [35] and
Johannson [36] 2. See also [31]. Let X be the decomposing piece which
contains ∂V ; X 6= V −N (J). If X ∪− 1

n
N(c) is ∂-irreducible for some n ∈ S,

then a component T of ∂(X ∪− 1

n
N(c)) is an essential torus in the torus knot

space S3 −N (Jn) = (V −N (J)) ∪− 1

n
N(c), a contradiction. Thus X ∪− 1

n

N(c) is ∂-reducible for any n ∈ S. Hence [13, Theorem 2.0.1] shows that
X is a cable space and the distance between the slope − 1

n and that of the
fiber slope of X on ∂V is at most one. This then implies that the fiber slope
coincides with the longitudinal slope λ of c in ∂V . Let VX ⊂ V be the solid
torus bounded by T = ∂X − ∂V so that V = X ∪T VX and VX contains J
and K. Then since V is a solid torus, the meridian of VX must intersect a
regular fiber of X in T just once. Therefore the core of VX is isotopic in V
to λ. In particular, there is a meridional disk of V disjoint from VX . Hence
c bounds a disk disjoint from K, a contradiction. �

Thus Kn is a cable of a torus knot Jn and c is a basic seiferter for the
companion torus knot Jn. It follows from [14, Proposition 8.7] that c is a
seiferter for Kn(rn), hence for K(r).

2We say that a family of tori T gives a torus decomposition of an irreducible 3–
manifold M , if each member of T is an essential torus and each decomposing piece
(i.e. component) obtained by cutting M along all of these tori is Seifert fibered or
hyperbolic and no proper subfamily of T has this property.
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Case II: V (K; r) is toroidal, irreducible, ∂–irreducible, and not Seifert fibered.
Since V (K; r) is irreducible, except for at most two integers n, Kn(rn) is ir-
reducible and hence not a connected sum of lens spaces [26, Theorem 1.2].
Thus, if Kn(rn) is Seifert fibered, then it admits a non-degenerate Seifert
fibration and it is a Seifert fibered space in the usual sense; see [14, Propo-
sition 2.8 (2)(3)].

Claim 4.3. If there is an essential torus in V (K; r), then it is separating.

Proof. If not, then there exists a non-separating torus T ⊂ V (K; r) ⊂ Kn(rn)
for all integers n. Homological reasons then imply that rn = 0 for all n.

If T compresses in Kk(rk) for some integer k, then the compression pro-
duces a non-separating S2. Hence Kk(rk) = S1 × S2 and Kk is the unknot
[17]. By [39, Theorem 4.2]([44]), if there were another integer k′ for which
Kk′ were an unknot, then K ⊂ V must be homeomorphic to a (2, 1)–torus
knot in a solid torus; in particular V (K; r) would be a Seifert fibered space,
contrary to assumptions. Thus there is at most one integer k such that T
compresses. In particular, T is essential in Kk for all but at most one (which
is at least eight) of the integers k ∈ S.

When T is essential in Kk(rk) for some k ∈ S, then since Kk(rk) is a
Seifert fibered space over S2 or RP2 the torus T must be horizontal with re-
spect to any Seifert fibration of Kk(rk), e.g. [31, Proposition 1.11]. Therefore
there are at least 8 integers k for which Kk(rk) = V (K; r) ∪

− 1
k
N(c) must

be a torus bundle over S1 in which T is a fiber. Indeed, since T ⊂ V (K; r),
we must have

Kk(rk)−N (T ) = (V (K; r)−N (T )) ∪
− 1
k
N(c) ∼= T × [0, 1]

for these integers k.
Since the free homotopy class of a knot in the product T × [0, 1] is fixed,

the free homotopy class of its projection to T is also fixed. So, since T is a
torus, the homotopy class of the projection may be represented as a multiple
mµ of a primitive homology class µ, and any projection of the knot with
at most one crossing must lie in an annulus whose core curve represents
µ. Hence, if a knot does not have a projection with no crossings, then it
has at most two non-isotopic projections with a single crossing. Applying
[51], such a knot could have at most 2 non-trivial surgeries to a manifold
homeomorphic to T × [0, 1].

Therefore, by [51], for each of these integers k it must be that ck may be
isotoped in Kk(rk)−N (T ) into the boundary where the 0–slope on ck agrees
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with the framing by the boundary torus; see the argument in the proof of
Theorem 1.5. (The slope of the blackboard framing of a one crossing pro-
jection whose single crossing is nugatory is accounted for by the associated
slopes of its crossingless projection.) That is, ck is isotopic to a 0–framed
curve in the fiber T of the torus bundle Kk(rk). Hence Kn(rn) must be a
torus bundle for all integers n. Therefore for each integer n, the knot Kn is
a genus one fibered knot [17, Corollary 8.23], and so it is either a trefoil or
the figure eight knot [8, 21]. Since c is not a meridian of K and does not
bound a disk disjoint from K, this contradicts that the same knot can only
appear finitely many times in the twist family {Kn} [39, Theorem 3.2]. �

Let T be a family of essential tori in V (K; r) which gives a torus de-
composition of V (K; r). By assumption T is non-empty and, as shown in
Claim 4.3, consists of separating tori. Let X be the decomposing piece which
contains ∂V .

If X is hyperbolic, then referring to Table 2.1 in [24] in which the relevant
results from [23, 26, 27, 29, 53, 59, 62, 70, 71] among others are summarized,
we see that there are at most nine integers k such that X ∪− 1

k
N(c) is not

hyperbolic. Since |S| > 9 we have an integer n ∈ S for which X ∪− 1

n
N(c)

is also hyperbolic. But then T gives a torus decomposition for Kn(rn) in
which we have the hyperbolic piece X ∪− 1

n
N(c), contradicting that Kn(rn)

is Seifert fibered.
Hence X admits a Seifert fibration. Let T be a component of ∂X − ∂V .

We now divide into two cases depending on whether, in X ∪− 1

n
N(c),

(a) T is compressible for at most two integers n ∈ S, or

(b) T is compressible for more than two integers n ∈ S.

In the following we show that the first case does not occur and the second
case leads us to conclude that c is a pseudo-seiferter for (K, r).

Case II (a): Suppose that T is compressible in X ∪− 1

n
N(c) for at most

two integers n ∈ S. We can choose n ∈ S so that T is incompressible in
X ∪− 1

n
N(c).

Since X admits a Seifert fibration, any Seifert fibration of X extends
to one on X ∪− 1

n
N(c). Note that since T is incompressible in X ∪− 1

n
N(c),

the extended Seifert fibration is non-degenerate [14, Lemma 2.7] and unique
except when X ∪− 1

n
N(c) is S1 × S1 × [0, 1] or the twisted I–bundle over the

Klein bottle [34, VI.18]. As Lemma 4.4 below shows, except for at most two
integers n, these exceptional cases cannot occur. Hence we can take n ∈ S so
that the Seifert fibration of X ∪− 1

n
N(c) is the extension of a Seifert fibration
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of X, which has a unique Seifert fibration. Furthermore, since X ∪− 1

n
N(c) is

a (non-degenerate) Seifert fibered manifold with boundary, it is irreducible
and hence ∂–irreducible. Since Kn(rn) admits a Seifert fibration, the Seifert
fibration now on X must be compatible with that of the next decomposing
pieces along the tori ∂X − ∂V . Thus V (K; r) was already Seifert fibered,
contradicting our original assumption for Case II.

Lemma 4.4. There are at most two integers n ∈ S such that X̂n = X ∪− 1

n

N(c) is S1 × S1 × [0, 1] or a twisted I–bundle over the Klein bottle.

Proof. For any k ∈ Z let X̂k = X ∪− 1

k
N(c) and denote the core of N(c) in

X̂k as ck.
For n ∈ S, since Kn(rn) is Seifert fibered and T is an incompressible,

separating torus in Kn(rn), T must be a horizontal or vertical torus in any
Seifert fibration of Kn(rn), [31, Proposition 1.11]. If it is horizontal, then
T splits Kn(rn) into two twisted I–bundles over the Klein bottle, however
Claim 4.5 below shows this cannot occur. Thus T must be vertical, and the
Seifert fibration restricts to the components of its complement. Moreover,
at most one of these components has multiple Seifert fibrations (i.e. is a
twisted I–bundle over the Klein bottle).

Claim 4.5. A union of two twisted I–bundles over a Klein bottle cannot be
obtained by surgery on a knot in S3.

Proof. Let Mi (i = 1, 2) be a twisted I–bundle over the Klein bottle, and
let M be a union of M1 and M2 in which M1 ∩M2 = ∂M1 = ∂M2 = Σ.
Note that Σ is the ∂I–subbundle of Mi, and π1(Σ) is an index two normal
subgroup of π1(Mi) for i = 1, 2. Then by the van-Kampen theorem we have:

1→ π1(Σ)→ π1(M)→ Z2 ∗ Z2 → 1.

Therefore H1(M) has an epimorphism to Z2 ⊕ Z2. Thus M cannot be ob-
tained by surgery on a knot in S3. �

Case: Twisted I–bundle over the Klein bottle.
Assume that, for some n ∈ S, X̂n = X ∪− 1

n
N(c) is a twisted I–bundle

over the Klein bottle. Then X̂n has exactly two Seifert fibrations: a Seifert
fibration FDn

over the disk with two exceptional fibers of indices 2 and a
Seifert fibration FMn

over the Möbius band with no exceptional fibers [69,
Lemma 1.1]. Observe that in ∂X̂n a regular fiber of FDn

and a regular fiber
of FMn

intersect exactly once.



i
i

“1-Baker” — 2019/9/20 — 23:29 — page 767 — #25 i
i

i
i

i
i

Twist families of L-space knots 767

Since X is a Seifert fibered space, any Seifert fibration of X extends
across X̂n to one of these (non-degenerate) Seifert fibrations in which N(c)
is a fibered neighborhood of an exceptional or regular fiber. Accordingly X
is either

(1) a Seifert fibered space over the annulus with one exceptional fiber
of index 2 if cn is an exceptional fiber of FDn

(2) a Seifert fibered space over the annulus with two exceptional fibers
of indices 2 if cn is a regular fiber of FDn

, or

(3) a circle bundle over the once-punctured Möbius band if cn is an
exceptional fiber of FMn

.

In each of these three cases we assume that the regular fiber has slope x
y

on ∂V = ∂N(c) for some relatively prime integers x, y. Then the distance
between the slope x

y of the regular fiber and the slope − 1
k of the meridian of

N(c) in X̂k is |kx+ y| for any integer k. Therefore, if X̂k is homeomorphic
to a twisted I–bundle over the Klein bottle (and hence to X̂n) then the
following must occur: In the first case ck must be an exceptional fiber of
order 2 and this distance |kx+ y| must be 2; this is possible for at most two
values of k. In the second and third cases ck must be a regular fiber and this
distance |kx+ y| must be 1; this is possible for at most two values of k if
(x, y) 6= (0,±1), and for infinitely many integers k if (x, y) = (0,±1) in which
case the regular fiber is the longitude of c. Hence X̂k is homeomorphic to a
twisted I–bundle over the Klein bottle for at most two integers k (including
k = n) unless cn is a regular fiber of a Seifert fibration on X̂n where the
fibers meet ∂N(c) along the 0–slope. Therefore we continue now assuming
this latter exceptional situation.

Since Kn(rn) is Seifert fibered, one of the two Seifert fibrations on X̂n

is the restriction of a Seifert fibration on Kn(rn) and therefore compati-
ble with the restriction of the Seifert fibration on the complementary piece
Y = Kn(rn)− X̂n = V (K; r)−X. As noted above, Y has a unique Seifert
fibration. If this restricted Seifert fibration on X̂n arises as the extension of
a Seifert fibration on X, then V (K; r) is Seifert fibered, contradicting as-
sumption. Hence on X̂n the “restricted” Seifert fibration from Kn(rn) and
the “extended” Seifert fibration from X must be different; one is the Seifert
fibration FDn

over the disk and the other is the Seifert fibration FMn
over

the Möbius band.
Let us first assume that X has a Seifert fibration over the annulus so

that the extended Seifert fibration of X̂n is FDn
and the restricted Seifert
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fibration is FMn
. Hence a regular fiber tMn

of FMn
∩ T is a fiber of the

Seifert fibration on Y . By assumption, cn is a regular fiber of FDn
and there

is a vertical annulus A in the restriction to X joining ∂N(c) to T = ∂X̂n,
meeting ∂N(c) along the 0–slope. Thus (− 1

n′ )–surgery on cn (in terms of

the slopes on ∂N(c)) in X̂n is realized by an annulus twist along A in X.
Since the fiber tMn

of FMn
∩ T intersects tDn

once, a regular fiber tMn′ of
FMn′ ∩ T intersects tMn

minimally |n− n′| times. Also observe that tDn
is

still a regular fiber of FDn′ ∩ T , intersecting tMn
once. Hence if n′ 6= n then

no fibration of X̂n′ is compatible with the Seifert fibration on Y . Thus n is
the only element of S.

When X has a Seifert fibration over the once-punctured Möbius band so
that the extended Seifert fibration of X̂n is FMn

and the restricted Seifert
fibration is FDn

, we apply the same argument to obtain the same conclusion.

Case: I–bundle over the torus.
Suppose next that X̂n = X ∪− 1

n
N(c) is S1 × S1 × [0, 1] for some n ∈ S.

This can happen only when ∂X − ∂V consists of two components T0 and
T1; each Ti bounds a ∂–irreducible 3–manifold Yi in V (K; r). Identify Ti
with S1 × S1 × {i} in X̂n for i = 0, 1. As discussed above, since Kn(rn) is
a Seifert fibered space, both Y0 and Y1 are Seifert fibered spaces and each
either has a unique Seifert fibration or is a twisted I–bundle over the Klein
bottle and therefore has exactly two Seifert fibrations. However, since X̂n is
a product torus, at most one is a twisted I–bundle over the Klein bottle by
Claim 4.5.

Assume that X̂nj
∼= S1 × S1 × [0, 1] for three integers nj with j = 0, 1, 2.

Then cn0
⊂ X̂n0

admits non-trivial surgeries to X̂n1
and X̂n2

. Since X is
Seifert fibered and X̂n0

∼= S1 × S1 × [0, 1], X Seifert fibers only as circle
bundles over the annulus, cn0

must be a regular fiber in one of these fibra-
tions. Hence cn0

is the core of a vertical annulus in X̂n0
joining T0 and T1,

and X is a 2–fold composing space, i.e. [disk with two holes]× S1. This
annulus restricts to two vertical annuli in X; for each i = 0, 1, let Ai be the
one connecting ∂N(c) and Ti. Then (− 1

nj
)–surgery on cn0

(in terms of the

slopes on ∂N(c)) corresponds to some annulus twist along A1.
Since Kn0

(rn0
) = Y0 ∪ X̂n0

∪ Y1 is Seifert fibered, as discussed above,
for any Seifert fibration Fn0

of Kn0
(rn0

), the tori T0 and T1 are vertical
(and parallel), and Fn0

restricts to Seifert fibrations on the components
X̂n0

, Y0, and Y1. By Claim 4.5 at least one of Y0 and Y1, say Y0, is not a
twisted I–bundle over the Klein bottle. So we may assume Y0 has a unique
Seifert fibration, F0 that is the restriction of Fn0

; and Y1 has at most two
Seifert fibrations, F1 that is the restriction of Fn0

and F ′1 if the second
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Seifert fibration exists. Note that F1 and F ′1 do not match on ∂Y1. Let
A be a vertical annulus in the restriction of the fibration Fn0

to X̂n0
=

S1 × S1 × [0, 1] such that A ∩ T0 is a regular fiber of F0 on ∂Y0 and A ∩ T1
a regular fiber of F1 on ∂Y1.

Let us prove that if Knj
(rnj

) = Y0 ∪ X̂nj
∪ Y1 = Y0 ∪ (S1 × S1 × [0, 1]) ∪

Y1 is Seifert fibered for both j = 1, 2, then A1 ∩ T1 is isotopic to A ∩ T1,
which is a fiber of F1. Assume for a contradiction that A1 ∩ T1 is not isotopic
to A ∩ T1. Then (− 1

nj
)–surgery on c∗0 is realized by an annulus twist φnj

along A1, hence φnj
(A ∩ T1) 6= A ∩ T1. Recall that in Knj

(rnj
), X̂nj

and Y1
are glued so that φnj

(A ∩ T1) is identified with the regular fiber of F1 on
∂Y1. Hence the Seifert fibration of X ∪− 1

nj

N(c) = S1 × S1 × [0, 1] (which

coincides with F0 on Y0) is not compatible with the Seifert fibration F1 of
Y1. Thus n0 is the unique integer such that Y0 ∪ X̂n0

∪ Y1 = Y0 ∪ (S1 × S1 ×
[0, 1]) ∪ Y1 is Seifert fibered for the Seifert fibration F1 of Y1.

If Y1 has the second Seifert fibration F ′1, Y0 ∪ X̂n1
∪ Y1 = Y0 ∪ (S1 ×

S1 × [0, 1]) ∪ Y1 may be Seifert fibered for the Seifert fibration F ′1 of Y1, but
the above argument shows that n1 is the unique such integer. Thus if Y0 ∪
X̂nj
∪ Y1 = Y0 ∪ (S1 × S1 × [0, 1]) ∪ Y1 is Seifert fibered for both j = 1, 2,

then A1 ∩ T1 is isotopic to A ∩ T1. This then implies that c∗0 is isotopic to the
regular fiber A1 ∩ T1 and V (K; r) is Seifert fibered contrary to assumption.
Hence there are at most two integers n such that X̂n

∼= S1 × S1 × [0, 1]. �

Case II (b): Assume that T is compressible for more than two integers
n ∈ S. Then X is a cable space and the distance between the slope − 1

n and
that of the fiber slope of X is less than or equal to one [13, Theorem 2.0.1].
Since we have at least three such integers n, the fiber slope of the cable
space X coincides with the preferred longitude of c. Hence X ∪− 1

k
N(c) is a

solid torus for any integer k. Let X ′ be the decomposing piece next to X;
we will show that V (K; r) = X ′ ∪X and X ′ is Seifert fibered.

First assume for a contradiction that we have yet another decomposing
piece X ′′( 6= X,X ′) in V (K; r). Again, since X ∪− 1

n
N(c) is a solid torus

(with distinct meridional slopes for each integer n) and gives a Dehn filling of
X ′ for each n ∈ S, X ′ cannot be hyperbolic (following the argument used for
X). Hence we may assume X ′ admits a Seifert fibration. If some component
of ∂X ′ − T is compressible in V (K; r) ∪− 1

n
N(c) for more than two integers

n ∈ S, then [13, Theorem 2.0.1] shows that X ∪X ′ is a cable space, which is
impossible because a cable space is atoroidal. So we may assume that some
component T ′ of ∂X ′ − T is incompressible in X ′ ∪T (X ∪− 1

n
N(c)) for all

but at most two integers n ∈ S. Applying the argument in (i) again implies
that V (K; r) is Seifert fibered giving us a contradiction.
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So V (K; r) consists of two decomposing pieces X and X ′, where X
is a cable space. It remains to see that X ′ is a Seifert fibered space. If
X ′ is not Seifert fibered, then since it is a decomposing piece of V (K; r),
it is hyperbolic. Note that Kn(rn) = X ′ ∪T (X ∪− 1

n
N(c)), where X ∪− 1

n

N(c) = S1 ×D2 for n ∈ S. Thus Kn(rn) = X ′ ∪γn (S1 ×D2) for some slope
γn on ∂X ′ which varies depending on n. Then [41, Theorem 1.2] shows
that Kn(rn) is hyperbolic for some integer n ∈ S, a contradiction. Hence
V (K; r) = X ∪X ′, where X is a cable space (with ∂X ⊃ ∂V ) and X ′ is a
Seifert fibered space.

Recalling that the fiber slope of X is the preferred longitude of c, X ∪− 1

n

N(c) = S1 ×D2 in which c∗ is a cable of a core t of this solid torus. In
particular, X ∪− 1

0
N(c) = S1 ×D2 in which c is a cable of a core t of this

solid torus. Since K(r)− int(X ∪− 1

0
N(c))(= X ′) is Seifert fibered, c is a

pseudo-seiferter for (K, r). �

4.2. Pseudo-seiferters do not have linking number 1

It is known that, for each integer ` ≥ 0, there is a Seifert surgery (K, r) which
has a seiferter with |`k(K, c)| = ` [14]. On the other hand, so far we have no
example of a Seifert surgery with a pseudo-seiferter. In this subsection, we
will prove that there is no Seifert surgery (K, r) which has a pseudo-seiferter
c with |`k(K, c)| = 1.

Proposition 4.6. Assume c is a pseudo-seiferter for a Seifert surgery
(K, r). Then |`k(K, c)| 6= 1.

To prove this, we first establish conventions and two lemmas.
Recall that if c is a pseudo-seiferter for the Seifert surgery (K, r), then

V (K; r) = W ∪X where W is a cable space (a Seifert fibered space over the
annulus with one exceptional fiber) and X is a Seifert fibered space such
that

• ∂W = ∂V ∪ ∂X,

• the exceptional fiber ε of W has index p ≥ 2.

• λ, the preferred longitude of c, is the slope of a regular fiber of W
in ∂V (and hence is the cabling slope),

• ε may be oriented so that λ = pε in H1(W ), and
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• the manifolds Wn = W ∪
− 1
n
N(c) are all solid tori with meridians

µn in ∂X.

In particular, we may regard c as a torus knot with closed regular neigh-
borhood N(c) in the solid torus W0. Then we view ∂V as the boundary of
the solid torus N(c) with standard meridian-longitude basis µ, λ and ∂X as
the boundary of the solid torus W0 with standard meridian-longitude basis
µ0, λ0.

Lemma 4.7. Let γ be a regular fiber of W in ∂X, oriented to be homologous
to λ. Then µ0 · γ = p and µn = µ0 − npγ.

Proof. Due to our choices of orientation, pµ = µ0 in H1(W ). Then because
µ · λ = 1, we obtain that µ0 · γ = p. Since µ− nλ in ∂V bounds a disk in
Wn, we have µ0 − npγ = pµ− npλ = p(µ− nλ) = 0 in H1(Wn). Since W is
a cable space with exceptional fiber of index p, the regular fiber γ satisfies
γ = qµ0 + pλ0 in H1(∂X) for some integer q coprime to p. Therefore µ0 −
npγ can be written as µ0 − np(qµ0 + pλ0) = (1− npq)µ0 − pλ0. Since 1−
npq and p are relatively prime, this element is primitive in homology and
represents a single essential curve. Thus the essential curve µ0 − npγ in ∂X
must be the meridian µn of Wn. �

Lemma 4.8. If (K, r) is a Seifert surgery with a pseudo-seiferter c such
that |`k(K, c)| = 1, then r is an integer.

Proof. Assume that c is a pseudo-seiferter for (K, r). Let W0 be a fibered
solid tubular neighborhood of a fiber t in a (possibly degenerate) Seifert
fibration F which contains c in its interior as a cable of t: W0 −N (c) is a
cable space W in which t is an exceptional fiber of index greater than one.
By definition the fiber slope of W coincides with the longitudinal slope λ on
∂N(c). (Hence W0(c;− 1

n) = W ∪− 1

n
N(c) is a solid torus for all integers n.)

It should be noted that the Seifert fibration of W (in which the slope of the
regular fiber agrees with the cabling slope γ) does not arise from the Seifert
fibration F|W0

, because c is not a fiber in F . In particular, the slope of the
fibration F|∂W0

and the cabling slope γ of W in ∂W0 are distinct.

First suppose that F is a degenerate Seifert fibration. Proposition 2.8
in [14] classifies degenerate Seifert fibrations of K(r). (Proposition 2.8 in
[14] treats the case when r is an integer, but its proof works even when
r is rational.) Then by [14, Proposition 2.8 (1)] it contains at most two
degenerate fibers, and if there are two degenerate fibers, then K(r) ∼= S1 ×
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S2 and r = 0. Let us assume that F has exactly one degenerate fiber t. Then
[14, Proposition 2.8 (1)(ii)] shows that K(r)−N (t) is a Seifert fibered space
over the disk or the Möbius band, and in the latter case K is a trivial knot
and r = 0. So we may assume that K(r)−N (t) is a Seifert fibered space
over the disk. We divide into two cases depending upon if the base orbifold
is a disk with at least two cone points or a disk with at most one cone
point. In the former case, K(r) is a connected sum of at least two lens
spaces; in fact, [14, Proposition 2.8 (3)] shows that it has two lens space
summands. It then follows from [25] that r ∈ Z. Suppose that we have the
latter case. Then obviously K(r) is a lens space and the degenerate Seifert
fibration F has the following form. Let us take a solid torus H1 which has
a a non-degenerate Seifert fibration, and attach a solid torus H2 to H1 so
that the meridian of H2 is identified with a regular fiber of H1. Then the
result is the lens space K(r). Extend the Seifert fibration of H1 to H2 along
meridian disks except the core of H2 to obtain F . Then the core of H2 is a
degenerate fiber in F . First let us assume that c is a cable of an exceptional
fiber or a cable of a degenerate fiber, namely that c is a cable of the core
of H1 or of H2 respectively. Then c is isotopic into the Heegaard torus
∂H1 = ∂H2, and we can change the Seifert fibrations of H1 and H2 so that
c is a fiber. Hence c is a seiferter for (K, r) and not a pseudo-seiferter, a
contradiction. Thus we may assume that c is a cable of a regular fiber in
the non-degenerate fibered solid torus H1. Then we may write H1 −N (c) =
W ∪X where W is a cable space with an exceptional fiber of index p ≥ 2
and ∂N(c) ⊂ ∂W , and X is a cable space with an exceptional fiber of index
r ≥ 2 and ∂H1 ⊂ ∂X. Let γW be a regular fiber of W in T = ∂W ∩ ∂X, and
let γX be a regular fiber of X in T . Note that γW and γX represent distinct
slopes on T , i.e. γW · γX 6= 0. After (− 1

n)–surgery on c, which corresponds
to an n–twist along c, Wn = W ∪− 1

n
N(c) is a solid torus with a meridian

µn. By Lemma 4.7 µn = µ0 − npγW , and µn · γX = (µ0 − npγW ) · γX = µ0 ·
γX − npγW · γX . Since p ≥ 2, |µ0 · γX | = 1 and γW · γX 6= 0, |µn · γX | ≥ 2 if
|n| ≥ 2. Hence H1(c;− 1

n) = Wn ∪X is a Seifert fibered space over the disk
with two exceptional fibers if |n| ≥ 2 (cf. [22]). Let us choose n with |n| ≥ 2.
Then since the Seifert fibration of H1(c;− 1

n) = Wn ∪X is an extension of
the Seifert fibration of X, a regular fiber on ∂H1(c;− 1

n) is a meridian of the
solid torus H2 in Kn(rn) = H1(c;− 1

n) ∪H2, and hence Kn(rn) = Kn(r0 + n)
is a connected sum of two lens spaces. This implies that rn = r0 + n is an
integer [25], and hence r = r0 is an integer as claimed.

In the following we now assume that K(r) has a non-degenerate Seifert
fibration F in which c is a cable of some fiber. Performing λ–surgery on
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c, S3 becomes S1 × S2 since c is an unknot, and K(r) becomes a manifold
with a lens space summand since c is a cabled knot in K(r) with cabling
slope λ. We claim that this resulting manifold is actually reducible and not
just this lens space.

First recall that, since c is a pseudo-seiferter, V (K; r) = X ∪W where
X is a Seifert fibered space and W is the above cable space, and K(r) =
X ∪W0. Furthermore W0(c;λ) ∼= S1 ×D2#L(p, q) where p > 1 is the index
of the exceptional fiber in the cable space W and q is some integer coprime
to p, and the meridian of the S1 ×D2 summand in ∂W0(c;λ) coincides with
the cabling slope γ of W in ∂W0 = ∂X. Therefore, λ–surgery on c in K(r)
is the manifold

(K ∪ c)(r, λ) = X ∪W0(c;λ) = X ∪ (S1 ×D2#L(p, q)) = X(γ)#L(p, q).

Now assume that this manifold (K ∪ c)(r, λ) is irreducible, which implies
that X(γ) ∼= S3. Since X is a Seifert fibered space, X must be the exterior
of some torus knot, say Ta,b, and γ is its meridian µX (still oriented to be ho-
mologous to λ in W ). Let λX be its preferred longitude. Then since Kn(rn) =
(K ∪ c)(r,− 1

n) = X ∪W0(c;− 1
n) = X ∪Wn and Wn = W0(c;− 1

n) is a solid
torus for every integer n, Kn(rn) = Ta,b(sn) where sn is the slope of the
meridian µn of the solid torus Wn with respect to the basis µX , λX in ∂X =
∂(S3 −N (Ta,b)). If µ0 = CµX +DλX , then since µX = γ and µ0 · γ = p, we
must have D = −p and so s0 = −C

p . Since µn = µ0 − npγ by Lemma 4.7,

then µn = (C − np)µX + (−p)λX has slope sn = −C+pn
p = s0 + n. There-

fore, since rn = r0 + nω2 = r0 + n where ω = |`k(K, c)| = 1, Kn(r0 + n) =
Ta,b(s0 + n) for all integers n. Then, writing r0 = A

B for some coprime in-
tegers A,B with B > 0, because |H1(Kn(r0 + n))| = |H1(Ta,b(s0 + n))|, we
have |A+Bn| = | − C + pn| for all integers n. This implies that r0 = A

B =
−C
p = s0, and more generally rn = sn for all integers n. Then by Ni-Zhang

[52, Theorem 1.3] ([45]), Kn = Ta,b for n sufficiently positive or sufficiently
negative. Hence it follows from [39] that c bounds a disk which intersects
K at most once, contradicting the assumption on the twisting circle c. This
establishes that (K ∪ c)(r, λ) is reducible.

Recall that after λ–surgery on c, S3 becomes S1 × S2 which contains
K. Let us observe that S1 × S2 −K is irreducible. If there is an essential
2–sphere S in S1 × S2 −K, then by the primeness of S1 × S2, it either is
non-separating or bounds a ball in S1 × S2 containing K. If it were non-
separating, then it would be non-separating in S1 × S2 as well, and since
|`k(K, c)| = 1, K generates H1(S

1 × S2) and this must intersect S since the
algebraic intersection number between K and S is one. This contradicts S
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being a 2–sphere in the exterior of K. If S were to bound a ball in S1 × S2

that contains K, then we would have `k(K, c) = 0; but this is not the case.
Thus viewing K as a knot in S1 × S2 = V ∪λ N(c) with irreducible exte-

rior, r–surgery on K produces a reducible manifold V (K; r) ∪λ N(c). Since
S1 × S2 is reducible as well, [26, Theorem 1.2] implies that r ∈ Z. �

Let us turn to a proof of Proposition 4.6.

Proof of Proposition 4.6. Assume for a contradiction that a Seifert surgery
(K, r) has a pseudo-seiferter c with |`k(K, c)| = 1. Then following Lemma 4.8
the surgery slope r is an integer m = m0.

Recall that, with r = m, V (K;m) = W ∪X where W is a cable space of
order p and X is a Seifert fibered space (possibly with a degenerate Seifert
fibration). As in the proof of Lemma 4.8, Kn(mn) = X(µn) where µn is the
meridian of the solid torus Wn = W ∪

− 1
n
N(c). The curve γ is a regular fiber

of W in ∂X, and as in Lemma 4.7, µn = µ0 − npγ in H1(∂X).
Let C be the core of the solid torus W0 in K(m) = K0(m0) = X(µ0).

Isotope C so that C ∩N(K∗) = ∅, where K∗ is the surgery dual of K. Then
C ⊂ K(m)−N (K∗) = S3 −N (K). Now we can view C as a knot in S3

disjoint from K that becomes isotopic to the core of the solid torus W0 after
m–surgery on K. (Furthermore, we may view c as a cable of C in X(µ0).)
Then Kn(mn) = X(µn) may be presented as Dehn surgery on the link K ∪ C
where m–surgery is done as before on K and µn–surgery is done on C.

Let us now use this to obtain an explicit computation of homology.
Let λ0 be the preferred longitude of C in S3. Then γ, a regular fiber of
W in T = ∂X ⊂ ∂W , may be expressed as the curve pλ0 + qµ0 for some
integer q coprime to p, since µ0 · γ = p by Lemma 4.7. Hence µn = µ0 −
np(pλ0 + qµ0) = −np2λ0 + (1− npq)µ0. Thus µn–surgery is npq−1

np2 –surgery
in standard coordinates.

To simplify exposition, we apply a “slam-dunk” move [20, p.163]. Let C ′

be a meridian of C. Then µn–surgery on C can be viewed as 0–surgery on
C and −np2

npq−1–surgery on C ′.
Now we may obtain the presentation matrix Mn given below for the

homology of Kn(mn) = X(µn) from its surgery presentation on the link
K ∪ C ∪ C ′:

Mn =

 ∗ ∗ 0
∗ 0 1
0 npq − 1 −np2

 .
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Since Kn(mn) = X(µn) is a rational homology sphere obtained by inte-
gral mn–surgery on the knot Kn in S3,

|mn| = |H1(X(µn))| = |det(Mn)|
= |A(−np2)−B(npq − 1)| = |np(Ap+Bq)−B|

for some integers A and B. Thus, because mn = m0 + nω2 where ω =
`k(K, c), we have that for a sufficiently large integer n,

`k(K, c)2 = |H1(X(µn+1))| − |H1(X(µn))|
= |(n+ 1)p(Ap+Bq)−B| − |np(Ap+Bq)−B|
= |p(Ap+Bq)|.

This is impossible, because p ≥ 2 and |`k(K, c)| = 1. �

5. L-space surgeries in twist families with linking
number one

Our goal in this section is to prove:

Theorem 1.11. Let {(Kn, rn)} be a twist family of surgeries obtained by
twisting (K, r) along an unknot c with |`k(K, c)| = 1; c is not a meridian
of K. Assume that (Kn, rn) is a Seifert surgery for at least ten integers n.
Then there are only finitely many L-space surgeries in the family.

Proof of Theorem 1.11. Suppose for a contradiction that {(Kn, rn)} contains
infinitely many L-space surgeries. Since {(Kn, rn)} contains more than nine
Seifert surgeries, then by Theorem 1.12 (K, r) = (K0, r0) is a Seifert surgery
and c is a seiferter or a pseudo-seiferter for (K, r). Since |`k(K, c)| = 1, by
Proposition 4.6 c is not a pseudo-seiferter, and thus c is a seiferter for (K, r).

Lemma 5.1. Let (K, r) be a Seifert surgery which has a seiferter c with
|`k(K, c)| = 1. Then r is an integer.

Proof. Let F be the Seifert fibration in which c is a (possibly degenerate)
fiber. In the following, we always consider this Seifert fibration for K(r).

First suppose that F is a non-degenerate Seifert fibration. Then K(r)−
N (c) = V (K, r) is a Seifert fibered space with non-degenerate Seifert fibra-
tion, and [46] shows that either r is an integer or K is a 0–bridge braid or
a cable of a 0–bridge braid in V . In the latter cases, |`k(K, c)| ≥ 2, contra-
dicting the assumption. Thus r is an integer.
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Now let us assume that F is a degenerate Seifert fibration. Proposi-
tion 2.8 in [14] classifies such Seifert fibrations of K(r) for r ∈ Z. Since the
argument in its proof does not depend on the assumption that r ∈ Z, we
are able to conclude that K(r) is a lens space or a connected sum of lens
spaces. In the former either r ∈ Z or K is a torus knot [13], and in the latter
r ∈ Z [25]. We proceed to exclude the possibility that K is a torus knot and
K(r) is a lens space with a degenerate Seifert fibration under the assumption
|`k(K, c)| = 1. Proposition 2.8 in [14] further shows that if the Seifert fibra-
tion of K(r) has more than one degenerate fiber, then K is the trivial knot
and r = 0. Thus we may assume the Seifert fibration has just one degener-
ate fiber and K(r) = H1 ∪H2, where H1 is a non-degenerate Seifert fibered
solid torus such that its core is a fiber and H2 is a degenerate fibered solid
torus such that its core is a degenerate fiber. If c is either the core of H1 or
the degenerate fiber that is the core of H2, then K(r)−N (c) = V (K, r) is a
solid torus, where V = S3 −N (c). Then following [18] K is a 0– or 1–bridge
braid in V , and |`k(K, c)| ≥ 2, a contradiction. Hence c is a regular fiber in
the degenerate Seifert fibration of the lens space K(r) and not isotopic to
the core of H1. By an isotopy we may assume c is a regular fiber in H1. Note
that the core of H1 is an exceptional fiber of index ≥ 2, for otherwise c would
be isotopic to the core of H1. Then K(r)−N (c) = V (K, r) is a connected
sum of S1 ×D2 and a nontrivial lens space. It follows from [62] that K is
cabled in V , and hence |`k(K, c)| cannot be one. �

Due to Lemma 5.1, we now take r to be an integer m in what follows.
Since c is a seiferter, (Kn,mn) is a Seifert surgery for all n by the In-

heritance Property [14, Proposition 2.6]. Recall that m = m0 and mn =
m0 + n`k(K, c)2 = m0 + n.

Lemma 5.2. Let c be a seiferter for a Seifert surgery (K,m) with |`k(K, c)|
= 1. Then either K is a torus knot and c is a meridian of K, or c is a
hyperbolic seiferter, i.e. S3 −K ∪ c is hyperbolic.

Proof. We apply the classification theorems of seiferters for Seifert surgeries,
Theorems 3.2 and 3.19 in [14]. Suppose for a contradiction that we have a
seiferter c for (K,m) with |`k(K, c)| = 1 which is neither a meridian of K
nor a hyperbolic seiferter for (K,m).

Let us take a solid torus V = S3 −N (c) (with the core CV ), which con-
tains K in its interior. Among descriptions of K ∪ c in Theorems 3.2 and
3.19 in [14], we divide them into three cases:
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(1) K ∪ c is not of types 3 or 4 in [14, Theorem 3.2]. Since we are
excluding the case where c is a hyperbolic seiferter, K ∪ c is of type
1. Since c is not a meridian of K, it is an exceptional fiber in a
Seifert fibration for K = Tp,q, i.e. K is a 0–bridge braid in V . Hence
|`k(K, c)| ≥ 2, a contradiction.

(2) K ∪ c is of type 3 in [14, Theorem 3.2]. Then there is a knot-
ted solid torus V ′ disjoint from c which contains K in its interior
and whose core CV ′ is a 0–bridge braid in V = S3 −N (c); CV ′ is a
nontrivial torus knot in S3. Thus |`k(CV ′ , c)| ≥ 2, and |`k(K, c)| =
|x||`k(CV ′ , c)| cannot be 1, where [K] = x[CV ′ ] ∈ H1(V

′;Z).

(3) K ∪ c is of type 4 in [14, Theorem 3.2]. In this case we have another
seiferter c′ for (K,m) such that c is a nontrivial cable of c′ in S3

and K lies in the interior of V ′ = S3 −N (c′). Since c is unknotted in
S3, c wraps p (≥ 2) times in the longitudinal direction, and wraps
exactly once in the meridional direction of c′. Then |`k(K, c)| =
p|`k(K, c′)| cannot be 1. �

Remark 5.3. There are infinitely many Seifert surgeries (K,m) each of
which has a hyperbolic seiferter c with |`k(K, c)| = 1; see [14, Theorem 6.21].

Since S3 −N (Kn) is the result of (− 1
n)–Dehn filling of S3 −N (K ∪ c)

along c, Lemma 5.2, together with Thurston’s Hyperbolic Dehn Surgery
Theorem [4, 7, 58, 65, 66], shows that Kn is a hyperbolic knot for all but
finitely many integers n. Thus there is a constant N > 0 such that if |n| > N ,
then Kn is a hyperbolic knot in S3 and (Kn,m0 + n) is a Seifert surgery.
Hence Kn(m0 + n) is a Seifert fibered space or a connected sum of lens
spaces, in particular, it is not a hyperbolic 3–manifold. Now let us recall the
following result in [52] which follows from the works of Agol [1], Lackenby
[40], and Cao-Meyerhoff [9].

Lemma 5.4 ([52]). Suppose that Kn is a hyperbolic knot in S3 and
Kn(m0 + n) is not a hyperbolic 3–manifold, then

|m0 + n| ≤ 10.752(2g(Kn)− 1).

The above inequality shows that when |n| tends to∞, the genus g(Kn) of
Kn goes to ∞. Then it follows from Corollary 1.9 that {(Kn,mn)} contains
only finitely many L-space surgeries. Thus the proof of Theorem 1.11 is
completed. �
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6. Braids and L-space knots

In this section we investigate Conjectures 1.2 and 1.3 from a viewpoint of
braids. We have observed that for many of the twist families containing
infinitely many L-space knots that are studied in [47], the twisting circle is
not only a seiferter but also a braid axis. Furthermore, L-space knots are
often isotopic to closures of positive or negative braids.

6.1. Genera of positive braid closures

Well known to the experts, we provide a proof of the following.

Proposition 6.1. There are only finitely many knots of each genus that
are closures of positive braids.

Proof. Observe that there are exactly (n− 1)` positive braids in Bn with
word length `. Also, if a positive braid β ∈ Bn has word length `, then the
oriented closed braid β̂ is a fibered link which bounds a Seifert surface (a
fiber surface) with Euler characteristic χ(β̂) = n− ` [64, Theorem 2]. Fur-
thermore, if ` < 2(n− 1) then either β̂ is a split link of at least two compo-
nents or there is a positive braid β′ ∈ Bn−1 such that β̂ = β̂′. This is because
the bound ` < 2(n− 1) implies that some generator of Bn either does not
appear in β at all or only appears once. In the former, the closure necessarily
is a split link; in the latter, β admits a Markov type of destabilization to β′.
See Figure 6.1 for an illustration of these two cases.

A B

CD

A

D

C

B

A B BA

Figure 6.1: If a generator of Bn does not appear in the braid word β, the
link β̂ is split. If a generator appears just once in the positive braid word β,
there is positive braid word β′ of smaller braid index such that β̂′ = β̂.

Now assume K is a knot that is the closure of a positive braid. Let n
be the smallest index such that K = β̂ for a positive braid β ∈ Bn. Since
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a fibered knot has a unique minimal genus Seifert surface [15, Lemma 5.1]

([67]), g(K) = 1−χ(β̂)
2 = 1−n+`

2 , and the word length of β is ` = 2g(K) + n−
1 ≥ 2(n− 1). Hence 2g(K) + 1 ≥ n. Thus the positive braid index of a knot
is bounded above by its genus. Therefore for each braid index there are only
finitely many positive braids whose closure is a knot of a given genus. �

As a direct consequence of Proposition 6.1 we have:

Corollary 6.2. The class of L-space knots which are closures of positive
and negative braids satisfy Conjecture 1.2.

Note that the classes of closures of positive braids and L-space knots are
distinct. For example, KnotInfo shows that the hyperbolic knot 10139 is the
closure of a positive braid [10], but its Alexander polynomial indicates that
it cannot be an L-space knot [56]. On the other hand, the (3, 2)–cable of T3,2
is an L-space knot, but it is not a closure of any positive or negative braid,
e.g. [33, 6.3].

Now let us assume that the twisting circle c is a braid axis for K, then Kn

is the closure of a positive braid for n� 0 and of a negative braid for n� 0.
Hence, even without Theorem 2.1, Proposition 6.1 implies Conjecture 1.3 for
the twist family {Kn}.

However, a twisting circle c which is not a braid axis for K may provide
a twist family {Kn} containing infinitely many L-space knots. For instance,
[47, Example 1.2] shows the pretzel knots Kn = P (−2, 3, 2n+ 1) with the
7 + 4n surgery is a twist family with |`k(K, c)| = 2 producing Seifert fibered
L-spaces for n ≥ 0. Since K is in general not a torus knot while all 2–braids
are, c is not a braid axis. Nevertheless, note that these knots are positive 3–
braids when n ≥ 0. In the next subsection we provide further such examples.

6.2. L-space knots obtained by twisting torus knots

Recall that torus knots Tp,q are fundamental examples of L-space knots. In
the standardly embedded torus T with preferred oriented meridian m and
longitude l, the torus knot Tp,q is the unoriented curve in T homologous to
±(q[l] + p[m]) ∈ H1(T ) when given an orientation. Since Tp,q is unoriented,
we may choose that |p| ≥ q ≥ 1; |p| = q if and only if (p, q) = (±1, 1). Then
Tp,q is a positive braid and a positive L-space knot whenever p ≥ 1 and a
negative braid and a negative L-space knot whenever p ≤ −1. (If ever q = 1,
then the knot is actually the unknot, and we regard the unknot to be both a
positive and a negative braid. Recall that only the unknot is a positive and
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a negative L-space knot.) We say Tp,q is a positive torus knot in the former

situation and a negative torus knot in the latter. Since g(Tp,q) = (|p|−1)(q−1)
2 ,

for any given integer N , there are only finitely many Tp,q with g(Tp,q) ≤ N .
In the following we show that every torus knot K = Tp,q has a seiferter

c that yields a twist family of Seifert surgeries (Kn, rn) on hyperbolic knots
Kn for all but finitely many n [14], and this twist family contains infinitely
many L-space surgeries [47]. Notably if p ≤ −3 and 2q > |p| > q, then c is
not a braid axis. However, these L-space knots can be re-arranged as closures
of positive or negative braids.

Depicted on the left and right side of Figure 6.2 are unknots c+ and c−
disjoint from a once-punctured T , though the right side shows −l. Given
the torus knot Tp,q in the punctured torus T , we define c± to be the corre-
sponding knot in the complement of Tp,q. It follows from [14] (where they
are called c±p,q) that these are seiferters for the torus knots Tp,q with the
pq surgery. The central two images of Figure 6.2 show that Tp,q ∪ c+ is the
mirror of T−p,q ∪ c−; the mirroring is through a vertical plane containing the
curve m. Hence, by mirroring as needed, we may restrict attention to the
seiferter c+.

Proposition 6.3.

• If p ≥ 1, or p ≤ −2 and |p| ≥ 2q, then c+ is a braid axis for Tp,q.

• If p ≤ −3 and q < |p| < 2q, then c+ is not a braid axis for Tp,q.

Proof. The first assertion follows from Figures 6.4, 6.5 and 6.6 (the bottom-
left). If p ≤ −3 and q < |p| < 2q, then as shown in Figures 6.5 and 6.6 (the
bottom-right), c links Tp,q coherently, meaning that c bounds a disk that
Tp,q always intersect in the same direction, with |`k(Tp,q, c+)| = |p| − q < q.
By the assumption on p and q, we have |p| > q ≥ 2 and the braid index Tp,q
is known to be q [12, Proposition 10.5.2], and hence c+ cannot be a braid
axis for Tp,q. �

Define Tp,q,n to be the result of an n–twist of the torus knot Tp,q along the
seiferter c+. If q = 1, then Tp,1,n is a torus knot Tp+1, 1+(p+1)n = T1+(p+1)n, p+1

for any non-zero integer p, which is a positive or negative braid and an L-
space knot for all integers n.

Theorem 1.7 of [47] and its proof show that

• if p ≥ 1 then Tp,q,n is an L-space knot for all integers n, and

• if p ≤ −1 then Tp,q,n is an L-space knot for any integer n ≤ 1.
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Furthermore, in either case, |`k(Tp,q,n, c+)| = |p+ q| and the algebraic
linking equals the geometric linking, i.e. Tp,q,n intersects a disk bounded
by c+ in the same direction. See Figure 6.3. Thus Theorem 2.1 shows that
g(Tp,q,n)→∞ as |n| → ∞ for any p, q with |p+ q| > 1. (If |p+ q| = 1, then
c+ is a meridian of Tp,q,n. If |p+ q| = 0, then −p = q = 1 and T−1,1,n ∪ c+
is the unlink, in particular, T−1,1,n is the unknot for all integers n.) Hence
Conjecture 1.2 is satisfied for each twist family of knots Tp,q,n individually.

However, by showing the L-space knots among all the knots Tp,q,n are
positive or negative braids, we may conclude that Conjecture 1.2 is satisfied
for the twist families of knots Tp,q,n collectively.

Proposition 6.4.

• If p ≥ 1 then Tp,q,n is a positive or negative braid for all integers n.

• If p ≤ −1 then Tp,q,n is a positive or negative braid for any integer
n ≤ 2.

Corollary 6.5. Conjecture 1.2 is satisfied for the collection of knots Tp,q,n
with either p ≥ 1, q ≥ 1, and all n or p ≤ −1, q ≥ 1 and n ≤ 2.

Proof. This follows immediately from Proposition 6.1 and Proposition 6.4.
�

Proof of Proposition 6.4. We represent the torus knot Tp,q in the once punc-
tured torus T by one of two train tracks in T depending on whether p > 0
or p < 0 (and requiring q > 0). The knots carried by these train tracks after
(− 1

n)–surgery on c+ are our knots Tp,q,n. By a sequence of isotopies of T , c+,
and the train tracks along with splittings of the train tracks we will arrange
the train tracks into positions where it is apparent that they carry positive
or negative braids after (− 1

n)–surgery on c+ for particular values of n.
For p ≥ 1, Figure 6.4 shows that the knot Tp,q,n is actually a positive

braid if n ≥ 0 and a negative braid if n ≤ −1.
Suppose that p ≤ −1. If p = −1, then q = 1 and T−1,1,n is the unknot

for all integers n. For p ≤ −2, Figure 6.5 shows that the knot Tp,q,n is a
negative braid if n ≤ 0. Continuing from this, Figure 6.6 indicates how to
further isotope Tp,q,n (with p ≤ −2) into a positive or negative braid for
n = 1 or n = 2.

First assume n = 2. If 2q > |p| (as on the right side of Figure 6.6), then
the knot may be isotoped to a negative braid. If |p| > 2q (as on the left side
of Figure 6.6), then the knot may be isotoped to a positive braid.
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Figure 6.2: The seiferter c+ for a (p, q)–torus knot is mirror equivalent to
the seiferter c− for a (−p, q)–torus knot.

m m
c
+

c
+

l

l

m

c
+

l

l

mc
+

Figure 6.3: The standardly embedded once-punctured torus, its preferred
meridian-longitude basis, and the seiferter c+ for the torus knots carried by
this torus are isotoped into a convenient configuration.

Now assume n = 1. Then we may discard the twisting circle in Figure 6.6.
If 2q > |p| (as on the right side of Figure 6.6), then the knot may be isotoped
to a negative braid. If |p| > 2q (as on the left side of Figure 6.6), then the
knot may be isotoped into a configuration similar to the initial configuration
at the top of Figure 6.6, but with smaller braid index and mirrored (say,
mirrored across a horizontal line below the diagram). This argument can
now be repeated until a positive or negative braid, or an index-one braid
(i.e. the unknot) is achieved. �

Question 6.6. Which knots Tp,q,n with p ≤ −2, q ≥ 2, and n ≥ 2 are L-
space knots?

7. Questions

We close this article with a few questions which arise in our study.

Question 7.1. Is there a twist family {Kn} containing infinitely many
hyperbolic L-space knots that are not closures of positive or negative braids?
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q[l]+p[m], p≥q>0

positve braid if n≥0 negative braid if n≤-1

Figure 6.4: Beginning with a positive torus knot, (− 1
n)–surgery on the seifer-

ter c+ produces a closed positive braid if n ≥ 0 and a closed negative braid
if n ≤ −1.
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|p|
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c
+
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q
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c
+

-1/n

negative braid if n≤0

Figure 6.5: Beginning with a negative torus knot, (− 1
n)–surgery on the

seiferter c+ produces a closed negative braid if n ≤ 0.

While no example in [47] appears to give a positive answer to this ques-
tion, we still expect such a twist family to exist.

Although we don’t expect twist families containing infinitely many L-
space knots to generically be closures of positive or negative braids, it still
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p’≥q>0 q≥p’>0

q

|p|-q=p’
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q

p’

q-p’

q
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q-p’
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q
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p’-q
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q

p’
p’-q

-1/(n-1)

q

p’
q-p’
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-1/(n-1)

-1/(n-1)

negative braid if n≤2

positive braid if n≥2

similar to initial braid if n=1

negative braid if n≤0

Figure 6.6: Continuing from the end of Figure 6.5, two possibilities are ex-
amined. Down the left, when p′ = |p| − q > q: either n 6= 1 and the knot can
be isotoped to a positive or negative braid; or n = 1 and the knot can be
rearranged into a mirrored form of the initial position but with smaller braid
index. Down the right, when q > p′, the knot can be isotoped into a negative
braid if n ≤ 2.

seems plausible that the knots should wrap coherently about the twisting
circle.

Question 7.2. If a twist family of knots {Kn} obtained by twisting K about
an unknot c contains infinitely many L-space knots, then does c bound a disk
that K always intersects in the same direction?
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This behavior is observed in the examples of [47]. Furthermore, in the
case that |`k(K, c)| = 1, a positive answer would imply that c is a meridian
of K.
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Added in proof. Recently Question 7.2 was settled by the authors affirma-
tively in [2]. More strongly, the authors further show that if a twist family
of knots {Kn} obtained by twisting K about an unknot c contains infinitely
many L-space knots for infinitely many positive integers n and simultane-
ously for infinitely many negative integers n, then the twisting circle c is a
braid axis for K.
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