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On the nature of isolated asymptotic

singularities of solutions of a family

of quasi-linear elliptic PDE’s on

a Cartan-Hadamard manifold

Leonardo Bonorino and Jaime Ripoll

Let M be a Cartan-Hadamard manifold with sectional curvature
satisfying −b2 ≤ K ≤ −a2 < 0, b ≥ a > 0. Denote by ∂∞M the
asymptotic boundary of M and by M̄ := M ∪ ∂∞M the geomet-
ric compactification of M with the cone topology. We investi-
gate here the following question: Given a finite number of points
p1, . . . , pk ∈ ∂∞M, if u ∈ C1(M) ∩ C0

(
M̄\ {p1, . . . , pk}

)
satisfies

a PDE Q(u) = 0 in M and if u|∂∞M\{p1,...,pk} extends continu-
ously to pi, i = 1, . . . , k, can one conclude that u ∈ C0

(
M̄
)
? When

dimM = 2, for Q belonging to a linearly convex space of quasi-
linear elliptic operators S of the form

Q(u) = div

(
A(|∇u|)
|∇u|

∇u
)

= 0,

where A satisfies some structural conditions, then the answer is yes
provided that A has a certain asymptotic growth. This condition
includes, besides the minimal graph PDE, a class of minimal type
PDEs.

In the hyperbolic space Hn, n ≥ 2, we are able to give a com-
plete answer: we prove that S splits into two disjoint classes of
minimal type and p−Laplacian type PDEs, p > 1, where the an-
swer is yes and no respectively. These two classes are determined
by the asymptotic behaviour of A. Regarding the class where the
answer is negative, we obtain explicit solutions having an isolated
non removable singularity at infinity.
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792 L. Bonorino and J. Ripoll

1. Introduction

LetM be a Cartan-Hadamard n-dimensional manifold (complete, connected,
simply connected Riemannian manifold with non-positive sectional curva-
ture). It is well-known that M can be compactified with the so called cone
topology by adding a sphere at infinity, also called the asymptotic boundary
of M ; we refer to [5] for details. In the sequel, we will denote by ∂∞M the
sphere at infinity and by M̄ = M ∪ ∂∞M the compactification of M .

We recall that the asymptotic Dirichlet problem of a PDE Q(u) = 0 in
M for a given asymptotic boundary data ψ ∈ C0 (∂∞M) consists in finding
a solution u ∈ C0

(
M̄
)

of Q(u) = 0 in M such that u|∂∞M = ψ, determining
the uniqueness of u as well.

The asymptotic Dirichlet problem for the Laplacian PDE has been stud-
ied during the last 30 years and there is a vast literature in this case. More
recently, it has been studied in a larger class of PDEs which include the
p−Laplacian PDE, p > 1,

∆pu = div |∇u|p−2∇u = 0,

see [8], and the minimal graph PDE,

(1) M(u) = div
∇u√

1 + |∇u|2
= 0,

see [7], [10], case that we are specially interested in the present work. We
note that div and ∇ are the divergence and the gradient in M and it is
worth to mention that the graph

G(r) = {(x, u(x)) | x ∈M}

of u is a minimal surface in M × R if and only if u satisfies (1).
Presently it is known that the asymptotic Dirichlet problem can be

solved in any Cartan-Hadamard manifold under hypothesis on the growth
of the sectional curvature that includes the ones with negatively pinched
curvature, for any given continuous data at infinity, and on a large class of
PDEs that includes both p−Laplacian and minimal graph PDEs (see [2],
[3], [11]).

A natural question related to the asymptotic Dirichlet problem con-
cerns the existence or not of solutions with isolated singularities at ∂∞M.
We investigate this problem on the following class S of quasi-linear elliptic
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On the nature of isolated asymptotic singularities 793

operators:

(2) Q(u) = div

(
A(|∇u|)
|∇u|

∇u
)

= 0,

where A ∈ C[0,∞) ∩ C1(0,∞) satisfies the following conditions:

(3)

A(0) = 0,A′(s) > 0 for s > 0;

A(s) ≤ C(sp−1 + 1) for some C > 0, some p ≥ 1 and any s > 0;

there exist positives q, δ0 and D̄ s.t. A(s) > D̄sq for s ∈ [0, δ0].


This class of operators, as the authors know, was first introduced and

studied regarding the solvability of the asymptotic Dirichlet problem in [11];
it includes well known geometric operators as the p-laplacian, for p > 1,
(A(s) = sp−1) and the minimal graph operator (A(s) = s/

√
1 + s2). Note

that S is linearly convex that is, any two elements Q1,Q2 of S are homotopic
in S by the line segment tQ1 + (1− t)Q2, 0 ≤ t ≤ 1.

As we shall see, the nature of an isolated asymptotic singularity of Q
depends on the asymptotic behavior of A and can change drastically ac-
cordingly to it. It is worth to mention at this point that this behavior of
A is closely related to the existence or not of “Scherk type” solutions of
(2) (see the beginning of the next section). Minimal Scherk surfaces play a
fundamental role on the theory of minimal surfaces in Riemannian mani-
folds (a well known breakthrough result using Scherk minimal surfaces were
obtained by P. Collin and H. Rosenberg in [4]).

In our first three results we are concerned with removable singularities.
We first show that isolated singularities are removable if n = 2, M has neg-
atively pinched curvature and A satisfies∫ ∞

0
A−1(K0(cosh(ar))−1) dr = +∞,

for some K0 > 0. Since A−1(t) ≤ ct1/q holds for small t, due to (3), the
change of variable t = K0(cosh(ar))−1 implies that this condition is equiva-
lent to

(4)

∫ K0

0

A−1(t)√
K0 − t

dt = +∞.

Precisely, we prove:
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Theorem 1.1. Suppose that M is a 2−dimensional Cartan-Hadamard
manifold with sectional curvature satisfying −b2 ≤ K ≤ −a2 < 0, b ≥ a > 0.
Given a finite number of points p1, . . . , pk ∈ ∂∞M, if

m ∈ C1(M) ∩ C0
(
M̄\ {p1, . . . , pk}

)
is a weak solution of (2) in M , A(s) satisfies (3) and (4), and m|∂∞M\{p1,...,pk}
extends continuously to pi, i = 1, . . . , k, then m ∈ C0

(
M̄
)
.

We observe that condition (4) fails if K0 < supA. Hence, (4) implies
that A is bounded and K0 = supA. This happens, for instance, if A(s) =
s/
√

1 + s2. Therefore, we have

Corollary 1.2. Suppose that M is a 2−dimensional Cartan-Hadamard
manifold with sectional curvature satisfying −b2 ≤ K ≤ −a2 < 0, b ≥ a > 0.
Given a finite number of points p1, . . . , pk ∈ ∂∞M, if

m ∈ C∞(M) ∩ C0
(
M̄\ {p1, . . . , pk}

)
is a solution of the minimal surface equation and if m|∂∞M\{p1,...,pk} extends
continuously to pi, i = 1, . . . , k, then m ∈ C0

(
M̄
)
.

We observe that a similar problem can obviously be posed to solutions
of (2) on a bounded C0 domain Ω of R2. In the minimal case, this is an
old problem. From a classical result of R. Finn [6], it follows that if u, as
in the above theorem, with M replaced by Ω, ∂∞ by ∂, is a solution of the
minimal graph equation (1) and if there is a solution v ∈ C∞(Ω) ∩ C0

(
Ω̄
)

of (1) such that

u|∂Ω\{p1,...,pn} = v|∂Ω\{p1,...,pn},

then u = v and hence u extends continuously through the singularities. If
the Dirichlet problem M(u) = 0 on Ω is not solvable for the continuous
boundary data φ := u|∂Ω then the result is false, a known fact on the classical
minimal surface theory (see [9], Chapter V, Section 3). We remark that even
if the Dirichlet problem is not solvable there might exist smooth compact
minimal surfaces which boundary is the graph of φ if φ and the domain are
regular enough (see [1]).

Although under the hypothesis of Corollary 1.2 there exists a solution
v ∈ C∞(M) ∩ C0

(
M̄
)

of (1) such that u|∂∞M\{p1,...,pn} = v|∂∞M\{p1,...,pn}, we
felt necessary to use a different approach from Finn’s. First because the
boundedness of the domain is fundamental to the arguments used in [6].
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On the nature of isolated asymptotic singularities 795

Secondly, because it is not clear that the asymptotic Dirichlet problem for
the PDE (2), under the conditions (3), is solvable for any continuous bound-
ary data given at infinity.

Our proof relies heavily on the asymptotic properties of a 2−dimensional
Cartan-Hadamard manifold M with negatively pinched sectional curvature.
It is fundamentally based on the fact that a point p of the asymptotic bound-
ary of M is an isolated point of the asymptotic boundary of a domain U
such that M \ U is convex. This property allows the construction of suitable
barriers at infinity. Although the existence of U in the n = 2 dimensional
case is trivial (for example, a domain which boundary are two geodesics
asymptotic to p), we don’t know if such an U exists in M if n ≥ 3. Never-
theless, it is possible in the special case of the hyperbolic space to give an
ad hoc proof of Theorem 1.1 using the symmetries of the space. Precisely,
our result in Hn reads:

Theorem 1.3. Let Hn be the hyperbolic space of constant sectional curva-
ture −1. Given a finite number of points p1, . . . , pk ∈ ∂∞Hn, if m ∈ C1(Hn) ∩
C0
(
H̄n\ {p1, . . . , pk}

)
is a weak solution of (2) in Hn, A(s) satisfies (3) and

(4), and if m|∂∞Hn\{p1,...,pk} extends continuously to pi, i = 1, . . . , k, then
m ∈ C0

(
H̄n
)
.

Finally, in the next last result, we prove the existence of a class of solu-
tions of (2) in Hn admitting a non removable isolated asymptotic singularity.
Note that this class contains the p−Laplacian PDE, p > 1.

Theorem 1.4. Suppose that (3) holds and A(s) is unbounded. Given a
point p1 ∈ ∂∞Hn, there exists a solution m ∈ C2(Hn) ∩ C0

(
H̄n\ {p1}

)
of (2)

in Hn, such that m = 0 on ∂∞Hn\{p1} and lim supx→p1 m = +∞.

2. Proof of the theorems

We begin by constructing Scherk type supersolutions to the equation (2),
which are fundamental to prove the nonexistence of true asymptotic singu-
larities.

Lemma 2.1. Let γ be some geodesic of M , let U be one of the connected
component of M\γ and δ > 0. If A satisfies (3) and (4), then there exists a
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solution of 
div

(
A(|∇u|)
|∇u|

∇u
)
≤ 0 in U

u = +∞ on γ

u = δ in int ∂∞U.

Proof. Let d : U → R be defined by d(x) = dist(x, γ) and g : (0,+∞)→ R
be defined by

g(d) = δ +

∫ ∞
d
A−1

(
K0

cosh(at)

)
dt,

where K0 = supA. Observe that according to [11], g(d) is well defined and
finite for all d > 0, and v(x) := g(d(x)) is a supersolution of (2). More-
over, g(d)→ δ as d→ +∞ and, therefore, g(d(x))→ δ as x→ p ∈ int ∂∞U .
That is, v = δ on int ∂∞U. Finally, making the change of variable z =
K0(cosh(at))−1, we can prove that condition (4) implies that g(d)→ +∞ as
d→ 0. Hence v(x) = g(d(x))→ +∞ as x→ x0 ∈ γ, completing the proof of
the lemma. �

2.1. Proof of Theorem 1.1

We first claim that m is bounded: for each pi, consider a geodesic Γi such
that the asymptotic boundary of one of the connected components of M \
Γi, say Xi, does not contain pj for j 6= i. Assume also that pi ∈ int ∂∞Xi.
Since Γi(±∞) 6∈ {p1, . . . pn}, m is continuous at Γi(±∞) and therefore it is
bounded on Γi. Let Si = sup

Γi

m for i ∈ {1, . . . n}, S0 = supm|∂∞M\{p1,...,pn}
and

S = max{S0, S1, . . . , Sn}.

In M\{X1 ∪ · · · ∪Xn}, m is bounded from above and from below by
some constant, since m is continuous in M\{X1 ∪ · · · ∪Xn} with the cone
topology. To prove that m ≤ S in Xi, take a sequence of geodesics βk such
that the ending points βk(+∞) and βk(−∞) converge to pi. Let Yk be the
connected component of M\βk whose the asymptotic boundary does not
contain pi. Observe that M\Xi ⊂ Yk for large k and ∪Yk = M . Let wk be
the supersolution of (2) given by Lemma 2.1 such that wk is +∞ on βk
and S at ∂∞Yk \ {βk(±∞)}. Hence wk ≥ S and therefore wk ≥ m on Γi =
∂Xi, wk = S ≥ m on ∂∞(Yk ∩Xi) and wk = +∞ > m on βk = ∂Yk. Thus,
for ε > 0, wk + ε > m in some neighborhood of ∂(Yk ∩Xi) ∪ ∂∞(Yk ∩Xi).
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That is, for some compact F ⊂ Yk ∩Xi, wk + ε > m in Yk ∩Xi\F . By a
Comparison Principle (for instance, see Lemma 2.2 of [11] or Lemma 2.1
of [2]), wk + ε ≥ m in F and, therefore, wk + ε ≥ m in Yk ∩Xi for large
k. Since ε is arbitrary, it follows that wk ≥ m in Yk ∩Xi for large k. For
any given x ∈M , x ∈ Yk for large k. Hence, using that wk(x)→ S (this
is a consequence of wk(x) = g(dist(x, βk)), according to Lemma 2.1, and
dist(x, βk)→ +∞ as k → +∞), we have m(x) ≤ S in Xi. In a similar way,
we can conclude that m is bounded from below, proving the claim.

Assume that m ≤ S. Denote by φ the continuous extension of
m|∂∞M\{p1,...,pn} to ∂∞M. Let p ∈ {p1, . . . , pn}. Adding a constant to φ we
may assume wlg that φ(p) = 0. Let 0 < δ ≤ S be given. We will prove that
K := lim supx→pm(x) ≤ δ. By contradiction assume that K > δ.

By the continuity of φ, there exists an open connected neighborhood
O ⊂ ∂∞M of p such that φ(q) ≤ δ for all q ∈ O. Moreover, we may assume
that O does not contain another point pi except p.

Let γ be a geodesic such that γ(∞) = p. Set γ = γ(R). Choose a point
q0 ∈ γ and a geodesic α0 orthogonal to γ at q0 such that α0(±∞) ∈ O. Let
γi, i ∈ {1, 2}, be the geodesics with ending points at p and q1 := α0(∞) and
p and q2 := α0(−∞), respectively. Denote by Ui the connected component
of M \ γi that does not contain α0. Let Shi be the solution constructed in
Lemma 2.1 to the problem

div

(
A(|∇u|)
|∇u|

∇u
)
≤ 0 in Ui

u = +∞ on γi

u = δ in int ∂∞Ui.

Again, by a Comparison Principle, m < Shi. Let ci be the level set of Shi

ci =

{
x ∈ Ui : Shi(x) =

K

2
+
δ

2

}
and

Vi =

{
x ∈ Ui : Shi(x) <

K

2
+
δ

2

}
.

Hence m < K/2 + δ/2 on Vi. Let A be the connected component of M \ α0

containing p on its asymptotic boundary and set V = A\(V1 ∪ V2).
Now, let W be a neighborhood of p such that the asymptotic boundary

of W ∩ V is {p}. Observe that for R > 0 and any point z on the boundary
of W ∩ V there exist a ball of radius R, BR ⊂M\(W ∩ V ) such that BR ∩
W ∩ V = {z}. We consider R = 1.
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Since p is an ending point of both γ1 and γ2 it follows from the very
definition of asymptotic geometric boundary (see [5]) that the distance be-
tween any point of W ∩ V and the geodesic γi is bounded by some constant.
This property still holds if we consider the curve ci instead γi, since these
two curves are equidistant. Then there is ρ > 0 be such that

dist(x, Vi) < ρ for any x ∈W ∩ V.

That is, for any x ∈W ∩ V , there is a ball Bρ centered at some point of
∂(V1 ∪ V2) ∩W s.t. x ∈ Bρ.

p V

q1

q2

V1

V2

c1

c2

p

c1

c2

Bρx

W

Fig. 1 Fig. 2

Lemma 2.2. There exist h0 and h1 depending only on b, ρ, K and δ,
satisfying

δ < h1 < h0 < K/2 +
δ

2

such that, for any y∈M, the Dirichlet problem in the annulus B2ρ+1(y)\B1(y)
div

(
A(|∇u|)
|∇u|

∇u
)

= 0 in B2ρ+1(y)\B1(y)

u = δ on ∂B1(y)

u = h0 on ∂B2ρ+1(y)

has a supersolution wy(x) and wy(x) ≤ h1 if dist(x, y) < ρ+ 1.
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Proof. Let f : [1,∞)→ R be the function defined by

f(r) = δ +

∫ r

1
A−1

(
sinh(b α)

sinh(bs)

)
ds,

where 0 < α ≤ 1. Hence f(1) = δ and, choosing α sufficiently small, f(2ρ+
1) < K/2 + δ/2. Let h0 = f(2ρ+ 1). Observe that if r = r(x̃) is the distance
in H2(−b2) from x̃ to a fixed point, then the graphic of f is a radially
symmetric surface, solution of (2) in the hyperbolic plane with constant
negative sectional curvature −b2, that is, f satisfies

A′(f ′(r))f ′′(r) +A(f ′(r))b coth br = 0.

Moreover, from the Comparison Laplacian Theorem

∆d(x) ≤ ∆r(x̃) = b coth br,

where d(x) = dist(x, y) and x̃ ∈ H2(−b2) is a point such that d(x) = r(x̃).
Then, using these two relations and that f ′ > 0, we conclude that wy(x) :=
f(d(x)) is a supersolution of (2) in M.

Since f(1) = δ and f(2ρ+ 1) = h0, wy(x) satisfies the required boundary
conditions. Finally defining h1 := f(ρ+ 1), wy(x) ≤ h1 < h0 in Bρ+1(y). �

Let ε be a positive real satisfying h0 − h1 − (K − δ)/2 ≤ ε < h0 − h1 and
W0 ⊂W be a neighborhood of p s.t.

m < K + ε in W0.

Let W̃ ⊂W0 be a neighborhood of p s.t.

dist(∂W0, W̃ ) > 3ρ+ 2.
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p

c1

c2

W
W0

W̃

Fig. 3
We claim that

m < K + ε− h0 + h1 < K

in W̃ .

Indeed: Let x ∈ W̃ and assume first that x ∈ V. As observed above, there
is some z ∈ ∂(V1 ∪ V2), say z ∈ ∂V1, s.t.

x ∈ Bρ(z)

and there is y ∈ V1 s.t.

∂B1(y) ∩W ∩ V = {z}.

Therefore

dist(x, y) < ρ+ 1.

Using triangular inequality and that dist(∂W0, W̃ ) > 3ρ+ 2, we have

B2ρ+1(y) ⊂ B3ρ+2(x) ⊂W0.

Let wy be the solution associated to the annulus B2ρ+1(y)\B1(y) given by
Lemma 2.2. Define

w = wy +K + ε− h0

Then, using that B1(y) ⊂ V1,

w = δ +K + ε− h0 > K + δ + ε− K

2
− δ

2
>
K

2
+
δ

2
> m on ∂B1(y)



i
i

“2-Ripoll” — 2019/9/28 — 16:04 — page 801 — #11 i
i

i
i

i
i

On the nature of isolated asymptotic singularities 801

and, from B2ρ+1(y) ⊂W0,

w = h0 +K + ε− h0 = K + ε > m on ∂B2ρ+1(y).

From the comparison principle,

m < w in B2ρ+1(y)\B1(y)

and, therefore

m < wy +K + ε− h0 < h1 +K + ε− h0 in Bρ+1(y)\B1(y).

Since dist(x, y) < ρ+ 1, then x ∈ Bρ+1(y). Hence, using that x 6∈ V1 ∪ V2,
we have x ∈ Bρ+1(y)\B1(y). In this case, m(x) < h1 +K + ε− h0. Finally,
if x ∈ V1 ∪ V2, the definition of ε implies that m(x) < K/2 + δ/2 ≤ K + ε−
h0 + h1 proving the claim.

To conclude the proof of the theorem, note that ν := −ε+ h0 − h1 > 0,
since ε < h0 − h1. Then

K + ε− h0 + h1 = K − ν

and, from the above claim,

m < K − ν < K in W̃ .

Hence lim sup
x→p

m(x) ≤ K − ν < K leading a contradiction.

2.2. Proof of Theorem 1.3.

Proof. First we introduce the terminology of totally geodesic hyperball as a
domain in Hn whose boundary is a totally geodesic hypersphere of Hn.

The proof that m is bounded follows the same idea as in Theorem 1.1
replacing the geodesics Γi and βk by totally geodesic hyperspheres Hi and
Λk respectively and considering the same S. To build a supersolution wk in
Yk (the connected component of Hn\Λk that does not contain pi) such that
wk = +∞ on Λk, we use the same construction as in Lemma 2.1, that is, we
consider

g(d) = S +

∫ ∞
d
A−1

(
K0

(cosh(at))n−1

)
dt,

that is well defined and finite for all d > 0. The function wk(x) := g(d(x)),
where d(x) = dist(x,Λk), is a supersolution according to [11]. Moreover it
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satisfies wk(x) = +∞ for x ∈ Λk since g(0) = +∞ as a result of (4). Using
this wk, we conclude in the same way as in Theorem 1.1 that m is bounded
from above by S. In the same way, m is bounded from below. Now we prove
that m is continuous at p ∈ {p1, . . . , pk}. Denote by φ the continuous exten-
sion of m|∂∞M\{p1,...,pk} to ∂∞M. Adding a constant to φ we may assume
wlg that φ(p) = 0. Hence we have to prove that

lim
x→p

m(x) = 0.

Let

K = lim sup
x→p

m(x).

We will show that, for any δ > 0, it follows that K ≤ δ. Since v ≤ S, it
follows that K ≤ S. Suppose that K > δ. Let Vj be a decreasing sequence
of neighborhood of p such that

⋂
V j = {p}, sup

x∈Vj

m(x) < K + 1/j and φ ≤ δ

2
on ∂∞Vj

We can suppose that each Vj is a totally geodesic hyperball.

p
Ṽj

Vj

A

Tj(Vj)

Bq

q

xj

yj

Fig. 4



i
i

“2-Ripoll” — 2019/9/28 — 16:04 — page 803 — #13 i
i

i
i

i
i

On the nature of isolated asymptotic singularities 803

For each j, let Ṽj ⊂ Vj be a totally geodesic hyperball such that p ∈ int ∂∞Ṽj ,

dist(∂Ṽj , ∂Vj) ≥ j and sup
x∈Ṽj

m(x) > K − 1/j.

Then there exists a sequence (xj) that satisfies xj ∈ Ṽj and

K − 1/j < m(xj) < K + 1/j.

Denote A = V1. It is well known that there exists an isometry Tj : Hn →
Hn that preserves p, Tj(Ṽj) ⊃ A and yj := Tj(xj) ∈ ∂A. Since Tj(Vj) and
Tj(Ṽj) are totally geodesic hyperballs and Tj(Vj) ) Tj(Ṽj) ⊃ A, we have
that ∂∞A ⊂ int ∂∞Tj(Vj) for any j. Observe that

uj = m ◦ T−1
j

is a solution of (2) and satisfies

(5) sup
Tj(Vj)

uj < K + 1/j and uj(yj) > K − 1/j.

Moreover Ṽj ⊂ Vj ⊂ A ⊂ Tj(Ṽj) implies that

dist(∂Tj(Vj), A) ≥ dist(∂Tj(Vj), Tj(Ṽj))

= dist(∂Vj , Ṽj) ≥ j →∞.

Observe that Tj(Vj) is a totally geodesic hyperball and

uj ≤
δ

2
on ∂∞(Tj(Vj))\{p},

since uj = m ◦ T−1
j and m = φ ≤ δ/2 on Vj\{p}. Using that A ⊂ Tj(Vj) and

p 6∈ ∂∞(Hn\A), we have that ∂∞A ∩ ∂∞(Hn\A) ⊂ ∂∞Tj(Vj)\{p} and, there-
fore, uj ≤ δ/2 on ∂∞A ∩ ∂∞(Hn\A). For q ∈ ∂∞A ∩ ∂∞(Hn\A), let Bq be
a totally geodesic hyperball, neighborhood of q, disjoint with V2 such that
Bq ⊂ Tj(Vj) for any j. (This is possible since (Vj) is a decreasing sequence,
∂Tj(Vj) is a totally geodesic hypersphere, dist(∂Tj(Vj), A)→∞ and, then
some neighborhood of ∂∞A ⊂ int ∂∞Tj(Vj) for any j). In the same way as
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we did in the beginning, we can find supersolutions wq of
div

(
A(|∇u|)
|∇u|

∇u
)

= 0 in Bq

u = +∞ on ∂Bq

u = δ/2 on int ∂∞Bq.

Since uj ≤ wq = δ/2 on int ∂∞Bq, the comparison principle implies that
uj ≤ wq in Bq. Let B̃q ⊂ Bq be the hyperball with boundary equidistant to
∂Bq, for which wq < δ in B̃q. Hence uj < δ in B̃q and, therefore, uj < δ in
B̃ for any j, where

B̃ =
⋃

q∈∂∞A∩∂∞(Hn\A)

B̃q.

Observe that B̃ is a neighborhood of ∂∞A ∩ ∂∞(Hn\A) and ∂A\B̃ is com-
pact.

Now we prove that there exist ν > 0 and j0 ∈ N such that uj(y) ≤ K − ν
for any j ≥ j0 and y ∈ ∂A contradicting uj(yj) > K − 1/j and yj ∈ ∂A.

Let y be some point of B̃ such that the ball of radius 1 centered at y,
B1(y), is contained in B̃. Due to the fact that ∂A\B̃ is compact, there exists
ρ > 0 such that the ball of radius ρ+ 1, Bρ+1(y), contains ∂A\B̃. Hence-
forth, we proceed as in Theorem 1.1, using Lemma 2.2. This lemma also
holds in Hn and to prove it we define f : [1,∞)→ R by

f(r) = δ +

∫ r

1
A−1

(
sinhn−1(α)

sinhn−1(s)

)
ds with 0 < α ≤ 1,

that satisfies

A′(f ′(r))f ′′(r) +A(f ′(r))(n− 1) coth r = 0,

and apply the same argument, obtaining a supersolution (indeed a solu-
tion) wy(x) = f(d(x)). Then, we can consider h0 and h1 as in Lemma 2.2
and define w = wy +K + ε− h0, where ε satisfies h0 − h1 − (K − δ)/2 ≤
ε < h0 − h1. Take j0 such that 1/j0 < ε and B2ρ+1(y) ⊂ Tj0(Vj0). From (5),

sup
∂A

uj ≤ sup
Tj(Vj)

uj < K + 1/j < K + ε for j ≥ j0.

Hence, following the same computation as in Theorem 1.1, w is a supersolu-
tion that satisfies w ≥ uj in B2ρ+1(y)\B1(y) for any j ≥ j0. Moreover w <
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h1 +K + ε− h0 in Bρ+1(y)\B1(y) ⊃ ∂A\B̃. In ∂A ∩ B̃, we also have uj <
δ < h1 +K + ε− h0. Thus, defining ν = h0 − h1 − ε > 0, it follows that

uj < K − ν in ∂A for j ≥ j0.

But this contradicts uj(yj) > K − 1/j for any j. Therefore K = 0. In a sim-
ilar way lim infx→pm(x) ≥ 0 completing the proof. �

2.3. Proof of Theorem 1.4

Proof. The idea is to build solutions that are constant along horospheres for
which the asymptotic boundary is p1. For that, let B1 be some horoball such
that the asymptotic boundary is p1, H1 = ∂B1 and d(x) the distance with
sign given by

d(x) =

dist(x,H1) if x ∈ B1

−dist(x,H1) if x 6∈ B1.

We search solutions of the form m(x) = g(d(x)), where g : R→ R is a posi-
tive increasing function. From (2), we have that g must satisfy

A′(g′(d))g′′(d) +A(g′(d))∆d = 0.

Since d(x) is the distance (with sign) between x and the horosphere H1,
then ∆d(x) = −(n− 1). Therefore

(6) A′(g′(d))g′′(d)− (n− 1)A(g′(d)) = 0.

To find a solution to this equation, note first that A−1(t) is defined for any
t > 0, since A is unbounded. Hence we can consider the function

g0(d) =

∫ d

−∞
A−1(e(n−1)s) ds

for all d ∈ R. This integral converges at −∞ since condition (3) implies that
A−1(t) ≤ (t/D̄)1/q for A−1(t) ∈ [0, δ0]. Observe that g0 is positive, increas-
ing, satisfies equation (6), converges to 0 as d→ −∞ and diverges to +∞
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as d→ +∞, because A−1 is increasing. Therefore

m(x) = g0(d(x))

is a C2 solution of (2) that satisfies m(xk)→ +∞ if xk → p1 with d(xk)→
+∞. Moreover, using that d(x)→ −∞ as x→ p ∈ ∂∞Hn\{p1}, it follows
that m(x)→ 0 proving the result. �
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