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We study the asymptotic Dirichlet problem for A-harmonic equa-
tions and for the minimal graph equation on a Cartan-Hadamard
manifold M whose sectional curvatures are bounded from below
and above by certain functions depending on the distance r =
d(·, o) to a fixed point o ∈M . We are, in particular, interested
in finding optimal (or close to optimal) curvature upper bounds.
In the special case of the Laplace-Beltrami equation we are able
to solve the asymptotic Dirichlet problem in dimensions n ≥ 3 if
radial sectional curvatures satisfy

−
(
log r(x)

)2ε̄
r(x)2

≤ K ≤ − 1 + ε

r(x)2 log r(x)

outside a compact set for some ε > ε̄ > 0. The upper bound is close
to optimal since the nonsolvability is known if

K ≥ −1/
(
2r(x)2 log r(x)

)
.

Our results (in the non-rotationally symmetric case) improve on
the previously known case of the quadratically decaying upper
bound.
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1. Introduction

In this paper we are interested in the asymptotic Dirichlet problem for
A-harmonic functions and for the minimal graph equation on a Cartan-
Hadamard manifold M of dimension n ≥ 2. We first recall that a Cartan-
Hadamard manifold is a simply connected, complete Riemannian manifold
having nonpositive sectional curvature. It is well-known, since the exponen-
tial map expo : ToM →M is a diffeomorphism for every point o ∈M , that
M is diffeomorphic to Rn. One can define an asymptotic boundary ∂∞M
of M as the set of all equivalence classes of unit speed geodesic rays on M
(see Section 2.1 for more details). The so-called geometric compactification
M̄ of M is then given by M̄ = M ∪ ∂∞M equipped with the cone topology .
We also notice that M̄ is homeomorphic to a closed Euclidean ball; see [20].
The asymptotic Dirichlet problem on M for some operator Q is then the fol-
lowing: Given a continuous function f on ∂∞M does there exist a (unique)
function u ∈ C(M̄) such that Q[u] = 0 on M and u|∂∞M = f? We will con-
sider this problem for two kinds of operators: the minimal graph operator
(or the mean curvature operator) M defined by

M[u] = div
∇u√

1 + |∇u|2
,

and the A-harmonic operator (of type p)

(1.1) Q[u] = −divAx(∇u),

where A : TM → TM is subject to certain conditions; for instance

〈A(V ), V 〉 ≈ |V |p, 1 < p <∞,

and A(λV ) = λ|λ|p−2A(V ) for all λ ∈ R \ {0}. The p-Laplacian is an exam-
ple of an A-harmonic operator (see Section 2.3 for the precise definition).
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We also note that u satisfies the minimal graph equation

(1.2) M[u] = div
∇u√

1 + |∇u|2
= 0

if and only if G := {(x, u(x)) |x ∈ Ω} is a minimal hypersurface in the prod-
uct space M × R.

We will now give a brief overview of the results known for the asymptotic
Dirichlet problem on Cartan-Hadamard manifolds. The first result for this
problem in the case of the usual Laplace-Beltrami operator was obtained
by Choi. In [12], he solved the asymptotic Dirichlet problem assuming that
the sectional curvatures satisfy K ≤ −a2 < 0 and that M satisfies a “con-
vex conic neighborhood condition”, i.e. given x ∈ ∂∞M , for any y ∈ ∂∞M ,
y 6= x, there exist Vx ⊂ M̄ , a neighborhood of x, and Vy ⊂ M̄ , a neighbor-
hood of y such that Vx and Vy are disjoint open sets of M̄ in terms of the
cone topology and Vx ∩M is convex with C2 boundary. Anderson [5] proved
that the convex conic neighborhood condition is satisfied for manifolds of
pinched sectional curvature −b2 ≤ K ≤ −a2 < 0 and therefore he was able
to solve the asymptotic Dirichlet problem for the Laplace-Beltrami operator
(see also [6] for a different approach). We point out that the asymptotic
Dirichlet problem was solved independently by Sullivan [43] using proba-
bilistic arguments. Ancona in a series of papers [1], [2], [3], and [4], was able
to replace the curvature lower bound by a bounded geometry assumption
that each ball up to a fixed radius is L-bi-Lipschitz equivalent to an open
set in Rn for some fixed L ≥ 1; see [1]. To the best of our knowledge, the
most general curvature bounds so far under which the asymptotic Dirichlet
problem for the Laplacian was known to be solvable in all dimensions n ≥ 2
are given in the following theorem by Hsu. Here and throughout the paper
r(x) stands for the distance between x ∈M and a fixed point o ∈M .

Theorem 1. [30, Theorems 1.1 and 1.2] Let M be a Cartan-Hadamard
manifold. Suppose that:
- there exist a positive constant a and a positive and non-increasing function
h with

∫∞
0 th(t) dt <∞ such that

−h
(
r(x)

)2
e2ar(x) ≤ Ricx and Kx ≤ −a2,

or
- there exist positive constants r0, α > 2, and β < α− 2 such that

−r(x)2β ≤ Ricx and Kx ≤ −
α(α− 1)

r(x)2
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for all x ∈M , with r(x) ≥ r0. Then the Dirichlet problem at infinity for the
Laplacian is solvable.

The asymptotic Dirichlet problem has been studied for more general
operators than the Laplacian. The first result in this direction has been ob-
tained in [26] for the p-Laplacian under a pinched negative sectional curva-
ture assumption by modifying the direct approach of Anderson and Schoen
[6]. In [29] Holopainen and Vähäkangas have been able to relax the assump-
tion on the curvature (see Theorem 3 for a more precise statement of these
curvature assumptions). Of particular interest is the case of the minimal
graph operator. In [13], Collin and Rosenberg were able to construct har-
monic diffeomorphisms from the complex plane C onto the hyperbolic plane
H2 disproving this way a conjecture of Schoen and Yau [40]. This result has
been generalized by Gálvez and Rosenberg [21] to any Hadamard surface M
whose curvature is bounded from above by a negative constant. A funda-
mental ingredient in their constructions is to solve the Dirichlet problem on
unbounded ideal polygons with boundary values ±∞ on the sides of the ideal
polygons. These unexpected results have raised interest in (entire) minimal
hypersurfaces in the product space M × R, where M is a Cartan-Hadamard
manifold (see for example, [17], [19], [33], [35], [38], [39], [42]).

Very recently in [9], the authors generalized (most of) the solvability
results to a larger class of operators Q of the form

(1.3) Q[u] = div(P(|∇u|2)∇u),

with P subject to the following growth conditions. Let P : (0,∞)→ [0,∞)
be a smooth function such that

(1.4) P(t) ≤ P0t
(p−2)/2

for all t > 0, with some constants P0 > 0 and p ≥ 1, and that B := P ′/P
satisfies

(1.5) − 1

2t
< B(t) ≤ B0

t

for all t > 0 with some constant B0 > −1/2. Furthermore, assume that
tP(t2)→ 0 as t→ 0+ and define P(|X|2)X = 0 whenever X is a zero vector.

Following [9] we call a relatively compact open set Ω bM Q-regular if
for any continuous boundary data h ∈ C(∂Ω) there exists a unique u ∈ C(Ω̄)
which is Q-solution in Ω and u|∂Ω = h. In addition to the growth conditions
on P, assume that
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(A) there is an exhaustion of M by an increasing sequence of Q-regular
domains Ωk, and that

(B) locally uniformly bounded sequences of continuous Q-solutions are
compact in relatively compact subsets of M .

It is well-known that the conditions above are satisfied by the minimal graph
operator and the p- Laplacian (see [16], [23] and [42]).

The main theorem in [9] is a solvability result for the asymptotic Dirich-
let problem for operators Q that satisfy (1.4), (1.5), and conditions (A) and
(B) under curvature assumption

−b
(
r(x)

)2 ≤ K(P ) ≤ −a
(
r(x)

)2
on M , where P ⊂ TxM is a 2-plane and a, b : [0,∞)→ [0,∞), b ≥ a, are
smooth functions satisfying suitable assumptions. Here, instead of giving
the precise assumptions on functions a and b, we state the following two
solvability results as special cases of their main theorem (Theorem 1.6 in
[9]).

Theorem 2. [9, Theorem 1.5] Let M be a Cartan-Hadamard manifold of
dimension n ≥ 2. Fix o ∈M and set r(·) = d(o, ·), where d is the Rieman-
nian distance in M . Assume that

−r(x)2(φ−2)−ε ≤ Sectx(P ) ≤ −φ(φ− 1)

r(x)2
,

for some constants φ > 1 and ε > 0, where Sectx(P ) is the sectional cur-
vature of a plane P ⊂ TxM and x is any point in the complement of a
ball B(o,R0). Then the asymptotic Dirichlet problem for the minimal graph
equation (1.2) is uniquely solvable for any boundary data f ∈ C

(
M(∞)

)
.

Theorem 3. [9, Corollary 1.7] Let M be a Cartan-Hadamard manifold of
dimension n ≥ 2. Fix o ∈M and set r(·) = d(o, ·), where d is the Rieman-
nian distance in M . Assume that

(1.6) − r(x)−2−εe2kr(x) ≤ Sectx(P ) ≤ −k2

for some constants k > 0 and ε > 0 and for all x ∈M \B(o,R0). Then the
asymptotic Dirichlet problem for the operator Q (defined as in (1.3)) is
uniquely solvable for any boundary data f ∈ C

(
M(∞)

)
.
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The Dirichlet problem at infinity for A-harmonic functions, that is so-
lutions of

(1.7) Q[u] = −divAx(∇u) = 0,

has been considered in [44] and [45]. In [45], Vähäkangas was able to gen-
eralize the result obtained in [29] (for the p-Laplacian) to the A-harmonic
case. In [44], by generalizing a method due to Cheng [11], he solved the
asymptotic Dirichlet problem for A-harmonic equations of type p provided
the radial sectional curvatures outside a compact set satisfy

K(P ) ≤ −φ(φ− 1)

r2(x)

for some constant φ > 1 with 1 < p < 1 + φ(n− 1) and

|K(P )| ≤ C|K(P ′)|

for some constant C, where P and P ′ are any 2-dimensional subspaces of
TxM containing the (radial) vector ∇r(x). It is worth observing that no
curvature lower bounds are needed here. In the recent preprint [8], Casteras,
Heinonen, and Holopainen generalized this result for the minimal graph
equation.

The goal of this paper is threefold. First of all, we are looking for an
optimal (or at least close to optimal) curvature upper bound under which
asymptotic Dirichlet problems for equations (1.2) and (1.7) are solvable pro-
vided an appropriate curvature lower bound holds. Secondly, we are using
PDE methods, like Caccioppoli-type inequalities (Lemma 19), Moser itera-
tion scheme (Lemma 21), and Young complementary functions to study the
minimal graph equation. As far as we know such methods are not frequently
used in the context of the minimal graph equation. Last but not least, we
want to publicize the results and methods of the still unpublished preprint
[45] of Vähäkangas. Our main results are the following two theorems. Below
in Theorem 4, the operator A is of type p ∈ (1,∞) and α and β are so-called
structural constants A; see Section 2.3 for details.

Theorem 4. Let M be a Cartan-Hadamard manifold of dimension n ≥ 2.
Assume that

(1.8) −
(
log r(x)

)2ε̄
r(x)2

≤ K(P ) ≤ − 1 + ε

r(x)2 log r(x)
,
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for some constants ε > ε̄ > 0, where K(P ) is the sectional curvature of any
plane P ⊂ TxM that contains the radial vector ∇r(x) and x is any point in
the complement of a ball B(o,R0). Then the asymptotic Dirichlet problem
for the A-harmonic equation (1.7) is uniquely solvable for any boundary data
f ∈ C

(
∂∞M

)
provided that 1 < p < nα/β.

Theorem 5. Let M be a Cartan-Hadamard manifold of dimension n ≥ 3
satisfying the curvature assumption (1.8) for all 2-planes P ⊂ TxM , with x ∈
M \B(o,R0). Then the asymptotic Dirichlet problem for the minimal graph
equation (1.2) is uniquely solvable for any boundary data f ∈ C

(
∂∞M

)
.

We notice that the Laplace-Beltrami operator corresponds to the case
p = 2 and α = β = 1, and therefore is covered by Theorem 4 in dimensions
n ≥ 3. Thus we obtain a generalization to higher dimensions of a recent
result by Neel [34].

Corollary 6. Let M be a Cartan-Hadamard manifold of dimension n ≥ 3
satisfying the curvature assumption (1.8) for all 2-planes P ⊂ TxM that
contain the radial vector ∇r(x), with x ∈M \B(o,R0). Then the asymptotic
Dirichlet problem for the Laplace-Beltrami equation is uniquely solvable for
any boundary data f ∈ C

(
∂∞M

)
.

The curvature upper bound (1.8) appears also in a recent paper [37]
where Ripoll and Telichevesky solved the asymptotic Dirichlet problem for
the minimal graph equation on rotationally symmetric Hadamard surfaces.
Notice that dimension n = 2 is excluded in Theorem 5. However, we believe
that the result holds also in the 2-dimensional setting.

We point out that our curvature assumptions, in particular the upper
bounds, are in a sense optimal. Indeed, in [32] March characterized the exis-
tence of nonconstant bounded harmonic functions on rotationally symmetric
Riemannian manifolds M = (Rn, g), where the Riemannian metric g is given
in polar coordinates as

ds2 = dr2 + f(r)2dθ2.

He proved that M carries nonconstant bounded harmonic functions if and
only if

I(f) =

∫ ∞
1

(
f(s)n−3

∫ ∞
s

f(t)1−ndt

)
ds <∞.
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Letting c2 = 1 and cn = 1/2 for n ≥ 3 and assuming that radial sectional
curvatures Kr = −(f ′′/f)(r) are nonpositive and have upper bound

Kr ≤ −
c

r2 log r

for some constant c > cn and for all large r we have I(f) <∞. On the other
hand, if

Kr ≥ −
c

r2 log r

for c < cn and for all large r, then I(f) =∞. Since all bounded harmonic
functions on such M are constant, the asymptotic Dirichlet problem for the
Laplace-Beltrami operator can not be solvable. In general, assume that

K(Px) ≥ − 1

r(x)2 log r(x)

for all large r(x) and let us consider first the case of an A-harmonic operator
of type p ≥ n. The standard Bishop-Gromov volume comparison theorem for
geodesic balls Br = B(o, r) gives

Vol(∂Br) ≤ C(r log r)n−1

for some constant C and for all r ≥ r0 large enough. It follows that∫ ∞
r0

dr

(Vol(∂Br)1/(p−1)
≥ C

∫ ∞
r0

dr

r log r
=∞

which implies that M is so-called p-parabolic and hence every bounded A-
harmonic function (with A of type p) is constant; see e.g. [25] and [14]. On
the other hand, in [36] Rigoli and Setti proved the following nonexistence
theorem:

Theorem 7. Let M be a complete manifold and u ∈ C1(M) be a solution
of

div
ϕ(|∇u|)∇u
|∇u|

= 0,

where ϕ ∈ C1((0,∞)) ∩ C0([0,∞)) satisfies the following conditions:

1) ϕ(0) = 0,

2) ϕ(t) > 0, for all t ≥ 0,

3) ϕ(t) ≤ Atδ, for all t ≥ 0,
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Asymptotic Dirichlet problem 817

for some positive constants A and δ. Assume that

(Vol(∂Br)
1

δ )−1 /∈ L1(∞),

then M is ϕ-parabolic i.e. u is constant.

Using this theorem, we also see that the curvature upper bound would
be sharp for the minimal graph equation in dimension n = 2. Notice that
δ = 1 for the minimal graph equation. We close this introduction with some
comments on the necessity of curvature lower bounds. Indeed, Ancona’s and
Borbély’s examples ([4], [7]) show that a (strictly) negative curvature upper
bound alone is not sufficient for the solvability of the asymptotic Dirichlet
problem for the Laplace equation. In [27], Holopainen generalized Borbély’s
result to the p-Laplace equation, and very recently, Holopainen and Ripoll
[28] extended these nonsolvability results to the operator Q (as defined in
(1.3)), in particular, to the minimal graph equation.

The plan of the paper is the following: Section 2 is devoted to preliminar-
ies. We recall some well-known facts on Cartan-Hadamard manifolds, Jacobi
equations, A-harmonic functions, the minimal graph equation, and Young
functions. In Section 3 we prove Theorem 4. We adopt the same strategy
as the one used in [45]. It is based on a Moser iteration procedure involving
a weighted Poincaré inequality. Finally, in Section 4 we prove Theorem 5
adapting to the minimal graph equation the method used in Section 3 for
A-harmonic functions. In this case since this equation does not satisfy (2.2),
some extra difficulties appear.

Acknowledgement. We would like to thank Joel Spruck for his help to
obtain the decay estimate for |∇ logW | in Lemma 23.

2. Preliminaries

2.1. Cartan-Hadamard manifolds

We recall that Cartan-Hadamard manifolds are complete simply connected
Riemannian n-manifolds, n ≥ 2, with nonpositive sectional curvature. Let
M be a Cartan-Hadamard manifold, ∂∞M the sphere at infinity, and M̄ =
M ∪ ∂∞M . Recall that the sphere at infinity is defined as the set of all
equivalence classes of unit speed geodesic rays in M ; two such rays γ1 and
γ2 are equivalent if supt≥0 d

(
γ1(t), γ2(t)

)
<∞. For each x ∈M and y ∈ M̄ \

{x} there exists a unique unit speed geodesic γx,y : R→M such that γx,y0 =
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x and γx,yt = y for some t ∈ (0,∞]. If v ∈ TxM \ {0}, α > 0, and R > 0, we
define a cone

C(v, α) = {y ∈ M̄ \ {x} : ^(v, γ̇x,y0 ) < α}

and a truncated cone

T (v, α,R) = C(v, α) \ B̄(x,R),

where ^(v, γ̇x,y0 ) is the angle between vectors v and γ̇x,y0 in TxM . All trun-
cated cones and open balls in M form a basis for the cone topology on
M̄ .

2.2. Jacobi equation

We use the curvature upper bound in order to prove a weighted Poincaré
inequality and to estimate from above the norm of the gradient of an angular
function. The curvature lower bound, in turn, is used to estimate the volume
form from above. All of these estimates will be given in terms of solutions to
a 1-dimensional Jacobi equation. If k : [0,∞)→ [0,∞) is a smooth function,
we denote by fk ∈ C∞

(
[0,∞)

)
the solution to the initial value problem

(2.1)


fk(0) = 0,

f ′k(0) = 1,

f ′′k = k2fk.

It follows that the solution fk is a nonnegative smooth function. Concerning
the curvature upper bound in (1.8) we have the following estimates:

Proposition 8. [12, Prop. 3.4] Suppose that f : [R0,∞)→ R, R0 > 0, is a
positive strictly increasing function satisfying the equation f ′′(r) = a2(r)f(r),
where

a2(r) ≥ 1 + ε

r2 log r
,

for some ε > 0 on [R0,∞). Then, for any 0 < ε̃ < ε, there exists R1 ≥ R0

such that, for all r ≥ R1,

f(r) ≥ r(log r)1+ε̃,
f ′(r)

f(r)
≥ 1

r
+

1 + ε̃

r log r
.
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2.3. A-harmonic functions and Perron’s method

In this section we define A-harmonic and A-superharmonic functions and
record their basic properties that will be relevant in the sequel. We refer to
[23] for the proofs and for the nonlinear potential theory of A-harmonic and
A-superharmonic functions.

Let Ω be an open subset of a Riemannian manifold M . Suppose that for
a.e. x ∈ Ω we are given a continuous map Ax : TxM → TxM such that the
map x 7→ Ax(Xx) is a measurable vector field whenever X is. We assume
further that there are constants 1 < p <∞ and 0 < α ≤ β <∞ such that
for a.e. x ∈ Ω, for all v, w ∈ TxM, v 6= w, and for all λ ∈ R \ {0} we have

〈Ax(v), v〉 ≥ α|v|p;
|Ax(v)| ≤ β|v|p−1;

〈Ax(v)−Ax(w), v − w〉 > 0;

Ax(λv) = λ|λ|p−2Ax(v).

(2.2)

We denote the set of such operators by Ap(Ω) and we say that A is of type
p. The constants α and β are called the structure constants of A.

A function u ∈W 1,p
loc (Ω) is called a (weak) solution of the equation

(2.3) − divAx(∇u) = 0

in Ω if

(2.4)

∫
Ω
〈Ax(∇u),∇ϕ〉 = 0

for all ϕ ∈ C∞0 (Ω). If |∇u| ∈ Lp(Ω), it is equivalent to require (2.4) for all
ϕ ∈W 1,p

0 (Ω) by approximation. Continuous solutions of (2.3) are called A-
harmonic functions (of type p). By the fundamental work of Serrin [41],
every solution of (2.3) has a continuous representative. In the special case
Ax(h) = |h|p−2h, A-harmonic functions are called p-harmonic and, in par-
ticular, if p = 2, we obtain the usual harmonic functions.

A function u ∈W 1,p
loc (Ω) is a subsolution of (2.3) in Ω if

−divAx(∇u) ≤ 0

weakly in Ω, that is ∫
Ω
〈Ax(∇u),∇ϕ〉 ≤ 0
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for all nonnegative ϕ ∈ C∞0 (Ω). A function v is called supersolution of (2.3)
if −v is a subsolution. Finally, a lower semicontinuous function u : Ω→
(−∞,+∞] that is not identically +∞ in any component of Ω is called A-
superharmonic if for every open D b Ω and for every h ∈ C(D̄) that is A-
harmonic in D, h ≤ u on ∂D implies h ≤ u in D.

A fundamental feature of (sub/super)solutions of (2.3) is the following
well-known comparison principle: If u ∈W 1,p(Ω) is a supersolution and v ∈
W 1,p a subsolution of (2.3) in Ω such that max(v − u, 0) ∈W 1,p

0 (Ω), then u ≥
v a.e. in Ω. The existence of A-harmonic functions is given by the following
result. Suppose that Ω bM is a relatively compact (nonempty) open set
and that θ ∈W 1,p(Ω). Then there exists a unique A-harmonic function u in
Ω, with u− θ ∈W 1,p

0 (Ω).
Given a function f ∈ C(∂∞M) the Dirichlet problem at infinity for

A-harmonic functions consists in finding a function u ∈ C(M̄) such that
A(u) = 0 in M and u|∂∞M = f. In order to solve the Dirichlet problem for
the A-harmonic functions, we will use Perron’s method. Let A ∈ Ap(M),
with p ∈ (1,∞). We begin by recalling the definition of the upper class of a
function f ∈ ∂∞M .

Definition 9. A function u : M → (−∞,∞] belongs to the upper class Uf
of f : ∂∞M → [−∞,∞] if

1) u is A-superharmonic in M ,

2) u is bounded from below, and

3) lim inf
x→x0

u(x) ≥ f(x0), for all x0 ∈ ∂∞M .

The function

Hf = inf{u : u ∈ Uf}

is called the upper Perron solution.

Theorem 10. One of the following is true:

1) Hf is A-harmonic in M ,

2) Hf ≡ ∞ in M ,

3) Hf ≡ −∞ in M .

Next we define A-regular points at infinity.
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Definition 11. A point x0 ∈ ∂∞M is called A-regular if

lim
x → x0

x∈M
Hf (x) = f(x0)

for all f ∈ C(∂∞M).

It is easy to see that the Dirichlet problem at infinity for A-harmonic
functions is uniquely solvable if every point at infinity is A-regular.

2.4. Minimal graph equation

Let Ω ⊂M be an open set. We say that a function u ∈W 1,1
loc (Ω) is a (weak)

solution of the minimal graph equation (1.2) if

(2.5)

∫
Ω

〈∇u,∇ϕ〉√
1 + |∇u|2

= 0

for every ϕ ∈ C∞0 (Ω). Note that the integral above is well-defined since√
1 + |∇u|2 ≥ |∇u| a.e.,

and therefore∫
Ω

∣∣〈∇u,∇ϕ〉∣∣√
1 + |∇u|2

≤
∫

Ω

|∇u||∇ϕ|√
1 + |∇u|2

≤
∫

Ω
|∇ϕ| <∞.

In fact, it is equivalent to require (2.5) for every ϕ ∈ W̊ 1,1
0 (Ω). Indeed, let

ϕ ∈ W̊ 1,1
0 (Ω) and let (ϕj) be a sequence in C∞0 (Ω) such that ∇ϕj → ∇ϕ in

L1(Ω). Supposing that (2.5) holds for all such ϕj , we get∣∣∣∣∣
∫

Ω

〈∇u,∇ϕ〉√
1 + |∇u|2

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ω

〈∇u,∇ϕ〉√
1 + |∇u|2

−
∫

Ω

〈∇u,∇ϕj〉√
1 + |∇u|2

∣∣∣∣∣
=

∣∣∣∣∣
∫

Ω

〈∇u,∇ϕ−∇ϕj〉√
1 + |∇u|2

∣∣∣∣∣
≤
∫

Ω

|∇u||∇ϕ−∇ϕj |√
1 + |∇u|2

≤
∫

Ω
|∇ϕ−∇ϕj | → 0

as j → 0. The following lemma guarantees the existence of (strong) solutions
of (1.2) with given boundary values.
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Lemma 12. Suppose that Ω bM is a smooth relatively compact open set
whose boundary has nonnegative mean curvature with respect to inwards
pointing unit normal field. Then for each f ∈ C2,α(Ω̄) there exists a unique
u ∈ C∞(Ω) ∩ C2,α(Ω̄) that solves the minimal graph equation (1.2) in Ω with
boundary values u|∂Ω = f |∂Ω.

Proof. This lemma follows from well-known techniques used in the continu-
ity method of elliptic PDE theory and therefore we just sketch the argument.
Set

V = {t ∈ [0, 1] : ∃u ∈ C2,α(Ω̄) such that M[u] = 0 in Ω and u|∂Ω = tf |∂Ω}.

We have V 6= ∅ since 0 ∈ V. Moreover, by the implicit function theorem, V
is open in [0, 1]. Given t ∈ V , let u be a solution of (1.2) such that u|∂Ω =
tf |∂Ω. Since constant functions are solutions of (1.2), we have supΩ̄ |u| ≤
max∂Ω |f | by the comparison principle (see e.g. [9, Lemma 1]. Also, since
∂Ω has nonnegative mean curvature with respect to inwards pointing unit
normal field, we may use classical logarithmic type barriers to prove that
max∂Ω |∇u| ≤ C where C is a constant that depends only on f and on Ω (see
e.g. [17, Section 4] for details). By [39, Lemma 3.1] we have maxΩ̄ |∇u| ≤ C
for some constant independent of u and t. Hölder estimates and theory of
linear elliptic PDEs imply that the C2,β norm of u is bounded by a constant
depending only on f and Ω for some 0 < β < 1. Then, if tn ∈ V converges
to t ∈ [0, 1] and un is a solution of (1.2) such that un|∂Ω = tnf |∂Ω, then
(un) contains a subsequence converging in the C2 norm on Ω̄ to a solution
u ∈ C2(Ω̄) of (1.2) in Ω such that u|∂Ω = tf |∂Ω. Regularity theory implies
that u ∈ C∞(Ω) ∩ C2,α(Ω̄). It follows that t ∈ V , so that V is closed and
hence V = [0, 1]. �

From now on we will mainly consider solutions of (1.2) that are at least
C2-smooth.

2.5. Young functions

Let φ : [0,∞)→ [0,∞) be a homeomorphism and let ψ = φ−1. Define Young
functions Φ and Ψ by setting, for each t ∈ [0,∞),

Φ(t) =

∫ t

0
φ(s)ds and Ψ(t) =

∫ t

0
ψ(s)ds.
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Then we have the Young inequality

ab ≤ Φ(a) + Ψ(b)

for all a, b ∈ [0,∞). The functions Φ and Ψ are said to form a complemen-
tary Young pair . Furthermore, Φ (and similarly Ψ) is a continuous, strictly
increasing, and convex function satisfying

lim
t→0+

Φ(t)

t
= 0 and lim

t→∞

Φ(t)

t
=∞.

Such Young functions are usually called N -functions (nice Young functions)
in the literature; see e.g. [31] for a more general definition of Young functions.

Following [45] we consider complementary Young pairs of a special type.
Suppose that a homeomorphism G : [0,∞)→ [0,∞) is a Young function that
is a diffeomorphism on (0,∞) and satisfies

(2.6)

∫ 1

0

1

G−1(t)
dt <∞,

and

(2.7) lim
t→0

tG′(t)

G(t)
= 1.

Then G(·1/p)p, with p ≥ 1, is also a Young function and we can define
F : [0,∞)→ [0,∞) so thatG(·1/p)p and F (·1/p) form a complementary Young
pair. The space of such functions F will be denoted by Fp. Note that if
F ∈ Fp, then λF ∈ Fp and F (λ·) ∈ Fp for every positive constant λ. It is
proved in [45] that Fp is non-empty. More precisely, we have the following:

Proposition 13. [45, Proposition 4.3] Fix ε0 ∈ (0, 1). There exists F ∈ Fp
such that

(2.8) F (t) ≤ tp+ε0 exp
(
−1
t

(
log
(
e+ 1

t

))−1−ε0

)
for all t ∈ [0,∞).

We omit the details of the proof of Proposition 13 and refer to [45]; see
also [8]. Here we just sketch the construction. The function F is obtained
by first choosing λ ∈ (1, 1 + ε0) and a homeomorphism H : [0,∞)→ [0,∞)
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that is diffeomorphic on (0,∞) and satisfies

H(t) =

{(
log 1

t

)−1 (
log log 1

t

)−λ
if t is small enough;

tp/ε0 if t is large enough,

and then setting G(t) =
∫ t

0 H(s)ds. Then G and G̃, G̃(t) = G(t1/p)p, are

Young functions. Let F̃ be the complementary Young function to G̃ and,
finally, define F by setting F (t) = cF̃ (tp) for a suitable positive constant c.

Since G is convex, we have G(t) ≥ ct for all t ≥ 1. Therefore G−1(t) ≤
ct for all t large enough and, consequently,

∫∞
0 1/G−1 =∞. Taking into

account (2.6) we conclude that the function γ, defined by

γ(t) =

∫ t

0

1

G−1(s)
ds,

is a homeomorphism [0,∞)→ [0,∞) that is a diffeomorphism on (0,∞).
Hence the same is true for its inverse

(2.9) ϕ = γ−1 : [0,∞)→ [0,∞).

We collect the properties of such a function ϕ into the following lemma.

Lemma 14. [45, Lemma 4.5] The function ϕ : [0,∞)→ [0,∞) is a home-
omorphism that is smooth on (0,∞) and satisfies

(2.10) G ◦ ϕ′ = ϕ,

and

(2.11) lim
t→0+

ϕ′′(t)ϕ(t)

ϕ′(t)2
= 1.

From now on, ϕ will be the function defined in (2.9) such that the
corresponding F ∈ Fp satisfies (2.8). We define an auxiliary function ψ =
(ϕ′)p−1ϕ. It is easy to see that ψ : [0,∞)→ [0,∞) is a homeomorphism that
is smooth on (0,∞). It follows from (2.11) that

(2.12) lim
t→0+

ψ′(t)

ϕ′(t)p
= p.

Consequently, for every δ > 0, there exists tδ > 0 such that

(2.13)
ψ′(t)

2p
≤ ϕ′(t)p ≤ (1 + δ)pψ′(t)

p
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and

(2.14)
ψ(t)p

ψ′(t)p−1
≤ (1 + δ)pϕ(t)p

pp−1

whenever t ∈ (0, tδ].

3. Dirichlet problem at infinity for A-harmonic functions

This section is devoted to the proof of Theorem 4. We assume that A ∈
Ap(M), where 1 < p <∞, and that α and β are the structural constants
of A as in 2.3. Throughout the section the function F ∈ Fp satisfies (2.8)
(see Proposition 13) and the function ϕ is related to G and F by (2.10)
as explained in 2.5. Furthermore, r stands for the distance function r(x) =
d(x, o).

We start with stating a Caccioppoli-type inequality that will be crucial
in the sequel.

Lemma 15. [45, Lemma 2.15] Suppose that Ψ: [0,∞)→ [0,∞) is a home-
omorphism that is smooth on (0,∞). Let U bM be an open, relatively com-
pact set and let η ≥ 0 be a Lipschitz function in U . Suppose that θ, u ∈
L∞(U) ∩W 1,p(U) are continuous functions and that u is A-harmonic in U .
Denote h = |u− θ| and suppose that

ηpΨ(h) ∈W 1,p
0 (U).

Then (∫
U
ηpΨ′(h)|∇u|p

)1/p

≤ β

α

(∫
U
ηpΨ′(h)|∇θ|p

)1/p

(3.1)

+
pβ

α

(∫
U

Ψp

(Ψ′)p−1
(h)|∇η|p

)1/p

.

The proof is a straightforward application of the A-harmonic equation
(2.4) for u with the test function f = ηpΨ((u− θ)+)− ηpΨ((u− θ)−). We
omit the details and refer to [45] for the proof. In Section 4 we prove a
Caccioppoli inequality for solutions of the minimal graph equation.

Combining the Caccioppoli inequality (3.1) with a local Sobolev inequal-
ity (see (3.2) below) and running a Moser-type iteration we obtain pointwise
estimates for the difference of an A-harmonic function and its boundary data
in sufficiently small balls in terms of certain integral quantities in bigger
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balls. Recall that a local Sobolev inequality holds on any Cartan-Hadamard
manifold. More precisely, there exist two constants rS > 0 and CS <∞ such
that

(3.2)

(∫
B
|η|n/(n−1)

)(n−1)/n

≤ CS
∫
B
|∇η|

for every ball B = B(x, rS) ⊂M and every function η ∈ C∞0 (B). Such an
inequality was obtained by Hoffman and Spruck in [24]; see also [15] and
[10]. The following lemma is proved in [45, Lemma 2.20]. Below Ω ⊂M is a
nonempty open set.

Lemma 16. [45, Lemma 2.20] Suppose that ‖θ‖L∞ ≤ 1. Suppose that s ∈
(0, rS) is a constant and x ∈M . Denote B = B(x, s). Suppose that u ∈
W 1,p
loc (M) is a function that is A-harmonic in the open set Ω ∩B, satisfies

u− θ ∈W 1,p
0 (Ω), infM θ ≤ u ≤ supM θ, and u = θ a.e. in M \ Ω. Then

ess sup
B(x,s/2)

ϕ (|u− θ|)p(n+1) ≤ c
∫
B
ϕ (|u− θ|)p ,

where the constant c is independent of x.

In Section 4 we will state and prove a similar estimate for solutions of
the minimal graph equation.

Next we show that the integral appearing in Lemma 16 can be estimated
from above by another integral that will be uniformly bounded provided
sectional curvatures of M are bounded as in Theorem 4.

Lemma 17. Let M be a Cartan-Hadamard manifold of dimension n ≥ 2.
Suppose that

K(P ) ≤ − 1 + ε

r(x)2 log r(x)
,

for some constant ε > 0, where K(P ) is the sectional curvature of any plane
P ⊂ TxM that contains the radial vector ∇r(x) and x is any point in M \
B(o,R0). Fix ε̃ ∈ (0, ε) and let R1 ≥ R0 be given by Proposition 8. Suppose
that U bM is an open, relatively compact set and that u is an A-harmonic
function in U , with u− θ ∈W 1,p

0 (U), where A ∈ Ap(M), with

(3.3) p <
nα

β
,

and θ ∈W 1,∞(M) is a continuous function, with ‖θ‖∞ ≤ 1. Then there ex-
ist a bounded C1-function C : [0,∞)→ [0,∞) and a constant c0 ≥ 1 that is
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independent of θ, U, and u such that∫
U
ϕ
(
|u− θ|/c0

)p(
log(1 + r) + C(r)

)
(3.4)

≤ c0 + c0

∫
U
F

(
c0|∇θ|r log(1 + r)

log(1 + r) + C(r)

)(
log(1 + r) + C(r)

)
.

Proof. We begin by proving a weighted Poincaré-type inequality. First of
all, we have

∆r ≥ n− 1

r
in M \ {o} since M is a Cartan-Hadamard manifold. Moreover, by applying
the standard Laplace comparison theorem and Proposition 8, we find that

∆r(x) ≥ (n− 1)

(
1

r(x)
+

1 + ε̃

r(x) log r(x)

)
whenever r(x) ≥ R1. Therefore

(3.5) r log(1 + r)∆r ≥ (n− 1) (log(1 + r) + E(r))

in M , where E : [0,∞)→ [0,∞) is a bounded C1-function satisfying

(3.6) E(r) =

{
0, if 0 ≤ r ≤ R1;
(1+ε̃) log(1+r)

log r , if r ≥ 2R1.

By the assumption (3.3), we can choose δ > 0 such that

(3.7) p <
nα

(1 + δ)2β
.

Denote h = |u− θ|/c0, where the constant c0 > 0 will be specified in due
course. Since −1 ≤ infU θ ≤ u ≤ supU θ ≤ 1 in U , we may assume that c0

is so large that ‖h‖∞ ≤ tδ, where tδ > 0 is a constant such that (2.13) and
(2.14) hold for all t ∈ (0, tδ].

Using (3.5) and integration by parts, we obtain

(n− 1)

∫
U
ϕ(h)p

(
log(1 + r) + E(r)

)
≤
∫
U
ϕ(h)pr log(1 + r)∆r = −

∫
U

〈
∇
(
ϕ(h)pr log(1 + r)

)
,∇r

〉
= −

∫
U
ϕ(h)p

(
r

1+r + log(1 + r)
)
− p

∫
U
r log(1 + r)ϕ(h)p−1ϕ′(h)〈∇h,∇r〉.
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This, together with Hölder’s inequality, gives rise to

n

∫
U
ϕ(h)p (log(1 + r) + C(r))

≤ p
∫
U
r log(1 + r)ϕ(h)p−1ϕ′(h)|∇h|

≤ p

(∫
U
|∇h|pϕ′(h)p

(
r log(1 + r)

)p(
log(1 + r) + C(r)

)p−1

)1/p

×
(∫

U
ϕ(h)p

(
log(1 + r) + C(r)

))(p−1)/p

,

where

(3.8) C(r) =
r

n(1 + r)
+

(n− 1)E(r)

n
.

To simplify notation, we set

(3.9) L(r) = log(1 + r) + C(r)

and

(3.10) w =
r log(1 + r)(

log(1 + r) + C(r)
)(p−1)/p

.

Hence

(3.11) n

(∫
U
ϕ(h)pL(r)

)1/p

≤ p
(∫

U
|∇h|pϕ′(h)pwp

)1/p

The gradient of w is given by
(3.12)

∇w = L(r)1/p

(
log(1 + r) + r

1+r

L(r)
+ (1

p − 1)
r log(1 + r)

(
1

1+r + C′(r)
)

L(r)2

)
∇r.

We claim that

(3.13) |∇w| ≤ L(r)1/p

for all r large enough, say r ≥ R2, and

(3.14) |∇w| ≤ c
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in B(o,R2). To prove (3.13), we first note that C′(r)r → 0 as r →∞, and
therefore

log(1 + r) +
r

1 + r
−
r log(1 + r)

(
1

1+r + C′(r)
)

L(r)
≥ 0

whenever r is large enough. We have, for r ≥ R2 ≥ R1,

0 ≤
log(1 + r) + r

1+r

L(r)
+ (1

p − 1)
r log(1 + r)

(
1

1+r + C′(r)
)

L(r)2

≤
log(1 + r) + r

1+r

L(r)

=
log(1 + r) + r

1+r

log(1 + r) + r
1+r + ( 1

n − 1) r
1+r + (1− 1

n) (1+ε̃) log(1+r)
log r

≤ 1

since (
1
n − 1

)
r

1 + r
+

(
1− 1

n

)
(1 + ε̃) log(1 + r)

log r

=

(
1− 1

n

)(
(1 + ε̃) log(1 + r)

log r
− r

1 + r

)
> 0.

Hence (3.13) follows. The estimate (3.14) holds since w is smooth in M \ {o}
and w(r)/r → 0 as r → 0.

Using the estimate |∇h| ≤ (|∇u|+ |∇θ|)/c0, Minkowski’s inequality, and
(2.13), we obtain(∫

U
|∇h|pϕ′(h)pwp

)1/p

(3.15)

≤ c−1
0

(∫
U

(
ϕ′(h)w|∇u|+ ϕ′(h)w|∇θ|

)p)1/p

≤ c−1
0

(∫
U
ϕ′(h)p|∇u|pwp

)1/p

+ c−1
0

(∫
U
ϕ′(h)p|∇θ|pwp

)1/p

≤ 1 + δ

c0p1/p

[(∫
U
ψ′(h)|∇u|pwp

)1/p

+

(∫
U
ψ′(h)|∇θ|pwp

)1/p
]
.

Applying the Caccioppoli inequality (3.1) with u and θ replaced by u/c0 and
θ/c0, respectively, to the first term on the right-hand together with (2.14),
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we obtain (∫
U
wpψ′(h)|∇u|p

)1/p

(3.16)

≤ β

α

(∫
U
wpψ′(h)|∇θ|p

)1/p

+
pβc0

α

(∫
U

ψp

(ψ′)p−1
(h)|∇w|p

)1/p

≤ β

α

(∫
U
wpψ′(h)|∇θ|p

)1/p

+
p1/pβc0(1 + δ)

α

(∫
U
ϕ(h)p|∇w|p

)1/p

.

Now combining (3.11), (3.15), and (3.16), we find

n

(∫
U
ϕ(h)pL(r)

)1/p

≤ p
(∫

U
|∇h|pϕ′(h)pwp

)1/p

≤ (1 + δ)p
1−1

p c−1
0

[(∫
U
ψ′(h)|∇u|pwp

)1/p

+

(∫
U
ψ′(h)|∇θ|pwp

)1/p
]

≤ (1 + δ)p1−1/pc−1
0

[
(1 + β

α)

(∫
U
ψ′(h)|∇θ|pwp

)1/p

+
p1/pβc0(1 + δ)

α

(∫
U
ϕ(h)p|∇w|p

)1/p
]

≤ (1 + δ)p1−1/pc−1
0 (1 + β

α)

(∫
U
ψ′(h)|∇θ|pwp

)1/p

+
pβ(1 + δ)2

α

(∫
U
ϕ(h)pL(r)

)1/p

+ C,

where in the last step we used (3.13) and (3.14) to estimate∫
U
ϕ(h)p|∇w|p =

∫
U∩B(o,R2)

ϕ(h)p|∇w|p +

∫
U\B(o,R2)

ϕ(h)p|∇w|p

≤ C̃ +

∫
U
ϕ(h)pL(r).

Since

p <
nα

(1 + δ)2β
,

it follows that there exists a constant C depending on p, n, α, β such that

(3.17)

∫
U
ϕ(h)pL(r) ≤ C

∫
U
ϕ′(h)p|∇θ|pwp + C0.
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Next, recalling that F (·1/p) and G(·1/p)p are complementary Young func-
tions, we have, for all x, y ≥ 0 and k > 0,

xy = kx(y/k) ≤ k
(
G(x1/p)p + F (k−1/py1/p)

)
(3.18)

= kG(x1/p)p + kF (k−1/py1/p).

The definition of w, previous inequalities (3.17), (3.18), and (2.10) yield∫
U
ϕ(h)pL(r) ≤ C

∫
U
ϕ′(h)pL(r)

(
|∇θ|r log(1 + r)

L(r)

)p
+ C0

≤ Ck
∫
U
G
(
ϕ′(h)

)p
L(r)

+ Ck

∫
U
F

(
k−1/p|∇θ|r log(1 + r)

L(r)

)
L(r) + C0

= Ck

∫
U
ϕ(h)pL(r)

+ Ck

∫
U
F

(
k−1/p|∇θ|r log(1 + r)

L(r)

)
L(r) + C0.

Taking k > 0 small enough, we finally obtain∫
U
ϕ(h)pL(r) ≤ Ck

1− Ck

∫
U
F

(
k−1/p|∇θ|r log(1 + r)

L(r)

)
L(r) +

C0

1− Ck
.

�

We are now in position to prove Theorem 4. In fact, we prove the fol-
lowing localized version concerning the A-regularity of a point x0 ∈ ∂∞M
which then implies Theorem 4 since the uniqueness statement follows from
the comparison principle.

Theorem 18. Let M be a Cartan-Hadamard manifold of dimension n ≥ 2.
Suppose that

(3.19) −
(
log r(x)

)2ε̄
r(x)2

≤ K(P ) ≤ − 1 + ε

r(x)2 log r(x)
,

for some constants ε > ε̄ > 0, where K(P ) is the sectional curvature of any
plane P ⊂ TxM that contains the radial vector ∇r(x) and x is any point
in a cone neighborhood U of x0 ∈ ∂∞M . Then x0 is A-regular for every
A ∈ Ap(M), with 1 < p < nα/β.
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Proof. Let f : ∂∞M → R be a continuous function. To prove that x0 is A-
regular, we need to show that

lim
x→x0

Hf (x) = f(x0).

Fix an arbitrary ε′ > 0. Let v0 = γ̇o,x0

0 be the initial vector of the geodesic
ray from o to x0. Furthermore, let δ ∈ (0, π) and R0 > 0 be such that
T (v0, δ, R0) ⊂ U and that |f(x1)− f(x0)| < ε′ for all x1 ∈ C(v0, δ) ∩ ∂∞M ;
see 2.1 for the notation. Next we fix ε̃ ∈ (ε̄, ε), where ε > ε̄ > 0 are the
constants in the curvature assumption (3.19). Let r1 > max(2, R1), where
R1 ≥ R0 is given by Proposition 8. We denote Ω = T (v0, δ, r1) ∩M and de-
fine θ ∈ C(M̄) by setting

θ(x) = min
(
1,max

(
r1 + 1− r(x), δ−1^o(x0, x)

))
.

Note that θ = 1 on ∂Ω. Let Ωj = Ω ∩B(o, j) for integers j > r1 and let uj
be the unique A-harmonic function in Ωj with uj − θ ∈W 1,p

0 (Ωj). It is clear
that each y ∈ ∂Ωj is A-regular and hence uj can be continuously extended
to ∂Ωj by setting uj = θ on ∂Ωj . Since 0 ≤ uj ≤ 1, the sequence (uj) is
equicontinuous, and therefore by the Ascoli-Arzelá theorem, there exists a
subsequence, still denoted by (uj), that converges locally uniformly to a
continuous function u : Ω̄→ [0, 1]. It follows that u is A-harmonic in Ω; see
e.g. [23, Chapter 6] for these boundary regularity and convergence results.
Next we prove that

(3.20) lim
x → x0

x∈Ω

u(x) = 0.

Denote θ̃ = θ/c0, ũj = uj/c0, and ũ = u/c0, where c0 is given by Lemma 17.
Fatou’s lemma and Lemma 17 applied to U = Ωj imply that∫

Ω
ϕ(|ũ− θ̃|)p =

∫
Ω
ϕ(|u− θ|/c0)p ≤ lim inf

j→∞

∫
Ωj

ϕ(|uj − θ|/c0)p(3.21)

≤ lim inf
j→∞

∫
Ωj

ϕ(|uj − θ|/c0)pL(r)

≤ c0 + c0

∫
Ω
F

(
c0|∇θ|r log(1 + r)

L(r)

)
L(r).

We will show at the end of the proof that the right-side in (3.21) is finite.
Meanwhile we extend each uj to a function uj ∈W 1,p

loc (M) ∩ C(M) by setting
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uj(y) = θ(y) for every y ∈M \ Ωj . Let x ∈ Ω and fix s ∈ (0, rS). If j is large
enough, ũj satisfies the assumption of Lemma 16 and hence

sup
B(x,s/2)

ϕ(|ũj − θ̃|)p(n+1) ≤ c
∫
B(x,s)

ϕ(|ũj − θ̃|)p.

Note that we may replace ess sup by sup because uj − θ is continuous in M .
The dominated convergence theorem implies that

sup
B(x,s/2)

ϕ(|ũ− θ̃|)p(n+1) = sup
B(x,s/2)

lim
j→∞

ϕ(|ũj − θ̃|)p(n+1)(3.22)

≤ lim sup
j→∞

sup
B(x,s/2)

ϕ(|ũj − θ̃|)p(n+1)

≤ c lim sup
j→∞

∫
B(x,s)

ϕ(|ũj − θ̃|)p

= c

∫
B(x,s)

ϕ(|ũ− θ̃|)p.

Let (xk) be a sequence of points in Ω so that xk → x0 as k →∞. Applying
the estimate (3.22) above with x = xk and a fixed s ∈ (0, rS) and assuming
that the right-side of (3.21) is finite we obtain

lim
k→∞

sup
B(xk,s/2)

ϕ(|ũ− θ̃|)p(n+1) ≤ c lim
k→∞

∫
B(xk,s)

ϕ(|ũ− θ̃|)p = 0.

Hence

lim
k→∞

|ũ(xk)− θ̃(xk)| = 0

and, consequently, (3.20) holds. Next we define w : M → R by

w(x) =

{
min

(
1, 2u(x)

)
, if x ∈ Ω;

1, if x ∈M \ Ω.

Then w is A-superharmonic in M (see [23, Lemma 7.2]) and hence, by the
definition of Hf , we have

Hf ≤ f(x0) + ε′ + 2(sup |f |)w.

Hence, by (3.20)

lim sup
x→x0

Hf (x) ≤ f(x0) + ε′.
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One can prove in a similar way that

lim inf
x→x0

Hf (x) ≥ f(x0)− ε′.

We deduce that

lim
x→x0

Hf (x) = f(x0),

and therefore x0 is A-regular.
To conclude the proof, it remains to show that

(3.23)

∫
Ω
F

(
c0|∇θ|r log(1 + r)

L(r)

)
L(r) <∞.

Recall that above Ω = T (v0, δ, r1) ∩M , with v0 = γ̇o,x0

0 . The integral (3.23)
will be estimated from above by using geodesic polar coordinates (r, v) for
points x ∈ Ω. Here r = r(x) ∈ [r1,∞) and v = γ̇o,x0 . Let λ(r, v) be the Jaco-
bian for these polar coordinates. We need to estimate λ and the function F
from above. To this end, let a, b : [0,∞)→ [0,∞) be smooth functions such
that they are constant in some neighborhood of 0,

−b2
(
r(x)

)
≤ K(P ) ≤ −a2

(
r(x)

)
for all x ∈ C(v0, δ) and for all 2-planes P ⊂ TxM containing the radial vector
∇r, and that

a2(t) =
1 + ε

t2 log t
,

b2(t) =
(log t)2ε̄

t2

for t ≥ R0. For x ∈ Ω, we denote by J(x) the supremum and by j(x) the
infimum of |V (r(x))| over all Jacobi fields V along γo,x that satisfy V0 = 0,
|V ′0 | = 1, and V ′0⊥γ̇

o,x
0 . By applying the Rauch comparison theorem we get

the estimates

j(x) ≥ fa(r(x));(3.24)

J(x) ≤ fb(r(x)),(3.25)

where fa and fb are the solutions to corresponding Jacobi equations (2.1);
see e.g. [29, Proposition 2.5]. Thus we have

(3.26) λ(r, v) ≤ fb(r)n−1
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for all points x = (r, v) ∈ Ω. We also recall from [44, Lemma 2] that

(3.27) |∇θ(x)| ≤ c

j(x)
≤ c

fa(r(x))

in Ω. It follows that there exists a constant c1 such that

(3.28)
c0|∇θ|r log(1 + r)

L(r)
=
c0|∇θ|r log(1 + r)

log(1 + r) + C(r)
≤ r

c1fa(r)

for all r large enough. Since the functions ϕ and F ∈ Fp were fixed so that
F satisfies (2.8), we have in particular, F ≤ F̃ , where

F̃ (s) = exp

(
−1

s

(
log

1

s

)−1−ε0

)

for all s small enough and ε0 ∈ (0, 1). In what follows, we assume that t0 ≥
R1 is a sufficiently large constant. For t ≥ t0, we define

Φ(t) =

(
t2F̃

(
t

c1fa(t)

)) 1

1−n

= t−
2

n−1 exp

(
1

n− 1

c1fa(t)

t

(
log

c1fa(t)

t

)−1−ε0

)
,

and thus

Φ′(t)

Φ(t)
=

−2t+ c1

(
1− (1 + ε0)

(
log c1fa(t)

t

)−1
)

(n− 1)t2

×
(
tf ′a(t)− fa(t)

)(
log

c1fa(t)

t

)−1−ε0

Straightforward computations, using Proposition 8, yield to(
tf ′a(t)

fa(t)
− 1

)
fa(t)

t
≥ (1 + ε̃)

(
log t

)ε̃
for all t ≥ R1. It follows that

Φ′(t)

Φ(t)
≥

2
(
log t

)ε̄
t

= 2b(t)
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for all t ≥ t0. Since b′(t)/b(t)2 → 0 as t→∞, we obtain

lim
t→∞

f ′b(t)

b(t)fb(t)
= 1

by [29, Lemma 2.3]. Therefore we have

Φ′(t)

Φ(t)
≥ 2b(t) ≥

f ′b(t)

fb(t)

for t ≥ t0. It follows that Φ(t) ≥ cfb(t), for all t ≥ t0. Thus we have

F

(
c0|∇θ(r, v)|r log(1 + r)

L(r)

)
L(r)λ(r, v)

= F

(
c0|∇θ(r, v)|r log(1 + r)

log(1 + r) + C(r)

)(
log(1 + r) + C(r)

)
λ(r, v)

≤ cF̃
(

r

c1fa(r)

)(
log(1 + r) + C(r)

)
Φ(r)n−1

= c
(
log(1 + r) + C(r)

)
r−2

for all x = (r, v) ∈ U ∩M outside a compact set. Since C is a bounded func-
tion, this shows that (3.23) holds and therefore concludes the proof of The-
orem 18. �

4. Dirichlet problem at infinity for the minimal graph
equation

In this section we will prove Theorem 5. We will use a slightly different
approach than the one adopted in the proof of Theorem 4 but the main
ingredients will be the same. However, to solve the Dirichlet problem at
infinity for the minimal graph equation, some extra difficulties appear. The
first one is the fact that the minimal graph operator does not satisfy (2.2).
Therefore, we need to adapt the previous Caccioppoli inequality proved in
Lemma 15. The second difficulty is linked to the fact that it may not be
possible, in general, to solve the minimal graph equation on the sets Ωj as
defined in the proof of Theorem 4.
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4.1. Caccioppoli inequality and some consequences

We begin this section with the following Caccioppoli-type inequality. In what
follows we use the customary notation W (x) =

√
1 + |∇u(x)|2 for a smooth

solution u of the minimal graph equation.

Lemma 19. Suppose that Ψ: [0,∞)→ [0,∞) is a homeomorphism that
is smooth on (0,∞). Let U bM be an open and relatively compact set.
Suppose that η ≥ 0 is a locally Lipschitz function on U \ {o}. Suppose that
θ, u ∈ L∞(U) ∩W 1,2(U) are continuous functions and that u ∈ C2(U) is a
solution of the minimal graph equation in U . Denote

h =
|u− θ|
ν

,

where ν > 0 is a constant, and suppose that

η2Ψ(h)W ∈W 1,2
0 (U).

Then we have

∫
U
η2Ψ′(h)|∇u|2 ≤ 4

∫
U
η2Ψ′(h)|∇θ|2 + 8ν2

∫
U

Ψ2

Ψ′
(h)|∇η|2(4.1)

+ 4ν2

∫
U
η2 Ψ2

Ψ′
(h)|∇ logW |2.

Proof. We begin by defining

f = νη2Ψ
(
(u− θ)+/ν

)
W − νη2Ψ

(
(u− θ)−/ν

)
W.

It is easy to see that f ∈W 1,2
0 (U) and its gradient is given by

∇f = η2Ψ′(h)W (∇u−∇θ) + 2νη sgn(u− θ)Ψ(h)W∇η
+ νη2 sgn(u− θ)Ψ(h)∇W.
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Using f as a test function in the minimal graph equation, we obtain that∫
U
η2Ψ′(h)|∇u|2 =

∫
U
η2Ψ′(h)〈∇u,∇θ〉 − 2ν

∫
U

sgn(u− θ)ηΨ(h)〈∇u,∇η〉

− ν
∫
U

sgn(u− θ)η2Ψ(h)〈∇ logW,∇u〉

≤
∫
U
η2Ψ′(h)|∇u||∇θ|+ 2ν

∫
U
ηΨ(h)|∇u||∇η|

+ ν

∫
U
η2Ψ(h)|∇u||∇ logW |.

We estimate the terms on the right-side by Young’s inequality with ε as∫
U
η2Ψ′(h)|∇u||∇θ| ≤ ε/2

∫
U
η2Ψ′(h)|∇u|2 + 1/(2ε)

∫
U
η2Ψ′(h)|∇θ|2,

2ν

∫
U
ηΨ(h)|∇u||∇η| ≤ ε

∫
U
η2Ψ′(h)|∇u|2 + ν2/ε

∫
U

Ψ2

Ψ′
(h)|∇η|2,

and

ν

∫
U
η2Ψ(h)|∇u||∇ logW | ≤ ε/2

∫
U
η2Ψ′(h)|∇u|2

+ ν2/(2ε)

∫
U
η2 Ψ2

Ψ′
(h)|∇ logW |2.

Choosing ε = 1/4 above proves the claim. �

Remark 20. As can be seen later in the proof of Lemma 22, the second
term

8ν2

∫
U

Ψ2

Ψ′
(h)|∇η|2

on the right-side of (4.1) is the only term that affects the dimension restric-
tion n ≥ 3 in Theorem 5. One could improve the factor 8ν2 to (4 + ε)ν2 for
any ε > 0 but, nevertheless, the dimension bound n ≥ 3 still remains.

Before we state and prove a counterpart of Lemma 16 for the minimal graph
equation, we recall from 2.5 that ϕ : [0,∞)→ [0,∞) is a homeomorphism,
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smooth on (0,∞), and satisfies (2.10), i.e.

G ◦ ϕ′ = ϕ,

where the homeomorphic Young function G : [0,∞)→ [0,∞) is, in particu-
lar, convex. Hence there exist positive constants t1 and c2 such that

(4.2) ϕ(t) ≤ 1, ϕ′(t) ≤ 1, and ϕ(t) ≤ c2ϕ
′(t)

for all t ∈ (0, t1].

Lemma 21. Let Ω = B(o,R) and suppose that θ ∈ C1(Ω) with ‖θ‖C1(Ω) ≤
C1. Let u ∈ C2(Ω) be a solution of the minimal graph equation in Ω such
that infΩ θ ≤ u ≤ supΩ θ and |∇ logW | ≤ C1. Fix s ∈ (0, rS), where rS is the
radius in the Sobolev inequality (3.2), and suppose that B = B(x, s) ⊂ Ω.
Then there exists a positive constant ν0 = ν0(ϕ,C1) such that for all ν ≥ ν0

sup
B(x,s/2)

ϕ (|u− θ|/ν)2(n+1) ≤ c3

∫
B
ϕ (|u− θ|/ν)2 ,

where c3 is a positive constant depending only on n, ν, s, CS , C1 and ϕ.

Proof. We denote κ = n/(n− 1), B/2 = B(x, s/2), and h = |u− θ|/ν, where
ν ≥ ν0 > 0 will be fixed in due course. For each j ∈ N we denote sj =
s(1 + κ−j)/2 and Bj = B(x, sj). Furthermore, let ηj be a Lipschitz func-
tion such that 0 ≤ ηj ≤ 1, ηj |Bj+1 ≡ 1, ηj |(M \Bj) ≡ 0, and that

|∇ηj | ≤
1

sj − sj+1
= 2nκj/s.

For Φ = ϕ2 and m ≥ 1 we have∣∣∇(η2
jΦ(h)m

)∣∣ ≤ 2ηjΦ(h)m|∇ηj |+mη2
jΦ
′(h)Φ(h)m−1|∇h|.

We claim that

(4.3)

(∫
Bj+1

Φ(h)κm

)1/κ

≤ c(κj +m+ κ2j/m)

∫
Bj

Φ(h)m−1

for all ν ≥ ν0, with ν0 = ν0(ϕ,C1) large enough. For every m, j ≥ 1, η2
jΦ(h)m

is a Lipschitz function supported in B̄j . By the Sobolev inequality (3.2) we
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first have(∫
Bj+1

Φ(h)κm
)1/κ

≤

(∫
Bj

(
η2
jΦ(h)m

)κ)1/κ

≤ CS
∫
Bj

∣∣∇(η2
jΦ(h)m

)∣∣
≤ 2CS

∫
Bj

ηjΦ(h)m|∇ηj |+ CS

∫
Bj

η2
j

(
Φm
)′

(h)|∇h|

≤ cκj
∫
Bj

Φ(h)m + CS/ν

∫
Bj

(
Φm
)′

(h)|∇θ|(4.4)

+ CS/ν

∫
Bj

η2
j

(
Φm
)′

(h)|∇u|.

Next we use the assumption

−C1 ≤ inf
Ω
θ ≤ u ≤ sup

Ω
θ ≤ C1

to observe that |u− θ| ≤ 2C1. Hence, by (4.2), we can choose ν0 large enough
so that

ϕ(h) ≤ 1, ϕ′(h) ≤ 1, and ϕ(h) ≤ c2ϕ
′(h)

for ν ≥ ν0. Consequently,

(4.5) Φ(h) ≤ 1, Φ′(h) ≤ 2, and Φ(h) ≤ c2
2 Φ′(h).

We obtain estimates

(4.6)

∫
Bj

Φ(h)m ≤
∫
Bj

Φ(h)m−1

and

(4.7)

∫
Bj

(
Φm
)′

(h)|∇θ| = m

∫
Bj

Φ(h)m−1Φ′(h)|∇θ| ≤ 2mC1

∫
Bj

Φ(h)m−1.

We estimate the third term on the right-side of (4.4) first as∫
Bj

η2
j

(
Φm
)′

(h)|∇u| ≤
∫
Bj

η2
j

(
Φm
)′

(h)(1 + |∇u|2)(4.8)

≤ 2m

∫
Bj

Φ(h)m−1 +

∫
Bj

η2
j

(
Φm
)′

(h)|∇u|2.
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Next we notice that η2
jΦ(h)mW ∈W 1,2

0 (Bj) since supp ηj ⊂ B̄j . Thus we
may apply the Caccioppoli-type inequality (4.1) with Ψ = Φm to obtain∫

Bj

η2
j

(
Φm
)′

(h)|∇u|2 ≤ 4

∫
Bj

η2
j (Φ

m)′(h)|∇θ|2 + 8ν2

∫
Bj

Φ2m

(Φm)′
(h)|∇ηj |2

+ 4ν2

∫
Bj

η2
j

Φ2m

(Φm)′
(h)|∇ logW |2

≤ c(m+ κ2j/m+ 1/m)

∫
Bj

Φ(h)m−1.(4.9)

Now the estimate (4.3) follows by inserting estimates (4.6)–(4.9) into (4.4).
We apply (4.3) with m = mj + 1, where mj = (n+ 1)κj − n. Since mj+1 =
κ(mj + 1), (4.3) takes the form(∫

Bj+1

Φ(h)mj+1

)1/κ

≤ Cκj
∫
Bj

Φ(h)mj .

By denoting

Ij =

(∫
Bj

Φ(h)mj

)1/κj

,

we can write the previous inequality as

Ij+1 ≤ C1/κjκj/κ
j

Ij .

Since

lim sup
j→∞

Ij ≥ lim
j→∞

(∫
B/2

Φ(h)mj

)(n+1)/mj

= sup
B/2

Φ(h)n+1,

we finally get

sup
B/2

Φ(h)n+1 ≤ lim sup
j→∞

Ij ≤ CnκSI0 ≤ c
∫
B

Φ(h),

where

S =

∞∑
j=0

jκ−j <∞.

�
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Next we will prove the counterpart of Lemma 17. We point out that some
extra difficulties will appear due to the presence of |∇ logW | in the right-
side of the Caccioppoli inequality (4.1). Moreover, we have to assume that
the dimension of M is at least 3. Let us recall the definitions of the bounded
C1-function C : [0,∞)→ [0,∞) from (3.8) and (3.6) and functions

L(r) = log(1 + r) + C(r)

and

w =
r log(1 + r)√

L(r)
.

from (3.9) and (3.10) (with p = 2), respectively.

Lemma 22. Let M be a Cartan-Hadamard manifold of dimension n ≥ 3.
Suppose that

K(P ) ≤ − 1 + ε

r(x)2 log r(x)
,

for some constant ε > 0, where K(P ) is the sectional curvature of any plane
P ⊂ TxM that contains the radial vector ∇r(x) and x is any point in M \
B(o,R0). Fix ε̃ ∈ (0, ε) and let R1 ≥ R0 be given by Proposition 8. Let U =
B(o,R), with R > R1, and suppose that u ∈ C2(Ū) is the unique solution
of the minimal graph equation (1.2) in U , with u|∂U = θ|∂U , where θ ∈
C∞(M), with ‖θ‖∞≤C. Furthermore, suppose that |∇ logW (x)|≤W

(
r(x)

)
,

where W : [0,∞)→ [0,∞) is a continuous function that is independent of u,
and W(r) = o(1/r) as r →∞. Then there exists a constant c4 ≥ 1 that is
independent of u such that

(4.10)

∫
U
ϕ
(
|u− θ|/c4

)2
L(r) ≤ c4 + c4

∫
U
F

(
c4|∇θ|r log(1 + r)

L(r)

)
L(r).

Proof. As in the proof of Lemma 17 we denote h = |u− θ|/ν, where ν ≥ ν0

will be fixed later. Recall from (3.11) with p = 2 that

n

(∫
U
ϕ(h)2L(r)

)1/2

≤ 2

(∫
U
|∇h|2ϕ′(h)2w2

)1/2

.
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We estimate the right-side as

2

(∫
U
|∇h|2ϕ′(h)2w2

)1/2

(4.11)

≤ 2/ν

(∫
U

(
ϕ′(h)|∇u|w + ϕ′(h)|∇θ|w

)2)1/2

≤ 2/ν

(∫
U
ϕ′(h)2|∇u|2w2

)1/2

+ 2/ν

(∫
U
ϕ′(h)2|∇θ|2w2

)1/2

.

Let δ ∈ (0, 1/1000) and suppose that ν is so large that ‖h‖∞ ≤ tδ, where
tδ > 0 is a constant such that (2.13) and (2.14) hold for all t ∈ (0, tδ] with
p = 2. Then by the Caccioppoli inequality (4.1), (2.13), and (2.14), the first
term on the right-side of (4.11) can be estimated from above as

2/ν

(∫
U
ϕ′(h)2|∇u|2w2

)1/2

≤
√

2(1 + δ)/ν

(∫
U
ψ′(h)|∇u|2w2

)1/2

≤
√

2(1 + δ)/ν

(
4

∫
U
ψ′(h)|∇θ|2w2 + 8ν2

∫
U

ψ2

ψ′
(h)|∇w|2

+ 4ν2

∫
U

ψ2

ψ′
(h)|∇ logW |2w2

)1/2

≤
√

2(1 + δ)/ν

(
4

∫
U
ψ′(h)|∇θ|2w2 + 4ν2(1 + δ)2

∫
U
ϕ(h)2|∇w|2

+ 2ν2(1 + δ)2

∫
U
ϕ(h)2|∇ logW |2w2

)1/2

≤
√

2(1 + δ)/ν

(
16

∫
U
ϕ′(h)2|∇θ|2w2 + 4ν2(1 + δ)2

∫
U
ϕ(h)2|∇w|2

+ 2ν2(1 + δ)2

∫
U
ϕ(h)2|∇ logW |2w2

)1/2

≤ 4
√

2(1 + δ)/ν

(∫
U
ϕ′(h)2|∇θ|2w2

)1/2

+
√

8(1 + δ)2

(∫
U
ϕ(h)2|∇w|2

)1/2

+ 2(1 + δ)2

(∫
U
ϕ(h)2|∇ logW |2w2

)1/2

.

Taking into account the upper bounds (3.13) and (3.14) for |∇w| we obtain∫
U
ϕ(h)2|∇w|2 ≤ c+

∫
U
ϕ(h)2L(r),
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and therefore

(n−
√

8(1 + δ)2)

(∫
U
ϕ(h)2L(r)

)1/2

(4.12)

≤ 4
√

2(1 + δ) + 2

ν

(∫
U
ϕ′(h)2|∇θ|2w2

)1/2

+ 2(1 + δ)2

(∫
U
ϕ(h)2|∇ logW |2w2

)1/2

+ C.

Next we apply the complementary Young functions F (
√
·) and G(

√
·)2 as in

the proof of Lemma 17 to estimate the first term on the right-side of (4.12)

∫
U
ϕ′(h)2|∇θ|2w2 =

∫
U
ϕ′(h)2L(r)

(
|∇θ|r log(1 + r)

L(r)

)2

≤ k
∫
U
G
(
ϕ′(h)

)2
L(r) + k

∫
U
F

(
|∇θ|r log(1 + r)√

kL(r)

)
L(r)

= k

∫
U
ϕ(h)2L(r) + k

∫
U
F

(
|∇θ|r log(1 + r)√

kL(r)

)
L(r)

for all k > 0. By the assumption |∇ logW | = o(1/r) we may estimate the
second term on the right-side of (4.12) as

∫
U
ϕ(h)2|∇ logW |2w2 =

∫
U
ϕ(h)2L(r)

(
|∇ logW |r log(1 + r)

log(1 + r) + C(r)

)2

≤ δ
∫
U
ϕ(h)2L(r) + Cδ.

Choosing k > 0 small enough and c4 = ν large enough we finally obtain
(4.10). �

4.2. Solving the asymptotic Dirichlet problem with Lipschitz
boundary values

Since the asymptotic boundary ∂∞M is homeomorphic to the unit sphere
Sn−1 ⊂ ToM , we may interpret the given boundary value function f ∈
C(∂∞M) as a continuous function on Sn−1. In this section we solve the
asymptotic Dirichlet problem for (1.2) with Lipschitz continuous boundary
values f ∈ C(Sn−1). First we construct an extension of f as in [26]. We
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assume that, for all x ∈M and for all 2-planes P ⊂ TxM ,

(4.13) − b2
(
r(x)

)
≤ K(P ) ≤ −a2

(
r(x)

)
,

where a, b : [0,∞)→ [0,∞) are smooth functions that are constant in some
neighborhood of 0 and

a2(t) =
1 + ε

t2 log t
,

b2(t) =
(log t)2ε̄

t2

for t ≥ R0. We identify ∂∞M with the unit sphere Sn−1 ⊂ ToM and assume
that f : Sn−1 → R is L-Lipschitz. We extend f radially to a continuous func-
tion θ̃ on M \ {o}. The Lipschitz continuity of f and the curvature upper
bound imply that

osc(θ̃, B(x, 3)) ≤ cL

fa(r(x))

for x ∈M \ {o}, where fa is the solution to the Jacobi equation (2.1). Next
we will define a smooth function θ on M such that

(4.14) lim
x→ξ

θ(x) = f(ξ),

for every ξ ∈ ∂∞M and that first and second order derivatives of θ are
controlled. In order to construct θ, we first fix a maximal 1-separated set Q =
{q1, q2, . . .} ⊂M \ {o}. For each x ∈M , we write Qx = Q ∩B(x, 3). The
curvature lower bound implies that

cardQx ≤ c

for some constant c independent of x. We then define θ as

(4.15) θ(x) =
∑
qi∈Q

θ̃(qi)ϕi(x),

where {ϕi} is a partition of the unity subordinate to {B(qi, 3)} defined
as follows. First fix a C∞-function ζ : [0,∞)→ [0, 1] such that ζ|[0, 1] =
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1, ζ|[2,∞[= 0, and

max{|ζ ′(t)|, |ζ ′′(t)|} ≤ cχ[1,2](t).

For qi ∈ Q and x ∈M , let ηi(x) = ζ
(
d(x, qi)

)
and finally define

ϕi(x) =
ηi(x)∑
j ηj(x)

.

Following [26], one can easily check that θ satisfies all the required properties.
Moreover, the gradient of θ satisfies

(4.16) |∇θ|(x) ≤ cL

fa(r(x))
,

for all r(x) ≥ 1.
The next lemma is devoted to proving the decay assumption on

∇ logW (x) used above in Lemma 22. We will use ideas from [18, Section 4]
by Ding, Jost, and Xin. We are grateful to J. Spruck for his help to obtain
the decay estimate.

Lemma 23. Let M be a Cartan-Hadamard manifold satisfying the curva-
ture assumption (4.13) for all 2-planes P ⊂ TxM . Suppose that θ ∈ C(M̄) ∩
C∞(M) is an extension of a Lipschitz function f ∈ C(∂∞M) as in (4.15).
Let Ω = B(o, S) and let u ∈ C∞(Ω) ∩ C(Ω̄) be the unique solution of (1.2) in
Ω with u|∂Ω = θ|∂Ω. Then there exists a continuous function W : [0,∞)→
[0,∞) that is independent of S such that W(r) = o(1/r) as r →∞ and

(4.17) |∇ logW (x)| ≤ W
(
r(x)

)
for x ∈ Ω.

Proof. Since sectional curvatures are bounded from below by a negative
constant and |u| ≤ max∂∞M |f |, we have

max
Ω̄
|∇u| ≤ C,

with C independent of the radius S. This estimate is obtained by using
classical logarithmic type barriers to obtain boundary gradient estimates
and then applying [39, Lemma 3.1]. In local coordinates x = (x1, . . . , xn)
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the minimal graph equation can be written as

∂j

(
√
σ

σijui√
1 + |∇u|2

)
= 0,

where {∂j} is the associated coordinate frame, σijdx
idxj is the Riemannian

metric, σ = det(σij), and (σij) = (σij)
−1. Differentiating the equation in the

direction ∂k and setting w = ∂ku, we see that w satisfies

L(w) + ∂jf
j
k = 0,

where L is defined by

L(w) = ∂j

(
σ√

1 + |∇u|2

(
σij − uiuj

1 + |∇u|2

)
wi

)
,

with ui = σijuj = σij∂ju, and

f jk =
ui√

1 + |∇u|2
∂k(
√
σσij)− 1

2

√
σσij

uiupuq

(1 + |∇u|2)
3

2

∂kσ
pq.

Fix p ∈M and denote R = d(o, p) and

ρ = ρ(R) =

(
R

(logR)ε̄

)2/3

so that

ρ̃ :=
R

(logR)ε̄ρ
→∞

as R→∞. We claim that there are positive constants α′, θ1 ∈ (0, 1) and C
such that there exist harmonic coordinates (x1, . . . , xn) on B(p, θ1ρ) satis-
fying

(σij) ≥ 1/C,(4.18)

σij +
R

(logR)ε̄ρ
|∇σij |+

(
(logR)ε̄ρ

R

)−1−α′

[∇σij ]α′,B(p,θρ) ≤ C,

where

[ϕ]α′,B(p,θ1ρ) = sup
x, y ∈ B(p, θ1ρ)

x 6=y

|ϕ(x)− ϕ(y)|
d(x, y)α′

.

Since we are interested in the asymptotic behavior of ∇ logW we may as-
sume without loss of generality that R is so large that R− ρ ≥ R/2 ≥ R0.
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Hence we have

|Riem | ≤ c(logR)2ε̄

R2

for all sectional curvatures in B(p, ρ). By the standard volume comparison
theorem we obtain

Vol
(
B(p, ρ)

)
≤ Cρne

(n−1)(logR)ε̄ρ

R .

It follows that

‖Riem‖Ln/2(B(p,ρ)) ≤ C
(

(logR)ε̄ρ

R

)2

,

and, for q > n,

ρ2−2n/q ‖Ric‖Lq/2(B(p,ρ)) ≤ C
(

(logR)ε̄ρ

R

)2

.

Then, using these last two estimates, [46, Theorem 7.1] applies and gives the
existence of the harmonic coordinates described above. Using this system of
coordinates, we will prove that ∇u is uniformly Hölder.

Without loss of generality, we may assume that S, the radius of Ω, is
greater than 2R. Let s ≤ θ1ρ/4 and recall that

ρ̃ =
R

(logR)ε̄ρ
.

We define M4(s) = supB(p,4s)w, m4(s) = infB(p,4s)w, M1(s) = supB(p,s)w,
and m1(s) = infB(p,s)w. Using (4.18) and the well-known formula for the
derivative of the determinant it is easily seen that

|f jk | ≤
C

ρ̃

on B(p, θ1ρ). Next applying the weak Harnack inequality [22, Theorem 8.18],
we have

(4.19)
1

sn

∫
B(p,2s)

(M4(s)− w) ≤ C (M4(s)−M1(s) + s/ρ̃) ,

and

(4.20)
1

sn

∫
B(p,2s)

(w −m4(s)) ≤ C (m1(s)−m4(s) + s/ρ̃) .
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Denote w(s) = M1(s)−m1(s). Since Vol
(
B(p, 2s)

)
≥ C1s

n, for some con-
stant C1, using (4.19) and (4.20), we have

C1w(4s) ≤
Vol
(
B(p, 2s))

)
sn

w(4s) ≤ C(w(4s)− w(s) + 2s/ρ̃).

This implies that there exists γ ∈ (0, 1) such that, for all s ∈ [0, θ1ρ/4],

w(s) ≤ γw(4s) + 2s/ρ̃.

Using [22, Lemma 8.23] (notice that ρ̃→∞ as R→∞), we get that there
exist α ∈ (0, 1) and a positive constant C such that

‖∇u‖Cα(B(p,θ1ρ)) ≤ Cρ̃−α.

Then the scaling invariant Schauder estimates imply that there exists a
constant C depending on α such that we have

(4.21) sup
B(p,θ1ρ/2)

|Diu| ≤ Cρ−i sup
B(p,θ1ρ)

|u|, for i = 1, 2.

Since supB(p,θ1ρ) |u| ≤ max∂∞M |f | and

|∇ logW | = |∇〈∇u,∇u〉|
2
√

1 + |∇u|2
≤ |∇〈∇u,∇u〉|,

the claim (4.17) follows immediatelly from (4.21) by our choice of

ρ =

(
R

(logR)ε̄

)2/3

.
�

We are now ready to solve the asymptotic Dirichlet problem with Lipschitz
boundary values.

Lemma 24. Let M be a Cartan-Hadamard manifold of dimension n ≥ 3
satisfying the curvature assumption (1.8) for all 2-planes P ⊂ TxM , with x ∈
M \B(o,R0). Suppose that f ∈ C

(
∂∞M

)
is L-Lipschitz when interpreted as

a function on Sn−1 ⊂ ToM . Then the asymptotic Dirichlet problem for the
minimal graph equation (1.2) is uniquely solvable with boundary values f .

Proof. Let θ ∈ C(M̄) ∩ C∞(M) be the extension of the given boundary data
f ∈ C(∂∞M) defined as above. We exhaust M by an increasing sequence
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of geodesic balls Bk = B(o, k), k ∈ N. Hence there exist smooth solutions
uk ∈ C(B̄k) of the minimal graph equationdiv

(
∇uk√

1 + |∇uk|2

)
= 0, in Bk,

uk|∂Bk = θ.

Then

−max
x∈M
|θ(x)| ≤ uk ≤ max

x∈M
|θ(x)|

in Bk by the comparison principle. Standard arguments involving interior
gradient estimates [42, Theorem 1.1] and (regularity) theory of elliptic PDEs
imply that there exists a subsequence, still denoted by uk, that converges in
C2

loc(M) to a solution u ∈ C∞(M) of the minimal graph equation. Therefore
the proof reduces to prove that u extends continuously to ∂∞M and sat-
isfies u|∂∞M = f . For each k, let Wk =

√
1 + |∇uk|2. Then by Lemma 23,

|∇ logWk(x)| ≤ W
(
r(x)

)
, with W(r) = o(1/r) as r →∞. Applying Lemma

22 and Fatou’s lemma and taking into account (3.27) we obtain as in the
proof of Theorem 18 that∫

M
ϕ (|u− θ|/ν)2 ≤ lim inf

k→∞

∫
B(o,k)

ϕ (|u− θ|/ν)2(4.22)

≤ ν + ν

∫
M
F

(
ν|∇θ|r log(1 + r)

L(r)

)
L(r) <∞.

By Lemma 21, we then get

lim
x→ξ

sup
B(x,s/2)

ϕ (|u− θ|/ν)2(n+1) = 0

for every ξ ∈ ∂∞M . Hence u extends continuously to ∂∞M and satisfies
u|∂∞M = f . �

4.3. Solving the Dirichlet problem with continuous boundary
values

Proof of Theorem 5. Let f ∈ C(∂∞M). Again we identify ∂∞M with the
unit sphere Sn−1 ⊂ ToM . Let (fi) be a sequence of Lipschitz functions on
Sn−1 such that fi → f uniformly on Sn−1. By the previous Lemma 24 there
exist solutions ui ∈ C(M̄) ∩ C∞(M) of the minimal graph equation (1.2)
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with ui = fi on ∂∞M . By the maximum principle ,

sup
M
|ui − uj | = max

∂∞M
|fi − fj |,

and applying the interior gradient estimate [42, Theorem 1.1], we conclude
that the sequence (ui) converges in C(M̄) ∩ C2

loc(M) to a function u ∈ C(M̄)
that is also a solution to (1.2) in M and u = f on ∂∞M . By regularity
theory u ∈ C∞(M). To prove the uniqueness, suppose that u and v are both
solutions of (1.2), continuous in M̄ , with u = v on ∂∞M , and u(y) > v(y) for
some y ∈M . Let δ =

(
u(y)− v(y)

)
/2 and let U be the y-component of the

set {x ∈M : u(x) > v(x) + δ}. Then U is a relatively compact domain and
u = v + δ on ∂U . It follows that u = v + δ in U which leads to a contradiction
since y ∈ U . �
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Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 3, 385–393.



i
i

“3-Holopainen” — 2019/9/25 — 18:12 — page 853 — #45 i
i

i
i

i
i

Asymptotic Dirichlet problem 853

[20] P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46
(1973), 45–109.

[21] J. A. Gálvez and H. Rosenberg, Minimal surfaces and harmonic dif-
feomorphisms from the complex plane onto certain Hadamard surfaces,
Amer. J. Math. 132 (2010), no. 5, 1249–1273.

[22] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equa-
tions of Second Order, Classics in Mathematics. Springer-Verlag, Berlin,
(2001). Reprint of the 1998 edition.
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[31] A. Kufner, O. John, and S. Fuč́ık, Function Spaces, Noordhoff Interna-
tional Publishing, Leyden; Academia, Prague, (1977). Monographs and
Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis.

[32] P. March, Brownian motion and harmonic functions on rotationally
symmetric manifolds, Ann. Probab. 14 (1986), no. 3, 793–801.



i
i

“3-Holopainen” — 2019/9/25 — 18:12 — page 854 — #46 i
i

i
i

i
i

854 J.-B. Casteras, I. Holopainen, and J. B. Ripoll

[33] W. H. Meeks and H. Rosenberg, The theory of minimal surfaces in
M × R, Comment. Math. Helv. 80 (2005), no. 4, 811–858.

[34] R. W. Neel, Brownian motion and the Dirichlet problem at infinity
on two-dimensional Cartan-Hadamard manifolds, Potential Anal. 41
(2014), no. 2, 443–462.

[35] B. Nelli and H. Rosenberg, Minimal surfaces in H2 × R, Bull. Braz.
Math. Soc. (N.S.) 33 (2002), no. 2, 263–292.

[36] M. Rigoli and A. G. Setti, Liouville type theorems for φ-subharmonic
functions, Rev. Mat. Iberoamericana 17 (2001), no. 3, 471–520.

[37] J. Ripoll and M. Telichevesky, Complete minimal graphs with pre-
scribed asymptotic boundary on rotationally symmetric Hadamard sur-
faces, Geom. Dedicata 161 (2012), 277–283.

[38] J. Ripoll and M. Telichevesky, Regularity at infinity of Hadamard man-
ifolds with respect to some elliptic operators and applications to asymp-
totic Dirichlet problems, Trans. Amer. Math. Soc. 367 (2015), no. 3,
1523–1541.

[39] H. Rosenberg, F. Schulze, and J. Spruck, The half-space property and
entire positive minimal graphs in M × R, J. Differential Geom. 95
(2013), no. 2, 321–336.

[40] R. Schoen and S.-T. Yau, Lectures on Harmonic Maps, Conference Pro-
ceedings and Lecture Notes in Geometry and Topology, II. International
Press, Cambridge, MA, (1997).

[41] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta
Math. 111 (1964), 247–302.

[42] J. Spruck, Interior gradient estimates and existence theorems for con-
stant mean curvature graphs in Mn ×R, Pure Appl. Math. Q. 3 (2007),
no. 3 (Special Issue: In honor of Leon Simon Part 2), 785–800.

[43] D. Sullivan, The Dirichlet problem at infinity for a negatively curved
manifold, J. Differential Geom. 18 (1983), no. 4, 723–732 (1984).
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[45] A. Vähäkangas, Dirichlet Problem on Unbounded Domains and at Infin-
ity, Reports in Mathematics, Preprint 499, Department of Mathematics
and Statistics, University of Helsinki, (2009).



i
i

“3-Holopainen” — 2019/9/25 — 18:12 — page 855 — #47 i
i

i
i

i
i

Asymptotic Dirichlet problem 855

[46] D. Yang, Convergence of Riemannian manifolds with integral bounds on
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