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A minimum principle for Lagrangian

graphs
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The classical minimum principle is foundational in convex and
complex analysis and plays an important rôle in the study of the
real and complex Monge–Ampère equations. This note establishes
a minimum principle in Lagrangian geometry. This principle re-
lates the classical Lagrangian angle of Harvey–Lawson and the
space-time Lagrangian angle introduced recently by Rubinstein–
Solomon. As an application, this gives a new formula for solu-
tions of the degenerate special Lagrangian equation in space-time
in terms of the (time) partial Legendre transform of a family of so-
lutions of obstacle problems for the (space) non-degenerate special
Lagrangian equation.

1. Introduction

Suppose that f is a convex function on R× Rn. Then

g(x) := inf
s∈R

f(s, x)

is either identically −∞, or else a convex function on Rn [10, Theorem 5.7],[7,
Theorem 1.3.1]. This is often referred to as the “minimum principle” for
convex functions. If we replace “convex” with “plurisubharmonic” and R by
C this is not true in general. An important situation in which this is true was
described by Kiselman in the 70’s, and we now state the simplest version of
his theorem. Let I ⊂ R be an open interval and denote by

S := I +
√
−1R ⊂ C

the strip associated to I. Denote by s the coordinate on I and by τ :=
s+
√
−1t the complex coordinate on S.
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858 T. Darvas and Y. A. Rubinstein

Theorem 1.1. (Kiselman’s principle [6]) Let D ⊂ Cn be a domain. If v ∈
PSH(S ×D) is such that v(s+

√
−1t, z) = v(s, z) for all s ∈ I, then

(1) v(z) = inf
τ∈S

v(τ, z)

is either identically −∞, or else plurisubharmonic on D.

Commonly, the supremum of a family of subsolutions of an equation (in
this case, plurisubharmonic functions are subsolutions for the homogeneous
complex Monge–Ampère equation) is again a subsolution. The unexpected
feature of this result is that the same can be said about an infimum. As one
might expect, this has important implications to certain partial differential
equations (PDE) and (pluri)potential theory [6, 7].

One natural way to generalize Kiselman’s principle would be to con-
sider classes of functions other than convex or plurisubharmonic functions.
A natural candidate is given by the notion of a subequation introduced by
Harvey–Lawson, and in a different guise by Slodkowski [4, 8, 13]. A sube-
quation is, roughly, a class of functions that serve as subsolutions for an
elliptic PDE of second order. However, it turns out that a simpleminded
generalization is false for general subequations.

What we achieve in this note is a minimum principle for a particular
subequation of interest in Lagrangian geometry. The result is stated in The-
orem 3.1. The interest in this subequation comes from the associated PDE.
In the case of convex/plurisubharmonic functions the associated equation
is the homogeneous real/complex Monge–Ampère equation, and the mini-
mum/Kiselman principle has important implications to the study of its so-
lutions, as shown recently by Ross–Witt Nyström and the authors [1, 11]. In
the case studied in this article, the associated equation is the degenerate spe-
cial Lagrangian equation (DSL) introduced recently by Rubinstein–Solomon
[12]. Inspired by the main result of [1], we show how the minimum principle
established in this article can be applied to the study of the DSL. In partic-
ular, in Theorem 4.4 we derive a new formula for the weak solutions of the
DSL constructed in [12, Theorem 1.2].

Our results can be viewed in the framework of a program initiated in
[12] to develop a potential theory for the (degenerate) special Lagrangian
equation and weak geodesics in the space of positive Lagrangians with a
view towards the strong Arnold conjecture [12, §2] and as part of a program
initiated by Solomon [14, 15] (see also [16]) to understand the existence and
uniqueness of special Lagrangian submanifolds in Calabi–Yau manifolds.



i
i

“4-Rubinstein” — 2019/10/3 — 0:53 — page 859 — #3 i
i

i
i

i
i

A minimum principle for Lagrangian graphs 859

This note is organized as follows. In Section 2 we recall the subequations
corresponding to the special Lagrangian equation and to the degenerate
special Lagrangian equation [4, 12]. Section 3 is devoted to the proof of the
minimum principle for Lagrangian graphs (Theorem 3.1). In Section 4 we
give the proof of Theorem 4.4 concerning solutions of the DSL.

2. The special Lagrangian subequation and the degenerate
special Lagrangian subequation

This section recalls basic notions from [4, 12].

2.1. Subequations

A subequation is a proper closed subset F of the set of m-by-m symmetric
matrices that is invariant under translation by positive matrices. A sube-
quation F is said to be associated to a PDE of the form

(2) f(∇2u(x)) = 0, x ∈ U ⊂ Rm,

if C2(U) solutions of the equation satisfy ∇2u(x) ∈ ∂F for each x ∈ U . A
subequation F gives rise to a natural notion of subsolutions, also called
functions of type F , denoted F (U). Namely, u ∈ C2(U) is a subsolution,
denoted u ∈ F (U), if ∇2u(x) ∈ F for all x ∈ U. However, elements of F (U)
are typically only upper semicontinuous and are defined using a viscosity
type condition, as we detail below. These functions are the key object in a
so-called potential theory associated to the PDE (2), in a similar way to,
e.g., subharmonic functions and the Laplace equation, or plurisubharmonic
functions and the homogeneous complex Monge–Ampère equation.

A subequation F gives rise to a weak version of the Dirichlet problem
for each domain U ⊂ Rm. Harvey–Lawson show existence and uniqueness of
continuous solutions to the F -Dirichlet problem under certain assumptions
on the boundary of U. Making connection with the classical theory, if the
continuous solution is in C2(U), it must be a solution in the classical sense.

Let us recall in more detail the basic notions and notation concerning
subequations, following Harvey–Lawson [4]. Denote by Sym2(Rm) the set
of all symmetric m-by-m matrices, and by P the subset of nonnegative
matrices. A proper nonempty closed subset F of Sym2(Rm) is a subequation
if [4, Definition 3.1]

(3) F + P ⊂ F.
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Denote by intS the interior of a set S, and by Sc its complement. By F̃ we
denote the dual set to F , which is also a subequation, and is defined by

F̃ := (−intF )c.

A function u ∈ USC(D) is subaffine, denoted u ∈ SA(D), if for all affine
functions a and K ⊂ D compact, u ≤ a on ∂K implies u ≤ a on K. Harvey–
Lawson prove that such functions satisfy the maximum principle [4, Propo-
sition 2.3],

(4) if u ∈ SA(D) then sup
D

u = sup
∂D

u.

A function u ∈ USC(D) is of type F , denoted u ∈ F (D), if u+ v ∈ SA(D)
for all v ∈ C2(D) satisfying ∇2v(x) ∈ F̃ , for all x ∈ D.

From now on, unless stated otherwise, we assume that D is bounded.
The elements of F (D) serve as subsolutions to the PDE associated to F .
Similarly to subharmonic functions they satisfy many useful properties, due
to Harvey–Lawson [4], that we will use repeatedly. The reader may find the
useful list of most of the properties we will make use of in [12, §6].

To give classical examples, the subequation whose associated subsolu-
tions are convex functions on D (denoted P(D)) is the set of nonnegative
matrices P, while plurisubharmonic functions are associated to the sube-
quation of nonnegative Hermitian matrices.

2.2. The special Lagrangian subequation

A family of subequations associated to all branches of the special Lagrangian
equation was introduced by Harvey–Lawson,

Fc := {A ∈ Sym2(Rn) : tr tan−1A ≥ c}.

Here, −nπ/2 < c < nπ/2 and the dual subequation is F̃c = F−c [4, Proposi-
tion 10.4].

There is a relation between the subequation Fc and the Lagrangian angle
of a Lagrangian graph. Indeed, the restriction of the form dz1 ∧ · · · ∧ dzn

to the Lagrangian graph {(x,∇u(x)) : x ∈ Rn} is equal to the volume form
induced on the graph from the Euclidean metric on R2n, up to a unit com-
plex number (that depends on x) [3, Proposition 1.14, p. 89]. The argu-
ment of that number, denoted θu(x) ∈ S1 is called the Lagrangian angle at
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A minimum principle for Lagrangian graphs 861

(x,∇u(x)), and a computation shows that

(5) θu(x) = arg det(I +
√
−1∇2u(x)).

Here, we consider S1 as an abelian group and use additive notation for the
group law and the inverse. Also, we let arg denote the branch of the argument
function with image in (−π, π] (i.e., the branch whose domain is the complex
plane minus the nonnegative real axis). Then tan−1 λ := arg(1 +

√
−1λ), for

λ ∈ R, where tan−1 denotes the branch of the inverse to tan with image in
(−π/2, π/2).

Motivated by this, one defines the Lagrangian angle of the symmetric
matrix A

θ : Sym2(Rn)→ S1,

by

θ(A) := arg det(I +
√
−1A).

For B ∈ Sym2(Cm), denote by spec(B) ⊂ C the set of its eigenvalues, and
for λ ∈ spec(B), denote by m(λ) the multiplicity of λ. Then,

argB =
∑

λ∈spec(B)

m(λ) arg λ.

One defines the lifted Lagrangian angle

(6) θ̃ : Sym2(Rn)→ R, θ̃(A) := tr arg(I +
√
−1A).

The name is justified by the fact that θ ≡ θ̃ mod 2π. Observe that (6)
makes sense since the eigenvalues of I +

√
−1A all have real part equal to

one, so these eigenvalues are all in the domain of arg. Thus,

Fc = {A ∈ Sym2(Rn) : θ̃(A) ≥ c}.

The relation between the subequation Fc and the special Lagrangian
potential equation is as follows. First, a function v ∈ C2(D) is said to solve
the special Lagrangian potential equation of phase c if its associated (lifted)
Lagrangian angle is constant and equal to c, i.e.,

(7) θ̃v(x) = tr arg(I +
√
−1∇2v(x)) = c, ∀x ∈ D.

From the definitions it then follows that a function v ∈ C2(D) satisfies (7) if
and only if v ∈ Fc(D) ∩ (−F−c(D)) ∩ C2(D). Motivated by this, a function
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v is said to be a C0 weak solution of the special Lagrangian equation if
v ∈ Fc(D) ∩ (−F−c(D)) ∩ C0(D). The condition v ∈ Fc(D) precisely means
that v is a viscosity subsolution of (7), while −v ∈ F−c(D) means that v is
a viscosity supersolution of (7) [4, Remark 4.9].

For a summary of some of the key potential theoretic results of Harvey–
Lawson [4] concerning Fc(D), we refer to [12, Section 6.4]

2.3. The degenerate special Lagrangian subequation

In recalling the constructions of [12], we set the following notation. For

C = [cij ]
n+1
i,j=1 ∈ Sym(Cn+1),

we will make frequent use of the block decomposition

C =

(
c00 ~c0
~cT0 C+

)
,

where c00 ∈ C,~c0 ∈ Cn and C+ ∈ Sym2(Cn). For η ≥ 0, write

(8) Iηn := diag(η, 1, . . . , 1) ∈ Sym2(Rn+1).

We also denote

(9) In := I0n = diag(0, 1, . . . , 1) ∈ Sym2(Rn+1),

(10) S = {A ∈ Sym(Rn+1) : det(In +
√
−1A) = 0}.

It follows from [12, Lemma 3.4] that in fact

S = {A ∈ Sym2(Rn) : A = diag(0, A+)}.

The reason why this set has special significance comes from the fact that
the space-time Lagrangian angle Θ : Sym2(Rn+1) \ S → S1 defined by

Θ(A) := arg det(In +
√
−1A),

does not extend continuously to S, though it is smooth on Sym2(Rn+1) \ S.
Fortunately, when considering Θ̃, the lift of the space-time Lagrangian angle
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to R, it is possible to find a well-behaved upper semicontinuous extension
to Sym2(Rn+1), given by
(11)

Θ̃(A) :=

{∑
λ∈spec(In+

√
−1A)m(λ) arg(λ), A ∈ Sym2(Rn+1) \ S,

π/2 +
∑

06=λ∈spec(In+
√
−1A)m(λ) arg(λ), A ∈ S,

where m(λ) is the multiplicity of the eigenvalue λ. More precisely, the fol-
lowing is known [12, Theorem 3.1].

Theorem 2.1. The function Θ̃ is the smallest upper semicontinuous func-
tion on Sym2(Rn+1) extending Θ̃|Sym2(Rn+1)\S .

For c ∈ (−(n+ 1)π/2, (n+ 1)π/2), define Fc by

(12) Fc :=
{
A ∈ Sym2(Rn+1) : Θ̃(A) ≥ c

}
.

From the semicontinuity of Θ̃ it follows that Fc is closed. The property
Fc + P ⊂ Fc is proved in [12, Lemma 5.3], yielding that Fc is a subequation.
Additionally, the dual subequation satisfies F̃c = F−c [12, Lemma 5.5].

The relation between the subequation Fc and the degenerate special
Lagrangian potential equation is as follows. Given an open set D ⊂ Rn, an
open interval I ⊂ R, and a function v ∈ C2((0, 1)×D), v is said to solve
the degenerate special Lagrangian potential equation (DSL) of phase c if its
associated (lifted) space-time Lagrangian angle is constant and equal to c,
i.e.,

(13) Θ̃v(t, x) = tr arg(In +
√
−1∇2v(t, x)) = c, ∀(t, x) ∈ I ×D.

From the definitions it then follows that a function v ∈ C2(I ×D) satisfies
(13) if and only if v ∈ Fc(I ×D) ∩ (−F−c(I ×D)) ∩ C2(I ×D). Motivated
by this, a function v is said to be a C0 weak solution of the degenerate
special Lagrangian equation if

v ∈ Fc(I ×D) ∩ (−F−c(I ×D)) ∩ C0(I ×D).

3. The minimum principle

The main result of this section is the following minimum principle for La-
grangian graphs.
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Theorem 3.1. Let D ⊂ Rn be a bounded domain and let I ⊂ R be an open
interval. Let u ∈ Fc(I ×D) with c ∈ [nπ/2, (n+ 1)π/2). Then

(14) v(x) := inf
t∈I

u(t, x)

belongs to Fc−π/2(D).

Remark 3.2. By definition, the function −∞ belongs to F (D) for any
subequation F . This explains the apparent difference in the conclusion of
Theorem 3.1 from the classical minimum principle.

The proof of Theorem 3.1 will occupy the rest of the present section.
We start with the following observation. It is essentially contained in

[12, Lemmas 3.6–3.7].

Lemma 3.3. For all A ∈ Sym2(Rn+1)

(15) Θ̃(A)− θ̃(A+) = arg
(√
−1a00 + ~a0(I +

√
−1A+)−1~aT0 ) ∈ [−π/2, π/2].

We also need the following elementary fact.

Lemma 3.4. Let C ∈ Sym2(Rm). Then:

(i) Re
(
(I +

√
−1C)−1

)
is positive definite.

(ii) C is positive (semi)-definite if and only if Im
(
(I +

√
−1C)−1

)
is neg-

ative (semi)-definite.

Proof. For (i) see [3, p. 94]. If O ∈ O(m) diagonalizes C, i.e.,

C = OT diag(λ1(C), . . . , λm(C))O,

then

(16) Im
(
(I +

√
−1C)−1

)
= O−1 diag

(
−λ1(C)

1 + λ21(C)
, . . . ,

−λm(C)

1 + λ2m(C)

)
(OT )−1,

proving (ii). �

Lemma 3.5. Let A ∈ Fc with c ∈ [nπ/2, (n+ 1)π/2). Then a00 ≥ 0.
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Proof. If A ∈ S we are done since then a00 = 0. Suppose A 6∈ S. If a00 < 0,
then Lemma 3.4 gives that

Im
(√
−1a00 +

〈
~a0, (I +

√
−1A+)−1~a0

〉)
= a00 +

〈
~a0, Im (I +

√
−1A+)−1~a0

〉
< 0,

(here we used that by (15) and the assumption of the Lemma, θ̃(A+) ∈
[(n− 1)π/2, nπ/2) so in particular A+ is positive semi-definite, as θ̃(A+) =
tr tan−1A+ < (n− 1)π/2 if A+ has a negative eigenvalue) which combined
with (15) implies that

(17) Θ̃(A)− θ̃(A+) ∈ [−π/2, 0),

a contradiction with the fact that Θ̃(A) ≥ c ≥ nπ/2 since θ̃(A+) < nπ/2.
Thus, a00 ≥ 0. �

Combining Lemma 3.5 with results of Harvey–Lawson [4] gives the fol-
lowing partial convexity statement. This is reminiscent of the hypothesis in
Kiselman’s theorem but holds in our setting without further assumption, as
in the setting of convex functions.

Lemma 3.6. Let c ∈ [nπ/2, (n+ 1)π/2) and u ∈ Fc(I ×D). For all x ∈ D,
the function t→ u(t, x) is convex on I.

Proof. Let I ′ ⊂ I and D′ ⊂ D be arbitrary relatively precompact open sets.
From [4, Theorem 8.2] it follows that we can find {uk}k ∈ Fc(I ′ ×D′) quasi–
convex, such that uk ↘ u|I′×D′ . We know that uk is twice differentiable and
∇2uk ∈ Fc for a.e. (t, x) ∈ I ′ ×D′ . Using Fubini’s theorem and Lemma 3.5,
we obtain that, for a.e. x ∈ D′, the function t→ uk(t, x) is twice differen-
tiable and ∇2

tuk(t, x) ≥ 0 for a.e. t ∈ I ′.
Since t→uk(t, x) is additionally quasi–convex, it follows that t→uk(t, x)

has to be convex on I ′ for a.e. x ∈ D′ [4, Corollary 7.5]. As each uk is
continuous on I ′ ×D′, it follows that in fact t→ uk(t, x) has to be convex
for all x ∈ D′. Letting k →∞ we obtain that t→ u(t, x) is also convex for
all x ∈ D′, finishing the proof. �

Remark 3.7. Alternatively, Lemma 3.6 also follows from a more recent
general restriction theorem of Harvey–Lawson [5].
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Let t ∈ R, x ∈ Rn. For a function f(t, x) of n+ 1 variables denote

(18) ∇2f =

(
f̈ ∇2

txf
(∇2

txf)T ∇2
xf

)
.

The next lemma is modeled on Kiselman’s proof of the classical minimum
principle [7, Theorem 1.3.1].

Lemma 3.8. Suppose that f ∈C2(I ×D), and that for each x∈D, f( · , x) :
I → R is strongly convex and achieves its unique infimum at the point t(x)
in the interior of I. Denote by

g(x) = inf
t∈D

f(t, x) = f(t(x), x), x ∈ D,

Then,

(19) ∇2g(x) =

(
∇2
xf −

1

f̈
(∇2

txf)T∇2
txf

)
(t(x), x).

Proof. First we claim that g ∈ C2. To see this, let t = t(x) be the unique
solution of

(20) g(x) = f(t(x), x).

Since f ∈ C1, t(x) is the unique solution of

(21) ḟ(t(x), x) = 0.

By the implicit function theorem, t(x) is a C1 function of x provided f̈ > 0,
which holds by assumption. Thus, g ∈ C1 by (20). Differentiating (20) and
evaluating at (t(x), x)) then gives

(22) ∇xg(x) = ∇xf(t(x), x),

using (21). Since the right-hand side is differentiable it follows that g ∈ C2,
as claimed; moreover,

∇2
xg(x) = ∇2

xf(t(x), x) +∇2
txf(t(x), x)T∇xt(x).

Now, using (21),

f̈(t(x), x)∇xt(x) +∇2
txf(t(x), x) = 0,
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i.e.,

∇xt(x) = −
(
f̈(t(x), x)

)−1∇2
txf(t(x), x).

Thus,

∇2
xg(x) =

(
∇2
xf −

1

f̈
(∇2

txf)T∇2
txf

)
(t(x), x),

as claimed. �

Corollary 3.9. Under the assumptions of Lemma 3.8,

(23) det
(
I +
√
−1∇2

xg(x)
)

=
det
(
In +

√
−1∇2f(t(x), x)

)
√
−1f̈(t(x), x)

.

In particular θ̃g(x) = Θ̃f (t(x), x)− π/2.

Proof. Note that for C = [cij ]
n
i,j=0 ∈ Sym2(Cn+1) with c00 6= 0,

(24) detC = c00 det
(
C+ − (~c0)

T~c0/c00
)
.

(Note that this identity is different from the one used to prove Lemma 3.3
(see [12, Lemmas 3.6–3.7])!) Applying this to C = In +

√
−1∇2f , combined

with Lemma 3.8 above gives (23).
We turn to the last statement. As f̈ > 0, equation (23) gives that

π/2 = Θf (t(x), x)− θg(x).

So for some p ∈ Z, π/2− 2πp = Θ̃f (t(x), x)− θ̃g(x). By definition (recall
§2.2–§2.3 and (18)),

Θ̃f (t(x), x)− θ̃(∇2
xf(t(x), x))(25)

= Θ̃(∇2f(t(x), x))− θ̃((∇2f(t(x), x))+) ∈ [−π/2, π/2]

where the last inclusion is by Lemma 3.3. Next, by (19), ∇2
xf(t(x), x) is

a rank one perturbation of ∇2g(x). Thus, denoting the eigenvalues of the
former by λ1 ≤ λ2 ≤ · · · ≤ λn and those of the latter by δ1 ≤ δ2 ≤ · · · ≤ δn



i
i

“4-Rubinstein” — 2019/10/3 — 0:53 — page 868 — #12 i
i

i
i

i
i

868 T. Darvas and Y. A. Rubinstein

[2, p. 64],

δ1 ≤ λ1 ≤ δ2 ≤ λ2 ≤ · · · ≤ δn ≤ λn.

In particular,

(26) θ̃(∇2
xf(t(x), x))− θ̃g(x) =

∑
k

(
tan−1 λk − tan−1 δk

)
∈ (0, π).

Combining (25) and (26) it follows that p = 0, as desired. �

Proof of Theorem 3.1. Suppose Ik ⊂ I and Dk ⊂ D, k ∈ N are exhaustions
of I and D, respectively, by precompact open subsets.

First, observe that it is enough to prove that vk ∈ Fc−π
2
(Dk), where

vk(x) := inf
t∈Ik

u(t, x), x ∈ Dk.

Indeed, the sequence {vk}k is decreasing, hence the limit v := limk vk satisfies
v ∈ Fc−π

2
(D) [4, (5), p. 410].

Let us fix k. By Lemma 3.10 below, there exists a decreasing sequence
ulk ∈ Fc ∩ C∞(Ik ×Dk) such that ulk ↘ u|Ik×Dk . Pick f : Ik → R, a strongly
convex smooth exhaustion function of Ik (e.g., if Ik = (a, b), take f =
− log(t− a)− log(b− t)). After adding 1

l f to ulk, we can further assume
that for any x ∈ Dk, the function ulk(·, x) is a strongly convex exhaustion
of Ik.

Observe that ulk ∈ C2(Ik ×Dk) satisfies the requirements of Lemma 3.8,
hence by the last statement in Corollary 3.9, we obtain that

θ̃vlk(x) = Θ̃ulk
(tlk(x), x)− π/2 ≥ c− π/2, x ∈ Dk,

where

vlk(x) := inf
t∈Ik

ulk(t, x), x ∈ Dk.

Hence, by definition, vlk ∈ Fc−π2 (Dk). As the sequence {vlk}l is decreasing,

we ultimately get vk := liml v
l
k ∈ Fc−π2 (Dk), finishing the proof. �

Lemma 3.10. For any c ∈ [nπ/2, (n+ 1)π/2) the set Fc ⊂ Sym2(Rn+1)
is convex. If u ∈ Fc(I ×D) and I ′ ⊂ I, D′ ⊂ D are precompact open sets
then there exists a sequence {uk}k ⊂ C∞ ∩ Fc(I ′ ×D′) strictly decreasing to
u|I′×D′.

Remark 3.11. Observe that we can not ask for uniform convergence of
uk to u, as in [12, Lemma 10.7], because u may not be continuous. Also,
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Lemma 3.10 can actually be extended to c ∈ [(n− 1)π/2, (n+ 1)π/2), but
since most of the rest of our results in this note require c ∈ [nπ/2, (n+ 1)π/2)
we do not delve into the more complicated proof.

Proof. The first part of the proof is devoted to showing that Fc is convex.
Let A,B ∈ Fc. We claim that there exists Ak, Bk ∈ Fc \ S such that Ak →
A,Bk → B and

Ck := (Ak +Bk)/2 6∈ S.

This follows from the fact that Fc + int P ⊂ int Fc, hence one has a great
degree of freedom in perturbing A,B. In fact, if we perturb using elements
of int P, we get additionally that

Ak, Bk ∈ Fc+εk

for some εk > 0 (see the first formula in the proof of [12, Lemma 5.5]).
Recall from (8) that Ipn := diag(p, 1, 1, . . . , 1). For E ∈ Sym2(Rn+1), set

Ep := IpnEI
p
n.

As in the proof of [12, Lemma A.3],

Θ̃(D) = tr arg(In +
√
−1D)(27)

= lim
p→∞

tr arg(I1/p
2

n +
√
−1D)

= lim
p→∞

tr arg(I +
√
−1IpnDI

p
n)

= lim
p→∞

tr tan−1(Dp)

= lim
p→∞

θ̃(Dp), D ∈ Sym2(Rn+1) \ S.

It follows that there exists big enough p such that Akp, Bkp ∈ Fc+εk/2. As
Fc+εk/2 is convex [12, Lemma 10.5], this implies that Ckp ∈ Fc+εk/2, i.e.,

θ̃(Ckp) ≥ c+ εk/2 for large enough p. Using (27) again, it follows that Ck ∈
Fc+εk/2, hence Ck ∈ Fc. As Fc is closed, it follows C ∈ Fc, implying that Fc
is convex.

We argue now that Fc(I ′′ ×D′′) is convex for any I ′′ ⊂ I and D′′ ⊂ D.
Let

v, w ∈ Fc(I ′′ ×D′′).
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By [4, Theorem 8.2] there exists {vk}k, {wk}k ∈ C0 ∩ Fc(I ′′k ×D′′k) quasi-
convex, such that vk ↘ v, wk ↘ w, and I ′′k ×D′′k exhausts I ′′ ×D′′. By quasi-
convexity there exists S ⊂ I ′′ ×D′′ of measure zero such that

∇2vk(x),∇2wk(x) ∈ Fc, x ∈ I ′′k ×D′′k \ S.

Convexity of Fc now gives that ∇2(vk(x) + wk(x))/2 ∈ Fc, x ∈ I ′′k ×D′′k \ S.
As (vk(x) + wk(x))/2 is also quasi-convex, then (vk + wk)/2 ∈ Fc(I ′′k ×D′′k)
[4, Corollary 7.5]. The fact that (vk + wk)/2↘ (v + w)/2 and that I ′′k ×D′′k
is exhaustive implies that (v + w)/2 ∈ Fc(I ′′ ×D′′).

We turn to the last statement of the Lemma. Let Ĩ ⊂ I, D̃ ⊂ D be open
neighborhoods of I ′, D′. It follows from [4, Theorem 8.2] that there exists
{u′k}k ∈ C0 ∩ Fc(Ĩ × D̃) strictly decreasing to u|Ĩ×D̃. Actually, the poten-
tials u′k are quasi-convex hence continuous. Approximate each u′k locally
uniformly with

{u′k,l}l∈N ⊂ C∞ ∩ Fc(I ′ ×D′)

using [12, Lemma 10.7] (this last result is applicable since, as proven above,
Fc(I ′ ×D′) is convex). Since u′k < u′k−1, there exists N(k) ∈ N such that
u′k < u′k,N(k) < u′k−1. Consequently, the sequence

{u′k,N(k)}k∈N ⊂ C
∞ ∩ Fc(I ′ ×D′)

is decreasing to u|I′×D′ , as desired. �

4. A formula for solutions of the DSL

Given a function f = f(t, x) on I ×D (that we consider as a family of
functions on I parametrized by D), we let

(28) f?(τ, x) = f?(τ) := inf
t∈I

[f(t, x)− τ ].

This is the negative of the usual partial Legendre transform solely in the t-
variable. Despite this, we also refer to it sometimes as the partial Legendre
transform, and we often omit the dependence of the function on the D
variables in the notation. Conversely, if g = g(τ, x) is a function on R×D
taking values in [−∞,∞), where R is considered as the dual vector space to
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the copy of R containing I, then let

(29) g?(t, z) = g?(t) := sup
τ∈R

[g(τ, x) + τt].

Note that f?? = f if and only if f is convex in t, lower semicontinuous and
nowhere equal to −∞ (we do not allow the constant function −∞ in this
section) [10, Theorem 12.2].

Let I = [0, 1]. Given a function g on ∂(I ×D), we say a function u ∈
C2(I ×D) solves the Dirichlet problem for the degenerate special Lagrangian
(DSL) equation of phase θ ∈ (−π, π] if

(30)

Im
(
e−
√
−1θ det(In +

√
−1∇2u)

)
= 0, on I ×D,

Re
(
e−
√
−1θ det

(
I +
√
−1∇2

xu
))

> 0, on I ×D,

u = g, on ∂(I ×D).

Recall from §2.3 that a function u ∈ C0(I ×D) is said to be a weak solution
of the Dirichlet problem for the DSL if u|∂(I×D) = g and u ∈ Fc(I ×D) ∩
(−Fc(I ×D)), where c ∈ (−(n+ 1)/2π, (n+ 1)/2π) and c ≡ θ mod 2π.
Weak solutions to the Dirichlet problem for the DSL exist by the follow-
ing result [12, Theorem 1.2].

Theorem 4.1. Let D ⊂ Rn be a bounded strictly convex domain, and let
g0, g1 ∈ C2 (D) ∩ Fc−π/2(D) with c ∈ [nπ/2, (n+ 1)π/2). There exists a

unique solution u ∈ C0(I ×D) ∩ C0,1(I ×D) for the Fc-Dirichlet problem
with u|{i}×D = gi and u|[0,1]×∂D affine in t.

Given v : D → R and f : ∂D → R, define the (Fa, v, f)-envelope

P (v; f) = sup{w ∈ Fa(D) : w ≤ v on D, w|∂D ≤ f},

where w|∂D ≤ f means that lim supξ→xw(ξ) ≤ f(x) for all x ∈ ∂D.

Lemma 4.2. If a ∈ [(n− 1)π/2, nπ/2) then P (v; f) = uscP (v; f) ∈ Fa(D)
and moreover P (v; f) ∈ C0(D). Also if v, f are continuous, then P (v; f) ≤ v
and P (v; f)|∂D ≤ f , i.e., P (v; f) is a “candidate for itself”.

Proof. By [4, (6), p. 410] it follows that uscP (v; f) ∈ Fa(D). The fact that

(31) P (v; f) = uscP (v; f)
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can be proved as follows. First, Fa ⊂ P (and hence Fa(D) ⊂ P(D) [4, (4.2),
p. 409]) [12, Lemma 10.4], hence P (v; f) is a supremum of convex func-
tions, hence convex [10, Theorem 5.5]. Thus it is continuous if it is locally
bounded. It is certainly bounded from above in terms of v and f . As con-
vex functions are automatically lsc, it is also bounded from below. Thus,
P (v; f) = uscP (v; f) and so in particular also (31) holds.

Now we focus on the last statement of the Lemma. Clearly, P (v; f) ≤ v,
by continuity of v. For the inequality at the boundary, notice that

P (v; f) ≤ u(f) := sup{w ∈ Fa(D) : w|∂D ≤ f}.

According to [4, Theorem 6.2], u(f) ∈ Fa(D) is the unique continuous (up
to the boundary) solution of the Dirichlet problem associated to the sube-
quation Fa on D with boundary value f (since D is bounded and strictly
convex domain it also satisfies the boundary assumptions of op. cit., see,
e.g., [12, Remark 8.2]). In sum, P (v; f)|∂D ≤ u(f)|∂D = f , as desired. �

Remark 4.3. In the last step of the proof we could have equally well have
used the fact that

P (v; f) ≤ sup{w ∈ P(D) : w|∂D ≤ f},

since as already noted Fa(D) ⊂ P(D). As is well known, the right hand side
is the unique convex continuous (up to the boundary) solution of the Dirich-
let problem associated to the homogeneous real Monge–Ampère equation on
(the bounded and strictly convex domain) D with boundary value f [9, The-
orem 2.8]. This also implies that P (v; f)|∂D ≤ f . Of course, the theorem of
Harvey–Lawson is more general. A small advantage of the proof given above
is that it carries over verbatim to domains D which are merely strictly ~Fa
and ~̃Fa convex, cf. [4, 12].

We now state the main result of this section. It shows that the solution of
the Dirichlet problem for the DSL can be expressed as the partial Legendre
transform of a family of solutions of obstacle problems for the non-degenerate
special Lagrangian equation. This is inspired by and stands in clear analogy
to a result on the homogeneous real/complex Monge–Ampère equation [1,
Corollary 2.2, Proposition 2.3].
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Theorem 4.4. Let u be given by Theorem 4.1. Then for any (t, x) ∈ I ×D
we have

u(t, x) =

(
Pc−π/2

(
min{g0, g1 − τ};

inf
r∈[0,1]

(
(1− r)g0|∂D + rg1|∂D − rτ

)))?
(t, x).

Proof. By Lemma 3.6, the function t→ u(t, x) is convex. Thus, u?? = u, and
hence it suffices to show that

u?(τ, x) = inf
t∈I

[u(t, x)− τt](32)

= Pc−π/2

(
min{g0, g1 − τ}; inf

r∈[0,1]

(
(1− r)g0|∂D + rg1|∂D − rτ

))
.

Throughout the rest of the proof we fix τ . Let us denote the upper envelope
on the left hand side by

h(τ, x) = hτ (x).

As u ∈ Fc([0, 1]×D), also u(t, x)− τt ∈ Fc([0, 1]×D) [4, (2), p. 410]. Thus,
by Theorem 3.1

vτ (x) := u?(τ, x) ∈ Fc−π/2(D).

Hence, by the Dirichlet conditions on u guaranteed by Theorem 4.1,

vτ ≤ min{g0, g1 − τ} and vτ |∂D ≤ inf
r∈[0,1]

(
(1− r)g0|∂D + rg1|∂D − rτ

)
.

This implies that vτ is a candidate in the definition of hτ , i.e., vτ ≤ hτ .
We turn to prove the other inequality in (32). Notice that

min{g0, g1 − τ} ∈ C0(D)

since g0, g1 − τ ∈ C0(D) by assumption. Also, letting

gy(r) := (1− r)g0|∂D(y) + rg1|∂D(y)

for y ∈ ∂D,

fy(τ) := inf
r∈[0,1]

((1− r)g0|∂D(y) + rg1|∂D(y)− rτ) = g?y(τ).

Since (r, y) 7→ gr(y) is continuous and [0, 1] is compact, it follows that also
y 7→ fy(τ) is C0 in y (Indeed, let ε > 0. Choose δ > 0 so that |gy(r)−
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gz(r)| < ε for all z satisfying |z − y| < δ. Then g?y(τ) ≤ g?z(τ) + ε and simi-
larly g?z(τ) ≤ g?y(τ) + ε.) Combining these facts, Lemma 4.2 implies that

(33) hτ (x) ∈ Fc−π/2.

We claim that

(34) w(t, x) := hτ (x) ∈ Fc([0, 1]×D),

i.e., w is a (constant in t) subsolution to the DSL equation (30). This follows
immediately from (11) if h is C2 since then Θ̃w(t, x) = π/2 + θ̃hτ (x) ≥ c by
(33); otherwise, since hτ ∈ C0(D) by Lemma 4.2, we can approximate hτ
locally uniformly by smooth Fc-potentials [12, Lemma 10.7]. Then we can
apply [4, (5’), p. 410] to conclude (34).

We can conclude the proof by the standard argument that a subsolution
lies below a solution. More precisely, by Theorem 4.1 and [4, (2), p. 410],

u− tτ ∈ −F̃c([0, 1]×D),

so w − u+ tτ ∈ SA([0, 1]×D) [4, Theorem 6.5]. Since

w(t, x)− (u(t, x)− tτ) ≤ 0 on ∂([0, 1]×D),

it follows that w(t, x) ≤ u(t, x)− tτ [4, Proposition 2.3]. We have shown that

hτ (x) ≤ vτ (x) = inf
t∈[0,1]

[u(t, x)− τt],

giving the other direction of (32). �
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