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We construct C1,µ multivalued solutions to more general classes
of elliptic equations and systems, including the minimal surface
system with small boundary data and the Laplace equation. This
extends work of Simon and Wickramasekera in which they con-
struct a large class of C1,µ multivalued solutions to the minimal
surface equation. We use methods for differential equations, which
are more general than the specific minimal submanifold approach
adopted by Simon and Wickramasekera. We also prove the branch
set of the graphs of the solutions are real analytic submanifolds by
inductively using Schauder estimates.
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1. Introduction

We consider solutions to elliptic differential equations and systems which are
represented by multivalued functions as developed by Almgren in [1]. In [10],
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878 Brian Krummel

Simon and Wickramasekera constructed a rich class of C1,µ q-valued solu-
tions to the Dirichlet problem for the minimal surface equation on the cylin-
der C = B2

1(0)× Rn−2. However, the method of Simon and Wickramasekera
was specific to the minimal surface equation and does not readily generalize
to other elliptic equations or to elliptic systems. We extend the results of [10]
by establishing in Theorem 2 the existence of C1,µ q-valued solutions with
small boundary data to the Dirichlet problem for a large class of elliptic
systems and in Theorem 3 and Corollary 1 the existence of C1,µ q-valued
solutions (possibly without small data) to the Dirichlet problem for large
classes of elliptic equations. In particular, we extend the results of [10] by
giving examples of q-valued harmonic functions and branched minimal sub-
manifolds with codimension greater than one. The boundary data of these
solutions satisfy a k-fold symmetry condition as in [10]. Our approach uses
techniques for differential equations, which have the advantage applying in
a more general context than codimension one minimal surfaces.

We also study the regularity of the branch set of minimal immersions.
The singular set of minimal submanifolds is known to have Hausdorff dimen-
sion at most n− 2 in the case of area minimizing n-dimensional integral cur-
rents due Almgren [1] and stationary graphs of C1,µ two-valued functions due
to Simon and Wickramasekera [11]. The branch set of the minimal surfaces
constructed in [10] and this paper are obviously C1,µ (n− 2)-dimensional
submanifolds. We extend these results by showing that the branch sets of
minimal immersions constructed in [10] are locally real analytic (n− 2)-
dimensional submanifolds.

The methods of differential equations require adding and multiplying
functions. However, it is not generally possible to add or multiply q-valued
functions to obtain a q-valued sum or product. To handle this difficulty we
consider q-valued functions ũ on an open set Ω in Rn each associated with
a map u = (u1, u2, . . . , uq) : Ω \ [0,∞)× {0} × Rn−2 → (Rm)q such that
ũ(X) = {u1(X), u2(X), . . . , uq(X)} as an unordered q-tuple for each X ∈
Ω \ [0,∞)× {0} × Rn−2, as we can then add and multiply the correspond-
ing maps u.

To construct q-valued solutions to elliptic equations and systems, we
first prove Theorem 1, which establishes the existence of q-valued solutions
to the Dirichlet problem for a class of Poisson equations. Using a change
of variable ξ1 + iξ2 = (x1 + ix2)1/q, we transform the Poisson equation of
q-valued functions into a singular differential equation of single-valued func-
tions, which we can solve using Fourier analysis and standard elliptic theory.
Using the average-free and k-fold symmetry properties of the solution, we
obtain a bound on how the solution decays at points on the axis {0} × Rn−2
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Multivalued solutions to elliptic equations and systems 879

of C, which implies the Hölder continuity of the gradient of the solution. The
existence result for elliptic systems, Theorem 2, then follows from the con-
traction mapping principle and the existence results for elliptic equations,
Theorem 3 and Corollary 1, follow from the Leray-Schauder theory.

The branch set of the graphs of the q-valued solutions ũ constructed
in [10] is the graph of ũ over {0} × Rn−2. Thus the real analyticity of the
branch set follows in Theorem 4, which establishes that a q-valued solution
ũ(x, y) (where x ∈ R2 and y ∈ Rn−2) to a elliptic equation with real analytic
data is real analytic with respect to y in the sense that ũ locally satisfies
bounds of the form |Dγ

y ũ(x, y)| ≤ |γ|!C |γ| for some constant C ∈ (0,∞). Note
that an analogous regularity result, Theorem 5, also holds for elliptic sys-
tems. Rather than proving Theorem 4 by extending an approach of Morrey
in [6] using integral kernels, we inductively apply the Schauder estimates.
This argument readily yields C1,µ estimates on derivatives Dγ

y ũ for every
multi-index γ, where µ ∈ (0, 1/q). More care is needed to obtain the partic-
ular type of bound on Dγ

y ũ(x, y) required for real analyticity with respect
to y. We obtain such bounds using a modified version of a technique due to
Friedman [2] involving majorants.

2. Preliminaries and statement of main results

We adopt the following notation and conventions.

n ≥ 3, m ≥ 1, and q ≥ 2 are fixed integers.

Bl
R(X0) denotes the open ball of radius R centered at X0 in Rl and

BR(X0) = Bn
R(X0).

C = B2
1(0)× Rn−2 denotes an open cylinder in Rn.

X = (x, y) denotes a point in Rn, where x ∈ R2 and y ∈ Rn−2. We
identify x with the point reiθ in C, where r ∈ [0,∞) and θ ∈ R.

Let Aq(Rm) denote the space of unordered q-tuples ũ = {u1, u2, . . . , uq},
where u1, u2, . . . , uq ∈ Rm and we allow ui = uj for i 6= j. We define a metric
G on Aq(Rm) by

G(ũ, ṽ) = min
σ

(
q∑
l=1

|ul − vσ(l)|2
)1/2

for all unordered q-tuple ũ = {u1, . . . , uq} and ṽ = {v1, . . . , vq}, where the
minimum is taken over all permutations σ of {1, . . . , q}. A q-valued function
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ũ on a set Ω ⊆ Rn is a map ũ : Ω→ Aq(Rm) (note that this definition of
q-valued functions is equivalent to the definition of Almgren [1]). A q-valued
function ũ : Ω→ Aq(Rm) is continuous at X0 ∈ Ω if either X0 is an isolated
point of Ω or

lim
X→X0

G(ũ(X), ũ(X0)) = 0,

where the limit is taken over X ∈ Ω. C0(Ω;Aq(Rm)) denotes the space of
continuous q-valued functions ũ : Ω→ Aq(Rm). A q-valued function ũ : Ω→
Aq(Rm) is Hölder continuous with exponent µ ∈ (0, 1] if

[ũ]µ,Ω ≡ sup
X,Y ∈Ω, X 6=Y

G(ũ(X), ũ(Y ))

|X − Y |µ
<∞.

A q-valued function ũ : Ω→ Aq(Rm) is differentiable at a point X in the
interior of Ω if for some m× n matrices A1, . . . , Aq,

(2.1) lim
h→0

G(ũ(X + h), {ul(X) +Alh})
|h|

= 0,

in which case we say Dũ(X) ≡ {A1, . . . , Aq} is the derivative of ũ at X.
For each open set Ω ⊆ Rn, C1(Ω;Aq(Rm)) denotes the space of q-valued
functions ũ : Ω→ Aq(Rm) such that Dũ exists at each point in Ω and ũ
and Du are continuous on Ω. For each µ ∈ (0, 1] and open set Ω ⊆ Rn,
C1,µ(Ω;Aq(Rm)) denotes the space of q-valued functions ũ ∈ C1(Ω;Aq(Rm))
such that [Dũ]µ;Ω′ <∞ for every open set Ω′ ⊂⊂ Ω.

Let Ω be an open set in Rn and ũ ∈ C1(Ω;Aq(Rm)). We let Bũ de-
note the set of points X0 ∈ Ω such that there is no ball BR(X0) ⊆ Ω on
which ũ = {u1, u2, . . . , uq} for some single-valued functions u1, u2, . . . , uq ∈
C1(BR(X0);Rm). We say ũ satisfies

Di(A
i(X, ũ,Dũ)) +B(X, ũ,Dũ) = 0 weakly in Ω \ Bũ

for continuous single-valued functions Ai, B : Ω× Rm × Rmn → R if for ev-
ery ball BR(X0) ⊆ Ω \ Bũ, ũ = {u1, u2, . . . , uq} on BR(X0) for single-valued
functions ul ∈ C1(BR(X0);Rm) such that

Di(A
i(X,ul, Dul)) +B(X,ul, Dul) = 0 weakly in BR(X0)

for l = 1, 2, . . . , q.
Observe that we cannot in general add or multiply multivalued func-

tions. Given two q-valued functions ũ, ṽ : Ω→ Aq(Rm), there is no canon-
ical way to pair the elements ui(X) and vi(X) of the unordered q-tuples
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ũ(X) = {u1(X), u2(X), . . . , uq(X)} and ṽ(X) = {v1(X), v2(X), . . . , vq(X)}
to obtain a sum

(ũ+ ṽ)(X) = {u1(X) + v1(X), u2(X) + v2(X), . . . , uq(X) + vq(X)}

or product

(ũṽ)(X) = {u1(X)v1(X), u2(X)v2(X), . . . , uq(X)vq(X)}.

Moreover, for some q-valued functions ũ, ṽ ∈ C1(Ω;Aq(Rm)), there is no way
to pair the elements ui(X) and vi(X) to obtain a sum

(ũ+ ṽ)(X) = {u1(X) + v1(X), u2(X) + v2(X), . . . , uq(X) + vq(X)}

that is C1 on Ω; for example, consider ũ, ṽ ∈ C1(R2;A2(R)) given by
ũ(x1, x2)={±Re(x1 + ix2 − 1)3/2} and ṽ(x1, x2)={±Re(x1 + ix2 + 1)3/2}.
In what follows, we develop a theory of multivalued solutions to linear
and quasilinear elliptic differential equations, which requires adding and
multiplying functions. Rather than working with multivalued functions di-
rectly, we will work with functions u : Ω \ [0,∞)× {0} × Rn−2 → (Rm)q,
which we can add and multiply. The class of functions u that we consider take
the form u(X) = (u1(X), u2(X), . . . , uq(X)) at each X ∈ Ω \ [0,∞)× {0} ×
Rn−2, where ul : Ω \ [0,∞)× {0} × Rn−2 → Rm for l = 1, 2, . . . , q, and,
roughly speaking, satisfy limx2↑0 ul(x1, x2, y) = limx2↓0 ul+1(x1, x2, y) for
l = 1, 2, . . . , q − 1 and limx2↑0 uq(x1, x2, y) = limx2↓0 u1(x1, x2, y) whenever
(0, x2, y) ∈ Ω. To each such map u we will associate a q-valued function
ũ : Ω→ Aq(Rm) such that ũ(X) = {u1(X), u2(X), . . . , uq(X)} for X ∈ Ω \
[0,∞)× {0} × Rn−2.

Definition 1. Let Ω be an open set in Rn and k ≥ 0 be an integer.
Ck;q(Ω;Rm) denotes the set of maps u = (u1, u2, . . . , uq) : Ω \ [0,∞)× {0} ×
Rn−2 → (Rm)q such that ul|Ω∩R×(0,∞)×Rn−2 extend to Ck functions on Ω ∩
R× [0,∞)× Rn−2 and ul|Ω∩R×(−∞,0)×Rn−2 extend to Ck functions on Ω ∩
R× (−∞, 0]× Rn−2 for l = 1, 2, . . . , q and

lim
x2↑0

Dαul(x1, x2, y) = lim
x2↓0

Dαul+1(x1, x2, y) for l = 1, 2, . . . , q − 1,

lim
x2↑0

Dαuq(x1, x2, y) = lim
x2↓0

Dαu1(x1, x2, y),

for all x1 ≥ 0, y ∈ Rn−2, and |α| ≤ k. Given u ∈ Ck;q(Ω;Rm), we let

Dαu(0, y) ≡ lim
x→0

Dαu1(x, y)
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whenever (0, y) ∈ Ω and |α| ≤ k. We let C∞;q(Ω;Rm) =
⋂∞
k=0C

k;q(Ω;Rm).

Ck;q
c (Ω;Rm) denotes the set of u ∈ Ck;q(Ω;Rm) such that for some Ω′ ⊂⊂ Ω,

u = 0 on (Ω \ Ω′) \ [0,∞)× {0} × Rn−2.

Definition 2. Let Ω be an open set in Rn, k ≥ 0 be an integer, and
µ ∈ (0, 1]. Ck,µ;q(Ω;Rm) denotes the set of maps u ∈ Ck;q(Ω;Rm) such that
ul|Ω∩R×(0,∞)×Rn−2 extend to Ck,µ functions on Ω ∩ R× [0,∞)× Rn−2 and

ul|Ω∩R×(−∞,0)×Rn−2 extend to Ck,µ functions on Ω ∩ R× (−∞, 0]× Rn−2 for
l = 1, 2, . . . , q.

To each u ∈ Ck;q(Ω;Rm), where k ∈ {0, 1}, we associate a unique q-
valued function ũ ∈ Ck(Ω;Aq(Rm)) given by ũ(X) = {u1(X), u2(X), . . . ,
uq(X)} for X ∈ Ω \ [0,∞)× {0} × Rn−2. Of course, more than one u ∈
Ck;q(Ω;Rm) may be associated with the same q-valued function ũ.

Let Ω be an open set in Rn. Given a set S ⊆ Ω, we define

inf
S
u ≡ inf

X∈S\[0,∞)×{0}×Rn−2
min{u1(X), . . . , uq(X)},(2.2)

sup
S
u ≡ sup

X∈S\[0,∞)×{0}×Rn−2

max{u1(X), . . . , uq(X)},

for each u ∈ C0;q(Ω;R) and we define

(2.3) sup
S
|u| ≡ sup

X∈S\[0,∞)×{0}×Rn−2

max{|u1(X)|, . . . , |uq(X)|}.

for each u ∈ C0;q(Ω;Rm). Note that if instead u : Ω \ [0,∞)× {0} × Rn−2 →
(Rm)q is measurable, we can define infΩ u and supΩ u if m = 1 and supS |u|
by (2.2) and (2.3) by replacing the infimums and supremums with essential
infimums and supremums. We say u ∈ C0;q(Ω;R) attains its maximum value
at X0 ∈ Ω if either X0 ∈ Ω \ [0,∞)× {0} × Rn−2 and

sup
Ω
u = max{u1(X0), u2(X0), . . . , uq(X0)}

or X0 ∈ Ω ∩ [0,∞)× {0} × Rn−2 and

sup
Ω
u = lim

X→X0

max{u1(X), u2(X), . . . , uq(X)}.

For each integer k ≥ 0,

‖u‖Ck;q(Ω) ≡
∑
|α|≤k

sup
Ω
|Dαu|
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for every u ∈ Ck;q(Ω;Rm). For each integer k ≥ 0 and µ ∈ (0, 1],

[u]µ;q,Ω ≡
q∑
l=1

([ul]µ;Ω∩R×(0,∞)×Rn−2 + [ul]µ;Ω∩R×(−∞,0)×Rn−2)

for every u ∈ C0,µ;q(Ω;Rm) and

‖u‖Ck,µ;q(Ω) ≡
∑
|α|≤k

sup
Ω
|Dαu|+

∑
|α|=k

sup
Ω

[Dαu]µ;q,Ω

for every u ∈ Ck,µ;q(Ω;Rm). When Ω = BR(X0) is an open ball, we define

‖u‖′Ck;q(BR(X0)) ≡
∑
|α|≤k

R|α| sup
BR(X0)

|Dαu|

for every u ∈ Ck;q(BR(X0);Rm) and

‖u‖′Ck,µ;q(BR(X0)) ≡
∑
|α|≤k

R|α| sup
BR(X0)

|Dαu|+
∑
|α|=k

sup
Ω
Rk+µ[Dαu]µ;q,Ω.

for every u ∈ Ck,µ;q(BR(X0);Rm). Given a sequence {u(j)}j=1,2,3,... in
Ck;q(Ω;Rm) and u ∈ Ck;q(Ω), we say u(j) → u in Ck;q(Ω;Rm) if ‖u(j) −
u‖Ck;q(Ω) → 0. Note that if Ω is a bounded open set in Rn and u(j) =

(u
(j)
1 , u

(j)
2 , . . . , u

(j)
q ), j = 1, 2, 3, . . ., is a sequence in Ck,µ;q(Ω;Rm) such that

supj ‖u(j)‖Ck,µ;q(Ω) <∞, then by Arzela-Ascoli applied using the sequences

{u(j)
l |µ;Ω∩R×(0,∞)×Rn−2} and {u(j)

l |µ;Ω∩R×(−∞,0)×Rn−2} for l = 1, 2, . . . , q, there

is a subsequence {u(ji)}i=1,2,3,... of {u(j)}j=1,2,3,... and u ∈ Ck,µ;q(Ω;Rm) such
that u(ji) → u in Ck;q(Ω;Rm) as i→∞.

Given open sets Ω′ ⊂⊂ Ω ⊆ Rn, h ∈ R and η ∈ Rn−2 such that 0 <
|hη| < dist(Ω′, ∂Ω), and u ∈ C0;q(Ω;Rm), we define

δh,ηu = (δh,ηu1, δh,ηu2, . . . , δh,ηuq) ∈ C0;q(Ω′;Rm)

by

(2.4) δh,ηul(x, y) ≡ ul(x, y + hη)− ul(x, y)

h

for all (x, y) ∈ Ω′ \ [0,∞)× {0} × Rn−2 and l = 1, 2, . . . , q.
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Definition 3. Let Ω ⊆ Rn. For 1 ≤ p <∞, Lp;q(Ω;Rm) denotes the set of
Lebesgue measurable functions u = (u1, u2, . . . , uq) : Ω→ (Rm)q such that

‖u‖Lp;q(Ω) ≡

(∫
Ω

q∑
l=1

|ul|p
)1/p

<∞.

L∞;q(Ω;Rm) denotes the set of Lebesgue measurable functions u = (u1, u2,
. . . , uq) : Ω→ (Rm)q such that supΩ |ul| <∞ for l = 1, 2, . . . , q.

Definition 4. Let Ω ⊆ Rn be an open set, 1 ≤ p <∞ and k ≥ 1 be an inte-
ger. W k,p;q(Ω;Rm) denotes the set of u = (u1, u2, . . . , uq) ∈ Lp;q(Ω;Rm) such
that for every α with |α| ≤ k there exists a v = (v1, v2, . . . , vq) ∈ Lp;q(Ω;Rm)
(depending on α) such that

∫
Ω

q∑
l=1

ulD
αζl = (−1)|α|

∫
Ω

q∑
l=1

vlζl

for every ζ = (ζ1, ζ2, . . . , ζq) ∈ Ck;q
c (Ω;Rm). Dαu ≡ v denotes the order α

weak derivative of u.

To each measurable function u : Ω→(Rm)q we associate a measurable q-
valued function ũ : Ω→Aq(Rm) given by ũ(X)={u1(X), u2(X), . . . , uq(X)}
for X ∈ Ω. ũ is unique up to its values Ln-a.e. on Ω.

For each integer k ≥ 1 and 1 ≤ p <∞,

‖u‖W k,p;q(Ω) ≡
∑
|α|≤k

sup
Ω
‖Dαu‖Lp;q(Ω)

for every u ∈W k,p;q(Ω;Rm). Given a sequence u(j) ∈ Lp;q(Ω), j = 1, 2, 3, . . .,
and u ∈ Lp;q(Ω), we say u(j) → u in Lp;q(Ω;Rm) if ‖u(j) − u‖Lp;q(Ω) → 0.

Given a sequence {u(j)}j=1,2,3,... in W k,p;q(Ω) and u ∈W k,p;q(Ω), we say

u(j) → u in W k,p;q(Ω;Rm) if ‖u(j) − u‖W k,p;q(Ω) → 0. We let W k,p;q
0 (Ω;Rm)

denote the closure of Ck;q
c (Ω;Rm) in the Banach space W k,p;q(Ω;Rm).

Note that if u(j) = (u
(j)
1 , u

(j)
2 , . . . , u

(j)
q ), j = 1, 2, 3, . . ., is a sequence in

W 1,2;q(Ω;Rm) such that supj ‖u(j)‖W 1,2;q(Ω) <∞, then by Rellich’s compact-
ness lemma applied to the sequences

{u(j)
l |µ;Ω∩R×(0,∞)×Rn−2} and {u(j)

l |µ;Ω∩R×(−∞,0)×Rn−2}



i
i

“5-Krummel” — 2019/10/8 — 0:56 — page 885 — #9 i
i

i
i

i
i

Multivalued solutions to elliptic equations and systems 885

for l = 1, 2, . . . , q, there is a subsequence {u(ji)}i=1,2,3,... of {u(j)}j=1,2,3,... and
u ∈W 1,2;q(Ω;Rm) such that u(ji) → u strongly in L2;q(Ω;Rm) as i→∞ and
‖Du‖L2;q(Ω) ≤ lim infj ‖Du(j)‖L2;q(Ω).

Given a set Ω ⊆ Rn and u = (u1, u2, . . . , uq) : Ω \ [0,∞)× {0} × Rn−2 →
(Rm)q, there exists ua : Ω \ [0,∞)× {0} × Rn−2 → Rm and uf = (uf,1, uf,2,
. . . , uf,q) : Ω \ [0,∞)× {0} × Rn−2 → (Rm)q such that

(2.5) ul = ua + uf,l for l = 1, 2, . . . , q, where ua =
1

q

q∑
j=1

uj .

We call ua the average of u. We say u is average-free if ua = 0 on Ω. uf is
average-free and thus we call uf the average-free part of u.

The first of our main results concern the existence of solutions to the
Dirichlet problem for elliptic differential equations in the cylinder C =
B2

1(0)× Rn−2. Fix an integer k ≥ 2 such that k and q are relatively prime.
We say u ∈ C0;q(C;Rm) is k-fold symmetric if

ul(re
iθ+i2π/k, y) = ul(re

iθ, y) if 0 < θ < 2π − 2π/k, l = 1, 2, . . . , q,

u1(reiθ+i2π/k, y) = uq(re
iθ, y) if 2π − 2π/k < θ < 2π,

ul(re
iθ+i2π/k, y) = ul−1(reiθ, y) if 2π − 2π/k < θ < 2π, l = 2, 3, . . . , q,

for all (reiθ, y) ∈ Ω. We will let R denote the n× n matrix such that

R(reiθ, y) = (reiθ+i2π/k, y).

We write

R = (Rij)i,j=1,...,n =



cos(2π/k) − sin(2π/k) 0 0 · · · 0
sin(2π/k) cos(2π/k) 0 0 · · · 0

0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1


where Rji denotes the entry in the i-th row and j-th column of R. We say u
is periodic with respect to yj with period ρj > 0 for j = 1, 2, . . . , n− 2 if

ul(x, y + ρjej) = ul(x, y)

for all (x, y) ∈ Ω \ [0,∞)× {0} × Rn−2, l = 1, 2, . . . , q, and j = 1, 2, . . . , n−
2, where e1, e2, . . . , en−2 denotes the standard basis for Rn−2.
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We will be interested in the regularity of multivalued solutions up to
the boundary of C. Recall that the continuity of multivalued functions on
C is defined above. We say ũ : C → Aq(Rm) is differentiable at X0 ∈ ∂C
if (2.1) holds when the limit is taken over h such that X + h ∈ C. We
let C1(C;Aq(Rm)) denote the space of ũ : C → Aq(Rm) that are continu-
ously differentiable on C. We say ũ ∈ C1,µ(C;Aq(Rm)) for µ ∈ (0, 1] if ũ ∈
C1(C;Aq(Rm)) and [Dũ]µ;B2

1(0)×Bn−2
ρ (0) <∞ for all ρ ∈ (0,∞). We define

Ck;q(C;Rm) for integers k ≥ 0 by Definition 1 with C in place of Ω. We
say u ∈ Ck,µ;q(C;Rm) for an integer k ≥ 0 and µ ∈ (0, 1) if u ∈ Ck;q(C;Rm)
and [Dku]µ;q,B2

1(0)×Bn−2
ρ (0) <∞ for all ρ ∈ (0,∞). Note that given a set

S ⊆ C, we define infS u and supS u for u ∈ C0(C) by (2.2) and supS |u| for
u ∈ C0(C;Rm) by (2.3).

We will first establish the existence of solutions in C0;q(C) ∩ C1,µ;q(C) to
weak Poisson equations:

Theorem 1. Let µ ∈ (0, 1/q) and k > q be an integer such that k and q are
relatively prime. Given f j = (f j1 , f

j
2 , . . . , f

j
q ) ∈ C0,µ;q(C) and g, ϕ ∈ C0;q(C)

such that

f jl (reiθ+i2π/k, y) =

n∑
p=1

Rjpf
p
l (reiθ, y)(2.6)

if 0 < θ < 2π − 2π/k, l = 1, 2, . . . , q,

f j1 (reiθ+i2π/k, y) =

n∑
p=1

Rjpf
p
q (reiθ, y)

if 2π − 2π/k < θ < 2π,

f jl (reiθ+i2π/k, y) =

n∑
p=1

Rjpf
p
l−1(reiθ, y)

if 2π − 2π/k < θ < 2π, l = 2, 3, . . . , q,

for all (reiθ, y) ∈ C, g and ϕ are k-fold symmetric, and

sup
∂C
|ϕ|+ [f ]µ;q,C + sup

C
|g| <∞,

there is a u ∈ C0;q(C) ∩ C1,µ;q(C) such that u is k-fold symmetric,∫
C

q∑
l=1

DjulDjζl =

∫
C

q∑
l=1

(f jl Djζl − glζl)(2.7)

for all ζ ∈ C1;q
c (C \ {0} × Rn−2),

ul = ϕl on ∂C,
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for l = 1, 2, . . . , q and

sup
C
|u| ≤ C

(
sup
∂C
|ϕ|+ [f ]µ;q,C + sup

C
|g|
)
.

Moreover, if f j, g, and ϕ are periodic with respect to yi with period
ρi > 0 for i = 1, 2, . . . , n− 2, then u is the unique solution to (2.7) that is
periodic with respect to yi with period ρi for i = 1, 2, . . . , n− 2.

Note that in the special case where f j = 0 and g = 0, the q-valued func-
tion ũ(X) = {u1(X), u2(X), . . . , uq(X)} associated with the solution u ob-
tained in Theorem 1 is a q-valued function in C0(C;Aq(R)) ∩ C1,µ(C;Aq(R))
such that ∆ũ = 0 weakly in C \ Bũ.

To prove Theorem 1, we first assume f j , g, and ϕ are periodic with
respect to each yi, as the general result follows by approximation of f j , g,
and ϕ. We use the change of variable ξ1 + iξ2 = (x1 + ix2)1/q to transform
u(x1, x2, y) to a single-valued function u0(ξ1, ξ2, y) defined by u0(reiθ, y) =
ul(r

1/qeiθ/q, y) for r ∈ [0, 1], θ ∈ (2(l − 1)π, 2lπ), and y ∈ Rn−2. The single-
valued function u0 satisfies a singular differential equation which we solve
using Fourier series with respect to the yi variables and the existence the-
ory for single-valued solutions to elliptic equations to solve for the Fourier
coefficients as functions of ξ1 and ξ2. By linearity, we can assume that f j , g,
and ϕ are all average-free and therefore the constructed solution u will be
average-free and k-fold symmetric. The average-free and k-fold symmetry
conditions on u will guarantee that u(x, y) decays sufficiently quickly as x
approaches zero to guarantee that u ∈ C1,µ;q(C).

Using Theorem 1 and the contraction mapping principle, we can con-
struct solutions to quasilinear elliptic systems with small boundary data ϕ
in C1,µ;q(C;Rm):

Theorem 2. Let m ≥ 1 be an integer, µ ∈ (0, 1/q), and k > q be an in-
teger such that k and q are relatively prime. Let F iκ ∈ C2(Rmn) and Gκ ∈
C1(Rm × Rmn) be single-valued functions, where Rmn is the space of m× n
matrices, such that F iκ(0) = 0, DF iκ(0) = 0, Gκ(0, 0) = 0, DGκ(0, 0) = 0,
and

F iκ(PR) = RjiF
j
κ(P ), Gκ(Z,PR) = Gκ(Z,P )

for all P ∈ Rmn. For some ε > 0 depending on m, n, q, µ, F iκ, and Gκ,
if ϕ ∈ C1,µ;q(C,Rm) is k-fold symmetric with ‖ϕ‖C1,µ;q(C) ≤ ε, there exists a
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solution u ∈ C1,µ;q(C;Rm) to∫
C

q∑
l=1

Dju
κ
l Djζ

κ
l =

∫
C

q∑
l=1

(F iκ(Dul)Diζ
κ −Gκ(ul, Dul)ζ

κ)(2.8)

for all ζ ∈ C1;q
c (C \ {0} × Rn−2;Rm),

ul = ϕl on ∂C for l = 1, 2, . . . , q.

Moreover, u is k-fold symmetric and ‖u‖C1,µ;q(C) ≤ ε. The q-valued function
ũ(X) = {u1(X), u2(X), . . . , uq(X)} associated with u is a q-valued solution
in C1,µ(C;Aq(Rm)) to

∆ũκ −DiF
i
κ(Dũ)−Gκ(ũ, Dũ) = 0 weakly in C \ Bũ.

In particular, Theorem 2 yields q-valued solutions ũ ∈ C1,µ(C;Aq(Rm))
to the minimal surface system in C \ Bũ. For sufficiently small ε > 0, these
solutions to the minimal surface system are stable in the sense that

(2.9)

∫
Σũ

 n∑
i=1

|(DτiX)⊥|2 −
n∑

i,j=1

|X ·A(τi, τj)|2
 ≥ 0

for all normal vector fields X ∈ C0
c (Σũ;Rn+m) ∩W 1,2(Σũ,Rn+m), where Σũ

is the graph of ũ regarded as an immersed submanifold. (2.9) holds true
in the case that X = 0 near {0} × Rn−2+m by the convexity of the area
functional. To prove (2.9) for general X, for δ ∈ (0, 1) let χδ ∈ C1([0,∞))
be the logarithmic cutoff function given by χδ = 0 on B2

δ2(0)× Rn−2−m,
χδ(x, y, Z) = − log(|x|/δ2)/ log(δ) if x ∈ B2

δ (0) \B2
δ2(0), y ∈ Rn−2, and Z ∈

Rm, and χδ = 1 on Rn+m \B2
δ (0)× Rn−2+m. Replace X by χδX in (2.9)

and let δ ↓ 0 to obtain (2.9) with the original X. Theorem 2 also yields q-
valued solutions to the Euler-Lagrange equations for functionals of the form∫
C(|Du|

2 + f(Du)) where f ∈ C3(Rmn;R) is a single-valued function such
that Df(0) = 0, D2f(0) = 0, and f(PR2π/k) = f(P ) for all P ∈ Rmn.

Note that Theorem 2 would not be true without the assumption of small
boundary data as a consequence of [5], which showed that for some boundary
data there are no C1 single-valued solutions to the Dirichlet problem for the
minimal surface system.

We also use Theorem 1 and the Leray-Schauder theory to construct
solutions to general quasilinear elliptic equations (without assuming small
boundary data):
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Theorem 3. Let k > q be an integer such that k and q are relatively prime.
Let Ai ∈ C2(Rn), B ∈ C1(R× Rn) be single-valued functions such that

(2.10) Ai(PR) = RjiA
j(P ), B(Z,PR) = B(Z,P ).

Suppose

0 < λ(P )|ξ|2 ≤ DPjA
i(P )ξiξj ≤ Λ(P )|ξ|2 for all ξ ∈ Rn

for some continuous positive functions λ and Λ, the structure conditions

B(Z,P ) sgnZ/λ(P ) ≤ β1|P |+ β2,(2.11)

|Λ(P )|+ |B(Z,P )| ≤ β3λ(P )|P |2 if |P | ≥ 1,(2.12)

for some constants β1, β2, β3 ∈ (0,∞), and B(Z,P ) is non-increasing in Z
for fixed P ∈ Rn. Let ϕ ∈ C2;q(C) is k-fold symmetric with ‖ϕ‖C2;q(C) <∞.

Then there exists a u ∈ C1;q(C) such that u ∈ C1,µ;q(C) for every µ ∈ (0, 1/q)
and ∫

C

q∑
l=1

(Ai(Dul)Diζl −B(ul, Dul)ζl) = 0(2.13)

for all ζ ∈ C1;q
c (C \ {0} × Rn−2),

ul = ϕl on ∂C for l = 1, 2, . . . , q.

Moreover, u is k-fold symmetric. The q-valued function ũ(X) = {u1(X),
u2(X), . . . , uq(X)} associated with u satisfies ũ ∈ C1,µ(C;Aq(R)) for all µ ∈
(0, 1/q) and

(2.14) DiA
i(Dũ) +B(ũ, Dũ) = 0 weakly in C \ Bũ.

Note that to prove Theorem 3 we need a new C1,τ ;q Schauder estimate
(Lemma 2 in Section 3) in order to construct a compact map to apply the
Leray-Schauder theory.

The proof of Theorem 3 uses the maximum principle to obtain a global
gradient estimate. By obtaining interior gradient estimates via [8] and using
an approximation argument, we can assume ϕ ∈ C0;q(C). See Section 4 of [8]
for other examples of structural conditions on Ai and B that imply interior
gradient estimates.
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Corollary 1. Let k > q be an integer such that k and q are relatively
prime. Let Ai ∈ C2(Rn), B ∈ C1(R× Rn) be single-valued functions satisfy-
ing (2.10). Let v(P ) = (1 + |P |2)1/2 and gij(P ) = δij − PiPj/(1 + |P |2) and
suppose the structure conditions (2.11),

PiA
i(P ) ≥ v(P )− γ1, |A(P )| ≤ γ2, |B(Z,P )| ≤ γ2/v(P ),

v(P )DPjA
i(P )ξjξj ≥ gij(P )ξiξj for all ξ ∈ Rn,

v(P )|DPjA
i(P )ξiηj | ≤ γ2(gij(P )ξiξj)

1/2(gij(P )ηiηj)
1/2 for all ξ, η ∈ Rn,

hold for all Z ∈ R and P ∈ Rn for some constants β1, β2, β3 ∈ (0,∞), γ1 ∈
[0, 1), and γ2 ∈ (0,∞). Also suppose B(Z,P ) is non-increasing in Z for
fixed P ∈ Rn. Let ϕ ∈ C0;q(C) is k-fold symmetric with sup∂C |ϕ| <∞. Then
there exists a solution u ∈ C0;q(C) ∩ C1;q(C) to (2.13) such that u is k-fold
symmetric and u ∈ C1,µ;q(C) for every µ ∈ (0, 1/q). The q-valued function
ũ(X) = {u1(X), u2(X), . . . , uq(X)} associated with u is a q-valued solution
in C0(C;Aq(R)) and C1,µ(C;Aq(R)) for all µ ∈ (0, 1/q) to (2.14).

Finally we consider the interior regularity of q-valued solutions to elliptic
equations:

Theorem 4. Let ũ ∈ C1(B1(0);Aq(R)) be a q-valued function such that Bũ
is nonempty, Bũ ⊆ {0} ×Bn−2

1 (0), and ‖ũ‖C1(B1(0)) ≤ 1/2. Suppose ũ is a
solution to

(2.15) Di(A
i(X, ũ,Dũ)) +B(X, ũ,Dũ) = 0 weakly in B1(0) \ Bũ,

for some locally real analytic single-valued functions Ai, B : B1(0)×(−1, 1)×
Bn

1 (0)→ R and

(2.16) (DjA
i)(X,Z, P )ξiξj ≥ λ|ξ|2

for all X ∈ B1(0), |Z| ≤ 1, P ∈ Bn
1 (0), and ξ ∈ Rn for some constant λ > 0.

Then ũ(x, y) is real analytic in y in the sense that for BR(x0, y0) ⊂⊂ B1(0),

sup
(x,y)∈BR/2(x0,y0)

|Dγ
y ũ(x, y)| ≤ p!CpR−p for p = |γ| ≥ 1

for some constant C ∈ (0,∞) depending on n, q, µ, Ai, B, and Bũ. Conse-
quently, the branch set of the graph of ũ is a union of N ≤ q/2 real analytic,
(n− 2)-dimensional submanifolds.
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In particular, (4) establishes that the branch sets of the minimal hy-
persurfaces constructed in [10] are locally real analytic (n− 2)-dimensional
submanifolds.

Suppose ũ is as in the statement of Theorem 4. Then ũ = {u1, u2, . . . , uq}
on B1(0) \ (0,∞)× {0} × Rn−2 for some C1 single-valued u1, u2, . . . , uq such
that DiA

i(X,ul, Dul) +B(X,ul, Dul) = 0 weakly in B1(0) \ [0,∞)× {0} ×
Rn−2 and ũ = {v1, v2, . . . , vq} on B1(0) \ (−∞, 0)× {0} × Rn−2 for some
C1 single-valued v1, v2, . . . , vq such that DiA

i(X, vl, Dvl) +B(X, vl, Dvl) =
0 weakly in B1(0) \ (−∞, 0]× {0} × Rn−2. By unique continuation, we can
order v1, v2, . . . , vq so that ul = vl on B1(0) ∩ R× (−∞, 0)× Rn−2. More-
over, there exists a permutation σ of {1, 2, . . . , q} such that uσ(l) = vl on
B1(0) ∩ R× (0,∞)× Rn−2. After reordering u1, u2, . . . , uq, we may assume
that

σ = (1, 2, . . . , i1)(i1 + 1, i1 + 2, . . . , i2) · · · (iN−1, iN−1 + 1, . . . , q)

for some integers ij so that (uij−1+1, uij−1+2, . . . , uij ) ∈ C1;ij−ij−1(B1(0)) for
j = 1, 2, . . . , N , where i0 = 0 and iN = q. To prove Theorem 4, it suffices to
assume N = 1 so that u = (u1, u2, . . . , uq) ∈ C1;q(B1(0)) and show that

(2.17) sup
(x,y)∈BR/2(x0,y0)

|Dγ
yu(x, y)| ≤ p!CpR−p for p = |γ| ≥ 1

for some constant C ∈ (0,∞) depending on n, q, µ, Ai, and B. The branch
set of the graph of ũ is {(0, y, u1(0, y)) : y ∈ Bn−2

1 (0)}, which is real analytic
if u satisfies (2.17).

We can regard Theorem 4 as analogous to the result that single-valued
solutions to (2.15) are real analytic. One approach to proving such theo-
rems for single-valued functions due to Morrey (see [6, Sections 5.8 and 6.7]
or [7]) is to use integral kernels to show the single-valued solution extends
to a holomorphic function on some domain in Cn. However, we cannot use
integral kernels for q-valued functions, so instead we take another approach
of inductively using Schauder estimates. To prove Theorem 4, we first show
that Dγ

yu ∈ C1,µ;q(B1(0)) for all γ by an inductive argument involving differ-
ence quotients and Schauder estimates. For Theorem 4 we need estimates on
Dγ
yu of the particular form (2.17), which requires obtaining precise estimates

on terms appearing in the Schauder estimates using a modified version of a
technique used by Friedman in [2] involving majorants.

By replacing a Schauder estimate for equations (Lemma 7 in Section 3)
with a Schauder estimate for elliptic systems (Lemma 8 in Section 3), we
obtain a similar result for elliptic systems:
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Theorem 5. Let µ ∈ (0, 1/q). There is a ε = ε(n,m, µ, ν) > 0 such that
the following is true. Let ũ ∈ C1,µ(B1(0);Aq(Rm)), where µ ∈ (0, 1/q), such
that Bũ is nonempty, Bũ ⊆ {0} ×Bn−2

1 (0), and ‖ũ‖C1(B1(0)) ≤ 1/2. Suppose
ũ is a solution to the non-linear elliptic differential equation

DiA
i
κ(X, ũl, Dũl) +Bκ(X, ũl, Dũl) = 0 weakly in B1(0) \ Bũ,

where Aiκ, Bκ : B1(0)×Bm
1 (0)×Bmn

1 (0)→ R are locally real analytic single-
valued functions such that

|(DPλj
Aiκ)(X,Z, P )− δijδκλ| < ε for (X,Z, P ) ∈ B1(0)×Bm

1 (0)×Bmn
1 (0).

Then ũ(x, y) is real analytic in y in the sense that for BR(x0, y0) ⊂⊂ B1(0),

sup
(x,y)∈BR/2(x0,y0)

|Dγ
y ũ(x, y)| ≤ p!CpR−p for p = |γ| ≥ 1,

for some constant C ∈ (0,∞) depending on n, q, µ, Ai, B, and Bũ. Con-
sequently, the branch set of the graph of ũ is a union of at most q/2 real
analytic, (n− 2)-dimensional submanifolds.

In particular, (4) establishes that the branch sets of the minimal subman-
ifolds constructed in Theorem 2 are locally real analytic (n− 2)-dimensional
submanifolds provided ε is sufficiently small.

3. Elliptic theory for multivalued functions

The proof of the main results use standard theorems for elliptic differen-
tial equation such as the maximum principle and the Schauder estimates.
This chapter is concerned with extending those theorems to solutions in the
spaces Ck;q and W 1,2;q discussed in Section 2. We first consider differential
equations of the form

aijl Dijul + bilDiul + clul = (≥,≤) fl in Ω \ [0,∞)× {0} × Rn−2

for l = 1, 2, . . . , q, where Ω is an open set in Rn, u = (u1, u2, . . . , uq) ∈
C2;q(Ω \ {0} × Rn−2), and aij = (aij1 , a

ij
2 , . . . , a

ij
q ), bi = (bi1, b

i
2, . . . , b

i
q), c =
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(c1, c2, . . . , cq), f = (f1, f2, . . . , fq) ∈ C0;q(Ω). We assume the ellipticity con-
dition

(3.1) aijl (X)ξiξj ≥ λ|ξ|2 for X ∈ Ω, ξ ∈ Rn, l = 1, 2, . . . , q

for some constant λ > 0. Given (x, y) ∈ Ω, if x1 ≤ 0 then each ul solves
aijl Dijul + bilDiul + clul = (≥,≤) fl in B|x|/2(x, y) ∩ Ω. Similarly if x1 > 0
and ûl are the C2 single-valued functions defined by ûl = ul on B|x|/2(x, y) ∩
Ω ∩ R× (0,∞)× Rn−2 for l = 1, 2, . . . , q, û1 = uq on B|x|/2(x, y) ∩ Ω ∩ R×
(−∞, 0)× Rn−2, ûl = ul−1 on B|x|/2(x, y) ∩ Ω ∩ R× (−∞, 0)× Rn−2 for
l = 2, 3, . . . , q, then each ûl satisfies an elliptic differential equation on
B|x|/2(x, y) ∩ Ω. Thus u satisfies standard elliptic estimates on B|x|/2(x, y) ∩
Ω. Our first result is a strong maximum principle:

Lemma 1. Let u ∈ C0;q(C) ∩ C1;q(C) ∩ C2;q(C \ {0} × Rn−2), aij , bi, c ∈
C0;q(C) satisfy

(3.2) aijl Dijul + bilDiul + clul ≥ 0 in C \ [0, 1)× {0} × Rn−2

for l = 1, 2, . . . , q. Assume (3.1) holds true for some constant λ > 0 and
cl ≤ 0 in C \ [0, 1)× {0} × Rn−2 for l = 1, 2, . . . , q. Then u does not attain
its maximum value in the interior of C unless ul all equal the same constant
function.

Proof. Assume ul do not all equal the same constant function. By the strong
maximum principle [4, Theorem 3.5] applied locally in C \ {0} × Rn−2, u
does not attain its maximum value in C \ {0} × Rn−2. Suppose u attained
its maximum value at (0, y0) for some y0 ∈ Rn−2. Then u1 extends to a
C1 function on B1/4(0, 1/4, y0) that attains its maximum value at (0, y0),
Du1(0, y0) = 0, and satisfies (3.2), contradicting the Hopf boundary point
lemma [4, Lemma 3.4]. �

Next we prove a Schauder estimate that will be needed for the proof of
Theorem 3.

Lemma 2. Let 0 < µ < τ < 1/q and BR(X0) ⊆ Rn. Suppose

u ∈ C1,τ ;q(BR(X0)), aij , f ∈ C0,µ;q(BR(X0))

satisfy

(3.3) aijl Dijul = fl in BR(X0) \ {0} × Rn−2.
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Assume (3.1) holds true for some constant λ > 0 and ‖aij‖′C0,µ;q(BR(X0)) ≤ Λ
for some constant Λ > 0. Then

(3.4) ‖u‖′C1,τ;q(BR/2(X0)) ≤ C
(
R−n/2‖u‖L2;q(BR(X0)) +R2‖f‖′C0,µ;q(BR(X0))

)
for some constant C = C(n, q, µ, τ, λ,Λ) ∈ (0,∞).

The proof of Lemma 2 extending Liouville-type result [11, Corollary 2.6].

Lemma 3. Let µ ∈ (0, 1/q) and suppose u ∈ C1,µ;q(Rn) ∩ C∞;q(Rn) such
that

(3.5) ∆ul = 0 in Rn \ [0,∞)× Rn−2

and [Du]µ;q,Rn <∞. Then ul(X) = a+ b ·X for all X ∈ Rn \ [0,∞)× {0} ×
Rn−2 and l = 1, 2, . . . , q for some a ∈ R and b ∈ Rn independent of l.

Proof. Let u be as in the statement of Lemma 3. u = ua + uf where ua =
1
q

∑q
j=1 uj and uf are as by (2.5) and ua is an affine function by the Liouville

theorem. Thus it suffices to suppose that u is average-free and show that
u = 0.

For u ∈ C1;q(Rn) that is non-zero, average-free, and satisfies (3.5) and
y0 ∈ Rn−2, we define the frequency function of u at (0, y0) by

Nu,(0,y0)(ρ) =
ρ2−n ∫

Bρ(0,y0)

∑q
l=1 |Dul|

2

ρ1−n
∫
∂Bρ(0,y0)

∑q
l=1 |ul|2

for ρ ∈ (0,∞). We extend the two identities in [11, Remark 2.3(2)] by either
the argument in [11] using the fact that u and Du vanish on {0} × Rn−2

or by using a cutoff function argument. We then can extend Lemma 2.2,
Remark 2.3(1)(3)(4), and Remark 2.4 of [11] to establish monotonicity and
other standard properties of frequency functions for Nu,(0,y0).

Next we extend [11, Lemma 2.5] by showing that for some δ = δ(n, q) ∈
(0, 1), there are no u ∈ C1;q(Rn) that are non-zero, are average-free, satisfy
(3.5), and are homogeneous degree σ for σ ∈ [1, 1 + δ). Arguing as in [11] us-
ing the fact that Du vanishes on {0} × Rn−2, if u ∈ C1;q(Rn) is average-free,
satisfies (3.5), and is homogeneous degree one then Dul all equal the same
constant function on Sn−1 \ [0,∞)× {0} × Rn−2. Since u is average-free,
this implies ul = 0 on Rn \ [0,∞)× {0} × Rn−2 for all l = 1, 2, . . . , q. By ar-
guing as in [11] we also conclude that if u(j) ∈ C1;q(Rn) that are non-zero, are
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average-free, satisfy (3.5) with u(j) in place of u, and are homogeneous de-
gree σj for σj ↓ 1, then after passing to a subsequence u(j) converges strongly
in L2;q(B1(0)) to u ∈W 1,2;q(B1(0)) such that u is average free, u satisfies
(3.5), Dul all equal the same constant function, and ‖u‖L2;q(B1(0)) = 1. But
u being average-free implies that Dul must all equal the zero function and
thus ul all equal the zero function, contradicting ‖u‖L2;q(B1(0)) = 1.

By extending the proof of [11, Corollary 2.6] there is no nonzero u ∈
C1,µ;q(Rn) such that u is average-free, u satisfies (3.5), and [Du]µ;q,Rn <
∞ for some µ ∈ (0, δ). Having established Lemma 3 in the case that µ ∈
(0, δ), we can prove Lemma 2 in the special case that 0 < µ < τ < δ. Using
the dimension reduction argument in the proof of [11, Theorem 4.1] and
the fact that the homogeneous, average-free u ∈ C1;q(R2) satisfying (3.5)
are given by ul(re

iθ) = Re(cr1+k/qeik/q(θ+2(l−1)π)) for r ≥ 0, θ ∈ [0, 2π), and
l = 1, 2, . . . , q for some constant c ∈ C and integer k ≥ q + 1, we conclude
that there are no non-zero, average-free u ∈ C1;q(Rn) that satisfies (3.5) is
homogeneous degree σ ∈ [1, 1 + 1/q) and thus Lemma 3 holds for all µ ∈
(0, 1/q). �

Proof of Lemma 2. We adapt the proof of [11, Lemma 3.2]. We in fact as-
sume R = 1 and prove the weaker inequality that for every δ > 0,

[Du]τ ;q,B1/2(X0) ≤ δ[Du]τ ;q,B1(X0)

+ C

(
sup
B1(0)

|u|+ sup
B1(0)

|Du|+ ‖f‖C0,µ;q(B1(X0))

)

for some constant C = C(n, q, µ, λ,Λ, δ) ∈ (0,∞). Then by translating and
rescaling, u as in the statement of Lemma 2 satisfies

ρ1+τ [Du]τ ;q,Bρ/2(Y ) ≤ δρ1+τ [Du]τ ;q,Bρ(Y )

+ C

(
sup
Bρ(Y )

|u|+ ρ sup
Bρ(Y )

|Du|+ ρ2‖f‖′C0,µ;q(Bρ(Y ))

)

for all Bρ(Y ) ⊆ BR(X0) and (3.4) follows by standard interpolation inequal-
ities.

Suppose instead that for some δ > 0 and every positive integer k, there is
a ball B1(Xk) and uk = (uk,1, uk,2, . . . , uk,q) ∈ C2;q(BR(Xl) \ {0} × Rn−2) ∩
C1,τ ;q(BR(Xk)) and aijk = (aijk,1, a

ij
k,2, . . . , a

ij
k,q), fk = (fk,1, fk,2, . . . , fk,q) ∈

C0,µ;q(BR(Xl)) such that (3.1) and (3.3) hold with uk,l, a
ij
k,l, and fk,l in
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place of ul, a
ij
l , and fl and ‖aijk ‖C0,µ;q(BR(X0)) ≤ Λ but

[Duk]τ ;q,B1/2(Xk) > δ[Duk]τ ;q,B1(Xk)(3.6)

+ k

(
sup
B1(0)

|uk|+ sup
B1(0)

|Duk|+ ‖fk‖′C0,µ;q(B1(X0))

)

Assume [Duk]τ ;q,B1/2(Xk) ≤ 2q[Duk,1]µ;B1/2(Xk)∩R×(0,∞)×Rn−2 . Select Yk, Y
′
k ∈

B1/2(Xk) ∩ R× (0,∞)× Rn−2 such that

(3.7)
|Duk,1(Yk)−Duk,1(Y ′k)|

|Yk − Y ′k|τ
≥ 1

4q
[Duk]τ ;B1/2(Xk)

and let ρk = |Yk − Y ′k|. By (3.6) and (3.7),

1

4q
[Duk]τ ;B1/2(Xk) ≤

2

ρτk
sup

B1(Xk)
|Duk| <

2

kρτk
[Duk,1]τ ;B1/2(Xl),

so ρτk ≤ 8/qk for all k and thus ρk → 0 as k →∞.
Suppose dist({Yk, Y ′k}, {0} × Rn−2)/ρk ≤ c for some constant c ∈ [1,∞).

Then for some Zk ∈ {0} × Rn−2, |Yk − Zk| ≤ 2cρk. By translating assume
Zk = 0. Let Rk = 1/2ρk − 2c>0 for k sufficiently large. Rescale letting ζk =
Yk/ρk and ζ ′k=Y ′k/ρk and ûk=(ûk,1, ûk,2, . . . , ûk,q), â

ij
k =(âijk,1, â

ij
k,2, . . . , â

ij
k,q),

and f̂k = (f̂k,1, f̂k,2, . . . , f̂k,q) where

ûk,l(X) = ρ−1−τ
l [Duk]

−1
τ,B1(Xk)(uk,l(ρkX)− uk,l(0)−Duk,l(0) · ρkX),

âijk,l(X) = aijk,l(ρkX),

f̂k,l(X) = ρ1−τ
l [Duk]

−1
τ,B1(Xk)fk,l(ρkX),

for X ∈ BRk(0) \ [0,∞)× {0} × Rn−2 and l = 1, 2, . . . , q so that

âijk,lDij ûk,l = f̂k,l in BRk(0) \ {0} × Rn−2,

[Dûk]τ ;q,BRk (0) ≤ 1, |Dûk,1(ζk)−Dûk,1(ζ ′k)| ≥
δ

4q
.

Since {ζk} and {ζ ′k} are bounded, after passing to a subsequence, ζk → ζ
and ζ ′k → ζ ′ for some points ζ, ζ ′ ∈ Rn. Since

sup
BRk (0)

|âijk |+ ρ−µk [aijk ]µ;q,BRl (0) ≤ CΛ,
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after passing to a subsequence {âijk,l} converges to some constant âij (in-

dependent of l) uniformly on K \ [0,∞)× {0} × Rn−2 as k →∞ for every
compact subset K of Rn. By (3.6),

sup
BRl (0)

|f̂k|+ ρ−µ[f̂k]µ,BRl (0) ≤ Cρ1−τ
k /k

for some constant C = C(m,n) ∈ (0,∞), so after passing to a subsequence
{f̂k} converges to zero in C0;q(Ω) as k →∞ for all Ω ⊂⊂ Rn. Since
[Dûk]τ ;q,BRk (0) ≤ 1, after passing to a subsequence, {uk} converges in C1;q(Ω)

to some û = (û1, û2, . . . , ûq) ∈ C1,τ ;q(Rn) for all Ω ⊂⊂ Rn. Moreover, by the
interior C2,µ Schauder estimates for single-valued functions [4, Corollary 6.3]
applied locally on Rn \ {0} × Rn−2, after passing to a subsequence ûk → û
in C2;q on compact subsets of Rn \ {0} × Rn−2. Hence û satisfies the dif-
ferential equation âijDij û = 0 on Rn \ {0} × Rn−2. However, [Dû]τ,Rn ≤ 1
and |Dû1(ζ)−Dû1(ζ ′)) ≥ δ/4q, which after an affine change of variables
contradicts Lemma 3.

Suppose instead that dist({Yk, Y ′k}, {0} × Rn−2)/ρk is unbounded. As-
sume dist({Yk, Y ′k}, {0}×Rn−2)/ρk tends to infinity and Y ′k∈B1/2(0) ∩ {0}×
(0,∞)× Rn−2. For some Rk →∞, Rk < dist({Yk, Y ′k}, {0} × Rn−2)/ρk and

Rk < 1/2ρk. Rescale letting ζk = (Yk − Y ′k)/ρk and letting ûk, â
ij
k , and f̂k be

the single-valued functions defined by

ûk(X) = ρ−1−τ
k [Duk,1]−1

τ,B1(Xk)(uk(Y
′
k + ρkX)− uk(Y ′k)−Duk(Y ′k) · ρkX),

âijk (X) = aijk,1(Y ′k + ρkX),

f̂k(X) = ρ−1−τ
k [Duk,1]−1

τ,B1(Xk)fk(Y
′
k + ρkX),

for X ∈ BRl(0) for large k. Similar to above, after passing to a subsequence,
{ζk} converges to some ζ, {âijk } converges uniformly on compact subsets of
Rn to some constant âij , {ûk} converges in C2 on compact subsets of Rn
to some single-valued function û, and {f̂k} converges uniformly to zero.
û satisfies âijDij û = 0 on Rn, [Dû]τ,Rn−2 ≤ 1, and |Dû(ζ)−Dû(0)| ≥ δ

4q ,
which after an affine change of variables contradicts the Liouville theorem
for single-valued harmonic functions. �

Next we consider equations of the form∫
Ω

q∑
l=1

((
aijl Djul + biul

)
Diζl −

(
cjlDju+ dlul

)
ζl

)
(3.8)

= (≤,≥)

∫
Ω

q∑
l=1

(
f ilDiζl − glζl

)
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for all ζ = (ζ1, ζ2, . . . , ζq) ∈ C1;q
c (Ω \ {0} × Rn−2), where Ω is an open set in

Rn, u = (u1, u2, . . . , uq) ∈W 1,2;q(Ω), aij = (aij1 , a
ij
2 , . . . , a

ij
q ), bi = (bi1, b

i
2, . . . ,

biq), c
j = (cj1, c

j
2, . . . , c

j
q), d = (d1, d2, . . . , dq) ∈ L∞;q(Ω), and f i = (f i1, f

i
2, . . . ,

f iq), g = (g1, g2, . . . , gq) ∈ L2;q(Ω). We require ellipticity condition (3.1) to
hold for some constant λ > 0. We claim that (3.8) continues to hold if in-
stead ζ ∈ C1;q

c (Ω). To see this, for every δ > 0 let χδ ∈ C1(Rn) be a single-
valued function such that 0 ≤ χδ ≤ 1, χδ = 1 on Rn \B2

δ (0)× Rn−2, χδ = 0
on B2

δ/2(0)× Rn−2, and |Dχδ| ≤ 3/δ. Replace ζl with ζlχδ in (3.8) to get

∫
Ω

q∑
l=1

((
aijl Djul + biul

)
Diζl −

(
cjlDju+ dlul

)
ζl

)
χδ

= (≤,≥)

∫
Ω

q∑
l=1

(
f ilDiζl − glζl

)
χδ −

∫
Ω

q∑
l=1

(
aijl Djul + biul − f il

)
ζlDiχδ

and let δ ↓ 0 to get (3.8) for ζ ∈ C1;q
c (Ω). Using (3.8) and Sobolev inequality

Lemma 4 below, the maximum principle [4, Theorem 8.1] and global supre-
mum estimates [4, Theorem 8.16] readily extend to u ∈W 1,2;q(Ω) satisfying
(3.8) with the ≤ sign. Using (3.8) and Sobolev inequality Lemma 4 and
Poincaré inequality Lemma 5 below we will extend local Hölder continuity
estimates [4, Theorem 8.22] to solutions to (3.8) with the = sign.

Lemma 4. Let 1 ≤ p < n. Suppose u ∈W 1,p;q
0 (Rn). Then

‖u‖Lnp/(n−p);q(Rn) ≤ C‖Du‖Lp;q(Rn)

for some C = C(n, q, p) ∈ (0,∞).

Proof. By the Sobolev inequality for the single-valued functions
ul|R×(0,∞)×Rn−2 and ul|R×(−∞,0)×Rn−2 , l = 1, 2, . . . , q,

‖u‖Lnp/(n−p);q(Rn)

=

(
q∑
l=1

(‖ul‖
np/(n−p)
Lnp/(n−p);q(R×(0,∞)×Rn−2)

+‖ul‖
np/(n−p)
Lnp/(n−p);q(R×(−∞,0)×Rn−2)

)

)(n−p)/np

≤ C

(
q∑
l=1

(‖Dul‖
np/(n−p)
Lp;q(R×(0,∞)×Rn−2) + ‖Dul‖

np/(n−p)
Lp;q(R×(−∞,0)×Rn−2))

)(n−p)/np

≤ C‖Du‖Lp;q(Rn)

for C = C(n, q, p) ∈ (0,∞). �
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Lemma 5. For u ∈W 1,2;q(BR(0)),

(3.9) ‖u− `‖L2;q(BR(0)) ≤ CR‖Du‖L2;q(BR(0)),

for some C = C(n, q) ∈ (0,∞) where ` =
∫
BR(0)

1
q

∑q
j=1 uj.

Remark 1. The reason for stating (3.9) in terms of W 1,2;q functions on a
ball BR(0) centered at a point on {0} × Rn−2 = ∅ is that (3.9) fails if we
replace BR(0) with a ball B such that B ∩ {0} × Rn−2 = ∅. For example,
(3.9) fails if u1 ≡ −1, u2 ≡ 1, and ul ≡ 0 for l ≥ 3 in B.

Proof of Lemma 5. By scaling, we may suppose R = 1. Writing u = ua + uf
for ua = 1

q

∑q
j=1 uj and uf as by (2.5),

‖u− `‖2L2;q(B1(0)) = ‖ua − `‖2L2;q(B1(0)) + ‖uf‖2L2;q(B1(0))

‖Du‖2L2;q(B1(0)) = ‖Dua‖2L2;q(B1(0)) + ‖Duf‖2L2;q(B1(0)).

By the Poincaré inequality for single-valued functions, ‖ua − `‖L2(B1(0)) ≤
C‖Dua‖L2(B1(0)) for some C = C(n) ∈ (0,∞), so it suffices to suppose u is
average-free.

Suppose that for every integer j ≥ 1 there are average-free u(j) ∈
W 1,2;q(B1(0)) such that

‖u(j)‖L2;q(B1(0)) > j‖Du(j)‖L2;q(B1(0)).

By scaling we may suppose ‖u(j)‖L2;q(B1(0)) = 1 so that

‖u(j)‖L2;q(B1(0)) = 1, ‖Du(j)‖L2;q(B1(0)) < 1/j.

By Rellich’s lemma, after passing to a subsequence u(j) converges in
L2;q(B1(0)) to some average-free u = (u1, u2, . . . , uq) ∈W 1,2;q(B1(0)) such
that ‖u‖L2;q(B1(0)) = 1 and ‖Du‖L2;q(B1(0)) = 0. Since Dul = 0 a.e. in B1(0)
for l = 1, 2, . . . , q and u ∈W 1,2;q(B1(0)), ul all equal the same constant func-
tions on B1(0). Since u is average free, ul = 0 a.e. on B1(0) for l = 1, 2, . . . , q,
contradicting ‖u‖L2;q(B1(0)) = 1. �
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Lemma 6. Let R0>0. Let u∈W 1,2;q(BR0
(0)), aij , bi, cj , d∈L∞;q(BR0

(0)),
and f j ∈ Ls;q(BR0

(0)) and g ∈ Ls/2;q(BR0
(0)) for s > n such that∫

BR0
(0)

q∑
l=1

((
aijl Djul + biul

)
Diζl −

(
cjlDju+ dlul

)
ζl

)
=

∫
BR0

(0)

q∑
l=1

(
f ilDiζl − glζl

)
for all ζ ∈ C1;q

c (BR0
(0) \ {0} × Rn−2). Suppose (3.1) holds for some constant

λ > 0 and

sup
BR0 (0)

|aij | ≤ Λ, R0 sup
BR0 (0)

|bi|+R0 sup
BR0 (0)

|cj |+R2
0 sup
BR0 (0)

|d| ≤ ν,

for some constants Λ, ν > 0. Then for some constants µ ∈ (0, 1/q) and C ∈
(0,∞) depending on n, q, s, λ, Λ, and ν, u is equal to an element of
C0,µ;q(BR0/2(0)) a.e. in BR0/2(0) and, taking u to be in C0,µ;q(BR0/2(0)),

Rµ0 [u]µ;q,BR0/2(0)

≤ C

(
sup
BR0

(0)
|u|+R1−n/s‖f‖Ls;q(BR0

(0)) +R2−2n/s‖g‖Ls/2;q(BR0 (0))

)
.

Proof. First we show that if B4R(0, y0) ⊂ BR0
(0) and û ∈W 1,2;q(B4R(0, y0)),

f̂ j ∈ Ls;q(B4R(0, y0)), and ĝ ∈ Ls/2;q(B4R(0, y0)) for s > n such that ûl ≥ 0
for l = 1, 2, . . . , q and∫

B4R(0,y0)

q∑
l=1

((
aijl Dj ûl + biûl

)
Diζl −

(
cjlDj û+ dlûl

)
ζl

)
(3.10)

≥
∫
B4R(0,y0)

q∑
l=1

(
f̂ ilDiζl − ĝlζl

)
for all ζ ∈ C1;q

c (B4R(0, y0) \ {0} × Rn−2) such that ζl ≥ 0 for l = 1, 2, . . . , q
then

R−n
∫
B2R(0,y0)

q∑
l=1

ûl ≤ C
(

inf
BR(0,y0)

û+R1−n/s‖f̂‖Ls;q(B4R(0,y0))(3.11)

+R2−2n/s‖ĝ‖Ls/2;q(B4R(0,y0))

)
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for some constant C = C(n, q, s,Λ/λ, ν/λ) ∈ (0,∞). Translate and rescale
so that y0 = 0 and R = 1. (3.11) follows from standard arguments using
(3.10) and Sobolev inequality Lemma 4 such as the proof of Theorem 8.18
of [4] except to prove(∫

B3(0)

q∑
l=1

ūpl

)(∫
B3(0)

q∑
l=1

ū−pl

)
≤ C

where ūl = ûl + λ−1(‖f̂‖Ls;q(B4(0)) + ‖ĝ‖Ls/2;q(C0(B4(0))) for p ∈ (0, 1) and
some constant C = C(n, q, p, s,Λ/λ, ν/λ) ∈ (0,∞) we use a standard argu-
ment that uses (3.10), Sobolev inequality Lemma 4, and Poincaré inequality
Lemma 5 to bound the integrals of |w − `|k/kk, where wl = log(ūl), for large
integers k for some ` ∈ R and that avoids using the John-Nirenberg inequal-
ity (see the proof of Theorem 4.15 of [3]).

Rescale so that R0 = 1. Arguing as in the proof of Theorem 8.22 of [4],
replacing the weak Harnack inequality [4, Theorem 8.18] with (3.11), we
obtain

(3.12) oscBR(0,y0) u ≤ CRµ
(

sup
B1/2(0,y0)

u+K

)
≤ CRµ

(
sup
B1(0)

u+K

)
,

for all y0 ∈ Bn−2
1/2 (0), R ∈ (0, 1/2] and for some constants µ ∈ (0, 1/q) and

C ∈ (0,∞) depending on n, q, s, Λ/λ, and ν/λ, where

oscBR(0,y0) u = sup
BR(0,y0)

u− inf
BR(0,y0)

u,

K = λ−1(‖f‖Ls;q(B1(0)) + ‖g‖Ls/2;q(B1(0))).

We want to bound [ul]µ;B1/2(0)∩R×(0,∞)×Rn−2 for l ∈ {1, 2, . . . , q} by show-
ing that if X1 = (x1, y1) and X2 = (x2, y2) are distinct points in B1/2(0) ∩
R× (0,∞)× Rn−2 then

(3.13) |ul(X1)− ul(X2)| ≤ C|X1 −X2|µ
(

sup
B1(0)

|u|+K

)

for some constant C = C(n, q, s,Λ/λ, ν/λ) ∈ (0,∞). Assume |x1| ≤ |x2|. We
consider four cases: (a) |X1 −X2| < |x2|/2, (b) |x2|/2 ≤ |X1 −X2| ≤ |x2|,
(c) x1 = x2 = 0, and (d) |X1 −X2| > |x2| > 0. In case (a) (3.13) follows by
using the Hölder continuity estimates for single-valued functions [4, The-
orem 8.22] to bound [u]µ;B|X1−X2|(X2), replacing µ with a smaller value if
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necessary. In case (b) (3.13) follows by using (3.12) to bound oscB2|x2|(0,y2) u
if |x2| ≤ 1/4 and (3.13) is obvious if |x2| > 1/4. In case (c) (3.13) follows by
using (3.12) to bound oscB|X1−X2|/2(0,

y1+y2
2

) u. In case (d) (3.13) follows from

cases (b) and (c) and the triangle inequality:

|ul(X1)− ul(X2)| ≤ |ul(X1)− ul(0, y1)|+ |ul(0, y1)− ul(0, y2)|
+ |ul(0, y2)− ul(X2)|

≤ 3C|X1 −X2|µ
(

sup
B1(0)

|u|+K

)
.

Similarly we can bound [ul]µ,B1/2(0)∩R×(−∞,0)×Rn−2 by proving (3.13) when
X1 and X2 are instead distinct points in B1/2(0) ∩ R× (−∞, 0)× Rn−2 �

Lemma 7. Let µ∈(0, 1/q) and BR(X0)⊆Rn. Suppose u∈C1,µ;q(BR(X0)),
aij , bi, f i ∈ C0,µ;q(BR(X0)), and cj , d, g ∈ C0;q(BR(X0)) satisfy∫

BR(X0)

q∑
l=1

((
aijl Djul + bilul

)
Diζl −

(
cjlDju+ dlul

)
ζl

)
(3.14)

=

∫
BR(X0)

q∑
l=1

(
f ilDiζl − glζl

)
for all ζ ∈ C1;q

c (BR(X0) \ {0} × Rn−2). Suppose (3.1) holds for some con-
stant λ > 0 and

‖aij‖′C0,µ;q(BR(X0)) ≤ Λ,(3.15)

R‖bi‖′C0,µ;q(BR(X0)) +R sup
BR(X0)

|cj |+R2 sup
BR(X0)

|d| ≤ ν,

for some constants Λ, ν > 0. Then

(3.16) ‖u‖′C1,µ;q(BR/2(X0))≤C

(
sup

BR(X0)
|u|+R1+µ[f ]µ;q,BR(X0)+R2 sup

BR(X0)
|g|

)

for some constant C = C(n, q, µ, λ,Λ, ν) ∈ (0,∞).

Proof. First observe that Lemma 7 holds true in the special case where aijl
all equal the same constant function, bi = 0, ci = 0, and d = 0 by a scaling
argument similar to the proof of Lemma 2. (Note that unlike in the proof
of Lemma 2, we do not need to show that after passing to a subsequence
ûk → ū in C2;q(Ω) for Ω ⊂⊂ Rn \ {0} × Rn−2.)
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Next we prove Lemma 7 in general. Consider any Br(X) ⊆ BR(X0). Sup-
pose {0} × Rn−2 ∩Br(X) 6= ∅ and let Z ∈ {0} × Rn−2 ∩Br(X). By (3.14),

aij(Z)Dijul = Di((a
ij(Z)− aijl )Djul − bilul + f il )− c

j
lDjul − dlul + gl

in Br(X) \ {0} × Rn−2. By Lemma 7 for the operator aij(Z)Dij and (3.15),

r1+µ[Du]µ;q,Br/2(X) ≤ C

(
r1+2µ

Rµ
[Du]µ,Br(X) + ‖u‖′C1;q(BR(X0))(3.17)

+R1+µ[f ]µ,BR(X0) +R2 sup
BR(X0)

|g|

)

for some constant C = C(n, q, µ, λ,Λ, ν) ∈ (0,∞). If instead {0} × Rn−2 ∩
Br(X) = ∅, then (3.17) holds by the Schauder estimates for single-valued
functions. By (3.17) with r ≤ εR for ε = ε(n, µ, λ,Λ, ν) > 0 sufficiently small
and by interpolation, we obtain (3.16). �

By slightly modifying the proof of Lemma 7 we obtain the following
Schauder estimate for linear systems, whose proof we omit.

Lemma 8. Let µ ∈ (0, 1/q) and BR(X0) ⊆ Rn. Suppose u = (u1, u2, . . . , uq)

∈ C1,µ;q(BR(X0);Rm), aijκλ = (aijκλ,1, a
ij
κλ,2, . . . , a

ij
κλ,q), b

i
κλ = (biκλ,1, b

i
κλ,2, . . . ,

biκλ,q), f
i
κ = (f iκ,1, f

i
κ,2, . . . , f

i
κ,q)∈C0,µ;q(BR(X0)), and cκλ = (cjκλ,1, c

j
κλ,2, . . . ,

cjκλ,q), dκλ = (dκλ,1, dκλ,2, . . . , dκλ,q), gκ = (gκ,1, gκ,2, . . . , gκ,q)∈C0;q(BR(X0))
satisfy∫

BR(X0)

q∑
l=1

((
aijκλ,lDju

λ
l + biκλ,lu

λ
l

)
Diζ

κ
l −

(
cjκλ,lDju

λ + dκλ,lu
λ
l

)
ζκl

)
=

∫
BR(X0)

q∑
l=1

(
f iκ,lDiζ

κ
l − gκ,lζκl

)
for all ζ = (ζ1, ζ2, . . . , ζq) ∈ C1;q

c (BR(X0) \ {0} × Rn−2;Rm). Suppose

Rµ[aijκλ]µ;q,BR(X0) +R‖biκλ‖′C0,µ;q(BR(X0))

+R sup
BR(X0)

|cjκλ|+R2 sup
BR(X0)

|dκλ| ≤ ν,

for some constants Λ, ν > 0. For some ε = ε(n,m, µ, ν) > 0, if

‖aijκλ − δ
ijδκλ‖C0(BR(X0)) ≤ ε,



i
i

“5-Krummel” — 2019/10/8 — 0:56 — page 904 — #28 i
i

i
i

i
i

904 Brian Krummel

where δij and δκλ denote Kronecker deltas, then

‖u‖′C1,µ;q(BR/2(X0)) ≤ C

(
sup

BR(X0)
|u|+R1+µ[f ]µ;q,BR(X0) +R2 sup

BR(X0)
|g|

)

for some constant C = C(n,m, q, µ, ν) ∈ (0,∞).

To prove Theorem 1 and Theorem 2 in the case of non-periodic data
we need a global estimate supremum estimate on u that is independent of
ρ1, . . . , ρn−2.

Lemma 9. Let µ ∈ (0, 1/q). Suppose u ∈ C1,µ;q(C), f i ∈ C0,µ;q(C), and g ∈
C0;q(C) satisfy

(3.18)

∫
C

q∑
l=1

DiulDiζl =

∫
C

q∑
l=1

(
f ilDiζl − glζl

)
for all ζ ∈ C1;q

c (C \ {0} × Rn−2). Then

sup
C
|u| ≤ C

(
sup
∂C
|u|+ [f ]µ;q,C + sup

C
|g|
)

for some constant C = C(n, q, µ) ∈ (0,∞) independent of ρ1, . . . , ρn−2.

Proof. Suppose instead for every integer k ≥ 1 there are uk = (uk,1, uk,2, . . . ,
uk,q) ∈ C1,µ;q(C), f ik = (f ik,1, f

i
k,2, . . . , f

i
k,q) ∈ C0,µ;q(C), and gk = (gk,1, gk,2,

. . . , gk,q) ∈ C0;q(C) such that (3.18) holds with uk,l, f
i
k,l, and gk,l in place

of ul, f
i
l , and gl but

(3.19) sup
C
|uk| > k

(
sup
∂C
|uk|+ [fk]µ;q,C + sup

C
|gk|
)
.

Assume supC |uk| = 1, |uk,1(ξk, 0)| = 1 for some ξk ∈ B2
1(0) \ [0, 1)× {0}, and

fk,l(0, 0) = 0 for all k = 1, 2, 3, . . . and l = 1, 2, . . . , q. Now (3.19) becomes

(3.20) sup
∂C
|uk|+ [fk]µ;q,C + sup

C
|gk| < 1/k.

After passing to a subsequence {ξk} converges to some ξ̂ ∈ B2
1(0). By (3.20),

fk,l → 0 uniformly on K \ [0,∞)× {0} × Rn−2 for every compact set K ⊂ C
and gk,l → 0 uniformly on C \ [0, 1]× {0} × Rn−2. By the interior Schauder
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estimates Lemma 7 and (3.20), after passing to a subsequence {uk} converges
in C1;q on compact subsets of C to some û = (û1, û2, . . . , ûq). Given (x0, y0) ∈
∂C, u decomposes into q single-valued solutions to Poisson equations on
C ∩B1/2(x0, y0), so by local estimates [4, Theorem 8.27] and (3.20) û extends

to a continuous function on C with ûl = 0 on ∂C for l = 1, 2, . . . , q. Now û
satisfies

∆ûl = 0 in C \ [0, 1)× {0} × Rn−2 for l = 1, 2, . . . , q,

ûl = 0 on ∂C for l = 1, 2, . . . , q.

Note that û ∈ C∞;q(C \ {0} × Rn−2) by elliptic regularity. Since supC |û| ≤ 1
and |û(ξ̂, 0)| = 1, |û| has attains its maximum value of 1 at (ξ̂, 0). However,
û = 0 on ∂C, so û in fact attains an interior maximum at (ξ̂, 0), contradicting
strong maximum principle Lemma 1. �

Combining the global supremum estimates similar to [4, Theorem 8.16],
Lemma 9, Lemma 7, and and the local boundary Schauder estimates for
single-valued solutions [4, Section 8.11], we obtain global Schauder estimates:

Lemma 10. Let µ ∈ (0, 1/q) and BR(X0) ⊆ Rn. Suppose u, ϕ ∈ C1,µ;q(C),
aij , bi, f i ∈ C0,µ;q(C), and c, d, g ∈ C0;q(C) satisfy∫
C

q∑
l=1

((
aijl Djul + biul

)
Diζl −

(
cjlDju+ dlul

)
ζl

)
=

∫
C

q∑
l=1

(
f ilDiζl − glζl

)
for all ζ ∈ C1;q

c (C \ {0} × Rn−2) and ul = ϕl on ∂C for l = 1, 2, . . . , q. Sup-
pose (3.1) holds for some constant λ > 0,

‖aij‖C0,µ;q(C) ≤ Λ, ‖bi‖C0,µ;q(C) + sup
C
|cj |+ sup

C
|d| ≤ ν,

for some constants Λ, ν > 0, and∫
C

q∑
l=1

(
−bjlDjζl + dlζl

)
≤ 0

for all ζ ∈ C1;q
c (C \ {0} × Rn−2) such that ζl ≥ 0 for l = 1, 2, . . . , q. Then

‖u‖C1,µ;q(C) ≤ C
(

[f ]µ;q,C + sup
C
|g|+ ‖ϕ‖C1,µ;q(C)

)
.
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for some constant C = C(n, q, µ, λ,Λ, ν, ρ1, . . . , ρn−2 ∈ (0,∞). Moreover, in
the special case that (3.18) holds, the constant C is independent of ρ1, . . . ,
ρn−2.

4. Existence of solutions to a Poisson equation

We now want to prove Theorem 1, which recall involves finding a solution
u = (u1, u2, . . . , uq)∈C0;q(C) ∩ C1,µ;q(C) to (2.7) given f i = (f i1, f

i
2, . . . , f

i
q)∈

C0,µ;q(C) and g = (g1, g2, . . . , gq), ϕ = (ϕ1, ϕ2, . . . , ϕq) ∈ C0;q(C) as in the
statement of Theorem 1. Note that by the weak maximum principle analo-
gous to [4, Theorem 8.1], in the case that u, f i, g, and ϕ are periodic with
respect to yi for i = 1, 2, . . . , n− 2 there is at most one solution u to (2.7).
To solve (2.7) we will first assume that f j , g, and ϕ are periodic with respect
to yi with period ρi for i = 1, 2, . . . , n− 2. Let ua, fa, ga, and ϕa denote the
average parts of u, f , g, and ϕ respectively and uf , ff , gf , and ϕf denote
the average-free parts of u, f , g, and ϕ respectively as defined by (2.5). By
linearity, it suffices to use the existence theory for single-valued functions [4,
Theorem 8.34] to solve for ua such that ∆ua = Djf

j
a + ga weakly in C and

ua = ϕa on ∂C and then solve for uf such that ∆uf = Djf
j
f + gf weakly in

C and uf = ϕf on ∂C. Thus we may suppose f j , g, and ϕ are average-free
and find an average-free solution u to (2.7).

For simplicity, we will first assume f jl = 0 in C for l = 1, 2, . . . , q. To solve
(2.7), we will use the change of variables ξ1 + iξ2 = (x1 + ix2)1/q. Under this
change of variables, u, g, and ϕ transform into the continuous single-valued
function u0, g0, and ϕ0 on C given by

u0(reiθ, y) = ul(r
qeiqθ, y), g0(reiθ, y) = gl(r

qeiqθ, y),

ϕ0(reiθ, y) = ϕl(r
qeiqθ, y),

for r ∈ [0, 1], 2(l − 1)π/q < θ < 2lπ/q, and y ∈ Rn−2, and l = 1, 2, . . . , q and
(2.7) transforms into

∆ξu0 + q2|ξ|2q−2∆yu0 = q2|ξ|2q−2g0 weakly in C \ {0} × Rn−2,

u0 = ϕ0 on ∂C.

We will assume that g0 and ϕ0 are smooth on C and ϕ0 = 0 in B2
1/2(0)×

Rn−2. Since g and ϕ are periodic with respect to yj with period ρj for
j = 1, 2, . . . , n− 2, g0 and ϕ0 are periodic with respect to yj with period
ρj for j = 1, 2, . . . , n− 2. Thus for each z = (z1, z2, . . . , zn−2) ∈ Zn−2 we can
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define Fourier coefficients g0,z and ϕ0,z of u0, g0, and ϕ0 with respect to y
by

g0,z(ξ) =

∫
Rn−2

e−i2π
∑n−2
j=1 zjyj/ρjg0(ξ, y)dy,

ϕ0,z(ξ) =

∫
Rn−2

e−i2π
∑n−2
j=1 zjyj/ρjϕ0(ξ, y)dy

for ξ ∈ B2
1(0) and solve for the Fourier coefficient u0,z of u satisfying

∆ξu0,z − q2(z2
1/ρ

2
1 + z2

2/ρ
2
2 + · · ·+ z2

n−2/ρ
2
n−2)|ξ|2q−2u0,z(4.1)

= q2|ξ|2q−2g0,z in B2
1(0),

u0 = ϕ0 on ∂C.

for each z ∈ Zn−2. By standard elliptic theory [4, Theorems 8.14] there exists

a unique solution u0,z ∈ C∞(B2
1(0)) to (4.1) for every z ∈ Zn−2.

Fix z ∈ Zn−2 and define uz = (u1,z, u2,z, . . . , uq,z) : B2
1(0) \ [0, 1]×{0} →

Rq by

ul,z(re
iθ) = u0,z(r

1/qei(θ+2(l−1)π)/q)

for r ∈ [0, 1], θ ∈ (0, 2π), and l = 1, 2, . . . , q. We will show uz ∈ C1,µ;q(B1(0))
using the average-free and k-fold symmetry assumptions. Since g and ϕ are
average-free,

(4.2)

q−1∑
l=0

g0,z(re
i(θ+2πl/q)) =

q−1∑
l=0

ϕ0,z(re
i(θ+2πl/q), y) = 0

for all r ∈ [0, 1] and θ ∈ [0, 2π). Since g and ϕ have k-fold symmetry and k
and q are relatively prime,

(4.3) g0,z(re
i(θ+2π/k)) = g0,z(re

iθ), ϕ0,z(re
i(θ+2π/k)) = ϕ0,z(re

iθ)

for all r ∈ [0, 1] and θ ∈ [0, 2π). By the maximum principle, (4.2), and (4.3),

(4.4)

q−1∑
l=0

u0,z(re
i(θ+2πl/q)) = 0, u0,z(re

i(θ+2π/k), y) = u0,z(re
iθ, y),
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for all r ∈ [0, 1] and θ ∈ [0, 2π). By (4.1), the degree 2q − 1 Taylor polynomial
of u0,z is harmonic and thus takes the form

Re

2q−1∑
j=0

cj(ξ1 + iξ2)j


for some cj ∈ C. By (4.4), cj = 0 for j = 0, 1, 2, . . . , q. By the Schauder esti-
mates,

2∑
j=0

|ξ|j |Dju0,z(ξ)| ≤ sup
B1(0)

|Dq+1u0,z||ξ|q+1

≤ C
(
‖g0,z‖Cq(B2

1(0)) + ‖ϕ0,z‖Cq+2(∂B2
1(0)

)
|ξ|q+1

for ξ ∈ B2
1(0) for some constant C = C(n, q, µ, z, ρ1, . . . , ρn−2) ∈ (0,∞). By

the change of variable ξ1 + iξ2 = (x1 + ix2)1/q,

2∑
j=0

|x|j |Djul,z(x)| ≤ C
(
‖g0,z‖Cq(B2

1(0)) + ‖ϕ0,z‖Cq+2(∂B2
1(0))

)
|x|1+1/q

for all x ∈ B2
1(0) and thus uz ∈ C1,1/q;q(B2

1(0)) for all z ∈ Zn−2.
For each integer ν ≥ 1, we define partial sums of the Fourier series of u0,

g0, and ϕ0 by

u
(ν)
0 (ξ, y) =

∑
|z|≤ν

u0,z(ξ)e
i2π

∑n−2
j=1 zjyj/ρj ,

g
(ν)
0 (ξ, y) =

∑
|z|≤ν

g0,z(ξ)e
i2π

∑n−2
j=1 zjyj/ρj ,

ϕ
(ν)
0 (ξ, y) =

∑
|z|≤ν

ϕ0,z(ξ)e
i2π

∑n−2
j=1 zjyj/ρj ,

and define u(ν) = (u
(ν)
1 , u

(ν)
2 , . . . , u

(ν)
q ), g(ν) = (g

(ν)
1 , g

(ν)
2 , . . . , g

(ν)
q ), and ϕ(ν) =

(ϕ
(ν)
1 , ϕ

(ν)
2 , . . . , ϕ

(ν)
q ) in C0;q(C) by

u
(ν)
l (reiθ, y) = u

(ν)
0 (r1/qei(θ+2(l−1)π)/q, y),

g
(ν)
l (reiθ, y) = g

(ν)
0 (r1/qei(θ+2(l−1)π)/q, y),

ϕ
(ν)
l (reiθ, y) = ϕ

(ν)
0 (r1/qei(θ+2(l−1)π)/q, y),
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for r ∈ [0, 1], θ ∈ (0, 2π), y ∈ Rn−2, and l = 1, 2, . . . , q. Since

u
(ν)
l (x, y) =

∑
z∈Zn−2

ul,z(x)ei2π
∑n−2
j=1 zjyj/ρj ,

for all x ∈ B2
1(0) \ [0, 1]× {0} and y ∈ Rn−2 and uz ∈ C1,1/q;q(B2

1(0)) for all
z ∈ Zn−2, u(ν) ∈ C1,1/q;q(C). Since g0 is smooth,

sup
ξ∈B2

1(0)
|g0,z(ξ)| ≤ C(1 + |z1|)−2(1 + |z2|)−2 · · · (1 + |zn−2|)−2‖g0‖C2(C).

Thus g
(ν)
0 converges uniformly to g0 on C as ν →∞. Hence g(ν) converges

to g in C0;q(C) as ν →∞. Similarly ϕ
(ν)
0 converges to ϕ0 in C2(C) and thus,

since ϕ0 = 0 in B2
1/2(0)× Rn−2, ϕ(ν) converges to ϕ in C2;q(C) as ν →∞.

By the Schauder estimate of Lemma 10, for every µ ∈ (0, 1/q),

‖u(ν)‖C1,µ;q(C) ≤ C
(

sup
C
|g(ν)|+ ‖ϕ(ν)‖C1,µ;q(C)

)
≤ C

(
sup
C
|g|+ ‖ϕ‖C1,µ;q(C) + 1

)
for some constant C = C(n, q, µ) ∈ (0,∞) independent of ν. After passing to
a subsequence, {u(ν)} converges to some u in C1;q(C) such that u ∈ C1,µ;q(C)
for all µ ∈ (0, 1/q) and u satisfies (2.7).

Consider the case where f j 6= 0 and g0 and ϕ0 are merely continuous. We
will construct functions f (ν) ∈ C∞;q(C;Rn) and g(ν), ϕ(ν) ∈ C∞;q(C) approx-
imating f , g, and ϕ as follows. Extend f to an element of C0,µ;q

c (Rn;Rn) such
that [f ]µ;q,Rn ≤ C[f ]µ;q,C for some C = C(n, µ) ∈ (0,∞). For each δ > 0,
let χδ ∈ C∞(R2) be a single-valued function such that 0 ≤ χδ ≤ 1, χδ = 1
on R2 \B2

δ (0), χδ = 0 on B2
δ/2(0), and |Dχδ| ≤ 3/δ and extend χδ to a

function χδ(x, y) of x ∈ R2 and y ∈ Rn−2 that is independent of y. Since
f ∈ C0,µ;q

c (Rn;Rn) and fl = 0 on {0} × Rn−2 for l = 1, 2, . . . , q because f is
average free, observe that χδf = (χδf1, χδf2, . . . , χδfq) is in C0,µ;q

c (Rn;Rn)
with

χδf → f in C0(B2
2(0)× Rn−2) as δ ↓ 0,

[χδf ]µ;q,Rn ≤ C[f ]µ;q,Rn for C = C(n, µ) ∈ (0,∞).

Select a smooth spherically symmetric mollifier ψ ∈ C∞c (B1(0)) and let

ψσ(X) = σ−nψ(X/σ)
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for X ∈ Bσ(0) and σ > 0. Let (x1, x2, y) ∈ C \B2
2−ν−2(0)× Rn−2. If x1 ≤ 0

then we define f
(ν)
l (x1, x2, y) to be the value of the convolution of fl and

ψ2−ν−3 at (x1, x2, y). If x1 > 0 and x2 > 0 then we define f
(ν)
l (x1, x2, y) to

be the value of the convolution of f̂l and ψ2−ν−3 at (x1, x2, y), where f̂l =
fl for l = 1, 2, . . . , q on C ∩ (0,∞)2 × Rn−2 and f̂1 = fq and f̂l = fl−1 for
l = 2, 3, . . . , q on C ∩ (0,∞)× (−∞, 0)× Rn−2. If x1 > 0 and x2 < 0 then

we define f
(ν)
l (x1, x2, y) to be the value of the convolution of f̂l and ψ2−ν−3

at (x1, x2, y), where now f̂l = fl for l = 1, 2, . . . , q on C ∩ (0,∞)× (−∞, 0)×
Rn−2 and f̂l = fl+1 for l = 1, 2, . . . , q − 1 and f̂q = f1 on C ∩ (0,∞)2 × Rn−2.

Define f
(ν)
l = 0 on B2

2−ν−2(0)× Rn−2. Then

f (ν) → f in C0;q(C), [f (ν)]µ;q,C ≤ C[f ]µ;q,C for C = C(n, µ) ∈ (0,∞).

Define g
(ν)
0 by convolution of g0 with smooth spherically symmetric mollifiers

such that g
(ν)
0 → g0 uniformly on C and then define g(ν) by

g
(ν)
0 (reiθ, y) = g

(ν)
l (rqeiqθ, y) if 2(l − 1)π/q < θ < 2lπ/q

for r ∈ [0, 1], y ∈ Rn−2, and l = 1, 2, . . . , q. Assume ϕ = 0 onB2
1/2(0)× Rn−2 \

[0, 1/2)× {0} × Rn−2 and define ϕ(ν) similarly via convolution of ϕ0 with

smooth spherically symmetric mollifiers. Let u(ν) = (u
(ν)
1 , u

(ν)
2 , . . . , u

(ν)
q ) ∈

C1,µ(C) to be the solution to (2.7) with u
(ν)
l , 0, div f

(ν)
l + g

(ν)
l , and ϕ

(ν)
l in

place of ul, fl, gl, and ϕl respectively. By global supremum estimates similar
to [4, Theorem 8.16], {u(ν)} is Cauchy in C0;q(C) and thus {u(ν)} converges
to some u in C0;q(C). By the local Schauder estimates of Lemma 7 after
passing to a subsequence {u(ν)} converges to u in C1;q(Ω) for all Ω ⊂⊂ C
and u ∈ C1,µ;q(C). Therefore u is a solution to (2.7).

To solve (2.7) in the case that f , g, and ϕ are not periodic with respect
to each yi, approximate f , g, and ϕ uniformly on compact subsets of C by
f (ν) ∈ C0,µ;q(C), g(ν), ϕ(ν) ∈ C0;q(C) such that (2.6) holds with f (ν) in place
of f , g(ν) and ϕ(ν) are k-fold symmetric, f (ν), g(ν), and ϕ(ν) are periodic
with respect to each yj with period ρν (independent of j) such that ρν →∞
as ν →∞, and

(4.5) [f (ν)]µ;q,C ≤ C[f ]µ;q,C , sup
C
|g(ν)| ≤ sup

C
|g|, sup

∂C
|ϕ(ν)| ≤ sup

∂C
|ϕ|,

where C = C(n, µ) ∈ (0,∞). Let u(ν) ∈ C0;q(C) ∩ C1,µ;q(C) solve (2.7) with

u
(ν)
l , f

(ν)
l , g

(ν)
l , and ϕ

(ν)
l in place of ul, fl, gl, and ϕl respectively. By Lemma 9,

local Schauder estimates Lemma 7, and (4.5) we have local C1,µ;q estimates
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on u(ν) that are independent of ν and thus after passing to a subsequence
{u(ν)} converges to some u ∈ C1,µ;q(C) in C1;q(Ω) for all Ω ⊂⊂ C. By using [4,
Theorem 8.27] and (4.5), we can establish uniform modulus of continuity
estimates on u(ν) at points on ∂C that are independent of ν and thus u
extends to an element of C0;q(C) such that u = ϕ on ∂C. Therefore u is a
solution to (2.7).

5. Existence of solutions to nonlinear systems

In this section we will prove Theorem 2, which recall involves finding the
unique solution u = (u1, u2, . . . , uq) ∈ C1,µ;q(C;Rm) to (2.8) given F jκ , Gκ,
and ϕ = (ϕ1, ϕ2, . . . , ϕq) ∈ C1,µ;q(C) as in the statement of Theorem 2. First
we consider the case where u and ϕ are periodic with respect to yj with pe-
riod ρj > 0 for j = 1, 2, . . . , n− 2. Let V denote the space of u ∈ C1,µ;q(C;Rm)
that has k-fold symmetry and is periodic with respect to yj with period ρj
for j = 1, 2, . . . , n− 2. By Theorem 1, we can define T : V → V by letting
u = Tv if u = (u1, u2, . . . , uq), v = (v1, v2, . . . , vq) ∈ V satisfy

∫
C

q∑
l=1

Dju
κ
l Djζ

κ
l =

∫
C

q∑
l=1

(F jκ(Dvl)Djζ
κ −Gκ(vl, Dvl)ζ

κ)

for all ζ ∈ C1;q
c (C \ {0} × Rn−2;Rm),

ul = ϕl on ∂C for l = 1, 2, . . . , q.

Let ε > 0 to be determined and choose arbitrary v = (v1, v2, . . . , vq), v
′ =

(v′1, v
′
2, . . . , v

′
q) ∈ V such that ‖v‖C1,µ;q(C) ≤ ε and ‖v′‖C1,µ;q(C) ≤ ε. Let u =

(u1, u2, . . . , uq) = Tv and u′ = (u′1, u
′
2, . . . , u

′
q) = Tv′. By the Schauder esti-

mate Lemma 10,

(5.1) ‖u‖C1,µ;q(C)≤C
(

[F (Dv)]µ,C+sup
C
|G(v,Dv)|+‖ϕ‖C1,µ;q(C)

)
,

‖u− u′‖C1,µ;q(C)≤C
(

[F (Dv)−F (Dv′)]µ;q,C+sup
C
|G(v,Dv)−G(v′, Dv′)|

)
,

for some constant C ∈ (0,∞) depending on n, m, q, and µ and indepen-
dent of ρ1, . . . , ρn−2, where F (Dw) = (F (Dw1), F (Dw2), . . . , F (Dwq)) and
G(w,Dw) = (G(w1, Dw1), G(w2, Dw2), . . . , G(wq, Dwq)) for w = (w1, w2,
. . . , wq) ∈ V. Note that C being independent of ρ1, . . . , ρn−2 is necessary
for later removing the condition that ϕ be periodic with respect to yj . Since
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F ∈ C2(Rmn) with DF (0) = 0,

[F (Dv)]µ;q,C ≤ C sup
|P |≤ε

|DF (P )| [Dv]µ;q,C ≤ Cε2(5.2)

[F (Dv)− F (Dv′)]µ;q,C ≤ C sup
|P |≤ε

|D2F (P )|([Dv]µ;q,C + [Dv′]µ;q,C)

× sup
C
|Dv −Dv′|

+ C sup
|P |≤ε

|DF (P )|[Dv −Dv′]µ;q,C

≤ Cε‖v − v′‖C1,µ;q(C)

for some constants C ∈ (0,∞) depending on n,m, and sup|Z|+|P |≤1 |D2F (P )|.
Since G ∈ C1(Rm × Rmn) with G(0) = 0,

sup
C
|G(v,Dv)| ≤ sup

|Z|+|P |≤ε
|G(P )| ≤ C sup

|Z|+|P |≤ε
|DG(P )| ε,(5.3)

sup
C
|G(v,Dv)−G(v′, Dv′)| ≤ C sup

|Z|+|P |≤ε
|DG(P )| ‖v − v′‖C1;q(C)

for some constant C = C(n,m, q) ∈ (0,∞). Combining (5.1), (5.2), and (5.3)
and using the fact that DG(0) = 0, for some ε > 0 depending on n, m, q, µ,
F , and G,

‖u‖C1,µ;q(C) ≤ ε, ‖u− u′‖C1,µ;q(C) ≤
1

2
‖v − v′‖C1,µ;q(C).

Therefore by the contraction mapping principle, there exists a fixed point
u0 ∈ V of T with ‖u‖C1,µ;q(C) ≤ ε. In other words, u satisfies (2.8).

To remove the condition that ϕ is periodic with respect to yj , approx-
imate ϕ(ν) in C1;q(C;Rm) by ϕ(ν) ∈ C1,µ;q(C;Rm) such that ϕ(ν) is k-fold
symmetric and is periodic with respect to each yj with period ρν where
ρ(ν) →∞, ϕ(ν) → ϕ in C1;q on compact subsets of C, and ‖ϕ(ν)‖C1,µ;q(C) →
‖ϕ‖C1,µ;q(C). Let u(ν) ∈ C1,µ;q(C;Rm) be the unique solution to (2.8) with

u(ν) and ϕ(ν) in place of u and ϕ respectively. Since ‖u(ν)‖C1,µ;q(C) ≤ ε, after

passing to a subsequence {u(ν)} converges in C1;q(B2
1(0)×Bn−2

ρ (0);Rm) for
all ρ ∈ (0,∞) to u satisfying (2.8) with the original ϕ.

6. Existence of solutions to nonlinear equations

In this section we will prove Theorem 3, which recall involves finding a solu-
tion u = (u1, u2, . . . , uq) ∈ C1,τ ;q(C;Rm) for every τ ∈ (0, 1/q) to (2.13) given
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Ai, B, and ϕ = (ϕ1, ϕ2, . . . , ϕq) ∈ C2;q(C) as in the statement of Theorem 3.
The proof uses the Leray-Schauder theory. For now assume ϕ is periodic
with respect to yj with period ρj for j = 1, 2, . . . , n− 2. Rewrite (2.13) as

(DPjA
i)(Dul)Dijul +B(ul, Dul) = 0 in C \ {0} × Rn−2 for l = 1, 2, . . . , q,

ul = ϕl on ∂C for l = 1, 2, . . . , q.

Let V denote the space of u ∈ C1,µ;q(C) that are periodic with respect to
yj with period ρj for j = 1, 2, . . . , n− 2 and have k-fold symmetry. Define
T : V → V by u = Tv if u = (u1, u2, . . . , uq), v = (v1, v2, . . . , vq) ∈ V satisfy

(DPjA
i)(Dvl)Dijul +B(vl, Dvl) = 0 in C \ [0, 1)× {0} × Rn−2(6.1)

for l = 1, 2, . . . , q,

ul = ϕl on ∂C for l = 1, 2, . . . , q.

The existence of a unique u ∈ V ∩ C2;q(C \ {0} × Rn−2) satisfying (6.1) will
follow from Lemma 11 below. By Lemma 11, Schauder estimate Lemma 2,
and local boundary Schauder estimates for single-valued solutions [4, Section
6.2], T is in fact a continuous map from V into C1,τ ;q(C) for every τ ∈
(µ, 1/q), so by Arzela-Ascoli T is compact. We will need to show that for
some constants µ ∈ (0, 1/q) and C ∈ (0,∞) depending only on n, Ai, B, and
‖ϕ‖C2;q(C), if u ∈ C1,µ;q(C) and σ ∈ [0, 1] satisfies

∫
C

q∑
l=1

(Ai(Dul)Diζl − σB(ul, Dul)ζl) = 0 for all ζ ∈ C1;q
c (C \ {0} × Rn−2),

ul = σϕl on ∂C for l = 1, 2, . . . , q,(6.2)

then ‖u‖C1,µ;q(C) ≤ C. Then by the Leray-Schauder theory, there exists a
fixed point u ∈ V of T . In other words, the u solves (2.13). Note that u =
Tu ∈ C1,τ ;q(C) for all τ ∈ (0, 1/q).

Lemma 11. Let 1 < µ ≤ τ < 1/q and aij = (aij1 , a
ij
2 , . . . , a

ij
q ), g = (g1, g2,

. . . , gq) ∈ C0,µ;q(C) and ϕ = (ϕ1, ϕ2, . . . , ϕq) ∈ C1,τ ;q(C). Suppose aij, g,
and ϕ are periodic with respect to yl with period ρl for l = 1, 2, . . . , n− 2,
aij(RX) = ai

′j′(X)Rii′R
j
j′ for all X ∈ C, and

aij(X)ξiξj ≥ λ|ξ|2 for X ∈ C, ξ ∈ Rn, ‖aij‖C0,µ;q(C) ≤ Λ,
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for some constants λ,Λ > 0. Then there exists a unique u = (u1, u2, . . . , uq) ∈
C0;q(C) ∩ C1,τ ;q(C) ∩ C2;q(C \ {0} × Rn−2) such that

aijl Dijul = gl in C \ [0, 1)× {0} × Rn−2 for l = 1, 2, . . . , q,(6.3)

ul = ϕl on ∂C for l = 1, 2, . . . , q.

Moreover, u is k-fold symmetric and periodic with respect to yl with period
ρl for l = 1, 2, . . . , n− 2.

Proof. For now suppose aij , ϕ ∈ C∞;q(C). By replacing u with u− ϕ, we
may suppose ϕ = 0. Re-write (6.3) as∫

C

q∑
l=1

(aijl DjulDiζl +Dia
ij
l Djulζl)(6.4)

= −
∫
C

q∑
l=1

glζl for all ζ ∈ C1;q
c (C \ {0} × Rn−2),

ul = 0 on ∂C for l = 1, 2, . . . , q.

We will solve (6.4) using the method of continuity. LetW denote the space of
u ∈ C1,τ ;q(C) such that u is periodic with respect to yj with period ρj for j =
1, 2, . . . , n− 2, u has k-fold symmetry, and ul = 0 on ∂C for l = 1, 2, . . . , q.
Define the family {Lt}t∈[0,1] of weak linear operators on W by

Ltul = (1− t)∆ul + t(Di(a
ij
l Djul)− (Dia

ij
l )Djul)

and consider

Ltul = Djf
j
l + gl weakly in C \ {0} × Rn−2,

ul = 0 on ∂C(6.5)

for f j = (f j1 , f
j
2 , . . . , f

j
q ) ∈ C0,τ ;q(C) and g = (g1, g2, . . . , gq) ∈ C0;q(C) such

that f j and g are periodic with respect to yl with period ρl for l = 1, 2, . . . ,
n− 2, f j satisfies (2.6), and g has k-fold symmetry. By Theorem 1, for t = 0
we can find a unique weak solution u ∈ W to (6.5). Suppose we can find a
unique solution u ∈ W to (6.5) for t = s for some s ∈ [0, 1]. Then (6.5) can
be rewritten as

Lsul = Djf
j
l + g + (Ls − Lt)ul in C \ {0} × Rn−2,

ul = 0 on ∂C.
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Define a map U :W →W by u = U(v) for u = (u1, u2, . . . , uq), v = (v1, v2,
. . . , vq) ∈ W if

Lsul = Djf
j
l + g + (Ls − Lt)vl in C \ {0} × Rn−2,

ul = 0 on ∂C.

Choose arbitrary v = (v1, v2, . . . , vq), v
′ = (v′1, v

′
2, . . . , v

′
q) ∈ W and let u =

(u1, u2, . . . , uq) = U(v) and u′ = (u′1, u
′
2, . . . , u

′
q) = U(v′). Since

Ls(ul − u′l) = (Ls − Lt)(vl − v′l)
= (s− t)(−∆(vl − v′l) +Di(a

ij
l Dj(vl − v′l))

− (Dia
ij
l )Dj(vl − v′l)),

by Schauder estimate Lemma 10

‖u− u′‖C1,τ;q(C)

≤ C|s− t|
(

[Dv −Dv′]τ ;q,C + [aijDj(v − v′)]τ ;q,C + sup
C
|Dia

ij | |Dvl −Dv′l|
)

≤ C|s− t|‖v − v′‖C1,τ;q(C),

where C ∈ (0,∞) depends only on n, q, τ , λ, Λ, ‖aij‖C1;q(C), and ρ1, . . . , ρn−2.
So if |s− t| < 1/2C, then U is a contraction mapping and we can solve (6.5)
for t with |s− t| < 1/2C. By dividing [0, 1] into intervals of length less than
1/2C and applying this result we conclude that we can solve (6.5) for all
t ∈ [0, 1], in particular for t = 1. This gives us a u ∈ W satisfying (6.4). By
elliptic regularity, if g ∈ C0,µ;q(C) then u ∈ C2,µ(C \ {0} × Rn−2) and thus u
satisfies (6.3).

To solve (6.3) for general aij and ϕ, approximate aij and ϕ by ap-
proximating their average parts by convolution with smooth, spherically
symmetric mollifiers and approximate their average-free parts using the
same construction as in the proof of Theorem 1 to approximate f by el-
ements of C∞;q(C) to get aijν ∈ C∞;q(C) converging to aij uniformly on
C \ [0, 1)× {0} × Rn−2 and ϕ(ν) ∈ C∞;q(C) converging to ϕ uniformly on
C \ [0, 1)× {0} × Rn−2. Let u(ν) ∈ C1,τ ;q(C) solve (6.3) with u(ν), aijν , g, and
ϕ(ν) in place of u, aij , g, and ϕ. By an extension of [4, Theorem 3.7] proven
using maximum principle Lemma 1,

sup
C
|u(ν)| ≤ sup

∂C
|ϕ|+ C

λ
sup
C
|g|
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for some constant C = C(n) ∈ (0,∞). Thus by the Schauder estimate
Lemma 2, after passing to a subsequence {u(ν)} converges in C1;q on com-
pact subsets of C to u ∈ C1,τ ;q(C). By the local Schauder estimates [4,
Corollary 6.3], after passing to a subsequence {u(ν)} converges to some u
in C2;q on compact subsets of C \ {0} × Rn−2 and thus aijl Dijul = gl in
C \ [0, 1)× {0} × Rn−2 for l = 1, 2, . . . , q. By local barriers [4, Section 6.3],
we can establish uniform modulus of continuity estimates for u(ν) at points
on ∂C that are independent of ν and thus u extends to a continuous function
on C such ul = ϕl on ∂C. �

Suppose that u ∈ C1;q(C) satisfies (6.2). We want to bound ‖u‖C1,µ;q(C)
for some µ ∈ (0, 1/q). By extending [4, Theorem 10.3] using maximum prin-
ciple Lemma 1 and by (2.11),

(6.6) sup
C
|u| ≤M0 where M0 = sup

∂C
|ϕ|+ Cβ2

for some constant C = C(β1) ∈ (0,∞), where β1 and β2 as in (2.11). By a
standard argument involving local barriers [4, Corollary 14.3] along ∂C using
structure condition (2.12),

(6.7) sup
∂C
|Du| ≤M1,

for some M1 ∈ (0,∞) depends on n, ‖ϕ‖C2;q(C), β1, β2, and β3, where β3 is
as in (2.12).

We want to show u ∈W 2,2;q(Ω) for all Ω ⊂⊂ C. By replacing ζl with Dpζ
for a single-valued function ζ ∈ C1;q

c (C \ {0} × Rn−2) and p ∈ {1, 2, . . . , n} in
the first equation in (2.13) and integrating by parts,

∫
C

q∑
l=1

(DPjA
i(Dul)DjpulDiζ(6.8)

−DPjB(ul, Dul)Djpulζ −DZB(ul, Dul)Dpulζ) = 0

for all ζ ∈ C1;q
c (C \ {0} × Rn−2). Let ζ = Dpuη

2χ2
δ in (6.8), where η ∈ C1

c (C)
is the single-valued cutoff function such that 0 ≤ η ≤ 1, η = 1 on BR/2(X0),
η = 0 on Rn \BR(X0), and |Dη| ≤ 3/R and χδ is the function such that 0 ≤
χδ ≤ 1, χδ(x, y) = 1 if |x| ≥ δ, χδ(x, y) = 1 if |x| ≤ δ/2, and |Dχδ| ≤ 3/δ. By
a standard computation using the fact that DPjA

i(P )ξiξj ≥ λ(P )|ξ|2 for all
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P ∈ Rn and ξ ∈ Rn and using Cauchy’s inequality,

∫
BR/2(X0)

q∑
l=1

|D2ul|2χ2
δ ≤ C

∫
BR(X0)

(χ2
δ + |Dχδ|2) ≤ C

for some constants C ∈ (0,∞) depending on n, R, Ai, B, M0, and supC |Du|
and independent of δ. Letting δ ↓ 0, ‖D2u‖L2(BR/2(X0)) ≤ C for all BR(X0) ⊂
C.

Now let v(X) = (|Du1(X)|2, . . . , |Duq(X)|2) ∈ C1;q(C \ {0} × Rn−2). By
replacing ζl with

∑n
p=1Dp(Dpuζl) in the first equation in (2.13) and using

integration by parts, we get

∫
C

q∑
l=1

(DPjA
i(Dul)DjvlDiζl + 2DPjA

i(Dul)DpjulDipulζl

−DPjB(ul, Dul)Djvlζl − 2DZB(ul, Dul)vlζl) = 0

for all ζ ∈ C1;q
c (C \ {0} × Rn−2). Since DPjA

i(Dul)DipulDjpul ≥ 0,

∫
C

q∑
l=1

(DPjA
i(Dul)DjvlDiζl

−DPjB(ul, Dul)Djvlζl − 2DZB(ul, Dul)vlζl) ≤ 0

for all ζ ∈ C1;q
c (C \ {0} × Rn−2) such that ζl ≥ 0 in C \ {0} × Rn−2 for

l = 1, 2, . . . , q. By the weak maximum principle similar to [4, Theorem 8.1]

sup
C
|Du| ≤ sup

∂C
|Du| ≤M1,

where M1 is the constant from (6.7).
By the interior Hölder continuity estimate Lemma 6 applied to (6.8)

and the boundary Hölder continuity estimates for single-valued functions [4,
Section 13.1] we obtain

[u]µ;q,C ≤ C

for some constant C ∈ (0,∞) and µ ∈ (0, 1/q) depending on n, q, β1, β2, β3,
λ̄, supBnM1

(0) |DPA
i|, sup(−M0,M0)×BnM1

(0) |DPB|, sup(−M0,M0)×BnM1
(0) |DZB|,
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and ‖ϕ‖C2;q(C). Therefore we have shown that if u satisfies (6.2), then

(6.9) ‖u‖C1,µ;q(C) ≤ C

for some constant C ∈ (0,∞) and µ ∈ (0, 1/q) depending on n, q, β1, β2, β3,
λ̄, supBnM1

(0) |DPA
i|, sup(−M0,M0)×BnM1

(0) |DPB|, sup(−M0,M0)×BnM1
(0) |DZB|,

and ‖ϕ0‖C2;q(C).

To solve (2.13) in the case that ϕ ∈ C2;q(C) with ‖ϕ‖C2;q(C) <∞ and ϕ

is not periodic, approximate ϕ in C2;q(C) by ϕ(ν) that are k-fold symmet-
ric and periodic with respect to each yj with period ρν such that ρν →∞
as ν →∞. Let u(ν) ∈ C1,µ;q(C) solve (2.13) with u(ν) and ϕ(ν) in place of
u and ϕ respectively. By (6.9), after passing to a subsequence {u(ν)} con-
verges in C1;q(C) to a solution u to (2.13) with the original ϕ. By Schauder
estimate Lemma 2 and local boundary Schauder estimates for single-valued
solutions [4, Section 6.2] for every τ ∈ (0, 1/q) we have uniformly local C1,τ ;q

estimates on u(ν) that are independent of ν and thus u ∈ C1,τ ;q(C).
For Corollary 1, we need to obtain an interior gradient estimate without

using ϕ ∈ C2;q(C). We will do so by extending an interior gradient estimate
due to Simon [8, Theorem 1] to solutions u ∈ C1;q(C). This requires using
cutoff function arguments to handle of singularity of u along {0} × Rn−2.
For example, the analogue of (2.11) of [8] is

q∑
l=1

∫
{vl≥τ}

(
(1− τ/vl)C 2

l + vlDPjA
i(Dul)DiωlDjωl

)
vlχ(vl)ζ

2(6.10)

≤ 8n(1 + cχ)2
q∑
l=1

∫
{vl≥τ}

(
Λ(v)β2

1ζ
2 + 2µ̄l|Dζ|2

)
vlχ(vl)

for all ζ ∈ C1;q
c (C \ {0} × Rn−2), where vl = (1 + |Dul|2)1/2, gijl = δij −

DiulDjul/(1 + |Dul|2), C 2
l = v−1

l DPjA
i(Dul)g

kk′

l DikulDjk′ul, µ̄l satisfies

|vlDPjA
i(Dul)ξjηi| ≤

(
µ̄l|η|2

)1/2 (
vlDPjA

i(Dul)ξiξj
)1/2

on C \ [0, 1]× {0} × Rn−2 for all ξ, η ∈ Rn and χ and Λ are single-valued
functions as in [8]. Since u ∈W 2,2;q(Ω) for all Ω ⊂⊂ C, we can show (6.10)
holds for any ζ ∈ C0;q

c (C) ∩W 1,2;q
0 (C) by replacing ζ by ζψδ in (6.10) for δ >

0, where ψδ ∈ C∞(C) is the logarithmic cutoff function defined by ψδ(x, y) =
0 if |x| ≤ δ2, ψδ(x, y) = − log(|x|/δ2)/ log(δ) if δ2 < |x| < δ, and ψδ(x, y) = 1
if |x| ≥ δ, and then letting δ ↓ 0. The arguments of [8] only require using key
integral inequalities, in particular analogues of (2.1) and (2.11), with test
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functions in C0;q
c (C) ∩W 1,2;q

0 (C) and thus [8, Theorem 1] follows. Note that
the analogue of (2.1) for test functions h vanishing along {0} × Rn−2 follows
from the first variation of area formula for the closure of the graph of u as an
immerse submanifold in C × R \ {0} × Rn−1 (see the proof of [9, Theorem
18.6]) and then the analogue of (2.1) holds for any h ∈ C0;q

c (C) ∩W 1,2;q
0 (C)

by the logarithmic cutoff function argument.
Now we will solve (2.13) in the case that ϕ ∈ C0;q(C) has k-fold symmetry

and supC |ϕ| <∞. Assume ϕ = 0 in B2
1/2(0)× Rn−2 \ [0, 1/2)× {0} × Rn−2.

Approximate ϕ uniformly on compact subsets of C by ϕ(ν) that are k-fold
symmetic and periodic with respect to each yj with period ρν such ρν →∞
as ν →∞. Let u(ν) ∈ C1,1/2q;q(C) solve (2.13) with u(ν) and ϕ(ν) in place of
u and ϕ. By (6.6), the interior gradient estimate of [8, Theorem 1], and
Lemma 6, supν ‖u(ν)‖C1,µ;q(Ω) <∞ for all Ω ⊂⊂ C for some µ ∈ (0, 1/2q]
depending on n, Ai, B, and sup∂C |ϕ|, so after passing to a subsequence
{u(ν)} converges in C1;q on compact subsets of C to some u ∈ C1,µ;q(C).
By Schauder estimate Lemma 2 for every τ ∈ (0, 1/q) we have uniformly
local interior C1,τ ;q estimates on u(ν) that are independent of ν and thus
u ∈ C1,τ ;q(C). Using local barriers [4, Theorem 14.15], we obtain uniform
modulus of continuity estimates on u(ν) at points on ∂C that are independent
of ν and thereby conclude that u extends to an element of C0;q(C) such that
ul = ϕl on ∂C for l = 1, 2, . . . , q. Therefore u solves (2.13) with the original ϕ.

7. Regularity of q-valued solutions

Recall from Section 2 that to prove Theorem 4, it suffices to prove (2.17)
for u = (u1, u2, . . . , uq) ∈ C1;q(B1(0)) such that ‖u‖C1;q(B1(0)) ≤ 1/2 and u
satisfies the elliptic equation

Di(A
i(X,ul, Dul)) +B(X,ul, Dul) = 0(7.1)

in B1(0) \ [0,∞)× {0} ×Bn−2
1 (0)

for given locally real analytic single-valued functions Ai(X,Z, P ) and
B(X,Z, P ) on B1(0)× (−1, 1)×Bn

1 (0). Using arguments similar to those
from Section 6 we can show that u ∈W 2,2;q(Ω) for all Ω ⊂⊂ B1(0) and by
Lemma 6 using the fact that Dku is a satisfies

Di(DPjA
i(X,ul, Dul)DjDkul+DZA

i(X,ul, Dul)Dkul+DXkA
i(X,ul, Dul))

+DPjB(X,ul, Dul)DjDkul+DZB(X,ul, Dul)Dkul+DXkB(X,ul, Dul)=0
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in B1(0) \ [0,∞)× {0} ×Bn−2
1 (0), we can conclude that u ∈ C1,µ;q(B1(0))

for some µ ∈ (0, 1/q). The first step to proving Theorem 4 is to establish
that Dγ

yu ∈ C1,µ;q(B1(0)) for all γ.

Lemma 12. Let µ ∈ (0, 1/q). Suppose u ∈ C1,µ;q(B1(0)) such that
‖u‖C1;q(B1(0)) ≤ 1/2 and u satisfies (7.1) for given smooth single-valued func-
tions Ai, B : B1(0)× (−1, 1)×Bn

1 (0)→ R and assume (2.16) holds. Then
Dγ
yu ∈ C1,µ;q(B1(0)) for all γ.

The proofs of Lemma 12 and Theorem 4 require applying Dγ
y to (7.1).

Observe that

Dγ
y (Ai(X,ul, Dul)) = (DPjA

i)(X,ul, Dul)DjD
γ
yul(7.2)

+ F iγ(X,ul, {DDβ
yul}|β|≤|γ|−1),

Dγ
y (B(X,ul, Dul)) = (DPjB)(X,ul, Dul)DjD

γ
yul

+Gγ(X,ul, {DDβ
yul}|β|≤|γ|−1),

on B1(0) \ [0,∞)× {0} ×Bn−2
1 (0) for l = 1, 2, . . . , q for some functions F iγ

and Gγ . To simplify notation, let aij = (aij1 , a
ij
2 , . . . , a

ij
q ), bj = (bj1, b

j
2, . . . , b

j
q),

f iγ = (f iγ,1, f
i
γ,2, . . . , f

i
γ,q), and gγ = (gγ,1, gγ,2, . . . , gγ,q) where

aijl = (DPjA
i)(X,ul, Dul), f iγ,l = −F iγ(X,ul, {DDβ

yul}|β|≤|γ|−1),(7.3)

bjl = (DPjB)(X,ul, Dul), gγ,l = −Gγ(X,ul, {DDβ
yul}|β|≤|γ|−1),

on B1(0) \ [0,∞)× {0} ×Bn−2
1 (0). We can express f iγ as

f iγ,l =
∑

cα,j,β(Dα
(y,Z,P )A

i)(X,ul, Dul)(7.4)

×
∏

k≤|αZ |

DβZ,k
y ul

∏
k≤|αP |

DβP,k
y Djkul

on B1(0) \ [0,∞)× {0} ×Bn−2
1 (0), where α = (αy, αZ , αP ) and Dα

(y,Z,P ) =

D
αy
y DαZDαP and the sum is taken over all nonzero multi-induces α, βZ,k,

and βP,l and 1 ≤ jk ≤ n such that

(7.5) αy +
∑
j≤|αZ |

βZ,j +
∑

k≤|αP |

βP,k = γ

and |βP,k| < p and the coefficients cα,j,β are positive integers depending on
α, j1, . . . , j|α|, and β1, . . . , β|α|. Note that in (7.4) and (7.5) assume the con-
vention that sums over j ≤ 0 equal zero and products over j ≤ 0 equal one.
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We can write a similarly express gγ as

(7.6) gγ =
∑

cα,j,β(Dα
(y,Z,P )B)(X,u,Du)

∏
k≤|αZ |

DβZ,k
y u

∏
k≤|αP |

DβP,k
y Djku

on B1(0) \ [0,∞)× {0} ×Bn−2
1 (0), where the sum is taken over all nonzero

multi-induces α, βZ,k, and βP,l and 1 ≤ jk ≤ n such that (7.5) holds and
|βP,k| < p. By (7.2), applying Dγ

y to (7.1) yields

Di(a
ijDjD

γ
yul) + bjDjD

γ
yul = Dif

i
γ,l + gγ,l(7.7)

in B1(0) \ [0,∞)× {0} ×Bn−2
1 (0).

Proof of Lemma 12. Given η ∈ Rn−2 \ {0}, for each h 6= 0 let δh,η be the
difference quotient defined by (2.4) and let D(0,η) denote the derivative in
the direction (0, η). We will show that D(0,η)D

γu ∈ C1,µ;q(B1(0)) for every
η ∈ Rn−2 \ {0} by induction on |γ|. This follows by a standard difference
quotient argument where we use the Schauder estimates Lemma 7 to obtain
uniform local C1,µ;q bounds on δh,ηD

γ
yu that are independent of h. The

key to the proof is the fact that such difference quotients δh,η of u and its
derivatives are well-defined.

First we show D(0,η)u ∈ C1,µ;q(B1(0)) for every η ∈ Rn−2 \ {0}. Let
BR(x0, y0) ⊂⊂ B1(0) and suppose |hη| ≤ R/4. By applying δh,η to (7.1) and
using Schauder estimate Lemma 7,

R‖Dδh,ηu‖′C0,µ;q(BR/4(x0,y0)) ≤ C|η|

(
sup

BR/2(x0,y0)
|δh,ηu|+ 1

)

≤ C|η|

(
sup

BR(x0,y0)
|Dyu|+ 1

)

for some constant C ∈ (0,∞) depending on n, q, µ, Ai, B, ‖u‖C1,µ(BR(x0,y0)),
and R and independent of h. So given any sequence of hj → 0, we can
pass to a subsequence {δhj′ ,ηu} that converges in C1;q on compact subsets
of B1(0) with a limit in C1,µ;q(B1(0)). But δh,ηu→ D(0,η)u pointwise, so
in fact δh,ηu→ D(0,η)u in C1;q on compact subsets of B1(0) as h→ 0 and
D(0,η)u ∈ C1,µ;q(B1(0)).

Now let |γ| ≥ 1. We will show that D(0,η)D
γ
yu ∈ C1,µ(B1(0)) assuming

Dβ
yu ∈ C1,µ(B1(0)) whenever |β| < |γ|. Let BR(x0, y0) ⊂⊂ B1(0) and sup-

pose |hη| ≤ R/4. Recall that applying Dγ
y to (7.1) yields (7.7). By applying

δh,η to (7.7) and using the Schauder estimates Lemma 7, if BR(x0, y0) ⊂⊂
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B1(0) and |hη| ≤ R/4,

R‖Dδh,ηDγ
yu‖′C0,µ;q(BR/4(x0,y0))

≤ C

(
sup

BR/2(x0,y0)
|δh,ηDγ

yu|+ ‖DDγ
yu‖′C0,µ;q(BR/2(x0,y0+hη))

+R‖δh,ηfγ‖′C0,µ;q(BR/2(x0,y0)) +R2 sup
BR/2(x0,y0)

|δh,ηgγ |

)

≤ C|η|

(
sup

BR(x0,y0)
|DyD

γ
yu|+ ‖DDγ

yu‖′C0,µ;q(BR(x0,y0))

+R‖Dyfγ‖′C0,µ;q(BR(x0,y0)) +R2 sup
BR(x0,y0)

|Dygγ |

)

for some constant C ∈ (0,∞) depending on n, q, µ, Ai, B, ‖u‖C1,µ(BR(x0,y0)),
and R and independent of h. So given any sequence of hj → 0, we can pass
to a subsequence {δhj′ ,ηD

γ
yu} that converges in C1;q on compact subsets of

B1(0) with a limit in C1,µ;q(B1(0)). But δh,ηD
γ
yu→ D(0,η)D

γ
yu pointwise, so

in fact δh,ηD
γ
yu→ D(0,η)D

γ
yu in C1;q on compact subsets of B1(0) as h→ 0

and D(0,η)D
γ
yu ∈ C1,µ;q(B1(0)). �

Recall from the beginning of this section that applying Dγ
y to (7.1) yields

(7.7). By the Schauder estimate Lemma 7 applied to (7.7),

‖Dγ
yu‖′C1,µ;q(BR/2p(X1))(7.8)

≤ C

(
sup

BR/p(X1)
|Dγ

yu|+ (R/p)1+µ[fγ ]µ;q,BR/p(X1) + (R/p)2 sup
BR/p(X1)

|gγ |

)

for all BR(X1) ⊂⊂ B1(0) and some constant C ∈ (0,∞) depending on n,
q, µ, λ, supBR(X1)×(−1,1)×Bn1 (0) |DA|, and supBR(X1)×(−1,1)×Bn1 (0) |DB|. Since

f iγ and gγ can be expressed in terms of u,Du,DDyu, . . . , DD
p−1
y u, we can

prove (2.17) by inductively computing bounds on ‖DDγ
yu‖′C0,µ;q(BR/2p(X1)).

The difficulty is bounding [fγ ]µ;q,BR/p(X1) and supBR/p(X1) |gγ | in order to
obtain the necessary estimates (2.17) on Dγ

yu. We accomplish this using a
modified version of a technique used by Friedman in [2]. Since the estimate
on supBR/p(X1) |gγ | is easier to obtain, we will obtain that estimate first.

Lemma 13. Let p ≥ 5 be a positive integer, K0,K,H0 ≥ 1 be constants,
and BR(X1) ⊂⊂ B1(0). For some constants C ∈ (0,∞) and H ≥ 1 depend-
ing on n, K0, K, and H0 and independent of p the following holds true.
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Suppose u ∈ C1;q(B1(0)) satisfies ‖u‖C1;q(B1(0)) ≤ 1/2 and (7.1) for given
smooth single-valued functions Ai, B : B1(0)× (−1, 1)×Bn

1 (0)→ R. Sup-
pose for any multi-index α = (αX , αZ , αP ) with |α| = k, where we let Dα =
DαX
X DαZ

Z DαP
P ,

(7.9) |Dα
(X,Z,P )B(X,Z, P )| ≤

{
K0K

kR−1−|αX |−|αZ | if k = 1, 2, 3,

(k − 3)!K0K
kR−1−|αX |−|αZ | if 4 ≤ k ≤ p,

for X ∈ BR(X1), |Z| ≤ 1/2, and |P | ≤ 1/2 and for any multi-index β with
|β| = s < p,

s

R
sup

BR/p(X1)
|Dβ

yu|+ sup
BR/p(X1)

|DDβ
yu|(7.10)

≤

{
H0R

−s if s = 0, 1, 2,

(s− 2)!H0H
s−3R−s if 3 ≤ s < p.

Then gγ defined by (7.2) and (7.3) satisfies

R sup
BR/p(X1)

|gγ | ≤ C(p− 2)!Hp−3R−p.

Proof. Suppose we had a function Ψ(y1, . . . , yn−2, Z, P1, . . . , Pn) such that
Ψ(0, 0, 0) = 0 and

|Dαy
y DαZ

Z DαP
P B(X,Z, P )| ≤ Dαy

y DαZ
z0 D

αP
(z1,...,zn)Ψ(0, 0, 0)(7.11)

for X ∈ BR(X1), |Z| ≤ supBR(X1) |u|, and |P | ≤ supBR(X1) |Du| and for all
nonnegative integers αZ and multi-induces αy and αP such that 1 ≤ |αy|+
αZ + |αP | ≤ p. Further suppose we had functions vj(y1, . . . , yn−2), j = 0, 1,
. . . , n, such that v0(0) = 0 and

(7.12) sup
BR/p(X1)

|Dβ
yu| ≤ Dβ

y v0(0)

for 0 < |β| ≤ p and for j = 1, . . . , n, vj(0) = 0, Dγ
yvj(0) ≥ 0, and

(7.13) sup
BR/p(X1)

|Dβ
yDju| ≤ Dβ

y vj(0)

for 0 < |β| < p. Recall that gγ can be expressed as in (7.6); that is,

gγ,l =
∑

cα,j,β(Dα
(y,Z,P )B)(X,ul, Dul)

∏
k≤|αZ |

DβZ,k
y ul

∏
k≤|αP |

DβP,k
y Djkul
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for l = 1, 2, . . . , q, where the sum is taken over α = (αy, αZ , αP ), βZ,k, βP,l,
and 1 ≤ jk ≤ n such that (7.5) holds and |βP,l| < p and the cαy,αZ ,αP ,j,β are
the positive integers from (7.4). We also have

Dγ
y (Ψ(y, v)) =

∑
cα,j,β(Dα

(y,Z,P )Ψ)(y, v)(7.14)

×
∏

k≤|αZ |

DβZ,k
y v0

∏
k≤|αP |

DβP,k
y vjl

where the sum is taken over (7.5) and the coefficients cα,j,β are the same as
above. Here v=(v0, v1, . . . , vn) and Ψ(y, v)=Ψ(y1, . . . , yn−2, v0, v1, . . . , vn−2).
Comparing (7.6) and (7.14) using (7.11), (7.12), and (7.13),

(7.15) sup
BR/p(X1)

|gγ | ≤ Dγ
y (Ψ(y, v(y)))|y=0.

To construct v0, v1, . . . , vn and Ψ, first we simplify the setup by letting
v0(y) = Rv(R−1(y1 + · · ·+ yn−2)) and v1(y) = · · · = vn(y) = v(R−1(y1 +
· · ·+ yn−2)) for some function v(ξ) and replacing Ψ(y1, . . . , yn−2, Z, P1, . . . ,
Pn) with R−1Ψ(R−1(y1 + . . .+ yn−2), R−1Z + P1 + · · ·+ Pn) for some func-
tion Ψ(ξ, ζ). We choose

Ψ(ξ, ζ) =

2∑
k=1

1

k!
K0K

k(ξ + ζ)k +

p∑
k=3

1

k(k − 1)(k − 2)
K0K

k(ξ + ζ)k,

v(ξ) = H0ξ +
1

2
H0ξ

2 +

p∑
s=3

1

s(s− 1)
H0H

s−3ξs.

It is easy to check (7.11), (7.12), and (7.13) using (7.9) and (7.10).
For functions f(ξ) and g(ξ), let f �p g denote that |Ds

ξf(0, 0)| ≤
Ds
ξg(0, 0) for 1 ≤ s ≤ p. We claim that

(ξ + (1 + n)v(ξ))k �p c
k−1(1 + (1 + n)H0)k(7.16)

×

ξk + ξk+1 +

pk∑
s=k+2

1

(s− k)2
Hs−k−2ξs


for k = 1, 2, . . . , p for some constant c ≥ 1 independent of k. We can see this
by induction on k. (7.16) obviously holds for k = 1. Let k ≥ 2. Assuming
(7.16) holds with k − 1 in place of k and multiplying (ξ + (1 + n)v(ξ)) by
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(ξ + (1 + n)v(ξ))k−1,

(ξ + (1 + n)v(ξ))k(7.17)

�p 2ck−2(1 + (1 + n)H0)k

×

ξk + ξk+1 +

pk∑
s=k+2

s−k∑
j=2

1

(j − 1)2(s− j − k + 1)2
Hs−k−2ξs

.

Since

s−k∑
j=2

1

(j − 1)2(s− j − k + 1)2
(7.18)

=

s−k∑
j=2

1

(s− k)2

(
1

j − 1
+

1

s− j − k + 1

)2

≤
s−k∑
j=2

1

(s− k)2

4

(j − 1)2
≤ 2π2

3(s− k)2
,

(7.16) follows from (7.17) provided we choose c = 4π2/3. Combining the
definition of Ψ and (7.16), for p ≥ 5,

Ψ(ξ, (n+ 1)v(ξ))�p

2∑
k=1

1

k!
ck−1(1 + (1 + n)H0)kK0K

k

×

ξk + ξk+1 +

pk∑
s=k+2

1

(s− k)2
Hs−k−2ξs


+

p∑
k=3

1

(k − 2)3
ck−1(1 + (1 + n)H0)kK0K

k

×

ξk + ξk+1 +

pk∑
s=k+2

1

(s− k)2
Hs−k−2ξs

 .
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It follows that

1

p!
R
∂p

∂ξp
Ψ(ξ, (n+ 1)v(ξ))

∣∣∣∣
ξ=0

≤
2∑

k=1

1

k!(p− k)2
ck−1(1 + (1 + n)H0)kK0K

kHp−k−2

+

p−2∑
k=3

1

(k − 2)3(p− k)2
ck−1(1 + (1 + n)H0)kK0K

kHp−k−2

+
1

(p− 3)3
cp−2(1 + (1 + n)H0)p−1K0K

p−1

+
1

(p− 2)3
cp−1(1 + (1 + n)H0)pK0K

p

Let H = max{cK(1 + (1 + n)H0), 1} so that, using a computation similar
to (7.18), we have

1

p!

∂p

∂ξp
Ψ(ξ, (n+ 1)v(ξ))

∣∣∣∣
ξ=0

≤ C

(p− 2)2
K0K

3(1 + (1 + n)H0)3Hp−3

for some constant C ∈ (0,∞) independent of p. Thus by (7.15),

R sup
BR/p(X1)

|gγ | ≤ C(p− 2)!Hp−3R−p

for some constant C = C(n,K0,K,H0) ∈ (0,∞) independent of p. �

Lemma 14. Let p ≥ 5 be a positive integer, K0,K,H0 ≥ 1 be constants,
and BR(X1) ⊂⊂ B1(0). For some constants C ∈ (0,∞) and H ≥ 1 depend-
ing on n, K0, K, and H0 and independent of p the following holds true.
Suppose u ∈ C1,µ;q(B1(0)), where µ ∈ (0, 1/q), satisfies ‖u‖C1;q(B1(0)) ≤ 1/2
and (7.1) for given smooth single-valued functions Ai, B : B1(0)× (−1, 1)×
Bn

1 (0)→ R. Suppose for any multi-index α = (αX , αZ , αP ) with |α| = k,

(7.19) |Dα
(X,Z,P )A(X,Z, P )| ≤

{
K0K

kR−|αX |−|αZ | if k = 1, 2, 3,

(k − 3)!K0K
kR−|αX |−|αZ | if 4 ≤ k ≤ p,



i
i

“5-Krummel” — 2019/10/8 — 0:56 — page 927 — #51 i
i

i
i

i
i

Multivalued solutions to elliptic equations and systems 927

for X ∈ BR(X1), |Z| ≤ 1/2, and |P | ≤ 1/2 and for any multi-index β with
|β| = s < p,

s

R
sup

BR/p(X1)
|Dβ

yu|+ sup
BR/p(X1)

|DDβ
yu|+

(
R

s

)µ
[DDβ

yu]µ;q,BR/p(X1)(7.20)

≤

{
H0R

−s if s = 0, 1, 2,

(s− 2)!H0H
s−3R−s if 3 ≤ s < p.

Then f iγ defined by (7.2) and (7.3) satisfies

(R/p)µ[f iγ ]µ,BR/p(X1) ≤ C(p− 2)!Hp−3R1−p.

Proof. We will use a similar argument as for Lemma 13, except now we
need to compute a Hölder coefficient. To this we will introduce an auxiliary
parameter t such that derivatives of Ψ and v with respect to t bound to
Hölder coefficients of expressions involving Ai and u. The basic idea is to use
the fact that the sum, product, and chain rules for computing derivatives
with respect to t are similar to sum, product, and composition rules for
computing Hölder coefficients.

Suppose we had a function Ψ(y1, . . . , yn−2, t, Z, P1, . . . , Pn) such that
Ψ(0, 0, 0, 0) = 0 and

|Dαy
y DαZ

Z DαP
P Ai(X,Z, P )| ≤ Dαy

y DαZ
z0 D

αP
(z1,...,zn)Ψ(0, 0, 0, 0),(7.21)

(2R/p)1−µ|DyD
αy
y DαZ

Z DαP
P Ai(X,Z, P )| ≤ DtD

αy
y DαZ

z0 D
αP
(z1,...,zn)Ψ(0, 0, 0, 0),

for X ∈ BR(X1), |Z| ≤ supBR(X1) |u|, |P | ≤ supBR(X1) |Du|, and 1 ≤ |αy|+
αZ + |αP | ≤ p and we had functions vj(y1, . . . , yn−2, t), j = 0, 1, . . . , n, such
that v0(0, 0) = 0,

sup
BR/p(X1)

|Dβ
yu| ≤ Dβ

y v0(0, 0) for 0 < |β| ≤ p,(7.22)

[Dβ
yu]µ;q,BR/p(X1) ≤ DtD

β
y v0(0, 0) for 0 ≤ |β| ≤ p,

and vj(0, 0) = 0, Dγ
yvj(0, 0) ≥ 0,

sup
BR/p(X1)

|Dβ
yDju| ≤ Dβ

y vj(0, 0) for 0 < |β| < p,(7.23)

[Dβ
yDju]µ;q,BR/p(X1) ≤ DtD

β
y v0(0, 0) for 0 ≤ |β| < p,
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for j = 1, . . . , n. Recall that f iγ can be expressed as in (7.4) and compute
that

[f iγ ]µ;q,BR/p(X1) ≤
∑

cα,j,β

(
[(Dα

(y,Z,P )A
i)(X,u,Du)]µ;q,BR/p(X1)(7.24)

×
∏

k≤|αZ |

sup |DβZ,k
y u|

∏
k≤|αP |

sup |DβP,k
y Djku|

+ sup |Dα
(X,Z,P )A

i|
∑
k≤|αZ |

[DβZ,k
y u]µ

×
∏
l 6=k

sup |DβZ,l
y u|

∏
k≤|αP |

sup |DβP,k
y Djku|

+ sup |Dα
(X,Z,P )A

i|
∏

k≤|αZ |

sup |DβZ,k
y u|

×
∑

k≤|αP |

[DβP,k
y Djku]µ

∏
l 6=k

sup |DβP,l
y Djlu|

)
,

where (Dα
(y,Z,P )A

i)(X,u,Du)=((Dα
(y,Z,P )A

i)(X,ul, Dul))l=1,2,...,q, the supre-

mums of derivatives of Ai are taken over X ∈ BR(X1), |Z| ≤ supBR(X1) |u|,
and |P | ≤ supBR(X1) |Du|, and the supremums and the Hölder coefficients of
derivatives of u are taken over BR/p(X1). Moreover,

[(Dα
(y,Z,P )A

i)(X,u,Du)]µ;q,BR/p(X1)(7.25)

≤ (2R/p)1−µ sup
BR/p(X1)

|(DyD
α
(y,Z,P )A

i)(X,u,Du)|

+ sup
BR/p(X1)

|(DZD
α
(y,Z,P )A

i)(X,u,Du)| [u]µ;q,BR/p(X1)

+

n∑
k=1

sup
BR/p(X1)

|(DPkD
α
(y,Z,P )A

i)(X,u,Du)| [Dku]µ;q,BR/p(X1)

We also have

Dγ
y (Ψ(y, t, v)) =

∑
cα,j,β(Dα

(y,Z,P )Ψ)(y, t, v)
∏

k≤|αZ |

DβZ,1
y v0

∏
k≤|αP |

DβP,k
y vjk

where the sum is taken over (7.5) and the coefficients cα,j,β are as in (7.4).
Here v = (v0, v1, . . . , vn) and Ψ(y, t, v) = Ψ(y1, . . . , yn−2, t, v0, v1, . . . , vn−2).
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Thus

DtD
γ
y (Ψ(y, t, v(y, t))) =

∑
cα,j,β

(
Dt((D

α
(y,Z,P )Ψ)(y, t, v))(7.26)

×
∏

k≤|αZ |

DβZ,k
y v0

∏
k≤|αP |

DβP,k
y vjk

+ (Dα
(y,Z,P )Ψ)(y, t, v)

∑
k≤|αZ |

DtD
βZ,k
y v0

×
∏
l 6=k

DβZ,l
y v0

∏
k≤|αP |

DβP,k
y vjk

+ (Dα
(y,Z,P )Ψ)(y, t, v)

∏
k≤|αZ |

DβZ,k
y v0

×
∑

k≤|αP |

DtD
βP,k
y vjk

∏
l 6=k

DβP,l
y vjl

)

where

Dt((D
α
(y,Z,P )Ψ)(y, t, v)) ≤ (DtD

α
(y,Z,P )Ψ)(y, t, v)(7.27)

+ (DZD
α
(y,Z,P )Ψ)(y, t, v)Dtv0

+

n∑
k=1

(DPkD
α
(y,Z,P )Ψ)(y, t, v)Dtvk.

Comparing (7.24) to (7.26) and (7.25) to (7.27) using (7.21), (7.22), and
(7.23),

(7.28) [f iγ ]µ;q,BR/p(X1) ≤ Dt((D
α
(y,Z,P )Ψ)(y, t, v(t, y)))

∣∣∣
y=0,t=0

.

To construct v0, v1, . . . , vn and Ψ, first we simplify the setup by letting
v0(y, t)=Rv(R−1(y1 + · · ·+ yn−2), (R/p)−µt) and v1(y, t) = · · · = vn(y, t) =
v(R−1(y1 + · · ·+ yn−2), (R/p)−µt) for some function v(ξ, τ) and replacing
Ψ(y1, . . . , yn−2, t, Z, P1, . . . , Pn) with

Ψ(R−1(y1 + · · ·+ yn−2), (R/p)−µt, R−1Z + P1 + · · ·+ Pn)
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for some function Ψ(ξ, τ, ζ). We choose

Ψ(ξ, τ, ζ) = K0Kτ +

2∑
k=1

1

k!
(1 +Kτ)K0K

k(ξ + ζ)k

+

p∑
k=3

1

k(k − 1)(k − 2)
K0(1 + (k − 2)Kτ)Kk(ξ + ζ)k

v(ξ, τ) = (1 + τ)

(
H0ξ +

1

2
H0ξ

2 +

p∑
s=3

1

s(s− 1)
H0H

s−3ξs

)
.

It is easy to check (7.21), (7.22), and (7.23) using (7.19) and (7.20). Note
that to verify (7.22) in the case |β| = p we use (7.20) with |β| = s = p− 1
and choose H ≥ 5/3.

For functions f(ξ, τ) and g(ξ, τ), let f �p,1 g denote that |Ds
ξf(0, 0)| ≤

Ds
ξg(0, 0) and |DtD

s
ξf(0, 0)| ≤ DτD

s
ξg(0, 0) for 1 ≤ s ≤ p. By the (7.16), for

k = 1, 2, . . . , p,

(ξ + (1 + n)v(ξ, τ))k �p,1 c
k−1H̄k

0 (1 + kτ)(7.29)

×

ξk + ξk+1 +

pk∑
s=k+2

1

(s− k)2
Hs−k−2ξs


where c ≥ 1 is a constant independent of k and H̄0 = 1 + (n+ 1)H0. By the
definition of Ψ and (7.29), for p ≥ 5,

Ψ(ξ, τ, ζ)�p,1 K0Kτ +

2∑
k=1

1

k!
ck−1(1 + 2kKτ)H̄k

0K0K
k

×

ξk + ξk+1 +

pk∑
s=k+2

1

(s− k)2
Hs−k−2ξs


+

p∑
k=3

1

k(k − 1)(k − 2)
ck−1(1 + 2kKτ)H̄k

0K0K
k

×

ξk + ξk+1 +

pk∑
s=k+2

1

(s− k)2
Hs−k−2ξs
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It follows that

1

p!

∂p+1

∂τ∂ξp
Ψ(ξ, (n+ 1)v(ξ))

∣∣∣∣
ξ=0,τ=0

≤
2∑

k=1

4

k!(p− k)2
ck−1H̄k

0K0K
k+1Hp−k−2

+

p−2∑
k=3

2

(k − 2)2(p− k)2
ck−1K0H̄

k
0K

k+1Hp−k−2

+

p∑
k=p−1

2

(k − 2)2
ck−1H̄k

0K0K
k+1

Suppose H satisfies cKH̄0 ≤ H so that, using a computation similar to
(7.18), we have

(R/p)µ
1

p!

∂p+1

∂τ∂ξp
Ψ(ξ, (n+ 1)v(ξ))

∣∣∣∣
ξ=0,τ=0

≤ C

(p− 3)2
K0K

4H̄3
0H

p−3R−p

for some constant C ∈ (0,∞) independent of p. Thus by (7.28),

(R/p)µ[f iγ ]µ;q,BR/p(X1) ≤ C(p− 2)!H3
0H

p−3R−p

for some constant C = C(n,K0,K,H0) ∈ (0,∞) independent of p. �

Lemma 15. Let µ ∈ (0, 1/q) and u ∈ C1,µ;q(B1(0)) such that ‖u‖C1;q(B1(0))

≤ 1/2 and u is a solution to (7.1) for some locally real analytic single-
valued functions Ai, B : B1(0)× (−1, 1)×Bn

1 (0)→ R such that (2.16) holds
for some constant λ > 0. Let K0,K,H0 ≥ 1 and BR0

(X0) ⊂⊂ B1(0). For
some H = H(n, q, µ, λ,K0,K,H0) ≥ 1 the following holds. Suppose that for
every multi-index α = (αX , αZ , αP ) with |α| = k,

|Dα
(X,Z,P )A(X,Z, P )|+R0|Dα

(X,Z,P )B|

≤

{
K0K

kR
−|αX |−|αZ |
0 if k = 1, 2, 3,

(k − 3)!K0K
kR
−|αX |−|αZ |
0 if 4 ≤ k ≤ p,

for X ∈ BR0
(X0), |Z| ≤ 1/2, and |P | ≤ 1/2. Further suppose that whenever

BR(X1) ⊆ BR0
(X0), for every multi-index β with |β| = s,

(7.30)
s

R
‖Dβ

yu‖′C1,µ;q(BR/2s(X1)) ≤

{
H0R

−s if s = 1, 2,

(s− 2)!H0H
s−2R−s if 3 ≤ s < p.
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Then for every BR(X1) ⊆ BR0
(X0) and multi-index γ with |γ| = p,

(R/p)−1‖Dγ
yu‖′C1,µ;q(BR/2p(X1)) ≤ (p− 2)!H0H

p−2R−p.

Proof. First we will apply Lemma 13 and Lemma 14 in order to bound the
terms [fγ ]µ;q,BR/p(X1) and supBR/p(X1) |gγ | in (7.8). We need to check (7.10)

and (7.20). For every X ∈ BR/p(X1) \ [0,∞)× {0} × Rn−2, B(p−1)R/p(X) ⊆
BR0

(X0), so by (7.30)

(R/s)−1|Dβ
yu(X)|+ |DDβ

yu(X)|+ (R/s)µ[DDβ
yu]µ;q,B(p−1)R/2ps(X)(7.31)

≤ 2µ‖Dβ
yu‖′C1,µ;q(B(p−1)R/2ps(X))

≤ 2µ(s− 2)!H0H
s−2

(
p

(p− 1)R

)s
≤ 2µe(s− 2)!H0H

s−2R−s.

Now let X = (x1, x2, y), X ′ = (x′1, x
′
2, y
′) ∈ BR/p(X1) with x2 > 0 and x′2 >

0. If |X−X ′| < (p−1)R/ps, then X̂ = (X+X ′)/2 ∈ BR/p(X1) and X,X ′ ∈
B(p−1)R/p(X̂) ⊂ BR0

(X0), so by (7.31)

(
R

s

)µ |DDs
yul(X)−DDs

yul(X
′)|

|X −X ′|µ
≤
(
R

s

)µ
[DDs

yu]µ,B(p−1)R/2ps(X̂)(7.32)

≤ (s− 2)!H0
2µe

Rs+µ

for l = 1, 2, . . . , q. If |X −X ′| ≥ (p− 1)R/ps, then by using (7.31) to bound
|DDs

yul(X)| and |DDs
yul(Y )|,

(7.33)

(
R

s

)µ |DDs
yul(X)−DDs

yul(X
′)|

|X −X ′|µ
≤ 21+2µe(s− 2)!H0R

−s−µ

for l = 1, 2, . . . , q. By the same computations, (7.32) and (7.33) also hold if
instead x2 < 0 and x′2 < 0. By (7.31), (7.32), and (7.33), (7.10) and (7.20)
hold with 22+2µH0 in place of H0 when s ≥ 2. By a similar argument (7.10)
and (7.20) hold with 22+2µH0 in place of H0 when s = 1, 2.

Now by Lemma 13 and Lemma 14,

(7.34) (R/p)µ[f iγ ]µ;q,BR/p(X1) + (R/p) sup
BR/p(X1)

|gγ | ≤ C(p− 2)!H3
0H

p−3R−p.
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for some constant C = C(n, q, µ,K0,K) ∈ (0,∞). Thus by (7.8) and (7.34),

(R/p)−1‖Dγ
yu‖′C1,µ;q(BR/2p(X1))

≤ C
(
p(p− 3)!H0H

p−3R−p + (p− 2)!Hp−3R−p
)

≤ C(p− 2)!H0H
p−2R−p

(
p

(p− 2)H
+

1

H0H

)
≤ (p− 2)!H0H

p−2R−p

where C ∈ (0,∞) denotes constants depending on n, q, µ, λ, K0, K, and H0

and independent of p and H is large enough that Lemmas 13 and 14 hold
and H ≥ max{4C, 2C/H0}. �

To complete the proof of Theorem 4, let BR(x0, y0) ⊂⊂ B1(0). Since Ai

and B are real analytic and by the proof of Lemma 12, there are constants
K,K0, H0 ≥ 1 such that for any multi-index α = (αX , αZ , αP ) with |α| = k

|Dα
(X,Z,P )A

i|+ (R/2)|Dα
(X,Z,P )B| ≤ K0K

k(R/2)−|αX |−|αZ | for k = 2, 3,

|Dα
(X,Z,P )A

i|+ (R/2)|Dα
(X,Z,P )B| ≤ (k − 3)!K0K

k(R/2)−|αX |−|αZ | for k ≥ 4,

for X ∈ BR(x0, y0), |Z| ≤ 1/2, |P | ≤ 1/2 and for any multi-index β with
|β| = s

2s

R
‖Dβ

yu‖′C1,µ;q(BR/4s(x,y)) ≤ H0(R/2)−s

whenever (x, y) ∈ BR/2(x0, y0) and s = 1, 2, 3, 4. By the Lemma 15 and in-
duction, for some H sufficiently large depending on n, q, K0, K, and H0,

2s

R
‖Dβ

yu‖′C1,µ;q(BR/4s(x,y)) ≤ (s− 2)!H0H
s−2(R/2)−s

whenever (x, y) ∈ BR/2(x0, y0) and s ≥ 5 and in particular (2.17) holds true
with C = H0H.
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