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We show that two Dehn surgeries on a knot K never yield mani-
folds that are homeomorphic as oriented manifolds if V ′′

K(1) 6= 0 or
V ′′′
K (1) 6= 0. As an application, we verify the cosmetic surgery con-

jecture for all knots with no more than 11 crossings except for three
10-crossing knots and five 11-crossing knots. We also compute the
finite type invariant of order 3 for two-bridge knots and Whitehead
doubles, from which we prove several nonexistence results of purely
cosmetic surgery.

1. Introduction

Dehn surgery is an operation to modify a three-manifold by drilling and
then regluing a solid torus. Denote by Yr(K) the resulting three-manifold
via Dehn surgery on a knot K in a closed orientable three-manifold Y along
a slope r. Two Dehn surgeries along K with distinct slopes r and r′ are
called equivalent if there exists an orientation-preserving homeomorphism
of the complement of K taking one slope to the other, while they are called
purely cosmetic if Yr(K) ∼= Yr′(K) as oriented manifolds. In Gordon’s 1990
ICM talk [6, Conjecture 6.1] and Kirby’s Problem List [11, Problem 1.81 A],
it is conjectured that two surgeries on inequivalent slopes are never purely
cosmetic. We shall refer to this as the cosmetic surgery conjecture.

In the present paper we study purely cosmetic surgeries along knots in
the three-sphere S3. We show that for many knots K in S3, S3

r (K) � S3
r′(K)

as oriented manifolds for distinct slopes r, r′. More precisely, our main result
gives a sufficient condition for a knot K that admits no purely cosmetic
surgery in terms of its Jones polynomial VK(t).

Theorem 1.1. If a knot K has either V ′′K(1) 6= 0 or V ′′′K (1) 6= 0, then
S3
r (K) � S3

r′(K) for any two distinct slopes r and r′.
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Here, V ′′K(1) and V ′′′K (1) denote the second and third order derivative of
the Jones polynomial of K evaluated at t = 1, respectively. Note that in [3,
Proposition 5.1], Boyer and Lines obtained a similar result for knots K with
∆′′K(1) 6= 0, where ∆K(t) is the normalized Alexander polynomial. We shall
see that V ′′K(1) = −3∆′′K(1) (Lemma 2.1). Hence, our result can be viewed
as an improvement of their result [3, Proposition 5.1].

Previously, other known classes of knots that are shown not to admit
purely cosmetic surgeries include the genus 1 knots [25] and the knots with
τ(K) 6= 0 [18], where τ is the concordance invariant defined by Ozsváth-
Szabó [21] and Rasmussen [23] using Floer homology. Theorem 1.1 along
with the condition τ(K) 6= 0 gives an effective obstruction to the existence
of purely cosmetic surgery. For example, we used Knotinfo [5], Knot Atlas
[12] and Baldwin-Gillam’s table in [1] to list all knots that have simultaneous
vanishing V ′′K(1), V ′′′K (1) and τ invariant. We get the following result:

Corollary 1.2. The cosmetic surgery conjecture is true for all knots with
no more than 11 crossings, except possibly

1033, 10118, 10146,

11a91, 11a138, 11a285, 11n86, 11n157.

Remark 1.3. In [22], Ozsváth and Szabó gave the example of K = 944,
which is a genus two knot with τ(K) = 0 and ∆′′K(1) = 0. Moreover, S3

1(K)
and S3

−1(K) have the same Heegaard Floer homology, so no Heegaard Floer
type invariant can distinguish these two surgeries. This example shows that
Theorem 1.1 and those criteria from Heegaard Floer theory are independent
and complementary.

The essential new ingredient in this paper is a surgery formula by Lescop,
which involves a knot invariant w3 that satisfies a crossing change formula
[16, Section 7]. We will show that w3 is actually the same as 1

72V
′′′
K (1) +

1
24V

′′
K(1). Meanwhile, we also observe that w3 is a finite type invariant of

order 3. This enables us to reformulate Theorem 1.1 in term of the finite
type invariants of the knot (Theorem 3.5).

As another application of Theorem 1.1, we prove the nonexistence of
purely cosmetic surgery on certain families of two-bridge knots and White-
head doubles. Along the way, an explicit closed formula for the canonically
normalized finite type knot invariant of order 3 is derived for two-bridge
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knots in Conway forms Kb1,c1,...,bm,cm in Proposition 4.4,

v3(Kb1,c1,...,bm,cm) =
1

2

(
m∑

k=1

ck

( k∑

i=1

bi

)2

−
m∑

i=1

bi

( m∑

k=i

ck

)2
)
,

which could be of independent interest.

The remaining part of this paper is organized as follows. In Section 2, we
review background and properties of Jones polynomial, and prove crossing
change formulae for derivatives of Jones polynomial. In Section 3, we define
an invariant λ2 for rational homology spheres and then use Lescop’s surgery
formula to prove Theorem 1.1. In Section 4 and Section 5, we study in more
detail cosmetic surgeries along two-bridge knots and Whitehead doubles.

Acknowledgements. The authors would like to thank Tomotada Ohtsuki
and Ryo Nikkuni for stimulating discussions and drawing their attention to
the reference [19][20]. The first named author is partially supported by JSPS
KAKENHI Grant Number 26400100. The second named author is partially
supported by grant from the Research Grants Council of Hong Kong Special
Administrative Region, China (Project No. 14301215).

2. Derivatives of Jones polynomial

Suppose (L+, L−, L0) is a skein triple of links as depicted in Figure 1.

3

image) of K. We use the Alexander-Briggs notation and the Rolfsen [Ro] tables to distinguish be-
tween a knot and its obverse. “Projection” is the same as “diagram”, and this means a knot or link
diagram. Diagrams are always assumed oriented.
The symbol ✷ denotes the end or the absence of a proof. In latter case it is assumed to be evident
from the preceding discussion/references; else (and anyway) I’m grateful for any feedback.

2. Positive knots and Gauß sums
Definition 2.1 The writhe is a number (±1), assigned to any crossing in a link diagram. A crossing
as on figure 1(a), has writhe 1 and is called positive. A crossing as on figure 1(b), has writhe −1 and
is called negative. A crossing is smoothed out by replacing it by the fragment on figure 1(c) (which
changes the number of components of the link). A crossing as on figure 1(a) and 1(b) is smashed to
a singularity (double point) by replacing it by the fragment on figure 1(d). A m-singular diagram is a
diagram with m crossings smashed. A m-singular knot is an immersion prepresented by a m-singular
diagram.

(a) (b) (c) (d)

Figure 1

Definition 2.2 A knot is called positive, if it has a positive diagram, i. e. a diagram with all crossings
positive.

Recall [FS, PV] the concept of Gauß sum invariants. As they will be the main tool of all the further
investigations, we summarize for the benefit of the reader the basic points of this theory.

Definition 2.3 ([Fi3, PV]) A Gauß diagram (GD) of a knot diagram is an oriented circle with arrows
connecting points on it mapped to a crossing and oriented from the preimage of the undercrossing to
the preimage of the overcrossing. See figure 2.
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Figure 2: The knot 62 and its Gauß diagram.

Fiedler [Fi3, FS] found the following formula for (a variation of) the degree-3-Vassiliev invariant
using Gauß sums.

v3 = ∑
(3,3)

wpwqwr + ∑
(4,2)0

wpwqwr +
1
2 ∑
p,q linked

(wp+wq) , (1)

L+ L− L0

Figure 1: The link diagrams of L+, L−, L0 are identical except at one cross-
ing.

Recall that the Jones polynomial satisfies the skein relation

(1) t−1VL+
(t)− tVL−(t) = (t

1

2 − t− 1

2 )VL0
(t),

and the Conway polynomial satisfies the skein relation

(2) ∇L+
(z)−∇L−(z) = z∇L0

(z).
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The normalized Alexander polynomial ∆L(t) is obtained by substituting
z = t1/2 − t−1/2 into the Conway polynomial. All these polynomial invariants
are defined to be the constant function 1 for the trivial knot.

For a knot K, let a2(K) be the coefficient of the z2-term of the Conway
polynomial ∇K(z). From the fact that ∆′K(1) = 0, it is not hard to see that
∆′′K(1) = 2a2(K). If one differentiates Equations (1) and (2) twice and com-
pares the corresponding terms, one can also show that V ′′K(1) = −6a2(K).
See [17] for details. In summary, we have:

Lemma 2.1. For all knots K ⊂ S3,

V ′′K(1) = −6a2(K) = −3∆′′K(1).

In [16], Lescop defined an invariant w3 for a knot K in a homology sphere
Y . When Y = S3, the knot invariant w3 satisfies a crossing change formula

w3(K+)− w3(K−) =
a2(K

′) + a2(K
′′)

2
(3)

− a2(K+) + a2(K−) + lk2(K ′,K ′′)
4

,

where (K+,K−,K ′ ∪K ′′) is a skein triple consisting of two knots K± and
a two-component link K ′ ∪K ′′ [16, Proposition 7.2]. Clearly, the values of
w3(K) are uniquely determined by this crossing change formula once we fix
w3(= 0) for the unknot. This gives an alternative characterization of the
invariant w3 for knots in S3. The next lemma relates it to the derivatives of
Jones polynomial.

Lemma 2.2. For all knots K ⊂ S3,

w3(K) =
1

72
V ′′′K (1) +

1

24
V ′′K(1).

Proof. The main argument essentially follows from Nikkuni [19, Proposition
4.2]. We prove the lemma by showing that 1

72V
′′′
K (1) + 1

24V
′′
K(1) satisfies an

identical crossing change formula as Equation (3). To this end, we differenti-
ate the skein formula for the Jones polynomial (1) three times and evaluate
at t = 1. Abbreviating the Jones polynomial of the skein triple L+ = K+,
L− = K− and L0 = K ′ ∪K ′′ by V+(t), V−(t) and V0(t), respectively, we ob-
tain
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(
t−1V+(t)

)′′′ |t=1 = −6V+(1) + 6V ′+(1)− 3V ′′+(1) + V ′′′+ (1)

(tV−(t))′′′ |t=1 = 3V ′′−(1) + V ′′′− (1)
(

(t1/2 − t−1/2)V0(t)
)′′′
|t=1 =

9

4
V0(1)− 3V ′0(1) + 3V ′′0 (1)

The terms on the right hand side can be expressed as

(a) V+(1) = V−(1) = 1

(b) V ′+(1) = V ′−(1) = 0

(c) V ′′+(1) = −6a2(K+), V ′′−(1) = −6a2(K−)

(d) V0(1) = −2

(e) V ′0(1) = −3 lk(K ′,K ′′)

(f) V ′′0 (1) = −1
2 + 3 lk(K ′,K ′′) + 12(a2(K

′) + a2(K
′′))− 6 lk2(K ′,K ′′)

Here, (a) and (d) are well-known; (b),(c),(e) and (f) are proved by Murakami
[17].1 After doing substitution and simplification, we have

V ′′′+ (1)− V ′′′− (1) = −18 (a2(K+) + a2(K−))− 18 lk2(K ′,K ′′)

+ 18 lk(K ′,K ′′) + 36
(
a2(K

′) + a2(K
′′)
)

Meanwhile, it follows from (2) and Hoste [8, Theorem 1] that

(4) lk(K ′,K ′′) = a2(K+)− a2(K−).

This enables us to further simplify
(

1

72
V ′′′+ (1) +

1

24
V ′′+(1)

)
−
(

1

72
V ′′′− (1) +

1

24
V ′′−(1)

)

and reduce it to the same expression as the right hand side of (3). As
1
72V

′′′
K (1) + 1

24V
′′
K(1) also equals 0 when K is the unknot, 1

72V
′′′
K (1) + 1

24V
′′
K(1)

must equal w3(K) for all K ⊂ S3. �

We conclude the section by remarking that both Lemmas 2.1 and 2.2 can
be seen in a simpler way from a more natural perspective. A knot invariant

1Murakami uses a different skein relation for the Jones polynomial, thus (e) and
(f) differ by certain signs from the formula in [17].
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v is called a finite type invariant of order n if it can be extended to an
invariant of singular knots via a skein relation

v(K̃) = v(K+)− v(K−)

where K̃ is the knot with a transverse double point (See Figure 2), while v
vanishes for all singular knots with (n+ 1) or more singularities.

3

image) of K. We use the Alexander-Briggs notation and the Rolfsen [Ro] tables to distinguish be-
tween a knot and its obverse. “Projection” is the same as “diagram”, and this means a knot or link
diagram. Diagrams are always assumed oriented.
The symbol ✷ denotes the end or the absence of a proof. In latter case it is assumed to be evident
from the preceding discussion/references; else (and anyway) I’m grateful for any feedback.

2. Positive knots and Gauß sums
Definition 2.1 The writhe is a number (±1), assigned to any crossing in a link diagram. A crossing
as on figure 1(a), has writhe 1 and is called positive. A crossing as on figure 1(b), has writhe −1 and
is called negative. A crossing is smoothed out by replacing it by the fragment on figure 1(c) (which
changes the number of components of the link). A crossing as on figure 1(a) and 1(b) is smashed to
a singularity (double point) by replacing it by the fragment on figure 1(d). A m-singular diagram is a
diagram with m crossings smashed. A m-singular knot is an immersion prepresented by a m-singular
diagram.

(a) (b) (c) (d)

Figure 1

Definition 2.2 A knot is called positive, if it has a positive diagram, i. e. a diagram with all crossings
positive.

Recall [FS, PV] the concept of Gauß sum invariants. As they will be the main tool of all the further
investigations, we summarize for the benefit of the reader the basic points of this theory.

Definition 2.3 ([Fi3, PV]) A Gauß diagram (GD) of a knot diagram is an oriented circle with arrows
connecting points on it mapped to a crossing and oriented from the preimage of the undercrossing to
the preimage of the overcrossing. See figure 2.
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Figure 2: The knot 62 and its Gauß diagram.

Fiedler [Fi3, FS] found the following formula for (a variation of) the degree-3-Vassiliev invariant
using Gauß sums.

v3 = ∑
(3,3)

wpwqwr + ∑
(4,2)0

wpwqwr +
1
2 ∑
p,q linked

(wp+wq) , (1)

Figure 2: a transverse double point in the singular knot K̃.

It follows readily from the definition that the set of finite type invariants
of order at most 1 consists of all constant functions. One can also show
that a2(K) and V ′′K(1) are finite type invariants of order 2, while w3(K)
and V ′′′K (1) are finite type invariants of order 3. As the dimension of the
set of all finite type invariants of order ≤ 2 and ≤ 3 are two and three,
respectively (see, e.g., [2]), there has to be a linear dependence among the
above knot invariants, from which one can easily deduce Lemma 2.1 and
Lemma 2.2. In fact, if we denote v2 and v3 the finite type invariants of order
2 and 3 respectively normalized by the conditions that v2(m(K)) = v2(K)
and v3(m(K)) = −v3(K) for any knot K and its mirror image m(K) and
that v2(31) = v3(31) = 1 for the right hand trefoil 31, then it is not difficult
to see that

(5) v2(K) = a2(K)

and

(6) v3(K) = −2w3(K).

3. Lescop invariant and cosmetic surgery

The goal of this section is to prove Theorem 1.1. First, recall the following
results about purely cosmetic surgery from work of [3], [22], [26] and [18].

Theorem 3.1. Suppose K is a nontrivial knot in S3, r, r′ ∈ Q ∪ {∞} are
two distinct slopes such that S3

r (K) ∼= S3
r′(K) as oriented manifolds. Then

the following assertions are true:
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(a) ∆′′K(1) = 0.

(b) r = −r′.
(c) If r = p/q, where p, q are coprime integers, then q2 ≡ −1 (mod p).

(d) τ(K) = 0, where τ is the concordance invariant defined by Ozsváth-
Szabó [21] and Rasmussen [23].

Our new input for the cosmetic surgery problem is Lescop’s λ2 invariant
which, roughly speaking, is the degree 2 part of the Kontsevich-Kuperberg-
Thurston invariant of rational homology spheres [16]. Like the famous Le-
Murakami-Ohtsuki invariant, the Kontsevich-Kuperberg-Thurston invariant
is universal among finite type invariants for homology spheres [13][14][15].
See also Ohtsuki [20] for the connection to perturbative and quantum in-
variants of three-manifolds.

We briefly review the construction. A Jacobi diagram is a graph without
simple loop whose vertices all have valency 3. The degree of a Jacobi diagram
is defined to be half of the total number of vertices of the diagram. If we
denote byAn the vector space generated by degree n Jacobi diagrams subject
to some relations, then the degree n part Zn of the Kontsevich-Kuperberg-
Thurston invariant takes its value in An.

Example 3.2. Simple argument in combinatorics implies that

• A1 is a 1-dimensional vector space generated by the Jacobi diagram

• A2 is a 2-dimensional vector space generated by the Jacobi diagrams

and

Many interesting real invariants of rational homology spheres can be re-
covered from the Kontsevich-Kuperberg-Thurston invariant Z by compos-
ing a linear form on the space of Jacobi diagrams. In the simplest case, the
Casson-Walker invariant λ1 is W1 ◦ Z1, where W1( ) = 2. We shall concen-

trate on the case of the degree 2 invariant λ2 = W2 ◦ Z2, whereW2( ) = 1
and W2( ) = 0. The following surgery formula for λ2 is proved by Le-
scop and will play a central role in the proof of our main result.
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Theorem 3.3. [16, Theorem 7.1] The invariant λ2 satisfies the surgery
formula

λ2(Yp/q(K))−λ2(Y ) = λ′′2(K)

(
q

p

)2

+w3(K)
q

p
+a2(K)c(q/p)+λ2(L(p, q))

for all knots K in a rational homology sphere Y .

Here, a2(K) is the z2-coefficient of ∇K(z), and L(p, q) is the lens space
obtained by p/q surgery on the unknot.2 Then w3(K) is a knot invariant,
which was shown earlier in Lemma 2.2 to be equal to 1

72V
′′′
K (1) + 1

24V
′′
K(1)

for K ⊂ S3. The terms λ′′2(K) and c(q/p) are both explicitly defined in [16],
but they will not be needed for our purpose. For the moment, we make the
following simple observation.

Proposition 3.4. Suppose K is a knot in S3 with a2(K) = 0, and p, q are
nonzero integers satisfying q2 ≡ −1 (mod p). Then

λ2(S
3
p/q(K)) = λ2(S

3
−p/q(K))

if and only if w3(K) = 0.

Proof. We apply the surgery formula in Theorem 3.3. With the assumption
of a2(K) = 0, we can easily see that the first and third terms of the right
hand side are equal for p/q and −p/q surgery, even without using knowledge
of λ′′2(K) or c(q/p). Next, recall the well-known theorem that two lens spaces
L(p, q1) and L(p, q2) are equivalent up to orientation-preserving homeomor-
phisms if and only if q1 ≡ q±12 (mod p). In particular, this implies the lens
spaces L(p, q) ∼= L(p,−q) as oriented manifolds if q2 ≡ −1 (mod p), so their
λ2 invariants are obviously the same. Consequently,

λ2(S
3
p/q(K))− λ2(S3

−p/q(K)) = w3(K)
2q

p
,

and the statement follows readily. �

Proof of Theorem 1.1. In light of Theorem 3.1, we only need to consider
the case when ∆′′K(1) = 0 and q2 ≡ −1 (mod p), for otherwise, the pair
of manifolds S3

p/q(K) and S3
−p/q(K) will be non-homeomorphic as oriented

manifolds. Thus V ′′K(1) = −3∆′′K(1) = 0. If we now assume V ′′′K (1) 6= 0, then

2We use a different sign convention of lens spaces from Lescop’s original paper.
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Lemma 2.2 implies that w3(K) 6= 0. We can then apply Proposition 3.4
and conclude that λ2(S

3
p/q(K)) 6= λ2(S

3
−p/q(K)). Consequently, S3

p/q(K) �
S3
−p/q(K). �

Given (5) and (6), Theorem 1.1 can be stated in the following equivalent
way, which is particularly useful in the case where it is easier to calculate
the finite type invariant v3 (or equivalently w3) than the Jones polynomial.

Theorem 3.5. If a knot K has the finite type invariant v2(K) 6= 0 or
v3(K) 6= 0, then S3

r (K) � S3
r′(K) for any two distinct slopes r and r′.

4. Examples of two-bridge knots

In this section, we derive an explicit formula for v3 and use it to study the
cosmetic surgery problem for two-bridge knots. Following the presentation of
[10, Section 2.1], we sketch the basic properties and notations for two-bridge
knots.

Every two-bridge knot can be represented by a rational number −1 <
β
α < 1 for some odd integer α and even integer β. If we write the reciprocal
of this number as a continued fraction with even entries and of even length

α

β
= [2b1, 2c1, . . . , 2bm, 2cm] = 2b1 +

1

2c1 +
1

· · ·+ 1

2bm +
1

2cm

for some nonzero integers bi’s and ci’s,
3 then we obtain the Conway form

C(2b1, 2c1, . . . , 2bm, 2cm) of the two-bridge knot, which is a special knot
diagram as depicted in Figure 3. We will write Kb1,c1,...,bm,cm for the knot
of Conway form C(2b1, 2c1, . . . , 2bm, 2cm). The genus of Kb1,c1,...,bm,cm is m;
and conversely, every two-bridge knot of genus m has such a representation.

Burde obtained the following formula for a2(Kb1,c1,...,bm,cm), the z2-
coefficient of the Conway polynomial of Kb1,c1,...,bm,cm .

3Such a representation always exists by elementary number theory.
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b1 bm

c1 cm

Figure 3. This is the knot diagram of the Conway form
C(2b1, 2c1, · · · , 2bm, 2cm) of a two bridge knot. In the figure, there are
|bi| positive (resp. negative) full-twists if bi > 0 (resp bi < 0), and there are |cj |
negative (resp. positive) full-twists if cj > 0 (resp. cj < 0) for 1 ≤ i, j ≤ n.

Burde obtained the following formula for a2(Kb1,c1,··· ,bm,cm), the z2-coefficient of the Conway
polynomial of Kb1,c1,··· ,bm,cm .

Proposition 4.1. [4, Proposition 5.1] For the two-bridge knot Kb1,c1,··· ,bm,cm, the z2-coefficient
of the Conway polynomial is given by

a2(Kb1,c1,··· ,bm,cm) = −
m∑

i=1

m∑

k=i

bick = −
m∑

k=1

k∑

i=1

ckbi.

The above formula can be proved by recursively applying Equation (4). The similar idea can
be used to find an analogous formula for w3, which is the main task of the next few lemmas.

Lemma 4.2. The invariant w3 satisfies the recursive formula

w3(Kb1,c1,··· ,bm,x) − w3(Kb1,c1,··· ,bm,x−1)

= −1

4

(
a2(Kb1,c1,··· ,bm,x) + a2(Kb1,c1,··· ,bm,x−1) + (

m∑

i=1

bi)
2

)

Proof. This follows from a direct application of the crossing change formula (3) at the rightmost
crossing in Figure 3, and the observation that both K ′ and K ′′ are the unknot with lk(K ′,K ′′) =
−∑m

i=1 bi.

�
Lemma 4.3. The invariant w3 satisfies the recursive formula

w3(Kb1,c1,··· ,bm,cm) − w3(Kb1,c1,··· ,bm−1,cm−1)

= −1

4

(
2cm · a2(Kb1,c1,··· ,bm−1,cm−1) − c2

m

m∑

i=1

bi + cm(
m∑

i=1

bi)
2

)

Proof. We first prove the lemma for cm > 0. We repeatedly apply Lemma 4.2 until x is reduced
to 0. Note that the knot Kb1,c1,··· ,bm,0 can be isotoped to Kb1,c1,··· ,bm−1,cm−1 by untwisting the
far-right bm full twists. Therefore,

Figure 3: This is the knot diagram of the Conway form
C(2b1, 2c1, . . . , 2bm, 2cm) of a two bridge knot. In the figure, there are
|bi| positive (resp. negative) full-twists if bi > 0 (resp bi < 0), and there
are |cj | negative (resp. positive) full-twists if cj > 0 (resp. cj < 0) for
1 ≤ i, j ≤ m.

Proposition 4.1. [4, Prop. 5.1] For the two-bridge knot Kb1,c1,...,bm,cm, the
z2-coefficient of the Conway polynomial is given by

a2(Kb1,c1,...,bm,cm) = −
m∑

i=1

m∑

k=i

bick = −
m∑

k=1

k∑

i=1

ckbi.

The above formula can be proved by recursively applying Equation (4).
The similar idea can be used to find an analogous formula for w3, which is
the main task of the next few lemmas.

Lemma 4.2. The invariant w3 satisfies the recursive formula

w3(Kb1,c1,...,bm,x)− w3(Kb1,c1,...,bm,x−1)

= −1

4

(
a2(Kb1,c1,...,bm,x) + a2(Kb1,c1,...,bm,x−1) +

( m∑

i=1

bi

)2
)

Proof. This follows from a direct application of the crossing change formula
(3) at the rightmost crossing in Figure 3, and the observation that both K ′

and K ′′ are the unknot with lk(K ′,K ′′) = −∑m
i=1 bi. �

Lemma 4.3. The invariant w3 satisfies the recursive formula

w3(Kb1,c1,...,bm,cm)− w3(Kb1,c1,...,bm−1,cm−1
)

= −1

4

(
2cm · a2(Kb1,c1,...,bm−1,cm−1

)− c2m
m∑

i=1

bi + cm

( m∑

i=1

bi

)2
)
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Proof. We first prove the lemma for cm > 0. We repeatedly apply Lemma
4.2 until x is reduced to 0. Note that the knot Kb1,c1,...,bm,0 can be isotoped
to Kb1,c1,...,bm−1,cm−1

by untwisting the far-right bm full twists. Therefore,

w3(Kb1,c1,...,bm,cm)− w3(Kb1,c1,...,bm−1,cm−1
)

= −1

4

(
a2(Kb1,c1,...,bm,cm) + 2

cm−1∑

x=1

a2(Kb1,c1,...,bm,x)

+ a2(Kb1,c1,...,bm−1,cm−1
) + cm

( m∑

i=1

bi

)2
)

Now, the lemma follows from substituting

a2(Kb1,c1,...,bm,x) = a2(Kb1,c1,...,bm−1,cm−1
)− x

m∑

i=1

bi,

which is an immediate corollary of Proposition 4.1.

The case when cm < 0 is proved analogously. �

Finally, applying Lemma 4.3 and induction on m, we obtain an explicit
formula for w3, and consequently also for v3.

Proposition 4.4.

v3(Kb1,c1,...,bm,cm) = −2w3(Kb1,c1,...,bm,cm)

=
1

2

(
m∑

k=1

ck

( k∑

i=1

bi

)2

−
m∑

i=1

bi

( m∑

k=i

ck

)2
)

Proof. We use induction on m. For the base case m = 1, Lemma 4.3 readily
implies that

w3(Kb1,c1) = −1

4
(c1b

2
1 − c21b1),

so Kb1,c1 satisfies the formula.

Next we prove that if the formula holds for Kb1,c1,...,bm−1,cm−1
, then it also

holds for Kb1,c1,...,bm,cm . It suffices to show that
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− 1

4

(
m∑

k=1

ck

( k∑

i=1

bi

)2

−
m∑

i=1

bi

( m∑

k=i

ck

)2
)

+
1

4

(
m−1∑

k=1

ck

( k∑

i=1

bi

)2

−
m−1∑

i=1

bi

(m−1∑

k=i

ck

)2
)

= −1

4

(
2cm · a2(Kb1,c1,...,bm−1,cm−1

)− c2m
m∑

i=1

bi + cm

( m∑

i=1

bi

)2
)

where

a2(Kb1,c1,...,bm−1,cm−1
) = −

m−1∑

i=1

m−1∑

k=i

bick.

The above identity can be verified from tedious yet elementary algebra. We
omit the computation here. �

For the rest of the section, we apply Theorem 3.5 and Proposition 4.4
to study the cosmetic surgery problems for the two-bridge knots of genus 2
and 3, which correspond to the Conway form Kb1,c1,b2,c2 and Kb1,c1,b2,c2,b3,c3 ,
respectively. Note that the cosmetic surgery conjecture for genus one knots
is already settled by Wang [25].

Corollary 4.5. If a genus 2 two-bridge knot Kb1,c1,b2,c2 is not of the form
Kx,y,−x−y,x for some integers x, y, then it does not admit purely cosmetic
surgeries.

Proof. Suppose there are purely cosmetic surgeries for the knot Kb1,c1,b2,c2 .
Theorem 3.5 implies that

(7) a2(Kb1,c1,b2,c2) = −(b1c1 + b1c2 + b2c2) = 0,

and

(8) v3(Kb1,c1,b2,c2) =
1

2

(
c1b

2
1 + c2(b1 + b2)

2 − b1(c1 + c2)
2 − b2c22

)
= 0,

where the formula for a2 and v3 follows from Propositions 4.1 and 4.4, re-
spectively. From Equation (7), we see c2(b1 + b2) = −b1c1 and b1(c1 + c2) =
−b2c2, which was then substituted into the second and the third terms of
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Equation (8), and gives

v3(Kb1,c1,b2,c2) =
1

2

(
c1b

2
1 − b1c1(b1 + b2) + b2c2(c1 + c2)− b2c22

)

=
1

2
b2c1(c2 − b1) = 0.

Hence, b1 = c2. Plugging this identity back to Equation (7), we see b1 +
b2 + c1 = 0. As a result, the two-bridge knot Kb1,c1,b2,c2 can be written as
Kx,y,−x−y,x for some integers x and y. �

We can perform a similar computation for a genus 3 two-bridge knot
Kb1,c1,b2,c2,b3,c3 . By Proposition 4.4,

v3(Kb1,c1,b2,c2,b3,c3) =
1

2
(c1b

2
1 + c2(b1 + b2)

2 + c3(b1 + b2 + b3)
2

− b1(c1 + c2 + c3)
2 − b2(c2 + c3)

2 − b3c23).

In particular, we see

v3(Kx,1,−x,x,1,−x) = −x 6= 0.

Consequently, Theorem 3.5 implies

Corollary 4.6. The family of two-bridge knots Kx,1,−x,x,1,−x, indexed by
x ∈ Z− {0}, does not admit purely cosmetic surgeries.

Remark 4.7. As explained in [9], both ∆′′K(1) and τ(K) are 0 for the
knot Kx,1,−x,x,1,−x. Hence, purely cosmetic surgery could not be ruled out
by previously known results from Theorem 3.1.

5. Examples of Whitehead doubles

We are devoted to D+(K,n) in this section, where D+(K,n) denotes the
satellite of K for which the pattern is a positive-clasped twist knot with n
twists. The knot D+(K,n) is called the positive n-twisted Whitehead double
of a knot K. See Figure 4 for an illustration.
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n+ 3

D+(K,n)

Figure 4: This is the positive n-twisted Whitehead double D+(K,n) of the
trefoil knot. Note that the 3 extra full twists in the projection of D+(K,n)
arise from the writhe of the trefoil [7].

We perform the following calculation, which gives a mild generalization
of [24, Proposition 7.3].

Proposition 5.1. Suppose D+(K,n) is the positive n-twisted Whitehead
double of a knot K. Then

v3(D+(K,n)) = −2a2(K) +
−n+ n2

2
.
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In particular, for the untwisted Whitehead doubles D+(K, 0),

v3(D+(K, 0)) = −2a2(K).

Proof. We apply the crossing change formula (3) at either one of the cross-
ings of the clasps. Note that K+ = D+(K,n), K− is the unknot, and K ′ =
K ′′ = K. The classical formula for the Alexander polynomial of a satel-
lite knot implies that ∆D+(K,n)(t) = −nt+ (2n+ 1)− nt−1, from which we
compute

a2(D+(K,n)) =
1

2
∆′′D+(K,n)(1) = −n.

Also observe that lk(K ′,K ′′) = −n. 4 Therefore,

w3(D+(K,n)) = a2(K)− −n+ n2

4
,

and so

v3(D+(K,n)) = −2a2(K) +
−n+ n2

2
.

�

Since the invariant a2(D+(K,n)) = −n, the Whitehead doubleD+(K,n)
does not admit purely cosmetic surgeries if n 6= 0. When n = 0, Proposi-
tion 5.1 gives v3(D+(K,n)) = −2a2(K). Hence, Theorem 3.5 immediately
implies the following corollary.

Corollary 5.2. There is no purely cosmetic surgery for the positive n-
twisted Whitehead double D+(K,n) for n 6= 0. Moreover, if a2(K) 6= 0, then
there is no purely cosmetic surgery for the untwisted Whitehead double
D+(K, 0).

Remark 5.3. Note that Whitehead doubles are genus 1 knots, so Corol-
lary 5.2 also follows from Wang’s theorem [25, Theorem 1.3] that proved the
nonexistence of cosmetic surgery for genus 1 knots.
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[14] G. Kuperberg and D. P. Thurston, Perturbative 3-manifold invariants
by cut-and-paste topology, arXiv:math/9912167.

[15] T. T. Q. Le, J. Murakami, and T. Ohtsuki, On a universal perturbative
invariant of 3-manifolds, Topology 37 (1998), no. 3, 539–574.

http://www.indiana.edu/~knotinfo
http://www.indiana.edu/~knotinfo
http://katlas.org/


“3-Wu” — 2019/10/30 — 23:55 — page 1103 — #17

A note on Jones polynomial and cosmetic surgery 1103

[16] C. Lescop, Surgery formulae for finite type invariants of rational ho-
mology 3-spheres, Algebr. Geom. Topol. 9 (2009), no. 2, 979–1047.

[17] H. Murakami, On derivatives of the Jones polynomial, Kobe J. Math.
3 (1986), no. 1, 61–64.

[18] Y. Ni and Z. Wu, Cosmetic surgeries on knots in S3, J. Reine Angew.
Math. 706 (2015), 1–17.

[19] R. Nikkuni, Sharp edge-homotopy on spatial graphs, Rev. Mat. Com-
plut. 18 (2005), no. 1, 181–207.

[20] T. Ohtsuki, Quantum Invariants, Series on Knots and Everything 29,
World Sci. Publishing, River Edge, NJ, (2002).
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[22] P. Ozsváth and Z. Szabó, Knot Floer homology and rational surgeries,
Algebr. Geom. Topol. 11 (2011), no. 1, 1–68.

[23] J. Rasmussen, Floer homology and knot complements, Thesis (Ph.D.)–
Harvard University, ProQuest LLC, Ann Arbor, MI, (2003), 126pp.

[24] A.Stoimenow, Positive knots, closed braids and the Jones polynomial,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 2, 237–285.

[25] J. Wang, Cosmetic surgeries on genus one knots, Algebr. Geom. Topol.
6 (2006), 1491–1517.

[26] Z. Wu, Cosmetic surgeries on knots in S3, Geom. Topol. 15 (2011),
1157–1168.

Department of Mathematics

College of Humanities and Sciences, Nihon University

3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

E-mail address: ichihara@math.chs.nihon-u.ac.jp

Department of Mathematics

The Chinese University of Hong Kong

Shatin, Hong Kong

E-mail address: ztwu@math.cuhk.edu.hk

Received December 4, 2016



“3-Wu” — 2019/10/30 — 23:55 — page 1104 — #18

1104 K. Ichihara and Z. Wu

Accepted May 23, 2017


	Introduction
	Derivatives of Jones polynomial
	Lescop invariant and cosmetic surgery
	Examples of two-bridge knots
	Examples of Whitehead doubles
	References

