# Exceptional slopes on manifolds of small complexity 

Fionntan Wouter Murray Roukema


#### Abstract

It has been observed that most manifolds in the Callahan-Hildebrand-Weeks census of cusped hyperbolic 3-manifolds are obtained by surgery on the minimally twisted 5 -chain link. A full classification of the exceptional surgeries on the 5 -chain link has recently been completed. In this article, we provide a complete classification of the sets of exceptional slopes and fillings for all cusped hyperbolic surgeries on the minimally twisted 5 -chain link, thereby describing the sets of exceptional slopes and fillings for most hyperbolic manifolds of small complexity. The classification produces the description of exceptional fillings for many families of one and two cusped manifolds, and provides supporting evidence for some well-known conjectures. One such family that appears in the classification is an infinite family of 1-cusped hyperbolic manifolds with four Seifert manifold fillings and a toroidal filling.


1 Introduction ..... 1105
2 Background terminology and useful results ..... 1110
3 Main results ..... 1122
4 Families of cusped manifolds and proof of Theorem 1 ..... 1140
5 Tables ..... 1146
References ..... 1159

## 1. Introduction

The set of exceptional slopes on a boundary component of a hyperbolic manifold has generated a lot of interest in the literature. There are many
restrictions on the set of exceptional slopes on a boundary component of a hyperbolic 3 -manifold $M$ and its corresponding fillings. For example, no such $M$ has two distinct $S^{3}$ fillings [GL1] or more than ten exceptional slopes [LM]. However, it is still not known if there exists a hyperbolic knot exterior in $S^{3}$ with a reducible filling, or an $M$ with a pair of exceptional slopes $\beta$ and $\beta^{\prime}$ corresponding to a lens space and toroidal space so that the distance (minimal number of intersections) between $\beta$ and $\beta^{\prime}$ is greater than three, or if there is a manifold not equal to the Figure-8 knot exterior with 10 exceptional slopes. Conjecturally, no examples exist, see [GAS], G1], Kir, Problem 1.77] respectively.

The distance between two exceptional slopes on a boundary component is at most 8 [LM] (which is realised on both the figure-eight knot exterior and the figure-eight sister manifold) and it is known that only finitely many one cusped 3-manifolds have exceptional slopes at distance more than 5 Ago2. It is conjectured that if an orientable 3-manifold has two exceptional slopes at distance greater than five then it is obtained by surgery on the Whitehead link G3].

Also of interest are manifolds with more than one exceptional reducible filling; it is known that the distance between the fillings is 1 [GL3], and examples are given in [EW], HM, and GLi]. Eudave-Muñoz and Wu's examples in [EW] are the only known with more than one boundary component [G2], and Hoffman and Matignon ask in [HM] if reducible pairs must have at least one $L(2,1), L(3,1), L(4,1)$ summand and whether any hyperbolic manifold has three reducible fillings.

In this article, by classifying the sets of exceptional slopes and the corresponding fillings for all manifolds obtained by surgery on the minimally twisted 5-chain link (see the rightmost link in Figure 1), we provide experimental evidence that supports the above conjectures of González-Acuña, Short, and Gordon.

Theorem 1.1. If $M$ is a cusped hyperbolic manifold obtained by surgery on the minimally twisted 5-chain link and $\tau$ is a fixed boundary component of $M$ then:

1) If $M$ is the exterior of a knot in $S^{3}$ then $M$ does not have a non-prime filling;
2) If $M$ has two exceptional slopes on $\tau$ at distance greater than 3 apart then they do not correspond to a lens space and a toroidal filling;
3) If $M$ has 10 exceptional slopes on $\tau$ then $M$ is the figure- 8 knot exterior;
4) If $M$ is a manifold with exceptional slopes on $\tau$ at distance greater than 5 then $M$ is obtained by surgery on the Whitehead link.
5) $M$ does not have more than one non-prime filling.

A full analysis of the exceptional fillings of surgeries on the minimally twisted 5 -chain link is given to obtain Theorem 1.1. This produces a classification of exceptional filling types for infinitely many 1-cusped and 2-cusped manifolds (see Tables 1422 . These 1-cusped and 2-cusped manifolds are distinct from the examples in MP which all have a cyclic filling and at least five exceptional slopes. Among other families, we highlight:

- An infinite family of hyperbolic knots in $S^{3}$ with consecutive integral toroidal, small Seifert manifold, toroidal surgeries;
- An infinite family of hyperbolic knots in $S^{3}$ with three consecutive integral toroidal surgeries;
- An infinite family of 1-cusped manifolds with a reducible filling and three small Seifert manifold filling at distance one from the reducible filling;
- An infinite family of 1-cusped hyperbolic manifolds with four small Seifert manifold fillings and a toroidal filling;
- An infinite family of 2-cusped manifolds with four fillings on a fixed cusp containing an essential annulus.

These families are not contained in the classification given in MP]. However, similar examples to the first three families above have already been constructed: see [Eud] for a family of knots with consecutive integral toroidal, small Seifert manifold, toroidal surgeries, and see [Ter] for a family of knots with three consecutive toroidal surgeries. Examples of 1-cusped manifolds with a reducible and small Seifert manifold filling at distance 1 apart are also known, see [Ka2]. I do not know if the families highlighted in this paper agree with the examples of Eudave-Muñoz, Teragaito, or Kang. The specific description of these families and their exceptional fillings can be found in Table 13.

The classification of exceptional fillings in this article does not improve any of the lower bounds on maximal distances to small Seifert manifolds that fibre over the sphere with three exceptional fibres obtained in MP. The classification of all exceptional slopes and fillings on manifolds obtained by surgery on the minimally twisted 5 -chain link given in this paper enables the enumeration of all manifolds with fixed filling types. The results
in this article are used in AGR to enumerate all hyperbolic knots obtained by surgery on the 5 -chain link with exceptional pairs at maximal known distance. The classification of hyperbolic knots with two lens space surgeries obtained by surgery on the 5 -chain link given in AGR is consistent with the classification of all 3-manifolds with three cyclic fillings given in [BDH] which uses different methods to reduce the enumeration to a search for examples on the magic manifold.

### 1.1. The minimally twisted 5-chain link

A notable collection of hyperbolic chain links is described in [MPR]; they are the figure- 8 knot, the Whitehead link, the 3 -chain link, the 4 -chain link with a half twist, and the minimally twisted 5 -chain link. These links are shown in Figure 1. We follow MPR] and denote these chain links by 1CL, 2CL, 3CL, 4 CL and 5 CL , and their exteriors by $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}$ respectively.


Figure 1: The links 1CL, 2CL, 3CL, 4CL, 5CL in $S^{3}$ whose exteriors we denote by $M_{1}, M_{2}, M_{3}, M_{4}$, and $M_{5}$ respectively.

The significance of this sequence of links comes from the following facts: each $M_{i}$ is the (or conjecturally the) smallest volume hyperbolic 3-manifold with $i$ cusps, see Ago1 and Yos; more than $80 \%$ of the cusped hyperbolic 3manifolds from the Callahan-Hildebrand-Weeks census [CHW] are surgeries on 5CL (personal communication with Nathan Dunfield). Furthermore, 5CL relates to the program of enumerating exceptional pairs at maximal distance. In particular, all knots realising half-integral toroidal surgeries [GL2], many of the knots realising lens space surgeries [Bak, and all cusped hyperbolic 3-manifolds with distinct reducible and toroidal fillings at maximal distance are obtained by surgery on 5CL Ka1].

It is easy to see that if $\partial M_{n}$ is equipped with the usual (meridian, longitude) homology basis then a -1 filling on any boundary component of $M_{n}$ results in $M_{n-1}$. As a result, any manifold obtained by surgery on $(n-1) \mathrm{CL}$ is obtained by surgery on $n$ CL. A classification of the exceptional surgeries
on 3CL is given in MP together with a complete description of the set of exceptional slopes, and corresponding exceptional fillings, on the boundary components of all hyperbolic manifolds obtained by surgery on 3CL. The statements of Theorem 1.1 are known to hold for any manifold obtained by surgery on 3CL (see the appendix of [MP]).

A classification of exceptional surgeries on 5CL is found in [MPR]. In this article we complete the description of the set of exceptional slopes and corresponding exceptional fillings for manifolds obtained by surgery on 5CL in Theorems 3.1 and 3.3. We then use this classification to verify the statements of Theorem 1.1.

### 1.2. Article structure

We start with Section 2 where we recall the classification from [MPR. In order to do so, we begin by recalling and introducing notation and terminology in Sections 2.1 2.3 . In Section 2 we also establish some results which turn out to be of great use in the remainder of the paper (see Proposition 2.3 and Lemma 2.7 in Sections 2.4 and 2.5.

Theorems 3.1 and 3.3 are stated and proved in Section3. These theorems complete the classification of exceptional sets of slopes on cusped hyperbolic manifolds obtained by surgery on 5CL. The proofs are heavily reliant on Proposition 2.3 and Lemma 2.7.

Theorem 1.1 is proved in Section 4. The proof uses Theorems 3.1 and 3.3 to impose restrictions on the filling instructions that can correspond to a counterexample. The exceptional slopes and fillings of many families of manifolds are completely enumerated using Theorems 3.1 and 3.3 in Tables 14, 22 found in Section 5. Careful consideration of these tables is needed to complete the proof of Theorem 1.1.

### 1.3. Acknowledgements and remarks

This is the second version of this article; the initial version of this article omitted many details and was not clear as a result. The feedback from the anonymous referee on the first submission highlighted this. The current presentation has greatly benefited from the first anonymous referee's remarks and from discussions with Marc Lackenby, as well as from the referees' remarks on this version of the article. The results of this article were mainly obtained as a graduate student at the University of Pisa under the supervision of Carlo Petronio and Bruno Martelli. The article has also benefited from discussions with Daniel Matignon, and from email correspondences
with Carlo Petronio, Bruno Martelli, Cameron Gordon, and Nathan Dunfield.

Some of the main results of this revised version have been extended and amended from the original version: Tables 14,22 were not displayed in the original version, and the families of cusped manifolds highlighted in the introduction were not mentioned. Moreover, several typos/omitted examples in Tables 6 12 have been corrected.

## 2. Background terminology and useful results

### 2.1. Terminology

We begin with some general terminology, and we introduce the notion of an "exceptional filling instruction" which is used throughout this paper.

Fix an orientable compact 3 -manifold $X$ with $\partial X$ consisting of tori:

- A slope on a boundary component $\tau$ of $X$ is the isotopy class of a non-trivial unoriented simple closed curve on $\tau$;
- A filling instruction $\alpha$ for $X$ is a set consisting of either a slope or the empty set for each component of $\partial X$;
- The filling $X(\alpha)$ given by an instruction $\alpha$ is the manifold obtained by attaching one solid torus to $\partial X$ for each (non-empty) slope in $\alpha$, with the meridian of the solid torus attached to the slope.

We recall that if $M$ is a hyperbolic non-compact finite-volume 3-manifold then $M=\operatorname{int}(X)$ with $\partial X$ consisting of tori, and that $\operatorname{int}(X(\alpha))$ is hyperbolic for all but finitely many $\alpha$ 's consisting of one slope and $\varnothing$ 's [BH].

- If the interior of $X$ is hyperbolic but the interior of $X(\alpha)$ is not, we say that $\alpha$ is an exceptional filling instruction for $X$ and that $X(\alpha)$ is an exceptional filling of $X$;
- We say that an exceptional filling instruction $\alpha^{\prime}$ on a hyperbolic 3manifold $X$ with boundary is properly contained in $\alpha$, and write $\alpha^{\prime} \subset \alpha$ if $\alpha^{\prime}$ is contained in $\alpha$ and $\alpha^{\prime} \neq \alpha$ (as sets of slopes).
- We say that an exceptional filling instruction $\alpha$ on a hyperbolic $X$ is isolated if $X\left(\alpha^{\prime}\right)$ is hyperbolic for all $\alpha^{\prime}$ properly contained in $\alpha$; for such an $\alpha$ we call $X(\alpha)$ an isolated exceptional filling of $X$.

A surgery on a link $L$ in a manifold $M$ corresponds to a filling of the exterior of $L$. That is, a surgery on $L$ is a filling of $M \backslash N(L)$ where $N(L)$ is an open
regular neighbourhood of $L$. By a surgery instruction for $L$ we mean a filling instruction on the exterior of $L$.

We now recall some standard notation used in the description of the set of exceptional slopes on a fixed boundary component of a hyperbolic manifold, see for example [G2]. If $X$ is a hyperbolic 3 -manifold with boundary consisting of tori and $\tau$ is a fixed boundary component of $\partial X$ then the set of exceptional slopes on $\tau$ is denoted by $E_{\tau}(X)$, and the cardinality of $E_{\tau}(X)$ by $e_{\tau}(X)$. The subscript $\tau$ is dropped whenever the boundary component is clear. To describe $E_{\tau}\left(M_{5}(\alpha)\right)$ we introduce the following definition:

Definition 2.1. Let $\alpha$ be a filling instruction on a manifold $X$. We say that $\alpha$ factors through a manifold $Y$ if there exists some filling instruction $\alpha^{\prime} \subseteq \alpha$ such that $Y=X\left(\alpha^{\prime}\right)$.

We remarked above that a -1 filling on any boundary component of $M_{n}$ results in $M_{n-1}$. Therefore, any filling instruction on $M_{n}$ that contains a - 1 slope factors through $M_{n-1}$. Note that if $\alpha$ is exceptional for $X$ and factors through a hyperbolic $Y$ with $Y=X\left(\alpha^{\prime}\right)$, then $\alpha \backslash \alpha^{\prime}$ is exceptional for $Y$.

### 2.2. Notation

Our description of the exceptional fillings of $M_{5}(\alpha)$ will employ the notation now discussed for Seifert manifolds with orientable base surface. Given integers $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}$, with $p_{i}$ and $q_{i}$ coprime, and $G$ an orientable surface with $k \geq 0$ boundary components $b_{1}, \ldots, b_{k}$, we let $\Sigma$ denote the surface obtained by removing $n$ open discs from $G$ and we denote by $b_{k+1}, \ldots, b_{k+n}$ the $n$ newly introduced boundary circles. We fix an orientation on $\Sigma \times S^{1}$ and orient $\left\{\mu_{i}, \lambda_{i}\right\}=\left\{b_{i} \times\{*\},\{*\} \times S^{1}\right\}$ so that $\mu_{i}, \lambda_{i}$ is a positive basis of $H_{1}\left(b_{i} \times S^{1}\right)$ with $b_{i} \times S^{1}$ oriented as $\partial\left(\Sigma \times S^{1}\right)$. We denote by $\left(G,\left(p_{1}, q_{1}\right), \ldots,\left(p_{n}, q_{n}\right)\right)$, the manifold obtained by performing a Dehn filling on each $b_{i} \times S^{1}$ along $p_{i-k} \mu_{i}+q_{i-k} \lambda_{i}$ for $i>k$. In our case, $G$ will be either the disc $D$, the annulus $A$, or the sphere $S^{2}$.

Given Seifert manifolds $X$ and $Y$ with orientable base surfaces with boundary as described above, and $B \in \mathrm{GL}(2, \mathbb{Z})$ with $\operatorname{det}(B)=-1$, we define $X \bigcup_{B} Y$ unambiguously to be the quotient manifold $X \bigcup_{f} Y$ where $f: T \rightarrow U$ for $T$ and $U$ arbitrary boundary components of $X$ and $Y$ respectively, and $f$ acting on homology by $B$ with respect to the bases described above. The case $T, U \subset \partial X, T \neq U$ is also allowed and we write the quotient manifold as $X / B$.

The JSJ decomposition and Geometrization theorems tell us that every non-hyperbolic 3 -manifold not homeomorphic to the 3 -ball either contains an essential sphere, disc, torus, annulus, or is a closed small Seifert space. The closed small Seifert spaces are precisely those manifolds with Heegaard genus 0 , Heegaard genus 1 or fibres over the sphere with exactly 3 exceptional fibres. Following [G2] we now assign names to each class of non-hyperbolic manifolds:

- The class of Heegaard genus 0 manifolds (i.e. $\left\{S^{3}\right\}$ ) is denoted by $S^{H}$;
- The class of all reducible 3-manifolds is denoted by $S$;
- The class of manifolds with Heegaard genus 1 (i.e. lens spaces) is denoted by $T^{H}$;
- The class of manifolds containing an essential torus is denoted by $T$;
- The class of boundary reducible manifolds is denoted by $D$;
- The class of manifolds containing an essential annulus is denoted by A;
- The class of Seifert spaces fibering over the sphere with exactly three exceptional fibres is denoted by $Z$.

We will say that a manifold in a class $\mathcal{C}$ is of type $\mathcal{C}$. We remark that the above classes are not mutually exclusive, for example $\left(D^{2} \times S^{1}\right) \#\left(D^{2} \times S^{1}\right)$ is of type $S$ and of type $D$, and that $S^{1} \times S^{2}$ is the unique element in $S \cap T^{H}$.

### 2.3. Surgery instructions on the chain links

We now explain the convention used to describe surgeries on the chain links. By ordering the components of $n \mathrm{CL}$ for $3 \leq n \leq 5$ cyclically as in Figure 2, surgery instructions on $n \mathrm{CL}$ can be naturally identified with $(\mathbb{Q} \cup\{\varnothing, \infty\})^{n}$. By $M_{n}\left(x_{1}, \ldots, x_{n}\right)$ we mean the manifold obtained by performing an $x_{i^{-}}$ surgery on the $i^{t h}$ component of $n \mathrm{CL}$.

To establish Theorem 1.1 we will examine all $M_{5}(\alpha)$. To avoid additional work we introduce the following definition which allows us to identify distinct surgery instructions that correspond to the same surgery.

Definition 2.2. Let $\alpha, \alpha^{\prime}$ be filling instructions on a 3-manifold $X$ with toroidal boundary components. We will say that $\alpha$ and $\alpha^{\prime}$ are equivalent and write $\alpha \sim \alpha^{\prime}$ when there exists a homeomorphism $h: X(\alpha) \rightarrow X\left(\alpha^{\prime}\right)$.


Figure 2: A cyclic ordering of the components of 3CL, 4CL, 5CL.

The appendix of MP] contains a comprehensive analysis of the set of exceptional slopes on all $M_{3}(\alpha)$. Therefore, for the purposes of Theorem 1.1 we can omit the investigation of $E\left(M_{5}(\alpha)\right)$ when $\alpha$ factors through $M_{3}$. As noted in the introduction, a positive twist about a boundary component of $M_{n}$ with a -1 slope results in $M_{n-1}$ for $n \geq 2$. When we keep track of surgery coefficients we get (2.1)-2.2) (see [MPR for precise details).

$$
\begin{align*}
M_{5}\left(\frac{p}{q},-1, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right) & =M_{4}\left(\frac{p+q}{q}, \frac{r+s}{s}, \frac{u}{v}, \frac{x}{y}\right)=M_{5}\left(\frac{p+q}{q}, \frac{r}{s},-1, \frac{u-v}{v}, \frac{x}{y}\right)  \tag{2.1}\\
M_{4}\left(\frac{p}{q}, \frac{r}{s},-1, \frac{u}{v}\right) & =M_{3}\left(\frac{p}{q}, \frac{r+s}{s}, \frac{u+v}{v}\right) .
\end{align*}
$$

Putting Identities (2.1)-(2.2) we get:

$$
\begin{equation*}
M_{5}\left(\frac{p}{q},-1, \frac{r}{s},-1, \frac{u}{v}\right)=M_{3}\left(\frac{p+q}{q}, \frac{r+2 s}{s}, \frac{u+v}{v}\right)=M_{5}\left(\frac{p}{q},-2,-1, \frac{r}{s}, \frac{u+v}{v}\right) . \tag{2.3}
\end{equation*}
$$

Identities 2.1-2.3 will be useful in Section 3 .

### 2.4. The minimally twisted 4 -chain link

Most of the exceptional surgeries on 5CL are obtained by surgery on the minimally twisted 4-chain link M4CL shown in Figure 3 (see Proposition 3.5). The proof of Theorem 1.1 will turn unto an investigation of the surgeries on M4CL. We will therefore need to understand the manifolds obtained by surgery on M4CL. Proposition 2.3 shows that all small Seifert spaces as well as many distinct reducible and toroidal manifolds are obtained by surgery on M4CL.

We denote the exterior of M4CL by $F$. As with $n C L$, we order the components of M4CL cyclically (see Figure 3) and equip each component of M4CL with the standard choice of meridian and longitude. Surgery instructions on M4CL are naturally identified with $(\mathbb{Q} \cup\{\varnothing, \infty\})^{4}$; by $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ we


Figure 3: The minimally twisted 4-chain link M4CL.
mean the manifold obtained by performing an $\alpha_{i}$-surgery on the $i^{\text {th }}$ component of M4CL. It is easy to see from Figure 3 that the symmetry group of M4CL contains the Dihedral group $D_{4}$. So, for any $\sigma \in D_{4}$ we have:

$$
\begin{equation*}
F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=F\left(\alpha_{\sigma(1)}, \alpha_{\sigma(2)}, \alpha_{\sigma(3)}, \alpha_{\sigma(4)}\right) \tag{2.4}
\end{equation*}
$$

It is also useful for us to note that a negative twist about a boundary component of $M_{5}$ with a +1 slope results in $F$. When we keep track of surgery coefficients we get:

$$
\begin{equation*}
M_{5}\left(\frac{p}{q}, 1, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right)=F\left(\frac{p-q}{q}, \frac{r-s}{s}, \frac{u}{v}, \frac{x}{y}\right) \tag{2.5}
\end{equation*}
$$

Figure 4 highlights an exceptional torus $T$ in $F$. It is clear that $T$ separates $F$ into two copies of $P \times S^{1}$, where $P$ is the pair of pants $D^{2}$ minus two open discs, which are glued together by identifying a boundary component $\gamma \times S^{1}$ of one $P \times S^{1}$ to the other $P \times S^{1}$ with a horizontal loop $\gamma \times\{*\}$ in the former identified to a fibre $\{*\} \times S^{1}$ in the latter. Thus $F$ is homeomorphic to $\left.P \times S^{1} \bigcup_{\left(\begin{array}{c}0 \\ 1\end{array}\right.}^{1} 0\right) ~ P \times S^{1}$. We finally remark that $F$ is homeomorphic to the exterior of the open chain link with four components used to describe the exceptional surgeries of 5CL in MPR (see Figure 5).

To describe the fillings of the 4-chain link, we employ a flexible notation for Seifert manifolds. We will formally identify an $\varnothing$ slope with $\frac{0}{0}$ and allow all coprime pairs $\left(p_{i}, q_{i}\right)$ including $p_{i}, q_{i} \leq 0$. Moreover, $S^{2} \times S^{1}, S^{3}, \mathbb{R P}^{3}$ will be written as $L(p, q)$ with $p=0,1,2$ respectively.


Figure 4: $F$, the exterior of the minimally twisted 4 -chain link.

open 4-chain link

inside/outsie the essential torus

Figure 5: $F$ realised as the exterior of the open 4-chain link.

Proposition 2.3. If $\alpha$ is a filling instruction on $F$ then up to (2.4) $\alpha$ is equivalent to some $\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right)$ in Tables 14 and $F\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right)$ is described in Tables 1 , 4

| $\frac{p}{q}$ | $\frac{r}{s}$ | $\frac{u}{v}$ | $\frac{x}{y}$ | $F\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right)$ | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\varnothing$ | $\varnothing$ | $\varnothing$ | $D^{2} \times S^{1} \# A \times S^{1}$ | $A, D, S$ |
| $\frac{1}{n}$ | $\varnothing$ | $\varnothing$ | $\varnothing$ | $P \times S^{1}$ | $A$ |
| $\|p\| \geq 2$ | $\varnothing$ | $\varnothing$ | $\varnothing$ | $(A,(p, q)) \bigcup_{\left(\begin{array}{c}0 \\ 1 \\ 10\end{array}\right)} P \times S^{1}$ | $A, T$ |

Table 1: All manifolds obtained by filling $F$ along a single slope.

Proof. As noted above, the symmetry group of M4CL has a $D_{4}$ action on the boundary components of M4CL. Therefore, by (2.4), we may assume that when a filling instruction on $F$ has a single slope it is of the form

| $\frac{p}{q}$ | $\frac{r}{s}$ | $\frac{u}{v}$ | $\frac{x}{y}$ | $F\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right)$ | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\frac{r}{s}$ | $\varnothing$ | $\varnothing$ | $D^{2} \times S^{1} \# D^{2} \times S^{1}$ | $D, S$ |
|  | $\stackrel{\delta}{\varnothing}$ | $\|u\| \neq 1$ | $\varnothing$ | $L(u, v) \# A \times S^{1}$ | $A, S$ |
|  | $\varnothing$ | $\frac{1}{n}$ | $\varnothing$ | $A \times S^{1}$ | A |
| $\frac{1}{n}$ | $\|r\| \geq 2$ | $\varnothing$ | $\varnothing$ | $(A,(r, s))$ | A |
|  | $\frac{1}{k}$ | $\varnothing$ | $\varnothing$ | $A \times S^{1}$ | $A$ |
|  | $\varnothing$ | $\|v+n u\| \geq 2$ | $\varnothing$ | $(A,(v+n u,-u))$ | $A$ |
|  | $\varnothing$ | $\|v+n u\|=1$ | $\varnothing$ | $A \times S^{1}$ | A |
|  | $\varnothing$ | $-\frac{1}{n}$ | $\varnothing$ | $S^{2} \times S^{1} \# A \times S^{1}$ | $A, S$ |
| $\|p\| \geq 2$ | $\|r\| \geq 2$ | $\varnothing$ | $\varnothing$ | $\left.(A,(p, q)) \bigcup_{\left(\begin{array}{c} 0 \\ 1 \end{array} 1\right.}^{1} 0\right)(A,(r, s))$ | $A, T$ |
|  | $\varnothing$ | $\|u\| \geq 2$ | $\varnothing$ | $(D,(p, q),(u, v)) \bigcup_{\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)} P \times S^{1}$ | $A, T$ |

Table 2: All manifolds obtained by filling $F$ along two slopes.

| $\frac{p}{q}$ | $\frac{r}{s}$ | $\frac{u}{v}$ | $\frac{x}{y}$ | $F\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right)$ | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\frac{r}{s}$ | $\|u\| \neq 1$ | $\varnothing$ | $L(u, v) \# D^{2} \times S^{1}$ | $D, S$ |
|  |  | $\frac{1}{n}$ | $\varnothing$ | $D^{2} \times S^{1}$ | D |
| $\frac{1}{n}$ | $\frac{1}{k}$ | $\frac{u}{v}$ | $\varnothing$ | $D^{2} \times S^{1}$ | D |
|  | $\|r\| \geq 2$ | $-\frac{1}{n}$ | $\varnothing$ | $L(r, s) \# D^{2} \times S^{1}$ | D, S |
|  |  | $\|v+n u\|=1$ | $\varnothing$ | $D^{2} \times S^{1}$ | D |
|  |  | $\|v+n u\| \geq 2$ | $\varnothing$ | $(D,(r, s),(v+n u,-u))$ | $A$ |
|  | 0 | $\|v+n u\| \neq 1$ | $\varnothing$ | $L(v+n u,-u) \# D^{2} \times S^{1}$ | D, S |
|  |  | $\|v+n u\|=1$ | $\varnothing$ | $D^{2} \times S^{1}$ | D |
| $\|p\| \geq 2$ | $\|r\| \geq 2$ | $\|u\| \geq 2$ | $\varnothing$ | $(D,(p, q),(u, v)) \bigcup_{\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)}(A,(r, s))$ | $A, T$ |
|  | $\frac{1}{n}$ | $\|u\| \geq 2$ | $\varnothing$ | $(D,(p, q),(u, v))$ | $A$ |
|  | 0 | $\|u\| \geq 2$ | $\varnothing$ | $\begin{gathered} D \times S^{1} \# L\left(p v+q u, p v^{\prime}+q u^{\prime}\right) \\ \text { where }\left\|u v^{\prime}-v u^{\prime}\right\|=1 \end{gathered}$ | D, S |

Table 3: All manifolds obtained by filling $F$ along three slopes.
$\left(\frac{p}{q}, \varnothing, \varnothing, \varnothing\right)$, when a filling instruction on $F$ has two slopes it is of the form $\left(\frac{p}{q}, \frac{r}{s}, \varnothing, \varnothing\right)$ or $\left(\frac{p}{q}, \varnothing, \frac{u}{v}, \varnothing\right)$, and when a filling instruction on $F$ has three slopes it is of the form $\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \varnothing\right)$.

The slopes of a filling instruction $\alpha=\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right)$ can be split according to whether the numerator is $0, \pm 1$, or greater than one in absolute value.

| $\frac{p}{q}$ | $\frac{r}{s}$ | $\frac{u}{v}$ | $\frac{x}{y}$ | $F\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right)$ | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\frac{r}{s}$ | $\|u\| \neq 1$ | $\|r y+s x\| \neq 1$ | $\begin{gathered} \hline L(u, v) \# L\left(r y+s x, x s^{\prime}+y r^{\prime}\right) \\ \text { where }\left\|r s^{\prime}-s r^{\prime}\right\|=1 \\ \hline \end{gathered}$ | $S$ |
|  | $\frac{r}{s}$ | $\frac{1}{v}$ | $\frac{x}{y}$ | $\begin{gathered} L\left(r y+s x, x s^{\prime}+y r^{\prime}\right) \\ \text { where }\left\|r s^{\prime}-s r^{\prime}\right\|=1 \end{gathered}$ | $\begin{aligned} & T^{H} / S^{H} \\ & / S \& T^{H} \end{aligned}$ |
|  | $\frac{r}{s}$ | $\frac{u}{v}$ | $\|r y+s x\|=1$ | $L(u, v)$ | $\begin{aligned} & T^{H} / S^{H} \\ & / S \& T^{H} \end{aligned}$ |
| $\frac{1}{n}$ | $\frac{1}{k}$ | $\frac{u}{v}$ | $\frac{x}{y}$ | $\begin{gathered} L((v+n u)(y+k x)-x u,(v+n u) j-u i) \\ \text { where }\|x j-(y+k x) i\|=1 \\ \hline \end{gathered}$ | $\begin{aligned} & T^{H} / S^{H} \\ & / S \& T^{H} \end{aligned}$ |
|  | $\frac{r}{s}$ | $\begin{gathered} v+n u=\epsilon \\ (\epsilon= \pm 1) \end{gathered}$ | $\frac{x}{y}$ | $\begin{gathered} L(r y+(x-\epsilon r u) x, r j+(s-\epsilon r u) i) \\ \text { where }\|x j-y i\|=1 \\ \hline \end{gathered}$ | $\begin{aligned} & T^{H} / S^{H} \\ & / S \& T^{H} \end{aligned}$ |
|  | $\|r\| \geq 2$ | $-\frac{1}{n}$ | $\|x\| \geq 2$ | $L(r, s) \# L(x, y)$ | $S$ |
|  | $\|r\| \geq 2$ | $\|v+n u\| \geq 2$ | $\|x\| \geq 2$ | $\left(S^{2},(v+n u,-u),(r, s),(x, y)\right)$ | $Z$ |
| $\|p\| \geq 2$ | $\|r\| \geq 2$ | $\|u\| \geq 2$ | $\|x\| \geq 2$ | $(D,(p, q),(u, v)) \bigcup_{\left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right)}(D,(r, s),(x, y))$ | T |

Table 4: All manifolds obtained by filling $F$ along four slopes.

Using the symmetry group of M4CL we see that if all slopes are non-empty and $0 \in \alpha$ then we may assume $\frac{p}{q}=0$. If $0 \notin \alpha$ and $\frac{1}{n}$ is a slope in $\alpha$ we may assume $\frac{p}{q}=\frac{1}{n}$. It is now easy to see that the description of possible slopes in Tables 1 4 is exhaustive.

We have already seen that $F$ is the union of two copies of $P \times S^{1}$ glued together by the orientation reversing map sending a meridian to a longitude and a longitude to a meridian. Therefore, the Identities $(2.6)-(2.11)$ hold:

$$
\begin{align*}
& F\left(\frac{p}{q}, \varnothing, \varnothing, \varnothing\right)=(A,(p, q)) \bigcup_{\left(\begin{array}{c}
0 \\
1 \\
1
\end{array} 0\right.} 10 \times S^{1}  \tag{2.7}\\
& \left.F\left(\frac{p}{q}, \frac{r}{s}, \varnothing, \varnothing\right)=(A,(p, q)) \bigcup_{\left(\begin{array}{c}
0 \\
0 \\
1
\end{array} 0\right.}^{1}\right)(A,(r, s))  \tag{2.8}\\
& F\left(\frac{p}{q}, \varnothing, \frac{u}{v}, \varnothing\right)=(D,(p, q),(u, v)) \bigcup_{\left(\begin{array}{c}
0 \\
1 \\
1
\end{array}\right)} P \times S^{1}  \tag{2.9}\\
& F\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \varnothing\right)=(D,(p, q),(u, v)) \bigcup_{\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)}(A,(r, s))  \tag{2.10}\\
& F\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right)=(D,(p, q),(u, v)) \bigcup_{\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right)}(D,(r, s),(x, y)) \text {. }
\end{align*}
$$

Keeping the conventions set out in Section 2.2, the description of manifolds given in Tables 14 is obtained by repeated use of well-known Identities
(2.12) - 2.22 between graph manifolds (see [FM] for details) to Identities 2.6)-2.11) until each $F\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right)$ is written as a $L(p, q)$, or a graph manifold with exceptional fibres of the form $(a, b)$ with $|a| \geq 2$ and $|b| \geq 1$.

## Seifert manifolds:

$$
\begin{align*}
& \left(G,\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{k}, q_{k}\right)\right)  \tag{2.12}\\
= & \left(G,\left(p_{1}, q_{1}-n p_{1}\right),\left(p_{2}, q_{2}+n p_{2}\right), \ldots,\left(p_{k}, q_{k}\right)\right), \\
& \left(G,\left(1, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{k}, q_{k}\right)\right)  \tag{2.13}\\
= & \left(G,\left(p_{2}, q_{2}+q_{1} p_{2}\right), \ldots,\left(p_{k}, q_{k}\right)\right), \\
& \left(G,\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{k}, q_{k}\right)\right)  \tag{2.14}\\
= & \left(G,\left(p_{1}, q_{1}-n p_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{k}, q_{k}\right)\right) \quad \text { if } \partial G \neq \varnothing .
\end{align*}
$$

## Small Seifert manifolds:

$$
\begin{align*}
\left(S^{2},(p, q)\right) & =L(q, p)  \tag{2.15}\\
\left(S^{2},(p, q),(r, s)\right) & =L\left(p s+r q, p s^{\prime}+r^{\prime} q\right) \text { where } r s^{\prime}-s r^{\prime}=1  \tag{2.16}\\
\left(S^{2},(0,1),(p, q),(r, s)\right) & =L(p, q) \# L(r, s) . \tag{2.17}
\end{align*}
$$

## Graph Manifolds:

$$
\begin{align*}
X \bigcup_{B} Y & =Y \bigcup_{B^{-1}} X  \tag{2.18}\\
(D,(p, q)) \bigcup_{\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)}(G, \ldots) & =\left(G^{\prime},(a p-b q, c p-d q), \ldots\right) \tag{2.19}
\end{align*}
$$

where $G^{\prime} \backslash$ disc $=G$,

$$
(G,(p, q), \ldots) \bigcup_{\left(\begin{array}{c}
a  \tag{2.20}\\
a \\
c
\end{array}\right)} X=(G,(p, q+k p), \ldots) \bigcup_{\binom{a+k b}{c+k d}} X
$$

$$
(D,(0,1),(p, q)) \bigcup_{\left(\begin{array}{cc}
a & b  \tag{2.21}\\
c & d
\end{array}\right)}(G, \ldots)=L(p, q) \#\left(G^{\prime},(b, d), \ldots\right)
$$ where $G^{\prime} \backslash$ disc $=G$,

$$
\begin{align*}
& \left(G,\left(p_{1}, q_{1}\right), \ldots,\left(p_{k}, q_{k}\right)\right) \bigcup_{\left(\begin{array}{c}
a \\
b \\
b
\end{array}\right)} X  \tag{2.22}\\
& \quad=\left(G,\left(p_{1},-q_{1}\right), \ldots,\left(p_{k},-q_{k}\right)\right) \bigcup_{\left(\begin{array}{cc}
-a & c \\
-b & d
\end{array}\right)} X
\end{align*}
$$

### 2.5. Exceptional surgery instructions on 5CL

We now return to 5CL and present the concise description of exceptional surgery instructions given in (MPR]. Given a surgery instruction $\alpha$ on 5CL, the symmetry group of $M_{5}(\alpha)$ induces a natural action on the boundary components of $M_{5}(\alpha)$. This action induces an action on the filling instructions on $M_{5}(\alpha)$. Among the most significant actions arising we mention those coming from the symmetry group of $M_{5}$, see 2.23-2.25 below, a symmetry of $M_{4}$ which may be deduced from the Fenn-Rourke blow-down move on 5CL, see (2.26), and from the amphichirality of the Figure- 8 knot $M_{5}(-1,-2,-2,-2, \varnothing)$, see 2.27 (see MPR for full details).

$$
\begin{align*}
& \left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \longmapsto\left(\alpha_{5}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)  \tag{2.23}\\
& \left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \longmapsto\left(\alpha_{5}, \alpha_{4}, \alpha_{3}, \alpha_{2}, \alpha_{1}\right)  \tag{2.24}\\
& \left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) \longmapsto\left(\alpha_{2}^{-1}, \alpha_{1}^{-1}, 1-\alpha_{3},\left(1-\alpha_{4}^{-1}\right)^{-1}, 1-\alpha_{5}\right)  \tag{2.25}\\
& \left(-1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \longmapsto\left(\alpha_{1},-1, \alpha_{2}-1, \alpha_{3}, \alpha_{4}+1\right)  \tag{2.26}\\
& (-1,-2,-2,-2, \alpha) \longmapsto(-1,-2,-2,-2,-\alpha-6) \tag{2.27}
\end{align*}
$$

For a filling instruction $\alpha$ on $M_{5}$ we will often simplify notation by omitting empty slopes but leaving the subscripts on non-empty slopes. For example, $\left((-1)_{2},(-1)_{4}\right)$ corresponds to the filling instruction $\left(\varnothing, \mu_{2}-\lambda_{2}, \varnothing, \mu_{4}-\right.$ $\lambda_{4}, \varnothing$ ) with $\left(\mu_{i}, \lambda_{i}\right)$ the (meridian, longitude) basis of the homology of the $i^{\text {th }}$ cusp. Note that for any $\frac{p}{q} \in \mathbb{Q} \cup\{\infty\}$ and $i \neq j$ one has $\left(\left(\frac{p}{q}\right)_{i}\right)=\left(\left(\frac{p}{q}\right)_{j}\right)$ by 2.23 , so the fillings $M_{5}\left(\frac{p}{q}\right)$ are defined without ambiguity. Our convention will be that a filling instruction $\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}\right)$ on $M_{5}$ with four non-empty slopes and no subscripts represents $\left(\frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{x}{y}, \varnothing\right)$. We now state the main result of MPR].

Theorem 2.4. Every exceptional filling instruction on $M_{5}$ is equivalent up to a composition of the symmetries (2.23)-(2.27) to a filling instruction containing one of:

$$
\begin{gathered}
1,(-1,-2,-2,-1),(-1,-2,-3,-2,-4),(-1,-2,-2,-3,-5) \\
(-1,-3,-2,-2,-3),\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right),(-2,-2,-2,-2,-2)
\end{gathered}
$$

Moreover, the following equalities hold:

$$
\begin{aligned}
M_{5}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, 1\right) & =F\left(\frac{a-b}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g-h}{h}\right) \\
M_{5}\left(-1,-2,-2,-1, \frac{a}{b}\right) & =(A,(b,-a-b)) /\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
M_{5}(-1,-2,-2,-3,-5) & =(D,(2,1),(2,-1)) \bigcup_{\left(\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right)}(D,(2,1),(3,1)) \\
M_{5}(-1,-2,-3,-2,-4) & =(D,(2,1),(2,-1)) \bigcup_{\left(\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right)}(D,(2,1),(3,1)) \\
M_{5}(-1,-3,-2,-2,-3) & =(D,(2,1),(2,-1)) \bigcup_{\left(\begin{array}{cc}
-1 & 4 \\
1 & -3
\end{array}\right)}(D,(2,1),(3,1)) \\
M_{5}(-2,-2,-2,-2,-2) & =(D,(2,1),(2,-1)) \bigcup_{\left(\begin{array}{cc}
-1 & 5 \\
1 & -4
\end{array}\right)}(D,(2,1),(3,1)) \\
M_{5}\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right) & \left.=(A,(2,-1)) / \begin{array}{cc}
1 & 2 \\
1 & 1
\end{array}\right) .
\end{aligned}
$$

Remark 2.5. The surgery instructions $(-1,-2,-2,-1, \varnothing),(-1,-2,-2$, $-3,-5)$, and $(-1,-2,-3,-2,-4)$ factor through $M_{3}$, and every non-toroidal exceptional filling of $M_{5}$ is obtained by filling $M_{5}(1)=F$. Furthermore, each isolated exceptional filling of $M_{5}$ is a graph manifold and therefore a filling instruction $\alpha$ on $M_{5}$ is exceptional if and only if $\alpha$ contains an isolated exceptional surgery instruction.

We now recall the classification of isolated exceptional surgeries on 3CL found in [MP. It is easy to see that the symmetry group of 3CL is $S_{3}$ and so for a filling instruction $\alpha$ on $M_{3}$ we can write $M_{3}(\alpha)$ unambiguously.

Theorem 2.6. [Martelli, Petronio] Up to the $S_{3}$ action on the components of 3CL, a surgery instruction on 3CL is an isolated exceptional surgery instruction if and only if it is one of

$$
\begin{gathered}
\infty, 0,1,2,3,(-1,-1),\left(4, \frac{1}{2}\right),\left(\frac{3}{2}, \frac{5}{2}\right),\left(5,5, \frac{1}{2}\right),\left(4,4, \frac{2}{3}\right),\left(4, \frac{3}{2}, \frac{3}{2}\right),\left(4, \frac{1}{3},-1\right), \\
\left(\frac{8}{3}, \frac{3}{2}, \frac{3}{2}\right),\left(\frac{5}{2}, \frac{5}{2}, \frac{4}{3}\right),\left(\frac{5}{2}, \frac{5}{3}, \frac{5}{3}\right),\left(\frac{7}{3}, \frac{7}{3}, \frac{3}{2}\right),(-1,-2,-2),(-1,-2,-3), \\
(-1,-2,-4),(-1,-2,-5),(-1,-3,-3),(-2,-2,-2) .
\end{gathered}
$$

We remark that all non-hyperbolic $M_{3}(\alpha)$ are described in Theorems 1.11.3 in (MP. To keep the presentation in this article self-contained we describe the exceptional fillings in terms of the manifold $F$ (see Proposition 3.5). To do this the following lemma will be very helpful.

Lemma 2.7. The action of $\operatorname{Aut}\left(M_{5}\right)$ on surgery instructions on 5CL is generated by 2.28-2.40. Moreover, for $2.30 \leq n \leq 2.40$ each ( $n$ ) corresponds to the action of a distinct element of $\operatorname{Aut}\left(M_{5}\right) / G$ where $G$ is the subgroup generated by the elements (2.28)-2.29) corresponding to the generators of the link symmetry group of 5CL.

$$
\begin{align*}
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) & \longmapsto\left(\alpha_{5}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)  \tag{2.28}\\
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right) & \longmapsto\left(\alpha_{5}, \alpha_{4}, \alpha_{3}, \alpha_{2}, \alpha_{1}\right)  \tag{2.29}\\
\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \frac{i}{j}\right) & \longmapsto\left(\frac{f}{e}, \frac{j-i}{j}, \frac{a}{a-b}, \frac{d-c}{d}, \frac{h}{g}\right) \tag{2.30}
\end{align*}
$$

$$
\begin{equation*}
\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \frac{i}{j}\right) \longmapsto\left(\frac{b}{b-a}, \frac{i-j}{i}, \frac{e-f}{e}, \frac{d}{d-c}, \frac{g}{h}\right) \tag{2.31}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \frac{i}{j}\right) \longmapsto\left(\frac{i}{i-j}, \frac{b-a}{b}, \frac{f}{e}, \frac{d}{c}, \frac{h-g}{h}\right) \tag{2.32}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \frac{i}{j}\right) \longmapsto\left(\frac{j}{j-i}, \frac{e}{f}, \frac{b}{b-a}, \frac{c-d}{c}, \frac{g-h}{g}\right) \tag{2.33}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \frac{i}{j}\right) \longmapsto\left(\frac{a}{a-b}, \frac{e}{e-f}, \frac{i}{i-j}, \frac{c}{c-d}, \frac{g}{g-h}\right) \tag{2.34}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \frac{i}{j}\right) \longmapsto\left(\frac{h}{g}, \frac{j}{i}, \frac{f-e}{f}, \frac{c}{c-d}, \frac{b-a}{b}\right) \tag{2.35}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \frac{i}{j}\right) \longmapsto\left(\frac{h}{h-g}, \frac{a}{b}, \frac{f}{f-e}, \frac{c-d}{c}, \frac{i-j}{i}\right) \tag{2.36}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \frac{i}{j}\right) \longmapsto\left(\frac{g}{g-h}, \frac{f-e}{f}, \frac{b}{a}, \frac{d}{c}, \frac{j-i}{j}\right) \tag{2.37}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \frac{i}{j}\right) \longmapsto\left(\frac{g-h}{g}, \frac{f}{f-e}, \frac{i}{j}, \frac{d}{d-c}, \frac{a-b}{a}\right) \tag{2.38}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \frac{i}{j}\right) \longmapsto\left(\frac{h-g}{h}, \frac{b}{a}, \frac{j}{i}, \frac{d-c}{d}, \frac{e}{e-f}\right) \tag{2.39}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \frac{i}{j}\right) \longmapsto\left(\frac{a-b}{a}, \frac{e-f}{e}, \frac{h}{h-g}, \frac{c}{d}, \frac{j}{j-i}\right) \tag{2.40}
\end{equation*}
$$

Remark 2.8. When a symbol appearing in the argument of one of these maps is $\varnothing$, there is a corresponding symbol $\varnothing$ in the image of the map.

Proof. SnapPy computes the symmetry group of $M_{5}$ to be $S_{5} \times \mathbb{Z} / 2 \mathbb{Z}$ and determines its action on slopes (see [CDW]). The maps 2.28)-2.40) come directly from SnapPy.

Each element of the symmetry group of $M_{5}$ acts on the set of boundary components of $M_{5}$, and on the set of filling instructions. We will first demonstrate that the action on the set of boundary components of $M_{5}$ generated by the maps $2.28-2.40$ is that of the full $S_{5}$, and then we will use this fact to conclude that the action on surgery instructions on 5CL induced by the symmetry group of $M_{5}$ is generated by the maps $2.28-(2.40)$.

No two of 2.30-2.40, considered as permutations of the boundary components, are equal up to the $D_{5}$ action from the link symmetry group of 5 CL generated by (2.28) and (2.29). Thus, each of $2.30-2.40$ corresponds to a representative element of a distinct left coset of $D_{5}$ in $S_{5}$. Since there are $\frac{5!}{10}=12$ such cosets, and our list of maps 2.30 2.40 consists of 11 items , the symmetries of $M_{5}$ corresponding to 2.28 (2.40) generate the full $S_{5}$ action.

We recall that SnapPy computes the order of the symmetry group of $M_{5}$ to be 240 ; the generator of the remaining $\mathbb{Z} / 2 \mathbb{Z}$ corresponds to an involution of $M_{5}$ shown in Figure 6 with a trivial action on the set of filling instructions. Thus the equivalence relation on filling instructions induced by the action


Figure 6: 5CL can be isotoped into the above link diagram. Rotation by $\pi$ about the highlighted line leaves the link invariant and induces an involution on $M_{5}$.
of the symmetry group of $M_{5}$ is generated by the maps (2.28)-2.40).
Since the action of the maps $(2.23)$ and $(2.24)$ is very easily understandable while that of $2.25-2.27$ is more involved, we introduce the symbol $[\alpha]$ for the equivalence class of a filling instruction $f$ under (2.23) and (2.24) only, and the symbol $\llbracket \alpha \rrbracket$ for the equivalence class of $\alpha$ under 2.23) 2.27). Note that, $[\alpha] \subseteq \llbracket \alpha \rrbracket$ and if $\alpha_{1}, \alpha_{2} \in \llbracket \alpha \rrbracket$ then $M_{5}\left(\alpha_{1}\right)=M_{5}\left(\alpha_{2}\right)$.

## 3. Main results

We now precisely describe the classification of exceptional slopes of every hyperbolic surgery on 5CL by describing $E_{\tau}\left(M_{5}(\alpha)\right)$ for every $\alpha$ not factoring through $M_{3}$. We split the result according to whether or not $\alpha$ factors through $M_{4}$.

Theorem 3.1. Let $\alpha$ be a hyperbolic filling instruction on $M_{5}$ containing at least one $\varnothing$ and not factoring through $M_{4}$, and let $\tau$ be a boundary component of $\partial M_{5}(\alpha)$. Either $e_{\tau}\left(M_{5}(\alpha)\right)=3$ and, with respect to the basis induced from $M_{5}$, we have $E_{\tau}\left(M_{5}(\alpha)\right)=\{0,1, \infty\}$ and

$$
\begin{align*}
M_{5}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}\right)(\infty) & =F\left(-\frac{a}{b}, \frac{f}{e}, \frac{d}{c},-\frac{g}{h}\right)  \tag{3.1}\\
M_{5}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}\right)(1) & =F\left(\frac{a-b}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g-h}{h}\right)  \tag{3.2}\\
M_{5}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}\right)(0) & =F\left(\frac{b}{b-a}, \frac{c-d}{c},-\frac{h}{g}, \frac{e-f}{f}\right) \tag{3.3}
\end{align*}
$$

or $4 \leqslant e_{\tau}\left(M_{5}(\alpha)\right) \leqslant 5$ and

- $M_{5}(\alpha)$ is homeomorphic to $M_{5}(f)$ for some $f$ in Tables 611 and, with respect to the basis induced from $M_{5}$, we have

$$
E_{\tau}\left(M_{5}(f)\right)=\left\{\begin{array}{l}
\left\{\beta_{1}, \beta_{2}, 0,1, \infty\right\} \text { if } f \text { is found in Table } 6 \\
\{\beta, 0,1, \infty\} \text { otherwise }
\end{array}\right.
$$

where $\beta, \beta_{1}, \beta_{2}$ are found in Tables 611 .

- Identities (3.1)-3.3) hold and $M_{5}(f)\left(\beta_{i}\right), M_{5}(f)(\beta)$ are explicitly described in Tables 6-11.

Remark 3.2. It will be implicitly shown in the proof of Theorem 3.1 that to apply Theorem 3.1 to find the exceptional slopes and fillings on a boundary component $\tau$ of a hyperbolic manifold $M_{5}(\alpha)$ as described above, we:
(a) Check whether $-1, \frac{1}{2}, 2 \in \alpha$. If yes, then $\alpha$ factors through $M_{4}$ and Lemma 2.7 can be used to write $M_{5}(\alpha)=M_{5}(*,-1, *, *, *)$. Using (2.1), $M_{5}(\alpha)$ can be used to express $M_{5}(\alpha)$ as a filling of $M_{4}$ and Theorem 3.3 can be applied. Otherwise, proceed to the next step.
(b) Check whether $-2,-\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{3}{2}, 3 \in \alpha$. If not then $E_{\tau}\left(M_{5}(\alpha)\right)=\{0,1, \infty\}$ and the exceptional fillings can be written down using $(3.1)-(3.3)$ and Proposition 2.3. Otherwise, then proceed to the next step.
(c) Use Lemma 2.7 to write $\llbracket \alpha \rrbracket=\left\{\left[\alpha_{1}\right], \ldots,\left[\alpha_{12}\right]\right\}$. Up to the $D_{5}$ action on boundary components, either one of the $\alpha_{i}$ is found in Tables 611 and the exceptional slopes and fillings are written down using Theorem 3.1 or no $\alpha_{i}$ is found in Tables $6-11$. In the latter case $E_{\tau}\left(M_{5}(\alpha)\right)=\{0,1, \infty\}$ and the exceptional fillings can be written down using $(3.1)-(3.3)$ and Proposition 2.3.

Adopting the convention that a filling instruction $\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)$ on $M_{4}$ with three slopes and no subscripts represents $\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \varnothing\right)$, the corresponding result for $M_{4}$ is:

Theorem 3.3. Let $\alpha$ be a hyperbolic filling instruction on $M_{4}$ containing at least one $\varnothing$ and not factoring through $M_{3}$, and let $\tau$ a boundary component of $\partial M_{4}(\alpha)$. Either $e_{\tau}\left(M_{4}(\alpha)\right)=4$ and, with respect to the basis induced from $M_{4}$, we have $E_{\tau}\left(M_{4}(\alpha)\right)=\{0,1,2, \infty\}$ and

$$
\begin{align*}
M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)(\infty) & =F\left(\frac{b-a}{b}, \frac{d}{c-d},-1,-\frac{e}{f}\right)  \tag{3.4}\\
M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)(2) & =F\left(\frac{a-b}{b}, \frac{c}{d}, \frac{e-f}{f},-2\right)  \tag{3.5}\\
M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)(1) & =F\left(\frac{a-2 b}{b},-1, \frac{c-d}{d}, \frac{e-f}{f}\right),  \tag{3.6}\\
M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)(0) & =F\left(\frac{2 d-c}{c-d}, \frac{b}{a-2 b}, 2, \frac{f}{e}\right) \tag{3.7}
\end{align*}
$$

or $5 \leqslant e_{\tau}\left(M_{4}(\alpha)\right) \leqslant 6$ and

- $M_{4}(\alpha)$ is homeomorphic to $M_{4}(f)$ for some $f$ in Table 12, and with respect to the basis induced from $M_{4}$, we have
$E_{\tau}\left(M_{4}(f)\right)=\left\{\begin{array}{l}\left\{\beta_{1}, \beta_{2}, 0,1,2, \infty\right\} \text { if } f=(-2,-2,-2),\left(2,-\frac{1}{2}, 2\right) ; \\ \{\beta, 0,1,2, \infty\} \text { otherwise, }\end{array}\right.$
where $\beta, \beta_{1}, \beta_{2}$ are found in Table 12 .
- Identities (3.4)-3.7) hold, and the $M_{5}(f)\left(\beta_{i}\right), M_{4}(f)(\beta)$ are explicitly described in Table 12.

Remark 3.4. Theorem 3.3 can be used to find the exceptional slopes on a boundary component of filling $M_{4}(\alpha)$ and the corresponding fillings in a similar way to Theorem 3.1. In this case, the application is trickier; $M_{4}(\alpha)$ can be written as a filling on $M_{5}$ using (2.1), (3.29) can be used to see if $\alpha$ factors through $M_{3}$, and up to 2.28 -2.40 the filling instruction on $M_{5}$ will appear in the list at the end of the proof of Theorem 3.3 and can be located in Table 12 if $e\left(M_{5}(\alpha)\right)>4$.

### 3.1. Proofs of main results

In Theorem 2.4 we have a complete description of the exceptional instructions and fillings of $M_{5}$. As $M_{3}$ is obtained by surgery on 5CL, Theorem 2.4 contains an opaque classification of exceptional surgery instructions contained in Theorem 2.6. Having an explicit classification of the exceptional
fillings of $M_{3}$ will be important for the proof of Theorem 1.1. Proposition 2.3 can be used to give a complete description of all exceptional fillings of $M_{3}$. The description of exceptional fillings in Proposition 3.5 is the same as that given in [MP] up to $2.12-(2.22)$. The description of the exceptional fillings in Tables 613 comes from Proposition 3.5 not MP.

To prove Proposition 3.5 we will often use $2.23-(2.24)$ in conjunction with previous identities to prove the main results in Section 3. As $\sqrt{2.23})^{-}$ (2.24) are easy to understand we do not indicate when 2.23-2.24) have been used. For example instead of writing

$$
\begin{array}{r}
M_{5}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \infty\right) \\
=M_{5}\left(\frac{b}{b-a}, 1, \frac{e-f}{f}, \frac{d}{d-c}, \frac{g}{h}\right) \\
= \\
2.24 \\
2\left(\frac{g}{h}, \frac{d}{d-c}, \frac{e-f}{f}, 1, \frac{b}{b-a}\right) \\
= \\
2.23
\end{array} M_{5}\left(\frac{b}{b-a}, \frac{g}{h}, \frac{d}{d-c}, \frac{e-f}{f}, 1\right)
$$

we will simply write

$$
M_{5}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, \infty\right) \underset{2.31}{=} M_{5}\left(\frac{b}{b-a}, \frac{g}{h}, \frac{d}{d-c}, \frac{e-f}{f}, 1\right)
$$

Proposition 3.5. The following identities hold:

$$
\begin{gather*}
M_{3}(-1,-1)=P \times S^{1} /\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)  \tag{3.8}\\
\left.M_{3}\left(-1,-1, \frac{a}{b}\right)=(A,(b, b-a)) / \begin{array}{c}
0 \\
0 \\
1 \\
1
\end{array}\right)  \tag{3.9}\\
M_{3}(-1,-3,-3)=(D,(2,1),(2,-1)) \bigcup_{\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right)}(D,(2,1),(3,1))  \tag{3.10}\\
M_{3}(-2,-2,-2)=(D,(2,1),(2,-1)) \bigcup_{\left(\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right)}(D,(2,1),(3,1)) \tag{3.11}
\end{gather*}
$$

All other exceptional $M_{3}(\alpha)$ can be expressed as some filling of $F$ or of $M_{3}(-1,-1)$ and the correspondence is found in Table 5.

Proof. Firstly, Theorem 2.6 implies that the list of exceptional fillings in Table 5 is complete. Identities (3.8-(3.11) come directly from [MP. We prove the remaining equalities in Table 5 using the identities in Lemma 2.7 as well as Identities (2.3), (2.5), (2.26) and (2.27). We indicate which Identity is being employed below the equality sign throughout the proof.

| $M_{3}\left(\frac{p}{q}, \frac{r}{s}, \infty\right)=F\left(-\frac{1}{2}, \frac{q}{q-p}, \frac{1}{3}, \frac{r}{s}\right)$ | $M_{3}\left(\frac{p}{q}, \frac{r}{s}, 0\right)=F\left(\frac{s}{s-r}, 2, \frac{q}{3 q-p},-3\right)$ |
| :---: | :---: |
| $M_{3}\left(\frac{p}{q}, \frac{r}{s}, 1\right)=F\left(\frac{p-3 q}{q},-1,-2, \frac{r-2 s}{s}\right)$ | $M_{3}\left(\frac{p}{q}, \frac{r}{s}, 2\right)=F\left(\frac{s}{r}, \frac{2 q-p}{p-q},-\frac{1}{2}, 3\right)$ |
| $M_{3}\left(\frac{p}{q}, \frac{r}{s}, 3\right)=F\left(-2, \frac{p-q}{q}, \frac{r-s}{s},-2\right)$ | $M_{3}\left(\frac{p}{q}, \frac{3}{2}, \frac{5}{2}\right)=F\left(-3, \frac{p-2 q}{p-q}, 2,-2\right)$ |
| $M_{3}\left(4, \frac{1}{2}, \frac{p}{q}\right)=F\left(2, \frac{3}{2}, \frac{q}{p-q},-2\right)$ | $M_{3}\left(-1, \frac{1}{3}, 4\right)=M_{3}\left(\frac{3}{2}, \frac{3}{2}, \frac{8}{3}\right)$ <br>  <br> $=F\left(-3, \frac{2}{3}, 2,-2\right)$ |
| $M_{3}\left(\frac{5}{2}, \frac{5}{3}, \frac{5}{3}\right)=F\left(2, \frac{3}{2}, \frac{2}{3},-2\right)$ | $M_{3}(-1,-2,-2)=F\left(\frac{1}{3}, 2, \frac{1}{4},-3\right)$ |
| $M_{3}(-1,-2,-3)=F\left(-\frac{4}{3},-\frac{1}{3}, 2,-\frac{1}{2}\right)$ | $M_{3}(-1,-2,-4)=F\left(-\frac{3}{2},-\frac{1}{2}, 3,-\frac{1}{2}\right)$ |
| $M_{3}(-1,-2,-5)=F(-2,-2,-2,-3)$ |  |
| $M_{3}\left(\frac{3}{2}, \frac{7}{3}, \frac{7}{3}\right)=M_{3}\left(4,4, \frac{2}{3}\right)$ | $M_{3}\left(5,5, \frac{1}{2}\right)=M_{3}\left(-1,-1, \frac{1}{2}\right)$ |
| $=M_{3}\left(-1,-1, \frac{3}{2}\right)$ |  |
| $M_{3}\left(\frac{5}{2}, \frac{5}{2}, \frac{4}{3}\right)=M_{3}\left(-1,-1, \frac{5}{2}\right)$ | $M_{3}\left(4, \frac{3}{2}, \frac{3}{2}\right)=M_{3}(-1,-1,4)$ |

Table 5: Homeomorphisms between fillings of $M_{3}$ and of $F$ or $M_{3}(-1,-1)$.

We again highlight the fact that the use of the $D_{5}$ action on boundary components is suppressed when used in conjunction with 2.30-2.40 throughout the derivations. In all cases below, we pass from a filling of $M_{3}$ to a filling of $M_{5}$ using the Rolfsen twist. As with our use of 2.302.40 , to save space, we will omit stating when the permutations of boundary components of $M_{5}$ and $M_{3}$ are used. We already know that $M_{5}$ has a $D_{5}$ action on boundary components, see (2.23-2.24). The link symmetry of 3CL induces an $S_{3}$ action on boundary components of $M_{3}$ i.e. $M_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=M_{3}\left(\alpha_{\sigma(1)}, \alpha_{\sigma(2)}, \alpha_{\sigma(3)}\right)$ for all $\sigma \in S_{3}$. When the link symmetries of 3 CL and 5 CL are used in conjunction with (2.3) we save a lot of space. For example, instead of writing

$$
\begin{aligned}
M_{3}\left(\frac{p}{q}, \frac{r}{s}, 0\right) & \\
& =M_{3}\left(\frac{r}{s}, \frac{p}{q}, 0\right) \underset{(2.3)}{=} M_{5}\left(\frac{r-s}{s},-2,-1, \frac{p-2 q}{q}, 0\right) \\
= & M_{5}\left(0, \frac{p-2 q}{q},-1,-2, \frac{r-s}{s}\right) \\
& 2.29 \\
& =2.28 \circ(2.28) \circ 2.28 \circ 2.28
\end{aligned} M_{5}\left(\frac{p-2 q}{q},-1,-2, \frac{r-s}{s}, 0\right)
$$

we simply write

$$
M_{3}\left(\frac{p}{q}, \frac{r}{s}, 0\right) \underset{(2.3}{=} M_{5}\left(\frac{p-2 q}{q},-1,-2, \frac{r-s}{s}, 0\right)
$$

In all cases, it is easy to verify that the first equality in each of (3.12)-3.28) is valid using (2.1) (with 2.28-2.29) if necessary) on the right hand side to obtain a filling on $M_{4}$ with a -1 surgery coefficient and then using 2.2 (with $(2.28)-(2.29)$ if necessary).

We start with the case where $\alpha$ is an exceptional filling instruction on $M_{3}$ found in Theorem 2.6 and $M_{3}(\alpha)$ is homeomorphic to a filling of $F$ :

$$
\begin{equation*}
M_{3}\left(\frac{p}{q}, \frac{r}{s}, 0\right) \underset{(2.3}{=} M_{5}\left(\frac{p-2 q}{q},-1,-2, \frac{r-s}{s}, 0\right) \tag{3.13}
\end{equation*}
$$

$$
\underset{(2.33)}{=} M_{5}\left(\frac{r-2 s}{r-s}, 2, \frac{q}{3 q-p},-2,1\right) \underset{(2.5)}{=} F\left(\frac{s}{s-r}, 2, \frac{q}{3 q-p},-3\right)
$$

$$
\begin{align*}
& \quad M_{3}\left(\frac{p}{q}, \frac{r}{s}, \infty\right) \underset{2}{=} M_{5}\left(-1,-2, \frac{p-q}{q}, \frac{r}{s}, \infty\right)  \tag{3.12}\\
& =M_{5}\left(\frac{1}{2}, 1, \frac{p-2 q}{p-q}, \frac{1}{3}, \frac{r}{s}\right) \underset{2.5}{=} F\left(-\frac{1}{2}, \frac{q}{q-p}, \frac{1}{3}, \frac{r}{s}\right)
\end{align*}
$$

$$
\begin{align*}
& M_{3}\left(\frac{p}{q}, \frac{r}{s}, 1\right) \underset{(2.3)}{=} M_{5}\left(\frac{p-2 q}{q},-1,-2, \frac{r-s}{s}, 1\right)  \tag{3.14}\\
= & F\left(\frac{p-3 q}{q},-1,-2, \frac{r-2 s}{s}\right)
\end{align*}
$$

$$
\begin{align*}
& \quad M_{3}\left(\frac{p}{q}, \frac{r}{s}, 2\right) \underset{2}{=} M_{5}\left(0,-1,-2, \frac{p-q}{q}, \frac{r}{s}\right)  \tag{3.15}\\
& =M_{5}\left(\frac{s}{r}, \frac{q}{p-q}, 1, \frac{1}{2}, 3\right) \underset{(2.5)}{=} F\left(\frac{s}{r}, \frac{2 q-p}{p-q},-\frac{1}{2}, 3\right) \\
& M_{3}\left(\frac{p}{q}, \frac{r}{s}, 3\right) \stackrel{(2.3)}{=} M_{5}\left(-1, \frac{p-q}{q}, \frac{r-s}{s},-1,1\right)  \tag{3.16}\\
& =F\left(-2,-2, \frac{p-q}{q}, \frac{r-s}{s}\right)
\end{align*}
$$

$$
\begin{align*}
& \quad M_{3}\left(\frac{p}{q}, \frac{3}{2}, \frac{5}{2}\right) \underset{2}{=} M_{5}\left(\frac{1}{2},-2,-1, \frac{1}{2}, \frac{p}{q}\right)  \tag{3.17}\\
& =M_{5}\left(-1, \frac{1}{2}, \frac{p}{q}, \frac{1}{3},-1\right) \underset{2}{=} M_{5}\left(0, \frac{1}{2}, \frac{p-q}{q},-1, \frac{1}{3}\right) \\
& \frac{2.38}{=} M_{5}\left(1,-2, \frac{p-2 q}{p-q}, 2,-1\right) \underset{2.3}{=} F\left(-3, \frac{p-2 q}{p-q}, 2,-2\right)
\end{align*}
$$

$$
\begin{equation*}
M_{3}\left(4, \frac{1}{2}, \frac{p}{q}\right) \underset{(2.3}{=} M_{5}\left(2, \frac{1}{2}, \frac{p-q}{q},-2,-1\right) \tag{3.18}
\end{equation*}
$$

$$
\underset{(2.33)}{=} M_{5}\left(\frac{1}{2}, \frac{p-q}{q},-1,-1, \frac{3}{2}\right) \underset{2.3}{=} M_{5}\left(-\frac{1}{2},-1, \frac{p-q}{q}, 0, \frac{3}{2}\right)
$$

$$
\underset{(2.32)}{=} M_{5}\left(3, \frac{3}{2}, \frac{q}{p-q},-1,1\right) \underset{2.5}{=} F\left(2, \frac{3}{2}, \frac{q}{p-q},-2\right)
$$

$$
\begin{equation*}
\stackrel{=}{2.26} M_{5}(-3,-1,-2,-3,0) \underset{(2.3)}{=} M_{3}(-1,-2,0) \tag{3.21}
\end{equation*}
$$

$$
=F\left(\frac{1}{3}, 2, \frac{1}{4},-3\right)
$$

$$
\begin{align*}
& \quad M_{3}(-1,-2,-3) \underset{(2.3)}{=} M_{5}(-1,-2,-2,-2,-5) \\
& =M_{5}(-1,-2,-2,-2,-1) \frac{=}{(2.26} M_{5}(-2,-1,-3,-2,0) \\
& \frac{(2.27}{=} M_{5}\left(-\frac{1}{3}, 1, \frac{2}{3}, 2,-\frac{1}{2}\right) \stackrel{=}{\sqrt{2.5}} F\left(-\frac{4}{3},-\frac{1}{3}, 2,-\frac{1}{2}\right) \tag{3.22}
\end{align*}
$$

We now turn to the case where $f$ is a filling instruction of $M_{3}$ and $M_{3}(f)$ is homeomorphic to a filling of $M_{3}(-1,-1)$ :

$$
\begin{align*}
& M_{3}(-1,-2,-4) \underset{(2.3)}{=} M_{5}(-1,-2,-2,-2,-6)  \tag{3.23}\\
& \underset{2.27}{=} M_{5}(-1,-2,-2,-2,0) \underset{2.30}{=} M_{5}\left(-\frac{1}{2}, 1, \frac{1}{2}, 3,-\frac{1}{2}\right) \\
& \underset{2.5}{=} F\left(-\frac{3}{2},-\frac{1}{2}, 3,-\frac{1}{2}\right) \\
& M_{3}(-1,-2,-5) \underset{(2.3}{=} M_{5}(-1,-2,-2,-2,-7)  \tag{3.24}\\
& \underset{(2.27}{=} M_{5}(-1,-2,-2,-2,1) \underset{2.5)}{=} F(-2,-2,-2,-3)
\end{align*}
$$

$$
\begin{align*}
& M_{3}\left(\frac{3}{2}, \frac{7}{3}, \frac{7}{3}\right) \underset{(2.3}{=} M_{5}\left(-2,-1, \frac{1}{3}, \frac{7}{3}, \frac{1}{2}\right)  \tag{3.25}\\
& \underset{(2.32)}{=} M_{5}\left(-1,-\frac{4}{3},-1,3,3\right) \\
& \underset{(2.3)}{=} M_{3}\left(4,4, \frac{2}{3}\right) \underset{(2.3)}{=} M_{5}\left(2, \frac{2}{3}, 3,-2,-1\right) \\
& \underset{(2.35)}{=} M_{5}\left(-\frac{1}{2},-1,-2,-2,-1\right) \underset{(2.3)}{=} M_{3}\left(-1,-1, \frac{3}{2}\right) \\
& M_{3}\left(5,5, \frac{1}{2}\right) \underset{2.3}{=} M_{5}\left(3, \frac{1}{2}, 4,-2,-1\right)  \tag{3.26}\\
& \underset{(2.35)}{=} M_{5}\left(-\frac{1}{2},-1,-3,-1,-2\right) \underset{2.3}{=} M_{3}\left(-1,-1, \frac{1}{2}\right) \\
& M_{3}\left(\frac{5}{2}, \frac{5}{2}, \frac{4}{3}\right) \underset{2 \cdot 2}{=} M_{5}\left(\frac{1}{2},-1, \frac{3}{2}, \frac{1}{3},-1\right)  \tag{3.27}\\
& \underset{(2.38)}{=} M_{5}\left(-2,-2,-1, \frac{1}{2},-1\right) \underset{(2.3)}{=} M_{3}\left(-1,-1, \frac{5}{2}\right) \tag{e}
\end{align*}
$$

$$
\begin{align*}
& M_{3}\left(4, \frac{3}{2}, \frac{3}{2}\right) \underset{2}{=} M_{5}\left(4, \frac{1}{2},-2,-1,-\frac{1}{2}\right)  \tag{3.28}\\
& =M_{5}(-1,-2,3,-1,-3) \underset{2.3}{=} M_{3}(4,-1,-1)
\end{align*}
$$

This completes the proof.

Remark 3.6. Identities (2.12)-(2.22) can be used with Proposition 2.3 to show that Proposition 3.5 is consistent with classification of exceptional fillings of the mirror of 3CL given in (MP].

Consideration of the "intersection index" defined in Section 3.3 of Rou1 together with the classification of exceptional fillings of $M_{3}$ given in [MP] demonstrates that $(-1,-3,-2,-2,-3),\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right),(-2,-2,-2$, $-2,-2)$ do not factor through $M_{3}$. This leads to the following useful fact that will be used liberally throughout the proof of Theorems 3.1 and 3.3 . By Theorem 2.4 we see that an exceptional filling instruction $\alpha$ on $M_{5}$ with no $0,1, \infty$ slopes factors through $M_{3}$ if and only if there is a $\gamma \subset \alpha$ with
$\gamma \in \llbracket\left((-1)_{1},(-2)_{2}\right) \rrbracket$. By Lemma 2.7 and 2.26$)$ we have

$$
\begin{align*}
\llbracket\left((-1)_{1},(-2)_{2}\right) \rrbracket=\{ & {\left[\left(\left(\frac{1}{2}\right)_{1},\left(\frac{2}{3}\right)_{3}\right)\right],\left[\left(\left(\frac{1}{2}\right)_{1}, 3_{2}\right)\right],\left[\left(\left(\frac{1}{2}\right)_{1},\left(\frac{3}{2}\right)_{2}\right)\right], }  \tag{3.29}\\
& {\left[\left(\frac{1}{2}\right)_{1}, 2_{2}\right],\left[\left(\left(\frac{2}{3}\right)_{1}, 2_{2}\right)\right],\left[\left(\left(\frac{1}{2}\right)_{1},\left(\frac{1}{3}\right)_{3}\right)\right],\left[\left(2_{1},\left(-\frac{1}{2}\right)_{3}\right)\right], } \\
& {\left[\left(\left(\frac{1}{3}\right)_{1}, 2_{2}\right)\right],\left[\left((-1)_{1}, 3_{3}\right)\right],\left[\left((-1)_{1},(-2)_{2}\right)\right], } \\
& {\left[\left((-1)_{1},\left(\frac{3}{2}\right)_{3}\right)\right],\left[\left(2_{1},(-2)_{3}\right)\right],\left[\left((-1)_{1},\left(-\frac{1}{2}\right)_{2}\right)\right], } \\
& {\left[\left(-1_{1},-1_{3}\right)\right],\left[\left(-1_{1}, 2_{2}\right)\right],\left[\left(-1_{1},\left(\frac{1}{2}\right)_{2}\right)\right], } \\
& {\left[\left(-1_{1},\left(\frac{1}{2}\right)_{3}\right)\right],\left[\left(2_{1}, 2_{2}\right)\right],\left[\left(2_{1}, 2_{3}\right)\right],\left[\left(2_{1},\left(\frac{1}{2}\right)_{3}\right],\right.} \\
& {\left.\left[\left(\left(\frac{1}{2}\right)_{1},\left(\frac{1}{2}\right)_{2}\right)\right]\right\} }
\end{align*}
$$

By the remark following Theorem 2.4 there is an obvious strategy to prove Theorem 3.1. Namely, we examine all hyperbolic $M_{5}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \varnothing\right)$ and look for all $\alpha_{5}$ so that $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)$ contains an isolated exceptional filling instruction. This simplifies matters greatly. If $\alpha$ factors through $M_{3}$ then $\alpha_{5}$ must be a slope in $\llbracket(-1) \rrbracket$ or $\llbracket(-2) \rrbracket$, and if $\alpha$ does not factor through $M_{3}$ then $\alpha$ contains a slope in $\llbracket(1) \rrbracket$ or $\alpha$ is equivalent to one of $\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right),(-1,-3,-2,-2,-3),(-2,-2,-2,-2,-2)$. We now prove Theorems 3.1 and 3.3 .
3.1.1. Proof of Theorem 3.1. We start by establishing (3.1)-(3.3). Identity (3.1) is established in MPR , and (3.2) is exactly the same as (2.5). For (3.3) we have

$$
\begin{aligned}
& M_{5}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}, 0\right) \underset{2.20}{=} M_{5}\left(\frac{f}{e}, 1, \frac{a}{a-b}, \frac{d-c}{d}, \frac{h}{g}\right) \underset{2.5}{=} F\left(\frac{f-e}{e}, \frac{b}{a-b}, \frac{d-c}{d}, \frac{h}{g}\right) \\
& \underset{(2.4)}{=} F\left(\frac{b}{a-b}, \frac{d-c}{d}, \frac{h}{g}, \frac{f-e}{e}\right) \\
& \text { (2.18) } \overline{=} F\left(\frac{b}{b-a}, \frac{c-d}{d},-\frac{h}{g}, \frac{e-f}{e}\right) \\
& \underset{(2.14)}{=} F\left(\frac{b}{b-a}, \frac{c-d}{c},-\frac{h}{g}, \frac{e-f}{f}\right) \text {. }
\end{aligned}
$$

We let $\alpha$ be a hyperbolic surgery instruction on 5CL containing at least one $\varnothing$ not factoring through $M_{4}$. We let $\tau$ be a boundary component of $M_{5}(\alpha)$. Lemma 2.7 allows us to assume that $\tau$ comes from the 5 th component of 5 CL . So, we assume that $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \varnothing\right)$ with $\alpha_{i} \in \mathbb{Q} \cup\{\varnothing, \infty\}$.

Our assumption that $\alpha$ is hyperbolic and does not factor through $M_{4}$ imposes restrictions on the $\alpha_{i}$. Theorem 2.4 and the remark that follows tells us that $\alpha$ being hyperbolic means no $\gamma \subseteq \alpha$ contains an isolated exceptional filling instructions on $M_{5}$. Identity (2.1) means that if $\alpha$ does not factor
through $M_{4}$ then no $\alpha_{i}=-1$. Lemma 2.7 tells us that

$$
\begin{equation*}
\llbracket(-1) \rrbracket=[(-1)] \sqcup\left[\left(\frac{1}{2}\right)\right] \sqcup[(2)] . \tag{3.30}
\end{equation*}
$$

Thus, no $\alpha_{i} \in\left\{-1, \frac{1}{2}, 2\right\}$ if $\alpha$ does not factor through $M_{4}$.
We now examine $E_{\tau}\left(M_{5}(\alpha)\right)$. Theorem 2.4 implies that all slopes in $\llbracket(1) \rrbracket$ are exceptional. By Lemma 2.7

$$
\begin{equation*}
\llbracket(1) \rrbracket=[(1)] \sqcup[(\infty)] \sqcup[(0)] \tag{3.31}
\end{equation*}
$$

Therefore, (3.31) implies that no $\alpha_{i} \in\{0,1, \infty\}$, that $\{0,1, \infty\} \subseteq E_{\tau}\left(M_{5}(\alpha)\right)$ and $e\left(M_{5}(\alpha)\right) \geq 3$.

We will now describe all such $\alpha$ s not factoring through $M_{4}$ with $e\left(M_{5}(\alpha)\right)>3$. We define $(\alpha, \beta)$ to be $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta\right)$. If $\beta$ is an exceptional slope of $M_{5}(\alpha)$ then $(\alpha, \beta)$ contains an isolated exceptional filling instruction. Lemma 2.7 tells us that

$$
\begin{equation*}
\llbracket(-2) \rrbracket=[(-2)] \sqcup\left[\left(-\frac{1}{2}\right)\right] \sqcup\left[\left(\frac{1}{3}\right)\right] \sqcup\left[\left(\frac{2}{3}\right)\right] \sqcup\left[\left(\frac{3}{2}\right)\right] \sqcup[(3)] . \tag{3.32}
\end{equation*}
$$

By (3.30) and Theorem 2.4 with (3.32), any such isolated exceptional filling instruction contains at most one slope in $\llbracket(-1) \rrbracket$, and contains two slopes in $\llbracket(-2) \rrbracket$. Thus at least one of the slopes in $\alpha$ belongs to $\llbracket(-2) \rrbracket$. It is a routine consequence of Lemma 2.7 that we may assume without loss of generality that $\alpha_{1}=-2$ and that $\tau$ remains as the 5 th component of $\partial M_{5}$.

Finally, the remarks following Theorem 2.4 allow us to conclude that if $(\alpha, \beta)$ contains an isolated exceptional filling instruction then either $\beta$ is a slope in $\llbracket(1) \rrbracket$, or $\beta$ is a slope in $\llbracket(-1) \rrbracket$ and $(\alpha, \beta)$ factors through $M_{3}$, or $M_{5}(\alpha, \beta)$ is one of

$$
\begin{gathered}
m_{1}:=M_{5}\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right), \quad m_{2}:=M_{5}(-1,-3,-2,-2,-3) \\
m_{3}:=M_{5}(-2,-2,-2,-2,-2)
\end{gathered}
$$

So, we define the following sets of $(\alpha, \beta) \mathrm{s}$;

- We define $l$ to be the set of exceptional $(\alpha, \beta) \mathrm{s}$ such that $M_{5}(\alpha, \beta)$ is in $\left\{m_{1}, m_{2}, m_{3}\right\}$;
- We define $l_{-1}$ to be the set of exceptional $(\alpha, \beta)$ s factoring through $M_{3}$ with $\beta=-1$;
- We define $l_{\frac{1}{2}}$ to be the set of exceptional $(\alpha, \beta)$ s factoring through $M_{3}$ with $\beta=\frac{1}{2}$;
- We define $l_{2}$ to be the set of exceptional $(\alpha, \beta)$ s factoring through $M_{3}$ with $\beta=2$;

Let $p$ be the projection from the set of filling instructions on $M_{5}$ to itself defined by $(\alpha, \beta) \mapsto \alpha$. For $\alpha$ in $p\left(l \cup l_{-1} \cup l_{\frac{1}{2}} \cup l_{2}\right)$ define $B_{\alpha}$ to be the set of all $\beta$ 's such that $(\alpha, \beta)$ is contained in $l \cup^{2} l_{-1} \cup l_{\frac{1}{2}} \cup l_{2}$. It is clear that $E\left(M_{5}(\alpha)\right)=\{0,1, \infty\} \cup B_{\alpha}$ and that $\left\{\left(M_{5}(\alpha), E\left(M_{5}(\alpha)\right)\right)\right\}_{\alpha}$ is a complete list of all $\left(M_{5}(\alpha), E\left(M_{5}(\alpha)\right)\right)$ pairs with $\alpha=\left(-2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \varnothing\right), M_{5}(\alpha)$ hyperbolic and $e\left(M_{5}(\alpha)\right)>3$.

We now explicitly construct the sets $l, l_{-1}, l_{\frac{1}{2}}, l_{2}$. Throughout these constructions

$$
\begin{equation*}
\alpha_{i} \notin\left\{\infty, 0,1,-1, \frac{1}{2}, 2\right\} \tag{3.33}
\end{equation*}
$$

is used to reduce the number of possible cases (see 3.30 and (3.31).
In all cases, we are enumerating $\alpha$ not exceptional with $(\alpha, \beta)$ containing an isolated filling instruction. Theorem 2.4 gives a complete list of isolated filling instructions on $M_{5}$ which we use in the construction of $l$. In the construction of $l_{-1}, l_{2}, l_{\frac{1}{2}}$ we express $M_{5}(\alpha, \beta)$ as a filling of $M_{3}$ and use the complete list of isolated ${ }^{2}$ filling instructions on $M_{3}$ from Theorem 2.6.

Construction of the set $l$ : To construct $l$ we look at all $(\alpha, \beta)$ which contain an isolated exceptional filling instruction with $\alpha$ not exceptional or containing a subfilling in (3.29), $\beta \notin\{0,1, \infty\}$ and, up to 2.28)-2.29), $\alpha_{1}=$ -2 . This means that $[(\alpha, \beta)]$ is in $\llbracket-2,-\frac{1}{2}, 3,3,-\frac{1}{2} \rrbracket \cup \llbracket(-1,-3,-2,-2,-3) \rrbracket$ $\cup \llbracket(-2,-2,-2,-2,-2) \rrbracket$. Each of the elements of these sets is examined individually, and the relevant $(\alpha, \beta)$ are recorded. For example, by Lemma 2.7

$$
\begin{aligned}
\llbracket\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right) \rrbracket= & \left\{\left[\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right)\right],\left[\left(\frac{1}{3}, \frac{3}{2}, \frac{2}{3}, \frac{3}{2}, \frac{1}{3}\right)\right],\left[\left(\frac{1}{3}, 3, \frac{2}{3}, \frac{2}{3}, 3\right)\right],\right. \\
& {\left[\left(\frac{1}{3}, 3, \frac{1}{3},-2,-2\right)\right],\left[\left(\frac{2}{3}, 3, \frac{1}{3}, 3, \frac{2}{3}\right)\right],\left[\left(\frac{2}{3}, \frac{3}{2}, \frac{1}{3}, \frac{1}{3}, \frac{3}{2}\right)\right], } \\
& {\left[\left(\frac{1}{3},-2,-2, \frac{1}{3}, 3\right)\right],\left[\left(-\frac{1}{2},-2,-\frac{1}{2}, 3,3\right)\right], } \\
& {\left[\left(\frac{3}{2},-2,-\frac{1}{2},-2, \frac{3}{2}\right)\right],\left[\left(\frac{2}{3},-\frac{1}{2},-\frac{1}{2}, \frac{2}{3}, \frac{3}{2}\right)\right], } \\
& {\left.\left[\left(-2,-\frac{1}{2},-2, \frac{3}{2}, \frac{3}{2}\right)\right],\left[\left(\frac{3}{2}, \frac{2}{3},-\frac{1}{2},-\frac{1}{2}, \frac{2}{3}\right)\right]\right\} }
\end{aligned}
$$

Discarding repeats, we examine the elements of

$$
\begin{gathered}
\left\{\left[\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right)\right],\left[\left(\frac{1}{3}, \frac{3}{2}, \frac{2}{3}, \frac{3}{2}, \frac{1}{3}\right)\right]\right. \\
\left.\left[\left(\frac{1}{3}, 3, \frac{2}{3}, \frac{2}{3}, 3\right)\right],\left[\left(\frac{1}{3}, 3, \frac{1}{3},-2,-2\right)\right],\left[\left(\frac{3}{2},-2,-\frac{1}{2},-2, \frac{3}{2}\right)\right],\left[\left(\frac{2}{3},-\frac{1}{2},-\frac{1}{2}, \frac{2}{3}, \frac{3}{2}\right)\right]\right\}
\end{gathered}
$$

We are only interested in having $(\alpha, \beta)$ with $\alpha_{1}=-2$. So, we examine the elements of

$$
\left\{\left[\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right)\right],\left[\left(\frac{1}{3}, 3, \frac{1}{3},-2,-2\right)\right],\left[\left(\frac{3}{2},-2,-\frac{1}{2},-2, \frac{3}{2}\right)\right]\right\}
$$

Up to the $D_{5}$ action on boundary components, we take $\beta$ on the fifth boundary component i.e. "next to" a -2 slope. So, the relevant $(\alpha, \beta)$ filling instructions are contained in the following set

$$
\begin{aligned}
& \left\{\left[\left(\alpha_{1}=-2,-\frac{1}{2}, 3,3, \beta=-\frac{1}{2}\right)\right],\left[\left(\frac{1}{3}, 3, \beta=\frac{1}{3}, \alpha_{1}=-2,-2\right)\right]\right. \\
& {\left[\left(\frac{1}{3}, 3, \frac{1}{3}, \alpha_{1}=-2, \beta=-2\right)\right]} \\
& \left.\left[\left(\beta=\frac{3}{2}, \alpha_{1}=-2,-\frac{1}{2},-2, \frac{3}{2}\right)\right],\left[\left(\frac{3}{2}, \alpha_{1}=-2, \beta=-\frac{1}{2},-2, \frac{3}{2}\right)\right]\right\} .
\end{aligned}
$$

So, for the isolated filling instruction $\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right)$, the relevant $(\alpha, \beta)$ fillings instructions are the elements of

$$
\begin{gathered}
\left\{\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right),\left(-2,-2, \frac{1}{3}, 3, \frac{1}{3}\right),\left(-2, \frac{1}{3}, 3, \frac{1}{3},-2\right),\right. \\
\left.\left(-2,-\frac{1}{2},-2, \frac{3}{2}, \frac{3}{2}\right),\left(-2, \frac{3}{2}, \frac{3}{2},-2,-\frac{1}{2}\right)\right\} .
\end{gathered}
$$

Arguing using Lemma 2.7 in the same, we see that every $(\alpha, \beta)$ with $M_{5}(\alpha, \beta)=m_{i}$ with $\alpha_{1}=-2$ and $\alpha$ hyperbolic not factoring through $M_{4}$ is contained in the set

$$
\begin{aligned}
l=\{ & \left(-2, \frac{1}{4}, \frac{3}{2}, \frac{4}{3}, \frac{1}{2}\right),\left(-2,-\frac{1}{2}, 3,3,-\frac{1}{2}\right),\left(-2, \frac{1}{3}, 3, \frac{1}{3},-2\right), \\
& \left(-2,-2, \frac{1}{3}, 3, \frac{1}{3}\right),\left(-2,-\frac{1}{2},-2, \frac{3}{2}, \frac{3}{2}\right),\left(-2, \frac{3}{2}, \frac{3}{2},-2,-\frac{1}{2}\right), \\
& \left.(-2,-2,-2,-2,-2),\left(-2, \frac{1}{3}, \frac{3}{2}, \frac{3}{2}, \frac{1}{3}\right)\right\} .
\end{aligned}
$$

Before constructing the sets $l_{-1}, l_{\frac{1}{2}}, l_{2}$ we recall that $(\alpha, \beta)$ is not in $l$ then ( $\alpha, \beta$ ) factors through $M_{3}$ if and only if $(\alpha, \beta)$ contains one of the elements of $\llbracket\left((-1)_{1},(-2)_{2}\right) \rrbracket$ (see 3.29 and the preceding remarks). We will see that the requirements of $\alpha$ being hyperbolic and not factoring through $M_{4}$ (see (3.33)) allow us to completely construct $l_{-1}, l_{\frac{1}{2}}, l_{2}$.

Construction of the set $l_{-1}$ : In this case, for $\alpha=\left(-2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}\right)$, we have $M_{5}(\alpha)(-1)=M_{3}\left(\frac{p+q}{q}, \frac{r}{s}, \frac{u+2 v}{v}\right)$ by 2.3$)$. So $(\alpha, \beta)$ is an exceptional filling of $M_{5}$ if and only if $\left(\frac{p+q}{q}, \frac{r}{s}, \frac{u+2 v}{v}\right)$ contains an isolated exceptional filling instruction on $M_{3}$. As noted, (3.33) tells us that if $\alpha$ is hyperbolic and does not factor through $M_{4}$ then $\frac{p+q}{q} \notin\left\{\infty, 2,1,0, \frac{3}{2}, 3\right\}, \frac{r}{s} \notin\left\{\infty, 1,0,-1, \frac{1}{2}, 2\right\}$, $\frac{u+2 v}{v} \notin\left\{\infty, 3,2,1, \frac{5}{2}, 4\right\}$. With these conditions and Theorem 2.6 it is easy to see that $\beta$ is an exceptional slope on a hyperbolic $M_{5}(\alpha)$ if and only if one of the following holds:

- $\frac{r}{s}=3$
- $\frac{u}{v}+2=0$
- $\left(\frac{p}{q}+1, \frac{u}{v}+2\right)$ belongs to $\left\{(-1,-1),\left(\frac{5}{2}, \frac{3}{2}\right),\left(4, \frac{1}{2}\right)\right\}$
- $\left(\frac{r}{s}, \frac{p}{q}+1\right)$ belongs to $\left\{\left(\frac{3}{2}, \frac{5}{2}\right),\left(4, \frac{1}{2}\right)\right\}$
- $\left(\frac{r}{s}, \frac{u}{v}+2\right)$ belongs to $\left\{\left(\frac{5}{2}, \frac{3}{2}\right),\left(4, \frac{1}{2}\right)\right\}$
- $\left(\frac{p}{q}+1, \frac{r}{s}, \frac{u}{v}+2\right)$ belongs to

$$
\begin{aligned}
& \left\{\left(5,5, \frac{1}{2}\right),\left(\frac{1}{2}, 5,5\right),\left(4,4, \frac{2}{3}\right),\left(4, \frac{3}{2}, \frac{3}{2}\right),\left(4, \frac{1}{3},-1\right),\left(\frac{1}{3}, 4,-1\right),\left(-1,4, \frac{1}{3}\right),\right. \\
& \quad\left(-1, \frac{1}{3}, 4\right),\left(\frac{8}{3}, \frac{3}{2}, \frac{3}{2}\right),\left(\frac{5}{2}, \frac{5}{2}, \frac{4}{3}\right),\left(\frac{5}{2}, \frac{5}{3}, \frac{5}{3}\right),\left(\frac{5}{3}, \frac{5}{2}, \frac{5}{3}\right),\left(\frac{7}{3}, \frac{7}{3}, \frac{3}{2}\right),\left(\frac{7}{3}, \frac{3}{2}, \frac{7}{3}\right), \\
& \quad(-1,-2,-2),(-2,-2,-1),(-1,-2,-3),(-3,-2,-1),(-2,-3,-1), \\
& \quad(-1,-3,-2),(-1,-2,-4),(-4,-2,-1),(-1,-4,-2),(-2,-4,-1), \\
& \quad(-1,-2,-5),(-5,-2,-1),(-1,-5,-2),(-2,-5,-1),(-1,-3,-3), \\
& \\
& \quad(-3,-3,-1),(-2,-2,-2)\} .
\end{aligned}
$$

Thus, the set of all $\left(-2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v},-1\right)$ constructed in the above analysis is the set $l_{-1}$.

Construction of the set $l_{2}$ : For $(\alpha, \beta)=\left(-2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}, 2\right)$ to factor through $M_{3}$ we need $(\alpha, \beta)$ to have a subfilling instruction displayed in (3.29). Comparing all elements of (3.29) with the possible subfillings of $(\alpha, \beta)=\left(-2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}, 2\right)$, recalling that $\left[\left(\left(\frac{a}{b}\right)_{i},\left(\frac{c}{d}\right)_{j}\right)\right]=\left\{\left.\left(\left(\frac{a}{b}\right)_{\sigma(i)},\left(\frac{c}{d}\right)_{\sigma(j)}\right) \right\rvert\, \sigma \in\right.$ $\left.D_{5}\right\}$, and using the restrictions from (3.33), we see that for $(\alpha, \beta)=\left(-2, \frac{p}{q}\right.$, $\left.\frac{r}{s}, \frac{u}{v}, 2\right)$ to factor through $M_{3}$ we need one of $\frac{p}{q}, \frac{r}{s}$ to be in $\left\{-2,-\frac{1}{2}\right\}$ or $\frac{u}{v} \in\left\{\frac{1}{3}, \frac{2}{3}\right\}$. We construct all $(\alpha, \beta)$ for each of these 6 cases individually. The number of subcases is controlled by (3.33).

If $\frac{p}{q}=-2$ then

$$
M_{5}(\alpha)(\beta) \underset{2.40}{=} M_{5}\left(\frac{3}{2}, \frac{r-s}{r}, \frac{v}{v-u},-2,-1\right) \underset{2.3}{=} M_{3}\left(\frac{7}{2}, \frac{r-s}{r}, \frac{2 v-u}{v-u}\right) .
$$

By (3.33) we have $\frac{r-s}{r} \notin\left\{\infty, 0,1,2, \frac{1}{2},-1\right\}$ and $\frac{2 v-u}{v-u} \notin\left\{2, \infty, 1, \frac{3}{2}, 0,3\right\}$. From Theorem 2.6 and (3.33) we see that $\beta=2$ is an exceptional slope on $M_{5}(\alpha)$ if and only if one of the following holds; $\frac{r-s}{r}=3,\left(\frac{r-s}{r}, \frac{2 v-u}{v-u}\right)=\left(\frac{3}{2}, \frac{5}{2}\right)$, $\left(\frac{r-s}{r}, \frac{2 v-u}{v-u}\right)=\left(4, \frac{1}{2}\right)$.

If $\frac{p}{q}=-\frac{1}{2}$ then

$$
M_{5}(\alpha)(\beta) \underset{2.37}{=} M_{5}\left(\frac{u}{u-v}, \frac{s-r}{s},-\frac{1}{2},-2,-1\right) \underset{(2.3)}{=} M_{3}\left(\frac{3 u-2 v}{u-v}, \frac{s-r}{s}, \frac{1}{2}\right) .
$$

From Theorem 2.6 and $(3.33)$ we see that $\beta=2$ is an exceptional slope on $M_{5}(\alpha)$ if and only if one of the following holds; $\frac{s-r}{s}=3, \frac{3 u-2 v}{u-v}=0, \frac{s-r}{s}=4$, $\left(\frac{s-r}{s}, \frac{3 u-2 v}{u-v}\right)=\left(\frac{5}{2}, \frac{3}{2}\right),\left(\frac{s-r}{s}, \frac{3 u-2 v}{u-v}\right)=(5,5)$.

If $\frac{r}{s}=-2$ then

$$
M_{5}(\alpha)(\beta) \underset{(2.33)}{=} M_{5}\left(-1,-2, \frac{1}{3}, \frac{p-q}{p}, \frac{u-v}{u}\right) \underset{(2.3)}{=} M_{3}\left(\frac{4}{3}, \frac{p-q}{p}, \frac{3 u-v}{u}\right) .
$$

From Theorem 2.6 and 3.33 we see that $\beta=2$ is an exceptional slope on $M_{5}(\alpha)$ if and only if one of the following holds; $\frac{p-q}{p}=3, \frac{3 u-v}{u}=0$, $\left(\frac{p-q}{p}, \frac{3 u-v}{u}\right)=\left(4, \frac{1}{2}\right),\left(\frac{p-q}{p}, \frac{3 u-v}{u}\right)=\left(\frac{5}{2}, \frac{3}{2}\right)$.

If $\frac{r}{s}=-\frac{1}{2}$ then

$$
M_{5}(\alpha)(\beta) \underset{2.30}{=} M_{5}\left(-2,-1, \frac{2}{3}, \frac{q-p}{q}, \frac{v}{u}\right) \underset{2.3}{=} M_{3}\left(\frac{8}{3}, \frac{q-p}{q}, \frac{v+u}{u}\right) .
$$

From Theorem 2.6 and (3.33) we see that $\beta=2$ is an exceptional slope on $M_{5}(\alpha)$ if and only if one of the following holds; $\frac{q-p}{q}=3,\left(\frac{q-p}{q}, \frac{v+u}{u}\right)=\left(4, \frac{1}{2}\right)$, $\left(\frac{q-p}{q}, \frac{v+u}{u}\right)=\left(\frac{3}{2}, \frac{5}{2}\right)$.

If $\frac{u}{v}=\frac{1}{3}$ then

$$
M_{5}(\alpha)(\beta) \underset{(2.33)}{=} M_{5}\left(-1, \frac{r}{s}, \frac{1}{3}, \frac{p-q}{p},-2\right) \underset{2.3)}{=} M_{3}\left(\frac{r+2 s}{s}, \frac{1}{3}, \frac{2 p-q}{p}\right) .
$$

From Theorem 2.6 and (3.33) we see that $\beta=2$ is an exceptional slope on $M_{5}(\alpha)$ if and only if one of the following holds; $\frac{r+2 s}{s}=0,\left(\frac{r+2 s}{s}, \frac{2 p-q}{p}\right)=$ $\left(\frac{1}{2}, 4\right),\left(\frac{r+2 s}{s}, \frac{2 p-q}{p}\right)=\left(\frac{3}{2}, \frac{5}{2}\right),\left(\frac{r+2 s}{s}, \frac{2 p-q}{p}\right)=(-1,-1),\left(\frac{r+2 s}{s}, \frac{2 p-q}{p}\right)=(-1,4)$.

If $\frac{u}{v}=\frac{2}{3}$ then

$$
M_{5}(\alpha)(\beta) \underset{2.37}{=} M_{5}\left(-2, \frac{s-r}{s},-\frac{1}{2}, \frac{q}{p},-1\right) \underset{2.3}{=} M_{3}\left(\frac{2 s-r}{s},-\frac{1}{2}, \frac{2 p+q}{p}\right)
$$

From Theorem 2.6 and 3.33 we see that $\beta=2$ is an exceptional slope on $M_{5}(\alpha)$ if and only if one of the following holds; $\frac{2 p+q}{p}=0,\left(\frac{2 s-r}{s}, \frac{2 p+q}{p}\right)=$ $(-1,-1),\left(\frac{2 s-r}{s}, \frac{2 p+q}{p}\right)=\left(4, \frac{1}{2}\right),\left(\frac{2 s-r}{s}, \frac{2 q+p}{p}\right)=\left(\frac{5}{2}, \frac{3}{2}\right)$.

Thus, the set of all $\left(-2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}, 2\right)$ constructed in the above analysis is the set $l_{2}$.

Construction of the set $l_{\frac{1}{2}}$ : Reasoning as in the case $\beta=2$, we use the restrictions from (3.33) and the fact that $(\alpha, \beta)=\left(-2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{1}{2}\right)$ factors through $M_{3}$ when $(\alpha, \beta)$ contains a filling instruction shown in (3.29). The result is that if $(\alpha, \beta)$ factors through $M_{3}$ then we need one of $\frac{p}{q}, \frac{r}{s}$ is in $\left\{\frac{1}{3}, \frac{2}{3}\right\}$ or $\frac{u}{v} \in\left\{\frac{3}{2}, 3\right\}$. We examine each of these 6 cases individually and enumerate all $\left(-2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{1}{2}\right)$ that satisfy 3.33 .

If $\frac{p}{q}=\frac{1}{3}$ then

$$
M_{5}(\alpha)(\beta) \underset{2.36}{=} M_{5}\left(\frac{v}{v-u},-2, \frac{s}{s-r},-2,-1\right) \underset{(2.3)}{=} M_{3}\left(\frac{3 v-2 u}{v-u}-2, \frac{2 s-r}{s-r}\right)
$$

Theorem 2.6 and 3.33 tell us that $\beta=\frac{1}{2}$ is an exceptional slope on $M_{5}\left(-2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}\right)$ if and only if one of the following holds; $\frac{3 v-2 u}{v-u}=0$, $\left(\frac{3 v-2 u}{v-u}, \frac{2 s-r}{s-r}\right)=(-1,-1), \quad\left(\frac{1}{2}, 4\right), \quad\left(\frac{3}{2}, \frac{5}{2}\right), \quad(-1,-2), \quad(-2,-1), \quad(-1,-3)$, $(-3,-1),(-1,-4),(-4,-1),(-1,-5),(-5,-1),(-2,-2),(-3,-3)$.

If $\frac{p}{q}=\frac{2}{3}$ then

$$
M_{5}(\alpha)(\beta) \underset{(2.34}{=} M_{5}\left(\frac{2}{3}, \frac{r}{r-s},-1,-2, \frac{u}{u-v}\right) \underset{(2.3)}{=} M_{3}\left(\frac{2}{3}, \frac{3 r-2 s}{r-s}, \frac{2 u-v}{u-v}\right)
$$

Theorem 2.6 and 3.33 tell us that $\beta=\frac{1}{2}$ is an exceptional slope on $M_{5}(-$ $\left.2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}\right)$ if and only if one of the following holds; $\frac{3 r-2 s}{r-s}=0,\left(\frac{3 r-2 s}{r-s}, \frac{2 u-v}{u-v}\right)=$ $(-1,-1),\left(\frac{3}{2}, \frac{5}{2}\right),\left(\frac{1}{2}, 4\right)$.

If $\frac{r}{s}=\frac{1}{3}$ then

$$
M_{5}(\alpha)(\beta) \underset{2.31}{=} M_{5}\left(\frac{1}{3},-1,-2, \frac{q}{q-p}, \frac{u}{v}\right) \underset{(2.3}{=} M_{3}\left(\frac{7}{3}, \frac{2 q-p}{q-p}, \frac{u}{v}\right) .
$$

Theorem 2.6 and 3.33 ) tell us that $\beta=\frac{1}{2}$ is an exceptional slope on $M_{5}(-$ $\left.2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}\right)$ if and only if one of the following holds; $\frac{u}{v}=3,\left(\frac{u}{v}, \frac{2 q-p}{q-p}\right)=\left(\frac{3}{2}, \frac{5}{2}\right)$, $\left(\frac{3}{2}, \frac{7}{3}\right),\left(4, \frac{1}{2}\right)$.

If $\frac{r}{s}=\frac{2}{3}$ then

$$
M_{5}(\alpha)(\beta) \underset{(2.34}{=} M_{5}\left(\frac{2}{3},-2,-1, \frac{p}{p-q}, \frac{u}{u-v}\right) \underset{(2.3)}{=} M_{3}\left(\frac{5}{3}, \frac{3 p-2 q}{p-q}, \frac{u}{u-v}\right)
$$

Theorem 2.6 and 3.33 tell us that $\beta=\frac{1}{2}$ is an exceptional slope on $M_{5}(-$ $\left.2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}\right)$ if and only if one of the following holds; $\frac{3 p-2 q}{p-q}=0, \frac{u}{u-v}=3$, $\left(\frac{3 p-2 q}{p-q}, \frac{u}{u-v}\right)=\left(\frac{3}{2}, \frac{5}{2}\right),\left(\frac{1}{2}, 4\right),\left(\frac{5}{3}, \frac{5}{2}\right)$.

If $\frac{u}{v}=\frac{3}{2}$ then

$$
M_{5}(\alpha)(\beta) \underset{(2.36}{=} M_{5}\left(-2,-2, \frac{s}{s-r}, \frac{p-q}{p},-1\right) \underset{2.3}{=} M_{3}\left(-1, \frac{s}{s-r}, \frac{3 p-q}{p}\right) .
$$

Theorem 2.6 and 3.33 tell us that $\beta=\frac{1}{2}$ is an exceptional slope on $M_{5}(-$ $2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}$ if and only if one of the following holds; $\frac{s}{s-r}=3, \frac{3 p-q}{p}=0,-1$, $\left(\frac{s}{s-r}, \frac{3 p-q}{p}\right)=\left(\frac{5}{2}, \frac{3}{2}\right),\left(4, \frac{1}{2}\right),(-2,-2),(-2,-3),(-3,-2),(-2,-4),(-4,-2)$, $(-2,-5),(-5,-2),\left(4, \frac{1}{3}\right),(-3,-3)$.

If $\frac{u}{v}=3$ then

$$
M_{5}(\alpha)(\beta) \underset{2.32}{=} M_{5}\left(-1,3, \frac{s}{r}, \frac{q}{p},-2\right) \underset{2.3}{=} M_{3}\left(5, \frac{s}{r}, \frac{q+p}{p}\right)
$$

Theorem 2.6 and 3.33 tell us that $\beta=\frac{1}{2}$ is an exceptional slope on $M_{5}(-$ $\left.2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}\right)$ if and only if one of the following holds; $\frac{s}{r}=3,\left(\frac{s}{r}, \frac{q+p}{p}\right)=\left(\frac{3}{2}, \frac{5}{2}\right)$, $\left(4, \frac{1}{2}\right),\left(5, \frac{1}{2}\right)$.

Thus, the set of all $\left(-2, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{1}{2}\right)$ constructed in the above analysis is the set $l_{\frac{1}{2}}$.

This completes the construction of $l \cup l_{-1} \cup l_{\frac{1}{2}} \cup l_{2}$ and the sets $\left\{\left(M_{5}(\alpha)\right.\right.$, $\left.E\left(M_{5}(\alpha)\right)\right\}$ are now easily computed. The last step is to reduce the size of $\left\{\left(M_{5}(\alpha), E\left(M_{5}(\alpha)\right)\right\}\right.$ using 2.23)-2.27). Namely, only one $\left(M_{5}(\alpha)\right.$, $E\left(M_{5}(\alpha)\right)$ is shown for each $\llbracket \alpha \rrbracket$. This is done using Lemma 2.7 with the help of an ad hoc Python script Rou2.

The reduced list of fillings is shown in Tables 6-10. This completes the proof of Theorem 3.1.

The elementary techniques used to prove Theorem 3.1 can obviously be applied to describe all $E\left(M_{5}(\alpha)\right)$ when $\alpha$ factors through $M_{4}$ but $\alpha$ does not factor through $M_{3}$.
3.1.2. Proof of Theorem 3.3 . We first establish (3.4)-(3.7). For (3.4) we have

$$
M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \infty\right)=M_{5}\left(\frac{a-b}{b},-1, \frac{c-d}{d}, \frac{e}{f}, \infty\right)=F\left(\frac{b-a}{b}, \frac{d}{c-d},-1,-\frac{e}{f}\right)
$$

For (3.5) we have

$$
\begin{align*}
& M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, 2\right)=M_{5}\left(-1, \frac{a-b}{b}, \frac{c}{d}, \frac{e}{f}, 1\right) \stackrel{=}{=} F\left(-2, \frac{a-b}{b}, \frac{c}{d}, \frac{e-f}{f}\right)  \tag{3.34}\\
&= \\
&\left.=2 . \frac{a-b}{b}, \frac{c}{d}, \frac{e-f}{f},-2\right) .
\end{align*}
$$

For (3.6) we have

$$
M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, 1\right) \underset{(2.1)}{=} M_{5}\left(\frac{a-b}{b},-1, \frac{c-d}{d}, \frac{e}{f}, 1\right) \underset{(2.5}{=} F\left(\frac{a-2 b}{b},-1, \frac{c-d}{d}, \frac{e-f}{f}\right) .
$$

For (3.7) we have

$$
\begin{gather*}
\quad M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, 0\right)=M_{5}\left(\frac{a-b}{b},-1, \frac{c-d}{d}, \frac{e}{f}, 0\right) \\
=M_{5}\left(\frac{d}{c-d}, 1, \frac{a-b}{a-2 b}, 2, \frac{f}{e}\right) \underset{2.2}{=} F\left(\frac{2 d-c}{c-d}, \frac{b}{a-2 b}, 2, \frac{f}{e}\right) \tag{3.35}
\end{gather*}
$$

We now examine the set of exceptional slopes on fillings of $M_{4}$ not factoring through $M_{3}$. We let $\alpha$ be a hyperbolic surgery instruction on 4 CL containing at least one $\varnothing$ not factoring through $M_{3}$. We know from (2.1) that $M_{5}(-1)=M_{4}$. So we let $\alpha^{\prime}=\left(-1, \alpha_{2}^{\prime}, \alpha_{3}^{\prime}, \alpha_{4}^{\prime}, \varnothing\right)$ be such that $M_{4}(\alpha)=M_{5}\left(\alpha^{\prime}\right)$. The argument can now proceed exactly as in the proof of Theorem 3.1 to enumerate the $E\left(M_{5}\left(\alpha^{\prime}\right)\right)$.

Theorem 3.1 implies that every $\beta^{\prime} \in\{-1,0,1, \infty\}$ is an exceptional slope on $M_{5}\left(\alpha^{\prime}\right)$. So, $e\left(M_{5}\left(\alpha^{\prime}\right)\right) \geq 4$ and, with respect to the choice of basis induced from $M_{5},\{-1,0,1, \infty\} \subseteq E\left(M_{5}\left(\alpha^{\prime}\right)\right)$.

As in the proof of Theorem 3.1, (3.29) imposes restrictions on the $\alpha_{i}^{\prime}$. The condition that $M_{5}\left(\alpha^{\prime}\right)$ is hyperbolic with $\alpha$ not factoring through $M_{3}$ means that no instruction properly contained in $\alpha$ contains an instruction in 【(1)】 (see Theorem 3.1) or $\llbracket\left(-1_{1},-2_{2}\right) \rrbracket($ see 3.29$)$ or $\llbracket\left(-1_{1},-1_{2}\right) \rrbracket$ (see Table 1.1.4 from [Rou1]). This imposes the restrictions

$$
\begin{align*}
& \alpha_{2}^{\prime} \notin\left\{-2,-1,-\frac{1}{2}, 0, \frac{1}{2}, 1,2, \infty\right\} \quad \text { and }  \tag{3.36}\\
& \alpha_{3}^{\prime}, \alpha_{4}^{\prime} \notin\left\{-1,0, \frac{1}{2}, 1, \frac{3}{2}, 2,3, \infty\right\} .
\end{align*}
$$

If $\beta^{\prime}$ is an exceptional slope on $M_{5}\left(\alpha^{\prime}\right)$, then $\left(\alpha^{\prime}, \beta^{\prime}\right)$ contains an isolated filling instruction. By Theorem 3.1, $\beta^{\prime} \in\{-1,0,1, \infty\}$, or $\left(\alpha^{\prime}, \beta^{\prime}\right)$ factors through $M_{3}$, or $\left(\alpha^{\prime}, \beta^{\prime}\right)$ is equivalent to $(-1,-3,-2,-2,-3)$. This implies that $\beta^{\prime}$ is in one of $\llbracket(1) \rrbracket, \llbracket(-1) \rrbracket, \llbracket(-2) \rrbracket$ or, by Lemma 2.7, that $\left(\alpha^{\prime}, \beta^{\prime}\right)$ is one of $(-1,-3,-2,-2,-3),\left(-1, \frac{1}{3}, \frac{4}{3}, \frac{4}{3}, \frac{1}{3}\right),\left(-1,-\frac{1}{3}, 4, \frac{2}{3}, 3\right),\left(-1,3, \frac{2}{3}, 4,-\frac{1}{3}\right)$.

If $\left(\alpha^{\prime}, \beta^{\prime}\right)$ factors through $M_{3}$, then (3.29) in conjunction with (3.36) tells us that $\beta^{\prime}$ is in $\left\{-2,-\frac{1}{2}, \frac{1}{2}, 2\right\}$. Every slope in $\left\{-2,-\frac{1}{2}, \frac{1}{2}, 2\right\}$ is examined individually as in the proof of Theorem 3.1 to obtain a complete list of all $\left(M_{5}\left(\alpha^{\prime}\right), E\left(M_{5}\left(\alpha^{\prime}\right)\right)\right)$ pairs that have $\alpha^{\prime}=\left(-1, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \varnothing\right), M_{5}\left(\alpha^{\prime}\right)$ hyperbolic with $\alpha^{\prime}$ not factoring through $M_{3}$ and $e\left(M_{5}\left(\alpha^{\prime}\right)\right)>4$. The result of the enumeration is that $\beta^{\prime}=-2$ is an exceptional slope on $M_{5}\left(\alpha^{\prime}\right)$ if and only if $\alpha^{\prime}$ is one of

$$
\begin{gathered}
\left(-1,-\frac{3}{2}, 4, \frac{u}{v}\right),\left(-1, \frac{p}{q}, 4,-\frac{1}{2}\right),\left(-1,-3, \frac{r}{s},-2\right),\left(-1,-\frac{3}{2}, 5,4\right), \\
\left(-1,3,5,-\frac{1}{2}\right),\left(-1,-3,4,-\frac{2}{3}\right),\left(-1,-\frac{5}{3}, 4,-2\right),(-1,-4,-2,-3), \\
\left(-1,-\frac{1}{3}, \frac{5}{2}, \frac{2}{3}\right),(-1,-3,-2,-3),(-1,-4,-2,-2),(-1,-3,-2,-4), \\
(-1,-3,-3,-3),(-1,-4,-3,-2),(-1,-5,-2,-2),(-1,-3,-2,-5), \\
(-1,-3,-4,-3),(-1,-4,-4,-2),(-1,-6,-2,-2),(-1,-3,-2,-6), \\
(-1,-3,-5,-3),(-1,-4,-5,-2),(-1,-7,-2,-2),(-1,-3,-3,-4), \\
(-1,-5,-3,-2)
\end{gathered}
$$

$\beta^{\prime}=-\frac{1}{2}$ is an exceptional slope on $M_{5}\left(\alpha^{\prime}\right)$ if and only if $\alpha^{\prime}$ is one of

$$
\begin{gathered}
\left(-1,3, \frac{r}{s}, 4\right),\left(-1, \frac{3}{2}, \frac{4}{3}, \frac{u}{v}\right),\left(-1, \frac{p}{q}, \frac{4}{3}, \frac{5}{2}\right),\left(-1, \frac{3}{2}, \frac{5}{4},-2\right),\left(-1,-3, \frac{5}{4}, \frac{5}{2}\right), \\
\left(-1,3, \frac{4}{3}, \frac{8}{3}\right),\left(-1, \frac{5}{3}, \frac{4}{3}, 4\right),\left(-1, \frac{1}{3}, \frac{5}{3}, \frac{4}{3}\right),\left(-1,3, \frac{2}{3}, 5\right),\left(-1,4, \frac{2}{3}, 4\right),\left(-1,3, \frac{2}{3}, 6\right), \\
\left(-1,3, \frac{3}{4}, 5\right),\left(-1,4, \frac{3}{4}, 4\right),\left(-1,5, \frac{2}{3}, 4\right),\left(-1,3, \frac{2}{3}, 7\right),\left(-1,3, \frac{4}{5}, 5\right),\left(-1,6, \frac{2}{3}, 4\right), \\
\left(-1,4, \frac{4}{5}, 4\right),\left(-1,3, \frac{2}{3}, 8\right),\left(-1,3, \frac{5}{6}, 5\right),\left(-1,4, \frac{5}{6}, 4\right),\left(-1,7, \frac{2}{3}, 4\right),\left(-1,3, \frac{3}{4}, 6\right), \\
\left(-1,5, \frac{3}{4}, 4\right),\left(-1,4, \frac{2}{3}, 5\right),
\end{gathered}
$$

$\beta^{\prime}=\frac{1}{2}$ is an exceptional slope on $M_{5}\left(\alpha^{\prime}\right)$ if and only if $\alpha^{\prime}$ is one of

$$
\begin{aligned}
& \left(-1, \frac{1}{3}, \frac{r}{s}, \frac{4}{3}\right),\left(-1, \frac{2}{3}, \frac{2}{3}, \frac{u}{v}\right),\left(-1, \frac{p}{q}, \frac{2}{3}, \frac{5}{3}\right),\left(-1, \frac{2}{3}, \frac{5}{4}, \frac{2}{3}\right),\left(-1,-\frac{1}{3}, \frac{5}{4}, \frac{5}{3}\right), \\
& \left(-1, \frac{1}{3}, \frac{2}{3}, \frac{8}{5}\right),\left(-1, \frac{3}{5}, \frac{2}{3}, \frac{4}{3}\right),\left(-1,3, \frac{1}{3}, 4\right),\left(-1, \frac{1}{3}, \frac{4}{3}, \frac{5}{4}\right),\left(-1, \frac{1}{4}, \frac{4}{3}, \frac{4}{3}\right), \\
& \left(-1, \frac{1}{3}, \frac{4}{3}, \frac{6}{5}\right),\left(-1, \frac{1}{3}, \frac{5}{4}, \frac{5}{4}\right),\left(-1, \frac{1}{4}, \frac{5}{4}, \frac{4}{3}\right),\left(-1, \frac{1}{5}, \frac{4}{3}, \frac{4}{3}\right),\left(-1, \frac{1}{3}, \frac{5}{4}, \frac{6}{5}\right), \\
& \left(-1, \frac{1}{5}, \frac{5}{4}, \frac{4}{3}\right),\left(-1, \frac{1}{4}, \frac{4}{3}, \frac{5}{4}\right),\left(-1, \frac{1}{3}, \frac{4}{3}, \frac{7}{6}\right),\left(-1, \frac{1}{3}, \frac{6}{5}, \frac{5}{4}\right),\left(-1, \frac{1}{4}, \frac{6}{5}, \frac{4}{3}\right), \\
& \left(-1, \frac{1}{6}, \frac{4}{3}, \frac{4}{3}\right),\left(-1, \frac{1}{3}, \frac{4}{3}, \frac{8}{7}\right),\left(-1, \frac{1}{3}, \frac{7}{6}, \frac{5}{4}\right),\left(-1, \frac{1}{4}, \frac{7}{6}, \frac{4}{3}\right),\left(-1, \frac{1}{7}, \frac{4}{3}, \frac{4}{3}\right),
\end{aligned}
$$

and $\beta^{\prime}=2$ is an exceptional slope on $M_{5}\left(\alpha^{\prime}\right)$ if and only if $\alpha^{\prime}$ is one of

$$
\begin{gathered}
\left(-1,-\frac{1}{3}, \frac{r}{s}, \frac{2}{3}\right),\left(-1,-\frac{2}{3},-2, \frac{u}{v}\right),\left(-1, \frac{p}{q},-2, \frac{1}{3}\right),\left(-1,-\frac{2}{3},-3, \frac{4}{3}\right), \\
\left(-1, \frac{1}{3},-3, \frac{1}{3}\right),\left(-1,-\frac{1}{3},-2, \frac{2}{5}\right),\left(-1,-\frac{3}{5},-2, \frac{2}{3}\right),\left(-1,-3,-\frac{1}{2},-2\right), \\
\left(-1,-\frac{1}{3}, 4, \frac{3}{4}\right),\left(-1,-\frac{1}{4}, 4, \frac{2}{3}\right),\left(-1,-\frac{1}{3}, 4, \frac{4}{5}\right),\left(-1,-\frac{1}{3}, 5, \frac{3}{4}\right),\left(-1,-\frac{1}{4}, 5, \frac{2}{3}\right), \\
\left(-1,-\frac{1}{5}, 4, \frac{2}{3}\right),\left(-1,-\frac{1}{3}, 4, \frac{5}{6}\right),\left(-1,-\frac{1}{3}, 6, \frac{3}{4}\right),\left(-1,-\frac{1}{4}, 6, \frac{2}{3}\right),\left(-1,-\frac{1}{6}, 4, \frac{2}{3}\right), \\
\left(-1,-\frac{1}{3}, 4, \frac{6}{7}\right),\left(-1,-\frac{1}{3}, 7, \frac{3}{4}\right),\left(-1,-\frac{1}{4}, 7, \frac{2}{3}\right),\left(-1,-\frac{1}{7}, 4, \frac{2}{3}\right),\left(-1,-\frac{1}{3}, 5, \frac{4}{5}\right), \\
\left(-1,-\frac{1}{5}, 5, \frac{2}{3}\right),\left(-1,-\frac{1}{4}, 4, \frac{3}{4}\right) .
\end{gathered}
$$

As with the proof of Theorem 3.1, Identities (2.23)-2.27) are used to identify equivalent filling instructions.

The final step is to use (2.1) to obtain the filling instructions on $M_{4}$ and exceptional slopes shown in Table 11. Namely, the enumerated $M_{5}\left(\alpha^{\prime}\right)=$ $M_{5}\left(-1, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \varnothing\right)$ and $E\left(M_{5}\left(\alpha^{\prime}\right)\right)=\left\{\beta_{i}\right\}$ are identified with $M_{4}\left(\frac{p}{q}+1, \frac{r}{s}\right.$, $\left.\frac{u}{v}, \varnothing\right)$ and $E\left(M_{4}\left(\frac{p}{q}+1, \frac{r}{s}, \frac{u}{v}, \varnothing\right)\right)=\left\{\beta_{i}+1\right\}$ respectively. These $M_{4}(\alpha)$, $E\left(M_{4}(\alpha)\right)$ are shown in Table 12 .

Remark 3.7. The reduced list in Theorem 3.3 is surprisingly small (see Table 12. This occurs as the fillings listed above with $\pm 2, \pm \frac{1}{2}$ are equivalent.

This can be seen by setting $i=2$ and $j=1$ below;

$$
\begin{aligned}
M_{5}\left(-1, \frac{v-u}{v}, \frac{r}{r-s}, \frac{q-p}{q}, \frac{j}{i}\right) & =M_{5}\left(-1, \frac{p}{q}, \frac{r}{s}, \frac{u}{v}, \frac{i}{j}\right) \\
& =M_{5}\left(\frac{p+q}{q}, \frac{r-s}{s},-1, \frac{u-v}{v}, \frac{i+j}{j}\right) \\
& =2.26 \\
& =M_{5}\left(-1, \frac{v}{u-v}, \frac{2 s-r}{s}, \frac{p+q}{p},-\frac{i}{j}\right) \\
& =1.30 \\
& =2.39
\end{aligned} M_{5}\left(-1,-\frac{q}{p}, \frac{2 s-r}{s-r}, \frac{u-2 v}{u-v},-\frac{j}{i}\right)
$$

The only filling instructions that appear in more than one of the above lists are $\left(-1,-3,-\frac{1}{2},-2\right)$ and $(-1,-3,-2,-2)$.

## 4. Families of cusped manifolds and proof of Theorem 1

We finish by showing that Theorem 1.1 will fall out as a consequence of Theorems 3.1 and 3.3 . We remarked in Section 1.1 that statements $(i)-$ (iv) from Theorem 1.1 are shown to hold for all hyperbolic $M_{3}(\alpha)$ in the Appendix of [MP]. Thus, we must show that Theorem $1.1(i)-(v)$ hold for all hyperbolic $M_{5}(\alpha)$ when $\alpha$ does not factor through $M_{3}$.

To prove Theorem 1.1 we will need to know the class of every $M_{5}(\alpha)(\beta)$ for $\beta \in E\left(M_{5}(\alpha)\right)$ when $\alpha$ is found in Tables 611 and $M_{4}(\alpha)(\beta)$ for $\beta \in$ $E\left(M_{4}(\alpha)\right)$ when $\alpha$ is found in Tables 12 . Theorems 3.1 and 3.3 together with Proposition 2.3 make this straightforward. To simplify matters we will say that a slope $\alpha_{i}$ on the boundary component of a manifold $M$ is of type $\mathcal{C}$ if $M\left(\alpha_{i}\right) \in \mathcal{C}$, and that a set of exceptional slopes $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ is of type $\left\{\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right\}$ when $\alpha_{i}$ is of type $\mathcal{C}_{i}$ for each $i$. The results are shown in Tables 14,22.

As highlighted in the introduction, Tables 14,22 are of interest in their own right. Among other families, we highlight the family $M_{5}\left(-2, k, 3, \frac{k+1}{3 k+2}\right)$ of hyperbolic knot exteriors in $S^{3}$ with consecutive integral toroidal, type $Z$, toroidal fillings (see Table 17), the family $M_{5}\left(-2, \frac{3}{2}, \frac{3}{2}, \frac{3+14 k}{1+5 k}\right)$ of hyperbolic knot exteriors in $S^{3}$ with three consecutive integral toroidal fillings (see Table 15), the family $M_{5}\left(-2, \frac{1}{k}, 3, \frac{k-1}{k}\right)$ with three type $Z$ fillings and a reducible surgery (see Table 17), the family $M_{4}\left(-2, \frac{1}{k},-2\right)$ with four type $Z$ exceptional fillings and a toroidal filling (see Table 22), and the family $M_{5}\left(-2, \frac{1}{k}, 3, \varnothing\right)$ of 2-cusped manifolds with four annular fillings on the $5^{\text {th }}$ cusp (see Table 17). These families are distinct from any obtained in MP] because all hyperbolic fillings of $M_{3}$ have at least five exceptional slopes and a cyclic filling. As highlighted in the introduction, families with the same
filling types as the first three families have already been constructed, see Section 1 for references. The exceptional fillings of these families are written down using Proposition 3.5 and shown in Table 13 .

### 4.1. Proof of Theorem $1.1(i i)-(i v)$

The maximal distance between a lens space slope and a toroidal slope is known to be either three or four Lee. Theorems 3.1 and 3.3 show that the only two $M_{5}(\alpha)$ with $\alpha$ not factoring through $M_{3}$ with two exceptional slopes $\beta, \gamma$ at distance greater than 3 are $M_{4}(-2,-2,-2)$ with $\beta=-2$ and $\gamma=2$ and $M_{4}\left(-2,-\frac{1}{2},-2\right)$ with $\beta=-1$ and $\gamma=3$. In all cases the fillings are toroidal (see Table 21). So statement (ii) holds.

Theorems 3.1 and 3.3 tell us that if $e\left(M_{5}(\alpha)\right) \geq 6$ then $\alpha$ factors through $M_{3}$. So statement (iii) holds.

It is well known that the distance between two slopes $\frac{p}{q}$ and $\frac{r}{s}$ is $\mid p s-$ $r q \mid$ (see [Sti]). From Theorems 3.1 and 3.3 , if the distance between two exceptional slopes on $M_{5}(\alpha)$ is greater than 4 then $\alpha$ factors through $M_{3}$. So statement (iv) holds.

### 4.2. Proof of Theorem 1.1 ( $v$ )

We now consider the non-prime fillings on $M_{5}$. We see directly from Tables 1422 that if $M_{5}(f)$ has two exceptional non-prime slopes $\alpha, \beta$ then $\alpha, \beta \in\{0,1, \infty\}$ or $M_{5}(f)=M_{4}(g)$ for some filling instruction $g$ and $\alpha, \beta \in$ $\{0,1,2, \infty\}$. In all cases, the non-prime filling is described as a filling of $F$ by (3.1)-3.7). From Proposition 2.3, $F\left(\frac{i}{j}, \frac{k}{l}, \frac{n}{m}, \frac{t}{w}\right)$ is non-prime if and only if one of $\frac{l}{j}, \frac{k}{l}, \frac{n}{m}, \frac{t}{w}$ is zero or one of $\left\{\frac{i}{j}, \frac{n}{m}\right\},\left\{\frac{k}{l}, \frac{t}{w}\right\}$ equals $\left\{\frac{1}{\eta},-\frac{1}{\eta}\right\}$ for some $\eta \in \mathbb{Z}$.

If $F\left(\frac{i}{j}, \frac{k}{l}, \frac{n}{m}, \frac{t}{w}\right)=M_{5}(f)(\alpha)$ or $F\left(\frac{i}{j}, \frac{k}{l}, \frac{n}{m}, \frac{t}{w}\right)=M_{4}(g)(\beta)$ and one of $\frac{i}{j}, \frac{k}{l}, \frac{n}{m}, \frac{t}{w}$ is the zero slope then, by (3.1) 3.7), one of the slopes in $f$ is in $0,1, \infty$ or one of the slopes in $g$ is in $\{0,1,2, \infty\}$ which makes $M_{5}(f)$ and $M_{4}(g)$ non-hyperbolic by Theorems 3.1 and 3.3 .

By (3.4) and Proposition 2.3, if $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \neq 0$ then $M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)(\infty)$ is reducible if and only if $\frac{b-a}{b}=1 \Rightarrow \frac{a}{b}=0$ making $M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)$ non-hyperbolic by Theorem 3.3. In the same way, if $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \neq 0$ then $M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)(2)$ is nonprime if and only if $\frac{e}{f}=2$ which makes $M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)$ non-hyperbolic by Theorem 3.3. The remaining pair of possible exceptional slopes on $M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)$ are 0 and 2. If both 0 and 2 are non-prime slopes and $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \neq 0$ then both $\frac{e-f}{f}=\frac{1}{n}$ and $\frac{f}{e}=\frac{1}{m}$ for some integers $n, m$ by 3.5 and 3.7 respectively.

This implies that $\frac{e}{f} \in\{0,2\}$ which makes $M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)$ non-hyperbolic by Theorem 3.3,

The final case to consider is when $M_{5}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}\right)$ has a non-prime pair of slopes in $\{0,1, \infty\}$ and the non-prime fillings $F(\delta)$ and $F(\epsilon)$ have no zero slopes in $\delta$ or $\epsilon$. Namely, two of
(a) $\left(\frac{1}{n}, \frac{1}{n}\right) \in\left\{\left(-\frac{a}{b}, \frac{d}{c}\right),\left(\frac{f}{e},-\frac{g}{h}\right)\right\}$
(b) $\left(\frac{1}{m}, \frac{1}{m}\right) \in\left\{\left(\frac{a-b}{b}, \frac{e}{f}\right),\left(\frac{c}{d}, \frac{g-h}{h}\right)\right\}$
(c) $\left(\frac{1}{k}, \frac{1}{k}\right) \in\left\{\left(\frac{b}{b-a},-\frac{h}{g}\right),\left(\frac{c-d}{c}, \frac{e-f}{f}\right)\right\}$
must hold. Each of (a), (b), (c) can hold in two ways. In all twelve ways that two of (a), (b), (c) hold, we find $\{0,1, \infty\} \cap\left\{\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right\} \neq \emptyset$ which makes $M_{5}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}\right)$ non-hyperbolic by Theorem 2.4 or that $\left\{-1, \frac{1}{2}, 2\right\} \cap\left\{\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right\}$ $\neq \emptyset$ which makes $\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}\right)$ factors through $M_{4}$ by 3.30 .

Finally, $M_{3}$ does not have any exceptional reducible pairs (see Table 16 in the Appendix of (MP]). So statement ( $v$ ) holds.

### 4.3. Proof of Theorem 1.1 (i)

We first consider the $M_{5}(\alpha)$ and $M_{4}(\alpha)$ from Tables 14.22 with a nonprime $\beta$ not in $\{0,1, \infty\}$ or $\{0,1,2, \infty\}$ respectively. We will show that for such $M_{5}(\alpha), \beta$ no $M_{5}(\alpha)(\gamma)=S^{3}$ for $\gamma \in\{0,1, \infty\}$, and for such $M_{4}(\alpha), \beta$ no $M_{4}(\alpha)(\gamma)=S^{3}$ for $\gamma \in\{0,1,2, \infty\}$.

From Tables $14-21$ we see that the only $M_{5}(\alpha)$ or $M_{4}(\alpha)$ with one boundary component with $\beta$ non-prime not in $\{0,1, \infty\}$ or $\{0,1,2, \infty\}$ respectively are $M_{5}(-2,-n, n+3,-2)$ with $n \notin\{-4,-3,-2,-1,0,1\}$ and $\beta=-1$ (found in Table 18). It is easy to see from Table 18 that the remaining exceptional slopes are $0,1, \infty$ none of which give an $S^{3}$ filling. In particular, using Table 18, $M_{5}(-2, n, n-3,-2,0)$ is of type $Z, M_{5}(-2, n, n-3,-2,1)$ is toroidal, and $M_{5}(-2, n, n-3,-2, \infty)$ is of type $T^{H}$. This shows that if $\beta$ is a non-prime slope on $M_{5}(\alpha)$ or $M_{4}(\alpha)$ then $\beta$ is in $\{0,1, \infty\}$ or $\{0,1,2, \infty\}$ respectively.

Tables 1421 show no $M_{5}(\alpha)$ and $M_{4}(\alpha)$ has an $S^{H}$ slope $\beta$ not in $\{0,1, \infty\}$ or $\{0,1,2, \infty\}$ respectively. So, to conclude statement ( $i$ ) for hyperbolic $M_{5}(\alpha)$ we need to show that no $M_{5}(\alpha)$ has non-prime and $S^{H}$ slopes in $\{0,1, \infty\}$ and no $M_{4}(\alpha)$ has a non-prime and $S^{H}$ slopes in $\{0,1,2, \infty\}$.

We already know that an instruction $\alpha$ on $M_{5}$ factors through $M_{3}$ when $\alpha$ contains an instruction in $\llbracket\left((-1)_{1},(-2)_{2}\right) \rrbracket$. If $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ is an instruction on $M_{4}$ that factors through $M_{3}$ then the filling instruction $\alpha^{\prime}=$ $\left(-1, \alpha_{1}-1, \alpha_{2}, \alpha_{3}, \alpha_{4}-1\right)\left(\right.$ where $\alpha_{i}-1=\varnothing$ if $\alpha_{i}=\varnothing$ for $\left.i=1,4\right)$ on $M_{5}$
factors through $M_{3}$. Looking at 3.29 we see that if a filling instruction $\alpha$ on $M_{4}$ contains a slope in $\left\{-1,3, \frac{3}{2}, \frac{1}{2}\right\}$ then $\alpha$ factors through $M_{3}$.

We have

$$
\begin{aligned}
M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{\beta_{1}}{\beta_{2}}\right) & =M_{5}\left(-1, \frac{a-b}{b}, \frac{c}{d}, \frac{e}{f}, \frac{\beta_{1}-\beta_{2}}{\beta_{2}}\right) \\
& =M_{5}\left(\frac{f}{f-e},-1, \frac{d}{d-c}, \frac{a-2 b}{a-b}, \frac{\beta_{1}-2 \beta_{2}}{\beta_{1}-\beta_{2}}\right) \\
& =2.36 \\
& =2.26 \\
& \left.=1, \frac{f}{f-e}, \frac{2 d-c}{d-c}, \frac{a-2 b}{a-b}, \frac{\beta_{2}}{\beta_{2}-\beta_{1}}\right) \\
& =2.1
\end{aligned} M_{4}\left(\frac{2 f-e}{f-e}, \frac{2 d-c}{d-c}, \frac{a-2 b}{a-b}, \frac{2 \beta_{2}-\beta_{1}}{\beta_{2}-\beta_{1}}\right)
$$

So, when $\beta=\frac{\beta_{1}}{\beta_{2}} \in\{0,1,2, \infty\}$ is a non-prime slope on $M_{4}(\alpha)$ with $\alpha$ not factoring through $M_{3}$ we only need to consider $\beta \in\{0,1\}$.

From

$$
\begin{align*}
M_{4}\left(n+2, \frac{c}{d},-n\right)(1) & \underset{\underset{\text { 3.6 }}{=}}{=} F\left(n,-1, \frac{c-d}{d},-n-1\right)  \tag{4.1}\\
& =\left(S^{2},(n, 1),(n+2, n+1),(c-d, d)\right)
\end{align*}
$$

we see that if $M_{4}\left(n+2, \frac{c}{d},-n\right)(1)$ is non-prime then $n=0,-2$ or $\frac{c}{d}=1$ which make $M_{4}\left(n+2, \frac{c}{d},-n\right)$ non-hyperbolic. So, if $M_{4}(\alpha)$ is a hyperbolic knot in $S^{3}$ with a non-prime slope in $\{0,1,2, \infty\}$ then we may assume that the non-prime slope is 0 .

In the case when 0 corresponds to a non-prime filling on $M_{4}(\alpha)$ we have

$$
M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)(0) \underset{(3.7)}{=} F\left(\frac{2 d-c}{c-d}, \frac{b}{a-2 b}, 2, \frac{f}{e}\right)
$$

From Proposition 2.3 we see that if $M_{4}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}\right)(0)$ is non-prime then one of $2 d-c, b, f=0$ or

$$
\begin{equation*}
\frac{b}{a-2 b}=\frac{1}{n}=-\frac{f}{e} \tag{4.2}
\end{equation*}
$$

holds. If $2 d-c=0$ then $\frac{c}{d}=2$ and $\alpha$ factors through $M_{3}$ (using (2.2) on the elements of $(3.29)$. If $b$ or $f$ equal 0 then $\alpha$ is an exceptional filling instruction (see Theorem 3.3). If 4.2 holds then $\frac{a}{b}=2+n$ and $\frac{e}{f}=-n$. For $M_{4}(\alpha)=M_{4}\left(2+n, \frac{c}{d},-n\right)$ to be hyperbolic we require $n \notin\{-2,-1,0\}$ and for $M_{4}(\alpha)$ to not factor through $M_{3}$ we require $n \notin\{-3,-1,1\}$.

When 4.2 holds, the possible $S^{3}$ slopes are $0,1, \infty$. We will now investigate each slope individually. Using Theorem 3.3 and the Proposition 2.3
we have

$$
\left.\begin{array}{rl}
M_{4}\left(n+2, \frac{c}{d},-n\right)(\infty) & \underset{\sqrt{3.4}}{=} F\left(-1-n, \frac{d}{c-d},-1, n\right) \\
& =\text { Table } 4 \\
= \\
\hline
\end{array} S^{2},(2+n, 1+n),(n, 1),(d, c-d)\right) .
$$

So $M_{4}(\alpha)=M_{4}\left(n+2, \frac{c}{d},-n\right)(\infty)$ is of type $Z$ unless $n \in\{-3,-2,-1,0,1\}$ (which means $\alpha$ is exceptional or factors through $M_{3}$ ), or $d \in\{0, \pm 1\}$. If $d=0$ then $\alpha$ is exceptional. If $d= \pm 1$ then $\frac{c}{d} \in \mathbb{Z}$ so we may assume $d=1$ with out loss of generality. If $d=1$ then

$$
M_{4}(\alpha)(\infty) \underset{\sqrt{3.4}}{=} F\left(-1-n, \frac{1}{c-1},-1, n\right) \underset{\text { Table } \llbracket}{=} L\left(c n^{2}+2 c n+2, *\right) .
$$

This means that if $M_{4}(\alpha)(\infty)=S^{3}$ then $n$ divides 1 or 3 . The cases $n=$ $-3, \pm 1$ mean $\alpha$ is exceptional or factors through $M_{3}$. When $n=3$ we require $c \in \mathbb{Z}$ to satisfy $c(3)^{2}+2 c(3)+2= \pm 1$ which is impossible.

From (4.1) we see that $M_{4}\left(n+2, \frac{c}{d},-n\right)(1)$ is of type $Z$ unless $n \in$ $\{-3,-1,0,1\}$ (which make $\alpha$ exceptional or factor through $M_{3}$ ) or $\frac{c}{d}=$ $1+\frac{1}{k}$. When $\frac{c}{d}=1+\frac{1}{k}$ we find that

$$
M_{4}\left(n+2, \frac{c}{d},-n\right)(1) \underset{\text { Table }}{\overline{=}} L\left((k+1) n^{2}+2(k+1) n+2, *\right) .
$$

So, if $M_{4}\left(n+2, \frac{c}{d},-n\right)(1)=S^{3}$ then $n$ divides 1 or 3 . The cases $\pm 1,-3$ are excluded, and the case $n=3$ gives

$$
M_{4}\left(n+2, \frac{c}{d},-n\right)(1)=L(15 k+17, *) \neq S^{3}
$$

for any $k \in \mathbb{Z}$.
We have therefore shown that if $M_{4}(\alpha)$ is hyperbolic with $\alpha$ not factoring through $M_{3}$ with a non-prime slope then $M_{4}(\alpha)$ does not have an $S^{3}$ filling.

The final case to consider is when $M_{5}(\alpha)(\beta)$ is non-prime and $M_{5}(\alpha)(\gamma)=$ $S^{3}$ with $\beta, \gamma \in\{0,1, \infty\}$ where $\alpha$ is a hyperbolic filling instruction that does not factor through $M_{4}$. There are six choices for $\beta$ and $\gamma$ but Lemma 2.7 allows us to assume that $\beta=1$ and $\gamma=0$. We have

$$
M_{5}(\alpha)(1)=M_{5}\left(\frac{a}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g}{h}\right)(1) \underset{ }{=} F\left(\frac{a-b}{b}, \frac{c}{d}, \frac{e}{f}, \frac{g-h}{h}\right)
$$

and

$$
M_{5}(\alpha)(\infty)=M_{5}\left(\frac{n+1}{-n}, \frac{n}{-1}, \frac{d}{c}, \frac{1}{-k}\right)(1)=F\left(-\frac{a}{b}, \frac{f}{e}, \frac{d}{c},-\frac{g}{h}\right) .
$$

From Table 4 we see that if $M_{5}(\alpha)(1)$ is non-prime then one of $a-b, c, e, g-$ $h=0$ or $\frac{a-b}{b}=\frac{1}{n}=-\frac{e}{f}$ or $\frac{g-h}{h}=\frac{1}{n}=-\frac{c}{d}$. By a composition of 2.28-2.29 we only need to consider the cases when one of $a-b, c=0$ or $\frac{a-b}{b}=\frac{1}{n}=-\frac{e}{f}$. If $c=0$ then $\alpha$ is exceptional. If $a-b=0$ then $\frac{a}{b}=1$ and $\alpha$ is exceptional. If $\frac{a-b}{b}=\frac{1}{n}=-\frac{e}{f}$ then $\frac{a}{b}=\frac{n+1}{n}$ and $\frac{e}{f}=-\frac{1}{n}$. Table 4 tells us that in this case
$M_{5}(\alpha)(1)=M_{5}\left(\frac{n+1}{n}, \frac{c}{d},-\frac{1}{n}, \frac{g}{h}\right)(1) \underset{(2.5)}{=} F\left(\frac{1}{n}, \frac{c}{d},-\frac{1}{n}, \frac{g-h}{h}\right)=L(c, d) \# L(g-h, h)$.
From Table 4, we see that if

$$
M_{5}(\alpha)(\infty)=M_{5}\left(\frac{n+1}{n}, \frac{c}{d},-\frac{1}{n}, \frac{g}{h}\right)(\infty)=F\left(-\frac{n+1}{n},-n, \frac{d}{c},-\frac{g}{h}\right)=S^{3}
$$

then one of $n+1= \pm 1, n= \pm 1, \frac{c}{d}=m \in \mathbb{Z}$ or $\frac{g}{h}=\frac{1}{k}$ must hold. If $n+1=$ $\pm 1$ or $n= \pm 1$ then $\alpha$ factors through $M_{4}$ or is exceptional. If $\frac{c}{d}=m \in \mathbb{Z}$ then, from Table 4

$$
M_{5}(\alpha)(\infty)=\left(S^{2},(n,-1),(g,-h),((1-m) n-m, n+1)\right)=S^{3}
$$

requires one of $n= \pm 1$ (already excluded), $g= \pm 1$, or $(1-m) n-m= \pm 1$. If $(1-m) n-m= \pm 1$ then $n=-1$ (which is excluded) or $m \in\{0,2\}$ which make $\alpha$ exceptional or factor through $M_{4}$. So, $\frac{g}{h}$ is necessarily of the form $\frac{1}{k}$. From Table 4 .

$$
\begin{aligned}
M_{5}\left(\frac{n+1}{n}, \frac{c}{d},-\frac{1}{n}, \frac{1}{k}\right)(\infty) & =F\left(-\frac{n+1}{n},-n, \frac{d}{c},-\frac{1}{k}\right) \\
& =\left(S^{2},(d, c),(n+1,-n),(n k+1, n)\right)=S^{3}
\end{aligned}
$$

requires one of $\frac{c}{d}=m \in \mathbb{Z}, n+1= \pm 1$ (which has been excluded), or $n k+$ $1= \pm 1$. If $n k+1= \pm 1$ then $k=0$ or $n \in\{ \pm 1, \pm 2\}$. The cases $k=0, n=$ $\pm 1,-2$ make $\alpha$ exceptional or factor through $M_{4}$, and if $n=2$ then $k=$ -1 which makes $\alpha$ factor through $M_{4}$. So, if 1 is a slope on a one cusped hyperbolic $M_{5}(\alpha)$ that corresponds to a non-prime filling and $M_{5}(\alpha)(\infty)=$ $S^{3}$ then we may assume that $\alpha=\left(\frac{n+1}{n}, m-\frac{1}{n}, \frac{1}{k}\right)$ where $k, m \neq \pm 1,0,2$ and $n \neq \pm 1,0,-2$. From Table 4 ,

$$
\begin{aligned}
M_{5}\left(\frac{n+1}{n}, m,-\frac{1}{n}, \frac{1}{k}\right)(\infty) & \underset{ }{=} F\left(-\frac{n+1}{n},-n, \frac{1}{m},-\frac{1}{k}\right) \\
& =L((n m+m-n)(-1-k n)-n(n+1), *)=S^{3}
\end{aligned}
$$

if and only if

$$
\begin{equation*}
m\left(1+k n+n+k n^{2}\right)= \pm 1+k n^{2}-n^{2} \Rightarrow m=\frac{(k-1) n^{2} \pm 1}{(n+1)(k n+1)} \tag{4.3}
\end{equation*}
$$

because $n \neq 1$. It is straightforward to verify that for $k>2$ and $n>1$, or $k>2$ and $n<-2$, or $k<-1$ and $n>1$, or $k<-1$ and $n<-2$ that, in all four cases, 4.3) leads to $0<m<3$. So, the only valid integer solutions to (4.3) make $\alpha$ exceptional or factor through $M_{4}$.

This finishes the argument that no hyperbolic $M_{5}(\alpha)$ has both a nonprime and $S^{3}$ filling.

## 5. Tables

| $f$ | Additional exceptional slopes $\beta_{i}$ | Exceptional filling $M_{5}(f)\left(\beta_{i}\right)$ |
| :---: | :---: | :---: |
| $\left(-2,-\frac{1}{2}, 3,3\right)$ | $\begin{aligned} & \beta_{1}=-1 \\ & \beta_{2}=-\frac{1}{2} \end{aligned}$ | $\begin{gathered} \left(S^{2},(2,-1),(5,2),(4,1)\right) \\ (A,(2,-1)) /\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) \\ \hline \end{gathered}$ |
| $\left(-2, \frac{3}{2}, \frac{3}{2},-2\right)$ | $\begin{aligned} & \beta_{1}=-1 \\ & \beta_{2}=-\frac{1}{2} \end{aligned}$ | $\begin{gathered} (D,(2,-1),(2,1)) \bigcup_{\left(\begin{array}{cc} 0 & 1 \\ 10 \end{array}\right)}(D,(2,1),(3,-1)) \\ (A,(2,-1)) /\left(\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array}\right) \end{gathered}$ |
| $\left(-2,-3,-\frac{1}{2},-2\right)$ | $\begin{gathered} \beta_{1}=-1 \\ \beta_{2}=2 \end{gathered}$ | $\begin{gathered} \left(S^{2},(2,1),(3,-1),(11,-2)\right) \\ (D,(2,1),(3,5)) \bigcup_{\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)}(D,(3,2),(2,-1)) \end{gathered}$ |
| $\left(-2,-\frac{1}{3}, 3, \frac{2}{3}\right)$ | $\begin{gathered} \beta_{1}=-1 \\ \beta_{2}=2 \end{gathered}$ | $\begin{gathered} \left(S^{2},(2,-1),(7,2),(5,3)\right) \\ (A,(2,3)) /\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) \end{gathered}$ |
| $\left(-2,-\frac{1}{2}, 3, \frac{2}{3}\right)$ | $\begin{gathered} \beta_{1}=-1 \\ \beta_{2}=2 \end{gathered}$ | $\begin{gathered} \left(S^{2},(2,-1),(5,2),(5,3)\right) \\ \left(S^{2},(2,1),(3,-1),(11,-2)\right) \end{gathered}$ |
| $(-2,-2,-2,-2)$ | $\begin{aligned} & \beta_{1}=-1 \\ & \beta_{2}=-2 \end{aligned}$ | $\begin{gathered} \left(S^{2},(2,1),(3,-1),(7,-1)\right) \\ (D,(2,1),(2,-1)) \bigcup_{\left(\begin{array}{cc} -1 & 5 \\ 1 & -4 \end{array}\right)}(D,(2,1),(3,1)) \end{gathered}$ |

Table 6: All $M_{5}(f)$ with $f$ not factoring through $M_{4}$ and $e_{\tau}\left(M_{5}(f)\right)=5$, $E_{\tau}\left(M_{5}(f)\right)=\left\{\beta_{1}, \beta_{2}, 0,1, \infty\right\}$.

| $f$ | Additional exceptional <br> slopes $\beta$ | Exceptional filling $M_{5}(f)$ |
| :---: | :---: | :---: |
| $\left(-2, \frac{p}{q}, 3, \frac{u}{v}\right)$ | -1 | $F\left(-2, \frac{p}{q}, \frac{u+v}{v},-2\right)$ |
| $\left(-2, \frac{p}{q}, \frac{r}{s},-2\right)$ | -1 | $F\left(\frac{s}{s-r}, 2, \frac{q}{2 q-p},-3\right)$ |
| $\left(-2, \frac{3}{2}, \frac{3}{2}, \frac{u}{v}\right)$ | -1 | $F\left(-3, \frac{u}{u+v}, 2,-2\right)$ |
| $\left(-2, \frac{p}{q}, \frac{5}{2},-\frac{1}{2}\right)$ | -1 | $F\left(-3, \frac{p-q}{p}, 2,-2\right)$ |
| $\left(-2,-2, \frac{r}{s},-3\right)$ | -1 | $(A,(s, s-r)) /$0 <br> $\left.\begin{array}{l}0 \\ 10\end{array}\right)$ <br> $\left(-2,-\frac{1}{2}, 4, \frac{u}{v}\right)$$\quad-1$ |
| $\left(-2, \frac{p}{q}, 4,-\frac{3}{2}\right)$ | -1 | $F\left(2, \frac{3}{2}, \frac{v}{u+v},-2\right)$ |

Table 7: All hyperbolic $M_{5}(f)$ with $f$ not factoring through $M_{4}$ and $e_{\tau}\left(M_{5}(f)\right)=4, E_{\tau}\left(M_{5}(f)\right)=\{\beta, 0,1, \infty\}$, part $1 / 5$.
$\left.\begin{array}{|c|c|c|}\hline f & \begin{array}{c}\text { Additional } \\ \text { exceptional } \\ \text { slopes } \beta\end{array} & \begin{array}{c}\text { Exceptional } \\ \text { filling } M_{5}(f)(\beta)\end{array} \\ \hline \hline\left(-2,4,5,-\frac{3}{2}\right) & -1 & (A,(2,1)) /\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \\ \left(-2,-\frac{1}{2}, 5,3\right)\end{array}\right)$

Table 8: All hyperbolic $M_{5}(f)$ with $f$ not factoring through $M_{4}$ and $e_{\tau}\left(M_{5}(f)\right)=4, E_{\tau}\left(M_{5}(f)\right)=\{\beta, 0,1, \infty\}$, part $2 / 5$.

| $f$ | Additional exceptional slope $\beta$ | Exceptional filling $M_{5}(f)(\beta)$ |
| :---: | :---: | :---: |
| $\begin{aligned} & (-2,-3,-2,-3) \\ & (-2,-2,-2,-4) \end{aligned}$ | -1 | $\left(S^{2},(2,1),(3,-1),(7,-1)\right)$ |
| $\begin{gathered} (-2,-4,-2,-3) \\ (-2,-2,-2,-5) \\ (-2,-3,-3,-3) \\ (-2,-2,-3,-4) \end{gathered}$ | -1 | $\left(S^{2},(2,1),(4,-3),(5,1)\right)$ |
| $\begin{aligned} & (-2,-2,-4,-4) \\ & (-2,-5,-2,-3) \\ & (-2,-3,-4,-3) \\ & (-2,-2,-2,-6) \end{aligned}$ | -1 | $\left(S^{2},(3,-2),(3,1),(4,1)\right)$ |
| $\begin{aligned} & (-2,-2,-2,-7) \\ & (-2,-6,-2,-3) \\ & (-2,-3,-5,-3) \\ & (-2,-2,-5,-4) \end{aligned}$ | -1 | $(D,(2,-1),(2,-1)) \bigcup_{\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right)}(D,(2,-1),(3,-1))$ |
| $\begin{aligned} & (-2,-4,-3,-3) \\ & (-2,-2,-3,-5) \end{aligned}$ | -1 | $(D,(2,1),(2,-1)) \bigcup_{\left(\begin{array}{cc} -1 & 2 \\ 1 & -1 \end{array}\right)}(D,(2,1),(3,1))$ |
| $(-2,-3,-2,-4)$ | -1 | $(D,(2,1),(2,-1)) \bigcup_{\left(\begin{array}{cc} -1 & 3 \\ 1 & -2 \end{array}\right)}(D,(2,1),(3,1))$ |
| $\left(-2, \frac{3}{2}, \frac{5}{2},-\frac{2}{3}\right)$ | -1 | $(A,(2,-3)) /\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right)$ |

Table 9: All hyperbolic $M_{5}(f)$ with $f$ not factoring through $M_{4}$ and $e\left(M_{5}(f)\right)=4, E_{\tau}\left(M_{5}(f)\right)=\{\beta, 0,1, \infty\}$, part $3 / 5$.

| $f$ | Additional exceptional slopes $\beta$ | Exceptional filling $M_{5}(f)(\beta)$ |
| :---: | :---: | :---: |
| ( $-2,-2, \frac{1}{4}, 3$ ) | $\frac{1}{2}$ | $\left(S^{2},(3,2),(2,-1),(9,-2)\right)$ |
| $\left(-2, \frac{2}{5}, \frac{3}{4}, \frac{3}{2}\right)$ | $\frac{1}{2}$ | $\left(S^{2},(3,2),(2,-1),(3,2)\right)$ |
| $\left(-2, \frac{1}{5}, \frac{4}{3}, \frac{3}{2}\right)$ | $\frac{1}{2}$ | $\left(S^{2},(2,1),(4,-3),(5,1)\right)$ |
| $\left(-2, \frac{1}{4}, \frac{2}{3}, \frac{5}{3}\right)$ | $\frac{1}{2}$ | $\left.(D,(2,1),(2,3)))_{\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} 0\right.}^{0}\right)(D,(3,2),(2,-1))$ |
| $\left(-2, \frac{1}{5}, \frac{3}{2}, \frac{3}{2}\right)$ | $\frac{1}{2}$ | $\left(S^{2},(2,1),(3,-1),(7,-1)\right)$ |
| $\left(-2,3, \frac{1}{3}, 4\right)$ | $\frac{1}{2}$ | $\left.(D,(2,1),(3,4)))_{\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right.}^{1} 0\right)(D,(3,2),(2,-1))$ |
| $\left(-2, \frac{1}{3}, \frac{3}{2}, \frac{4}{3}\right)$ | $\frac{1}{2}$ | $(A,(1,3)) /\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$ |
| $\left(-2,-2, \frac{1}{5}, 3\right)$ | $\frac{1}{2}$ | $(A,(2,1)) /\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$ |
| $\left(-2, \frac{2}{3}, \frac{3}{5}, \frac{3}{2}\right)$ | $\frac{1}{2}$ | $(D,(2,1),(3,-1)) /_{\left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right)}(D,(3,2),(2,-1))$ |
| $\left(-2, \frac{1}{6}, \frac{3}{2}, \frac{3}{2}\right)$ | $\frac{1}{2}$ | $\left(S^{2},(2,1),(4,-3),(5,1)\right)$ |
| $\left(-2, \frac{1}{7}, \frac{3}{2}, \frac{3}{2}\right)$ | $\frac{1}{2}$ | $\left(S^{2},(3,-2),(3,1),(4,1)\right)$ |
| $\left(-2, \frac{1}{8}, \frac{3}{2}, \frac{3}{2}\right)$ | $\frac{1}{2}$ | $\left.(D,(2,-1),(2,-1)) / \begin{array}{c} \binom{0}{1} \\ 1 \end{array}\right)(D,(2,-1),(3,-1))$ |
| $\left(-2, \frac{1}{5}, \frac{6}{5}, \frac{3}{2}\right)$ | $\frac{1}{2}$ | $(D,(2,-1),(2,-1)) /_{\left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right)}(D,(2,-1),(3,-1))$ |
| $\left(-2, \frac{3}{8}, \frac{3}{4}, \frac{3}{2}\right)$ | $\frac{1}{2}$ | $\left.(D,(3,-1),(2,1)) /_{\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} 0\right.} 1\right)(D,(2,3),(2,-1))$ |
| $\left(-2, \frac{1}{3}, \frac{2}{3}, \frac{5}{3}\right)$ | $\frac{1}{2}$ | $\left(S^{2},(3,-1),(2,1),(5,2)\right)$ |
| $\left(-2, \frac{2}{3}, \frac{3}{4}, \frac{2}{3}\right)$ | $\frac{1}{2}$ | $(A,(3,1)) /\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$ |
| $\left(-2, \frac{3}{5}, \frac{2}{3}, \frac{4}{3}\right)$ | $\frac{1}{2}$ | $\left.(D,(2,1),(3,2)) \bigcup_{\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} 0\right.}^{1}\right) ~(D,(3,2),(2,-1))$ |
| $\left(-2, \frac{1}{4}, \frac{3}{2}, \frac{4}{3}\right)$ | $\frac{1}{2}$ | $(D,(2,1),(2,-1)) \bigcup_{\left(\begin{array}{cc} -1 & 4 \\ 1 & -3 \end{array}\right)}(D,(2,1),(3,1))$ |

Table 10: All hyperbolic $M_{5}(f)$ with $f$ not factoring through $M_{4}$ with $e\left(M_{5}(f)\right)=4, E_{\tau}\left(M_{5}(f)\right)=\{\beta, 0,1, \infty\}$, part $4 / 5$.

| $f$ | Additional <br> exceptional <br> slopes $\beta$ | Exceptional <br> filling $M_{5}(f)(\beta)$ |
| :---: | :---: | :---: |
| $\left(-2,-\frac{1}{3}, 3, \frac{2}{3}\right)$ | 2 | $(A,(2,3)))_{\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)}$ |

Table 11: All hyperbolic $M_{5}(f)$ with $f$ not factoring through $M_{4}$ with $e\left(M_{5}(f)\right)=4, E_{\tau}\left(M_{5}(f)\right)=\{\beta, 0,1, \infty\}$, part $5 / 5$.

| $f$ | Additional exceptional slopes $\beta_{i}$ | Exceptional filling $M_{4}(f)\left(\beta_{i}\right)$ |
| :---: | :---: | :---: |
| $(-2,-2,-2)$ | $\begin{aligned} & \beta_{1}=-2 \\ & \beta_{2}=-1 \end{aligned}$ | $\begin{gathered} (D,(2,1),(2,-1)) \bigcup_{\left(\begin{array}{cc} -1 & 4 \\ 1 & -3 \end{array}\right)}(D,(2,1),(3,1)) \\ (A,(1,3)))_{\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)} \end{gathered}$ |
| $\left(-2,-\frac{1}{2},-2\right)$ | $\begin{gathered} \beta_{1}=-1 \\ \beta_{2}=3 \end{gathered}$ | $\begin{gathered} (A,(2,3)) /\left(\begin{array}{c} 0 \\ 10 \\ 1 \end{array}\right) \\ (D,(2,1),(2,3)) \cup_{\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)}^{(D,(3,2),(2,-1))} \end{gathered}$ |
| $\left(-2, \frac{r}{s},-2\right)$ | -1 | $(A,(s, s-r)) /\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$ |
| $\left(\frac{p}{q}, 4,-\frac{1}{2}\right)$ | -1 | $F\left(2, \frac{3}{2}, \frac{q}{p},-2\right)$ |
| $\begin{gathered} \left(4,5,-\frac{1}{2}\right) \\ \left(-2,4,-\frac{2}{3}\right) \\ (-2,-5,-3) \\ (-2,-2,-6) \\ \left(\frac{2}{3}, \frac{5}{2}, \frac{2}{3}\right) \\ (-2,-2,-3) \\ (-2,-3,-3), \\ (-2,-2,-4) \\ (-3,-4,-2) \\ (-2,-2,-5) \\ (-2,-3,-4) \\ (-3,-2,-3) \end{gathered}$ | $\beta=-1$ |  |

Table 12: All hyperbolic $M_{4}(f)$ with $f$ not factoring through $M_{3}$ and $e_{\tau}\left(M_{4}(f)\right) \geq 5$, together with $E_{\tau}\left(M_{4}(f)\right)=\left\{\beta_{1}, \beta_{2}, 0,1,2, \infty\right\} \quad$ if $e_{\tau}\left(M_{4}(f)\right)=6$ and $E_{\tau}\left(M_{4}(f)\right)=\{\beta, 0,1,2, \infty\}$ if $e_{\tau}\left(M_{4}(f)\right)=5$.


Table 13: Exceptional slopes \& fillings of five highlighted families

| $f=\left(-2,-\frac{1}{2}, 3,3\right), E\left(M_{5}(f)\right)=\left\{-1,-\frac{1}{2}, 0,1, \infty\right\}$, types $\{Z, T, S, Z, Z\}$ |
| :---: |
| $f=\left(-2, \frac{3}{2}, \frac{3}{2},-2\right), E\left(M_{5}(f)\right)=\left\{-1,-\frac{1}{2}, 0,1, \infty\right\}$, types $\left\{T, T, T^{H}, T, T\right\}$ |
| $f=\left(-2,-3,-\frac{1}{2},-2\right), E\left(M_{5}(f)\right)=\{-1,2,0,1, \infty\}$, types $\{Z, T, Z, Z, Z\}$ |
| $f=\left(-2,-\frac{1}{3}, 3, \frac{2}{3}\right), E\left(M_{5}(f)\right)=\{-1,2,0,1, \infty\}$, types $\{Z, T, Z, Z, Z\}$ |
| $f=\left(-2,-\frac{1}{2}, 3, \frac{2}{3}\right), E\left(M_{5}(f)\right)=\{-1,2,0,1, \infty\}$, types $\{Z, Z, Z, Z, Z\}$ |
| $f=(-2,-2,-2,-2), E\left(M_{5}(f)\right)=\{-2,-1,0,1, \infty\}$, types $\left\{T, Z, Z, T, T^{H}\right\}$ |

Table 14: Exceptional sets for $M_{5}(f)$ for $f$ in Table 6.

| $\begin{gathered} f=\left(-2, \frac{3}{2}, \frac{3}{2}, \frac{u}{v}\right), \frac{u}{v} \in \mathbb{Q} \cup\{\varnothing\} \backslash\left\{-2,-1,0, \frac{1}{2}, 1,2\right\}, E\left(M_{5}(f)\right)=\{-1,0,1, \infty\} \\ \text { types }\left\{\begin{array}{l} \{T, D, T, T\} \text { if } \frac{u}{v}=\varnothing ; \\ \left\{T, S^{H}, T, T\right\} \text { if }\|5 u-14 v\|=1 ; \\ \left\{T, S \& T^{H}, T, T\right\} \text { if } \frac{u}{v}=\frac{14}{5} ; \\ \left\{T, T^{H}, Z, T\right\} \text { if }\|u-v\|=1 ; \\ \left\{Z, T^{H}, T, Z\right\} \text { if }\|u\|=1 ; \\ \left\{T, T^{H}, T, T\right\} \text { otherwise. } \end{array}\right. \end{gathered}$ |
| :---: |
| $\begin{gathered} f=\left(-2, \frac{p}{q}, \frac{5}{2},-\frac{1}{2}\right), \frac{p}{q} \in \mathbb{Q} \cup\{\varnothing\} \backslash\left\{-1,0, \frac{1}{2}, 1,2\right\}, E\left(M_{5}(f)\right)=\{-1,0,1, \infty\} \\ \qquad\left\{\begin{array}{l} \{T \& A, A, T \& A, A\} \text { if } \frac{p}{q}=\varnothing ; \\ \left\{Z, T^{H}, T, Z\right\} \text { if } \frac{p}{q}=1+\frac{1}{n} ; \\ \{T, Z, Z, Z\} \text { if }\|p\|=1 ; \\ \left\{T, Z, T, T^{H}\right\} \text { if }\|q\|=1 ; \\ \{T, Z, T, Z\} \text { otherwise. } \end{array}\right. \end{gathered}$ |
| $\begin{gathered} f=\left(-2,-2, \frac{r}{s},-3\right), \frac{r}{s} \in \mathbb{Q} \cup\{\varnothing\} \backslash\left\{-1,0, \frac{1}{2}, 1,2\right\}, E\left(M_{5}(f)\right)=\{-1,0,1, \infty\} \\ \qquad t \begin{array}{l} \{T, A, T \& A, A\} \text { if } \frac{r}{s}=\varnothing ; \\ \left\{T, T^{H}, T, Z\right\} \text { if }\|r-s\|=1 ; \\ \{T, Z, Z, Z\} \text { if }\|r\|=1 ; \\ \left\{T, Z, T, T^{H}\right\} \text { if }\|s\|=1 ; \\ \{T, Z, T, Z\} \text { otherwise. } \end{array} \end{gathered}$ |

Table 15: Exceptional sets for $M_{5}(f)$ for $f$ in Table 7, part $1 / 4$.

| $\begin{aligned} & \hline f=\left(-2,-\frac{1}{2}, 4, \frac{u}{v}\right) \frac{u}{v} \in \mathbb{Q} \cup\{\varnothing\} \backslash\left\{-1,0, \frac{1}{2}, 1,2\right\}, E\left(M_{5}(f)\right)=\{-1,0,1, \infty\} \\ & \qquad\left\{\begin{array}{l} \{T \& A, A, A, A\} \text { if } \frac{u}{v}=\varnothing ; \\ \left\{T^{H}, Z, Z, Z\right\} \text { if } \frac{u}{v}=-2 ; \\ \{Z, S, Z, Z\} \text { if } \frac{u}{v}=3 ; \\ \left\{Z, T^{H}, Z, S\right\} \text { if } \frac{u}{v}=4 ; \\ \{T, Z, S, Z\} \text { if } \frac{u}{v}=\frac{3}{2} ; \\ \{Z, Z, Z, Z\} \text { if } \frac{u}{v} \in \mathbb{Z} \backslash\{-2,-1,0,1,2,3,4\} ; \\ \left\{T, T^{H}, Z, Z\right\} \text { if }\|u-3 v\|=1, \frac{u}{v} \neq 4 ; \\ \left\{T, Z, T^{H}, Z\right\} \text { if }\|2 u-3 v\|=1 ; \\ \left\{T, Z, Z, T^{H}\right\} \text { if }\|v-4 u\|=1 ; \\ \{T, Z, Z, Z\} \text { otherwise. } \end{array}\right. \\ & \hline \end{aligned}$ |
| :---: |
| $\begin{gathered} f=\left(-2, \frac{p}{q}, 4,-\frac{3}{2}\right), \frac{p}{q} \in \mathbb{Q} \cup\{\varnothing\} \backslash\left\{-1,0, \frac{1}{2}, 1,2\right\}, E\left(M_{5}(f)\right)=\{-1,0,1, \infty\} \\ \text { types }\left\{\begin{array}{l} \{T \& A, A, T \& A, A\} \text { if } \frac{p}{q}=\varnothing ; \\ \left\{Z, Z, T, T^{H}\right\} \text { if }\|q\|=1 ; \\ \left\{T, T^{H}, T, Z\right\} \text { if }\|p-q\|=1 ; \\ \{T, Z, Z, Z\} \text { if }\|p\|=1 ; \\ \{T, Z, T, Z\} \text { otherwise. } \end{array}\right. \end{gathered}$ |

Table 16: Exceptional sets for $M_{5}(f)$ for $f$ in Table 7, part 2/4.
$f=\left(-2, \frac{p}{q}, 3, \frac{u}{v}\right), E\left(M_{5}(f)\right)=\{-1,0,1, \infty\}, \frac{p}{q}, \frac{u}{v} \in \mathbb{Q} \cup\{\varnothing\} \backslash\left\{0,1,-1, \frac{1}{2}, 2\right\}$

| -1 is of type | $\left\{\begin{array}{l} A \text { if } \frac{p}{q}=\varnothing \text { and }\|u+v\|=1, \text { or } \frac{u}{v}=\varnothing \text { and }\|p\|=1 ; \\ T \& A \text { if } \frac{p}{q}=\frac{u}{v}=\varnothing, \text { or } \frac{p}{q}=\varnothing \text { and }\|u+v\| \neq 1, \\ \quad \text { or } \frac{u}{v}=\varnothing \text { and }\|p\| \neq 1 ; \\ T^{H} \text { if }\|p\|=\|u+v\|=1 ; \\ Z \text { if }\|p\|=1 \text { and }\|u+v\| \neq 1, \text { or }\|u+v\|=1 \text { and }\|p\| \neq 1 ; \\ T \text { otherwise } \end{array}\right.$ |
| :---: | :---: |
| $\text { 0 is of type }\left\{\begin{array}{l} S^{2} \\ S \\ T \\ Z \end{array}\right.$ | $A$ if $\frac{p}{q}=\varnothing$ and $\frac{u}{v} \neq 3,3+\frac{1}{n}$, or $\frac{u}{v}=\varnothing$ and $\frac{p}{q} \neq 1+\frac{1}{n}$; <br> $S \& D$ if $\frac{u}{v}=3$ and $\frac{p}{q}=\varnothing$; <br> if $\frac{p}{q}=1+\frac{1}{n}$ and $\frac{u}{v}=\varnothing$, or $\frac{u}{v}=3+\frac{1}{n}$ and $\frac{p}{q}=\varnothing$; <br> $S$ if $\frac{u}{v}=3$ and $\|p-q\| \neq 1$; <br> $S^{H}$ if $\frac{p}{q}=1+\frac{1}{n}$ and $\|(3+2 n) u-(7+6 n) v\|=1 ;$ <br> or $\frac{u}{v}=3+\frac{1}{k}$ and $\|(3+2 k) p-(1+2 k) q\|=1$, <br> $S \& T^{H}$ if $\frac{p}{q}=1+\frac{1}{n}$ and $\frac{u}{v}=\frac{7+6 n}{3+2 n}$, or $\frac{u}{v}=3+\frac{1}{k}$ and $\frac{p}{q}=\frac{1+2 k}{3+2 k}$; $T^{H}$ if $\frac{u}{v}=3$ and $\|p-q\|=1$, <br> or $\frac{p}{q}=1+\frac{1}{n}$ and $\|(3+2 n) u-(7+6 n) v\| \neq 0,1$, <br> or $\frac{u}{v}=3+\frac{1}{k}$ and $\|(3+2 k) p-(1+2 k) q\| \neq 0,1 ;$ <br> $Z$ otherwise. |

$$
1 \text { is of type }\left\{\begin{array}{l}
T \& A \text { if } \frac{p}{q}=\frac{u}{v}=\varnothing, \text { or } \frac{p}{q}=\varnothing \text { and }|u-v| \neq 1, \\
\quad \text { or } \frac{u}{v}=\varnothing \text { and }|p| \neq 1 ; \\
A \text { if } \frac{p}{q}=\varnothing \text { and }|u-v|=1, \text { or } \frac{u}{v}=\varnothing \text { and }|p|=1 ; \\
S \text { if } \frac{p}{q}=\frac{1}{k}=1-\frac{u}{v} ; \\
T^{H} \text { if } \frac{p}{q}=\frac{1}{k} \&|(1-k) v+k u|=1, \text { or } \frac{u}{v}=1+\frac{1}{k} \&|k p+q|=1 ; \\
Z \text { if } \frac{p}{q}=\frac{1}{k} \&|(1-k) v+k u| \neq 1, \text { or } \frac{u}{v}=1+\frac{1}{k} \&|k p+q| \neq 1 ; \\
T \text { otherwise. }
\end{array}\right.
$$

$\infty$ is of type $\left\{\begin{array}{l}A \text { if } \frac{p}{q}=\frac{u}{v}=\varnothing, \text { or } \frac{p}{q}=\varnothing \&|v-3 u| \neq 1, \text { or } \frac{u}{v}=\varnothing \&|q| \neq 1 ; \\ S \& D \text { if } \frac{u}{v}=\frac{1}{3} \text { and } \frac{p}{q}=\varnothing ; \\ S \text { if } \frac{u}{v}=\frac{1}{3} \text { and }|q| \neq 1 ; \\ S^{H} \text { if } \frac{p}{q}=k \text { and }|(1+2 k) v-(1+6 k) u|=1, \\ \quad \text { or } v-3 u=\epsilon= \pm 1 \text { and }|(1+2 \epsilon u) q+2 p|=1 ; \\ S \& T^{H} \text { if } \frac{p}{q}=k \& \frac{u}{v}=\frac{2 k+1}{6 k+1}, \text { or } v-3 u=\epsilon= \pm 1 \& \frac{p}{q}=-\frac{1+2 \epsilon u}{2} ; \\ T^{H} \text { if } \frac{u}{v}=\frac{1}{3} \&|q| \neq 1, \text { or } \frac{p}{q}=k \&|(1+2 k) v-(1+6 k) u| \neq 0,1, \\ \quad \text { or } v-3 u=\epsilon= \pm 1 \text { and }|(1+2 \epsilon u) q+2 p| \neq 0,1 ; \\ Z \text { otherwise. }\end{array}\right.$

Table 17: Exceptional sets for $M_{5}(f)$ for $f$ in Table 7, part 3/4.

| $f=\left(-2, \frac{p}{q}, \frac{r}{s},-2\right), E\left(M_{5}(f)\right)=\{-1,0,1, \infty\}, \quad \frac{p}{q}, \frac{r}{s} \in \mathbb{Q} \cup\{\varnothing\} \backslash\left\{-1,0, \frac{1}{2}, 1,2\right\}$ |
| :---: |
| $-1 \text { is of type }\left\{\begin{array}{l} T \& A \text { if } \frac{p}{q}=\frac{r}{s}=\varnothing ; \\ A \text { if } \frac{p}{q}=\varnothing \text { and }\|s\|=1, \text { or } \frac{r}{s}=\varnothing \text { and }\|q\|=1 ; \\ S \text { if } \frac{p}{q}=4-\frac{r}{s}=n \text { for some } n \in \mathbb{Z} \backslash\{-1,0,1,2\} ; \\ T^{H} \text { if }\|q\|=1 \text { or }\|s\|=1, \text { and } 4-\frac{p}{q}+\frac{1}{n}=\frac{r}{s} \text { for some } n \in \mathbb{Z} ; \\ Z \text { if }\|q\|=1 \text { or }\|s\|=1, \text { and } 4-\frac{p}{q}+\frac{1}{n} \neq \frac{r}{s} \text { for any } n \in \mathbb{Z} ; \\ T \text { otherwise. } \end{array}\right.$ |
| $0 \text { is of type }\left\{\begin{array}{l} A \text { if } \frac{p}{q}=\frac{r}{s}=\varnothing, \text { or } \frac{p}{q}=\varnothing \&\|r-s\| \neq 1, \text { or } \frac{r}{s}=\varnothing \&\|p-q\| \neq 1 ; \\ D \text { if } \frac{p}{q}=\varnothing \text { and }\|r-s\|=1, \text { or } \frac{r}{s}=\varnothing \text { and }\|p-q\|=1 ; \\ S^{H} \text { if } \frac{p}{q}=1+\frac{1}{n} \text { and }\|(6-5 n) s+(5 n-1) r\|=1, \\ \text { or } \frac{r}{s}=1+\frac{1}{n} \text { and }\|(5 n-1) p+(6-5 n) q\|=1 ; \\ S \& T^{H} \text { if } \frac{p}{q}=1+\frac{1}{n} \text { and } \frac{r}{s}=\frac{6-5 n}{1-5 n}, \\ \text { or } \frac{r}{s}=1+\frac{1}{n} \text { and } \frac{p}{q}=\frac{6-5 n}{1-5 n} ; \\ T^{H} \text { if } \frac{p}{q}=1+\frac{1}{n} \text { and }\|(6-5 n) s+(5 n-1) r\| \neq 1,0, \\ \quad \text { or } \frac{r}{s}=1+\frac{1}{n} \text { and }\|(5 n-1) p+(6-5 n) q\| \neq 1,0 ; \\ Z \text { otherwise. } \end{array}\right.$ |
| $1 \text { is of type }\left\{\begin{array}{l} T \& A \text { if } \frac{p}{q}=\frac{r}{s}=\varnothing ; \\ A \text { if } \frac{p}{q}=\varnothing \text { and }\|r\|=1, \text { or } \frac{r}{s}=\varnothing \text { and }\|p\|=1 ; \\ T^{H} \text { if }\|p\|=1 \text { and }\|r\|=1 ; \\ Z \text { if }\|p\|=1 \text { and }\|r\| \neq 1, \text { or }\|r\|=1 \text { and }\|p\| \neq 1 ; \\ T \text { otherwise. } \end{array}\right.$ |
| $\infty \text { is of type }\left\{\begin{array}{l} T \& A \text { if } \frac{p}{q}=\frac{r}{s}=\varnothing ; \\ A \text { if } \frac{p}{q}=\varnothing \text { and }\|s\|=1, \text { or } \frac{r}{s}=\varnothing \text { and }\|q\|=1 ; \\ T^{H} \text { if }\|s\|=1 \text { and }\|q\|=1 ; \\ Z \text { if }\|s\|=1 \text { and }\|q\| \neq 1, \text { or }\|q\|=1 \text { and }\|s\| \neq 1 ; \\ T \text { otherwise. } \end{array}\right.$ |

Table 18: Exceptional sets for $M_{5}(f)$ for $f$ in Table 7, part 4/4.

| $f$ | $E\left(M_{5}(f)\right)$ and types |
| :---: | :---: |
| $\left(-2,4,5,-\frac{3}{2}\right),\left(-2,3,4,-\frac{4}{3}\right)$, |  |
| $\left(-2,-2,4,-\frac{5}{3}\right),(-2,-2,-3,-5)$, | $E\left(M_{5}(\alpha)\right)=\{-1,0,1, \infty\}$, |
| $(-2,-4,-3,-3),(-2,-2,-2,-7)$, | types $\left\{T, Z, T, T^{H}\right\}$ |
| $(-2,-6,-2,-3),(-2,-2,-5,-4)$, | $E\left(M_{5}(\alpha)\right)=\{-1,0,1, \infty\},\{T, S, Z, Z\}$ |
| $(-2,-3,-5,-3),(-2,-3,-2,-4)$, | $E\left(M_{5}(\alpha)\right)=\{-1,0,1, \infty\},\left\{T, T^{H}, T, T^{H}\right\}$ |
| $\left(-2,-\frac{1}{2}, 5,3\right)$ | $E\left(M_{5}(\alpha)\right)=\{-1,0,1, \infty\},\{T, Z, T, Z\}$ |
| $\left(-2,3, \frac{3}{2},-\frac{1}{2}\right)$ | $E\left(M_{5}(\alpha)\right)=\{-1,0,1, \infty\},\left\{T, T^{H}, T, Z\right\}$ |
| $\left(-2,-\frac{2}{3}, 4,-3\right)$ | $E\left(M_{5}(\alpha)\right)=\{-1,0,1, \infty\}$, |
| $\left(-2, \frac{2}{3}, \frac{5}{2},-\frac{1}{3}\right),\left(-2, \frac{4}{3}, \frac{3}{2}, \frac{1}{3}\right)$ | $\operatorname{types}\left\{Z, Z, T, T^{H}\right\}$ |
| $(-2,-2,-2,-4),(-2,-3,-2,-3)$, |  |
| $(-2,-2,-2,-5),(-2,-2,-2,-6)$, | $(-2,-5,-2,-3),(-2,-2,-4,-4)$, |
| $(-2,-3,-4,-3),(-2,-3,-3,-3)$, | $E\left(M_{5}(\alpha)\right)=\{-1,0,1, \infty\},\left\{Z, Z, T, T^{H}\right\}$ |
| $(-2,-2,-3,-4)$ | $E\left(M_{5}(\alpha)\right)=\{-1,0,1, \infty\},\left\{T, T^{H}, T, T\right\}$ |
| $(-2,-4,-2,-3)$ |  |

Table 19: Exceptional sets for $M_{5}(f)$ for $f$ in Tables 8 and 9 .

| $f$ | $E\left(M_{5}(f)\right)$ and types |
| :---: | :---: |
| $\left(-2,-\frac{1}{3}, 3, \frac{2}{3}\right),\left(-2,-\frac{2}{3},-2, \frac{2}{3}\right)$, | $E\left(M_{5}(\alpha)\right)=\{2,0,1, \infty\}$ |
| $\left(-2, \frac{1}{3},-3, \frac{1}{3}\right),\left(-2,-\frac{1}{3},-2, \frac{2}{5}\right)$, |  |
| $\left(-2,-3,-\frac{1}{2},-2\right),\left(-2,-\frac{1}{2},-\frac{3}{2}, \frac{1}{3}\right)$, | types $\{T, Z, Z, Z\}$ |
| $\left(-2,-\frac{1}{2},-3, \frac{1}{3}\right),\left(-2,-\frac{1}{2},-3, \frac{3}{5}\right)$ |  |
| $\left(-2,-2,-\frac{1}{3}, 3\right)$ | $E\left(M_{5}(f)\right)=\{2,0,1, \infty\},\{T, S, Z, Z\}$ |
| $\left(-2,-2, \frac{1}{4}, 3\right)$ | $E\left(M_{5}(f)\right)=\left\{\frac{1}{2}, 0,1, \infty\right\},\{Z, S, Z, Z\}$ |
| $\left(-2, \frac{2}{5}, \frac{3}{4}, \frac{3}{2}\right)$ | $E\left(M_{5}(f)\right)=\left\{\frac{1}{2}, 0,1, \infty\right\},\left\{T^{H}, T^{H}, Z, T\right\}$ |
| $\left(-2, \frac{1}{5}, \frac{4}{3}, \frac{3}{2}\right),\left(-2, \frac{1}{5}, \frac{3}{2}, \frac{3}{2}\right)$, | $E\left(M_{5}(\alpha)\right)=\left\{\frac{1}{2}, 0,1, \infty\right\}$, |
| $\left(-2, \frac{3}{6}, \frac{3}{2}, \frac{3}{2}\right),\left(-2, \frac{1}{7}, \frac{3}{2}, \frac{3}{2}\right)$, | types $\left\{Z, T^{H}, Z, T\right\}$ |
| $\left(-2, \frac{1}{3}, \frac{2}{3}, \frac{5}{3}\right)$ |  |
| $\left(-2, \frac{1}{4}, \frac{2}{3}, \frac{5}{3}\right),\left(-2, \frac{1}{4}, \frac{3}{2}, \frac{4}{3}\right)$, | $E\left(M_{5}(\alpha)\right)=\left\{\frac{1}{2}, 0,1, \infty\right\}$, |
| $\left(-2, \frac{1}{3}, \frac{3}{2}, \frac{4}{3}\right),\left(-2, \frac{1}{8}, \frac{3}{2}, \frac{3}{2}\right)$, | $\operatorname{types}\left\{T, T^{H}, Z, T\right\}$ |
| $\left(-2, \frac{1}{5}, \frac{6}{5}, \frac{3}{2}\right),\left(-2, \frac{3}{8}, \frac{3}{4}, \frac{3}{2}\right)$, |  |
| $\left(-2, \frac{2}{3}, \frac{3}{4}, \frac{2}{3}\right),\left(-2, \frac{2}{3}, \frac{3}{5}, \frac{3}{2}\right)$ | $E\left(M_{5}(\alpha)\right)=\left\{\frac{1}{2}, 0,1, \infty\right\},\left\{T, T^{H}, Z, Z\right\}$ |
| $\left(-2,3, \frac{1}{3}, 4\right)$ | $E\left(M_{5}(\alpha)\right)=\left\{\frac{1}{2}, 0,1, \infty\right\},\{T, S, Z, Z\}$ |
| $\left(-2,-2, \frac{1}{5}, 3\right)$ | $E\left(M_{5}(\alpha)\right)=\left\{\frac{1}{2}, 0,1, \infty\right\},\left\{T, T^{H}, Z, T\right\}$ |
| $\left(-2, \frac{3}{5}, \frac{2}{3}, \frac{4}{3}\right)$ |  |

Table 20: Exceptional sets for $M_{5}(f)$ for $f$ in Tables 10 and 11 .

| $f$ | $E\left(M_{4}(f)\right)$ and types |
| :---: | :---: |
| $\left(-2,-\frac{1}{2},-2\right)$ | $\{-1,0,1,2,3, \infty\},\{T, Z, Z, Z, T, Z\}$ |
| $(-2,-2,-2)$ | $\{-2,-1,0,1,2, \infty\},\left\{T, T, Z, Z, T, T^{H}\right\}$ |
| $(-3,-2,-3),\left(-2,4,-\frac{2}{3}\right)$, |  |
| $(-2,-3,-4),\left(4,5,-\frac{1}{2}\right)$ | $E\left(M_{5}(f)\right)=\{-1,0,1,2, \infty\}$ |
| $(-2,-5,-3),(-2,-2,-6)$, | types $\left\{T, Z, Z, T, T^{H}\right\}$ |
| $(-3,-4,-2),(-2,-3,-3)$, | $E\left(M_{5}(f)\right)=\{-1,0,1,2, \infty\}$ |
| $(-2,-2,-4),(-2,-2,-3)$, | types $\left\{Z, Z, Z, T, T^{H}\right\}$ |
| $(-2,-2,-5)$ |  |
| $\left(\frac{2}{3}, \frac{5}{2}, \frac{2}{3}\right)$ | $\{-1,0,1,2, \infty\},\{T, Z, Z, Z, Z\}$ |

Table 21: Exceptional sets for $M_{4}(f)$ for $f$ in Table 12, part $1 / 2$.

| $f=\left(-2, \frac{r}{s},-2\right), \frac{r}{s} \in \mathbb{Q} \cup\{\varnothing\} \backslash\left\{-2,-1,0, \frac{1}{2}, 1, \frac{3}{2}, 2,3\right\}, E\left(M_{4}(f)\right)=\{-1,0,1,2, \infty\}$ <br> types $\left\{\begin{array}{l}\{T, A, A, T \& A, A\} \text { if } \frac{r}{s}=\varnothing ; \\ \left\{T, T^{H}, Z, T, Z\right\} \text { if } \frac{r}{s}=2+\frac{1}{k} ; \\ \left\{T, Z, T^{H}, T, Z\right\} \text { if } \frac{r}{s}=1+\frac{1}{k} ; \\ \{T, Z, Z\} \text { if } \frac{r}{s}=\frac{1}{k} ; \\ \left\{T, Z, Z, T, T^{H}\right\} \text { if } \frac{r}{s} \in \mathbb{Z} ;\end{array}\right.$ <br>  <br> $\{T, Z, Z, T, Z\}$ otherwise. |
| ---: | :--- |
| $f=\left(\frac{p}{q}, 4,-\frac{1}{2}\right), \frac{p}{q} \in \mathbb{Q} \cup\{\varnothing\} \backslash\left\{-1,0, \frac{1}{2}, 1, \frac{3}{2}, 2,3\right\}, E\left(M_{4}(f)\right)=\{-1,0,1,2, \infty\}$ |
| $\operatorname{types}\left\{\begin{array}{l}\{T \& A, T \& A, A, T \& A, D\} \text { if } \frac{p}{q}=\varnothing ; \\ \left\{Z, Z, Z, T, T^{H}\right\} \text { if } \frac{p}{q} \in \mathbb{Z} ; \\ \left\{T, T, T^{H}, T, T^{H}\right\} \text { if } \frac{p}{q}=2+\frac{1}{k} ; \\ \left\{T, T, Z, Z, T^{H}\right\} \text { if } \frac{p}{q}=1+\frac{1}{k} ; \\ \left\{T, T, Z, T, S^{H}\right\} \text { if } \frac{p}{q}=\frac{n}{6 n-1} ; \\ \left\{T, T, Z, T, T^{H}\right\} \text { otherwise. }\end{array}\right.$ |

Table 22: Exceptional sets for $M_{4}(f)$ for $f$ in Table 12, part $2 / 2$.

## References

[Ago1] I. Agol, The minimal volume for orientable hyperbolic 2-cusped 3manifolds, Proc. Amer. Math. Soc. 138 (2010), 3723-3732.
[Ago2] I. Agol, Bounds on exceptional Dehn filling II, Geometry and Topology 14 (2010), 1921-1940.
[AGR] B. Audoux, A. G. Lecuona and F. Roukema, On hyperbolic knots in $S^{3}$ with exceptional surgeries at maximal distance, arXiv: 1701.01751.
[Bak] K. L. Baker, Surgery descriptions and volumes of Berge knots II: Descriptions of the minimally twisted five chain link, J. Knot Theory Ramifications, 17 (2008).
[BDH] K. L. Baker, B. G. Doleshal, and N. Hoffman, On manifolds with multiple lens space fillings, Bol. Soc. Mat. Mex. 20 (2014), 405-447.
[BH] S. Bleiler and C. Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996), 809-833.
[CDW] M. Culler, N. Dunfield, and J. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds, http:// snappy. computop.org/.
[CHW] P. J. Callahan, M. V. Hildebrand, and J. R. Weeks, A census of cusped hyperbolic 3-manifolds, Math. Comp. 68 (1999), 321-332.
[Eud] M. Eudave-Muñoz, On hyperbolic knots with Seifert fibered Dehn surgeries, Topology and Its Applications 121 (2002), 119-141.
[EW] M. Eudave-Muñoz and Y. Q. Wu, Nonhyperbolic Dehn fillings on hyperbolic 3-manifolds, Pac. J. Math. 190 (2000), 261-275.
[FM] A. T. Fomenko and S. V. Matveev, Algorithmic and Computer Methods for Three-Manifolds, Kluwer Academic Publishers, (1997).
[GAS] F. González-Acuña and H. Short, Knot surgery and primeness, Math. Proc. Cambridge Philos. Soc. 99 (1986), 89-102.
[G1] C. McA. Gordon, Small surfaces and Dehn fillings, Geometry and Topology Monographs 42, Proceedings of the Kirbyfest (1999), 177199.
[G2] C. McA. Gordon, Dehn surgery and 3-manifolds, Mrowka, T.S., Ozsváth (Eds.) IAS/Park City Mathematics Series, 16 (2006).
[G3] C. McA. Gordon, Dehn filling: a survey, from: "Knot theory (Warsaw, 1995)", (V. F. R. Jones, J. H. Kania-Bartoszynska, J. Przytycki, P. Traczyk, V. G. Turaev, editors), Banach Center Publ. 42, Polish Acad. Sci., Warsaw (1998), 129-144.
[GLi] C. McA. Gordon and R. A. Litherland, Incompressible planar surfaces in 3-manifolds, Top. Appl. 18 (1989), 121-144.
[GL1] C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 371-415.
[GL2] C. McA. Gordon and J. Luecke, Non-integral toroidal Dehn surgeries, Comm. Anal. Geom. 12 (2004), 417-485.
[GL3] C. McA. Gordon and J. Luecke, Reducible manifolds and Dehn surgery, Topology 35 (1996), 385-410.
[HM] J. A. Hoffman and D. Matignon, Examples of bireducible Dehn fillings, Pac. J. Math. 209 (2003), 67-83.
[Ka1] S. Kang, Reducible and toroidal Dehn fillings with distance 3, Topology 47 (2008), 277-315.
[Ka2] S. Kang, Examples of reducible and finite Dehn fillings, J. Knot Theory Ramifications 19 (2010), no. 5, 677-694.
[Kir] K. Kirby, Problems in low-dimensional topology, available from http://math.berkeley.edu/~kirby/.
[LM] M. Lackenby and R. Meyerhoff, The maximal number of exceptional Dehn surgeries, Invent. Math. 191 (2013), 341-382.
[Lee] S. Lee, Lens spaces and toroidal Dehn fillings, Math. Z. 267 (2011), 781-802.
[MP] B. Martelli and C. Petronio, Dehn filling of the "magic" 3-manifold, Comm. Anal. Geom. 14 (2006), 969-1026.
[MPR] B. Martelli, C. Petronio, and F. W. M. Roukema, Exceptional Dehn surgery on the minimally twisted 5-chain link, Comm. Anal. Geom. 22 (2014), 689-735.
[Rou1] F. W. M. Roukema, Dehn surgery on the minimally twisted five-chain link, Ph.D. thesis, supervised by C. Petronio and B. Martelli (2011), available at http://etd.adm.unipi.it/theses/ available/etd-09212011-102615/.
[Rou2] F. W. M. Roukema, An ad hoc python script to identify exceptional surgery instructions, available at http://roukema.staff. shef.ac.uk/.
[Sti] J. Stillwell, Classical Topology and Combinatorial Group Theory, Springer-Verlag (1980).
[Ter] M. Teragaito, Hyperbolic knots with three toroidal Dehn surgeries, J. Knot Theory Ramifications 19 (2008), 1051-1061.
[Yos] K. Yoshida, The minimal volume orientable hyperbolic 3-manifold with 4 cusps, Pac. J. Math. 266 (2013), no. 2, 457-476.

School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK<br>E-mail address: f.roukema@sheffield.ac.uk

Received October 30, 2015
Accepted April 20, 2017

