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We prove the existence of a minimal diffeomorphism isotopic to the
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1. Introduction

A diffeomorphism f : (M, g1) −→ (N, g2) between two Riemannian mani-
folds is called minimal if its graph Γ is a minimal submanifold of (M ×
N, g1 ⊕ g2) (that is its mean curvature vector field vanishes everywhere).
Minimal diffeomorphisms between hyperbolic surfaces have been studied by
R. Schoen [20] (see also F. Labourie [10]). He proved that for any two hyper-
bolic metrics g1 and g2 on Σ, there exists a unique minimal diffeomorphism
Ψ : (Σ, g1) −→ (Σ, g2) isotopic to the identity. Such a minimal diffeomor-
phism is also area-preserving and so its graph is a Lagrangian submanifold
of
(
Σ× Σ, ω1 ⊕ (−ω2)

)
(where ωi is the area form associated to gi); we call

such a map a minimal Lagrangian diffeomorphism.
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1164 Jérémy Toulisse

The minimal Lagrangian diffeormorphism Ψ is related to harmonic maps.
It is well-known (see [17, 27]) that, given a conformal struture c and a hy-
perbolic metric g on Σ, there exists a unique harmonic diffeomorphism u :
(Σ, c) −→ (Σ, g) isotopic to the identity and g is characterized by the Hopf
differential Φ(u) of u (see Section 2 for definitions). It is proved in [20] that
for each pair g1 and g2 of hyperbolic metrics on Σ, there exists a unique con-
formal structure c such that Φ(u1) + Φ(u2) = 0 where ui : (Σ, c) −→ (Σ, gi)
is the unique harmonic map isotopic to the identity (i = 1, 2). Moreover,
u2 ◦ u−1

1 is minimal Lagrangian and isotopic to the identity.
For an angle θ ∈ (0, 2π), consider the metric obtained by gluing an an-

gular sector of angle θ between two half-lines in the hyperbolic disk by
a rotation. This metric is called local model for hyperbolic metric
with cone singularity of angle θ. For a marked surface Σp := Σ \ p
where p = (p1, . . . , pn) ⊂ Σ and for α := (α1, . . . , αn) ∈

(
0, 1

2

)n
such that

χ(Σ) +
∑n

i=1(αi − 1) < 0 (in particular, Σp can be a punctured sphere), one
can construct the Fricke space Fα(Σp) with cone singularities of angle α as
the moduli space of marked hyperbolic metrics on Σp with cone singularities
of angle 2παi at the pi (see Section 2 for the construction).

In a previous paper [23], we proved the existence of a unique minimal
Lagrangian diffeomorphism isotopic to the identity for each pair of points
g1, g2 ∈ Fα(Σp) (that is when the cone angles of g1 and g2 are equal). The
proof of this result used the deep connections between three dimensional
anti-de Sitter (AdS) geometry and hyperbolic surfaces: we showed the exis-
tence of a unique area-maximizing surface in some AdS singular space-time,
and realized the minimal Lagrangian map as the Gauss lift of the maximal
surface (see [23] for more details).

In this paper, we address the question of the existence and uniqueness
of minimal diffeomorphism between hyperbolic cone surfaces with different
cone angles. In particular, we prove:

Main Theorem. Given α, α′ ∈
(
0, 1

2

)n
, g1 ∈ Fα(Σp) and g2 ∈ Fα′(Σp),

there exists a minimal diffeomorphism Ψ : (Σp, g1) −→ (Σp, g2) isotopic to
the identity. If moreover for all i ∈ {1, . . . , n}, αi < α′i then Ψ is unique.

Note that we just recover the existence part of the result of [23], but
neither uniqueness nor the Lagrangian property.

The proof of Main Theorem is totally different from the proof in [23].
Here, we study the energy functional over T (Σp), the Teichmüller space
of Σp. In [7], J. Gell-Redman proved the existence of a unique harmonic
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Hyperbolic surfaces with cone singularities 1165

diffeomorphism isotopic to the identity from a conformal surface to a nega-
tively curved surface with cone singularities of angles less than π. So, given
a hyperbolic metric g with cone singularites of angle 2παi at the pi, we can
define the energy functional Eg : T (Σp) −→ R which associates to a con-
formal structure on Σp the energy of the unique harmonic diffeomorphism
u : (Σp, c) −→ (Σp, g) provided by [7]. This functional only depends on the
class of g in Fα(Σp).

The strategy of the proof is the following. We first prove that the en-
ergy functional Eg is proper and that its gradient at a point c is given by
the Hopf differential of the harmonic map u : (Σp, c) −→ (Σp, g) (up to a
multiplicative constant). Then, given two hyperbolic metric with cone sin-
gularities g1 ∈ Fα(Σp) and g2 ∈ Fα′(Σp), we show that critical points of
Eg1

+ Eg2
correspond to minimal diffeomorphisms.

In the classical case (namely, without conical singularities), Schoen
proved that such a minimal diffeomorphism is also Lagrangian. In particular,
uniqueness of the minimal diffeomorphism follows from stability of minimal
Lagrangian submanifold of Kähler-Einstein manifold (as studied by [8, 13]).
In our case, the Lagrangian property generally fails and we have to prove
stability “by hand”.

The paper is organized as follow. In Section 2, we define surfaces with
cone singularities and construct the moduli space Fα(Σp) of marked hyper-
bolic cone surfaces.

In Section 3, we define and study the energy functional. We prove the
properness and explicit the gradient at a point.

In Section 4, we prove the Main Theorem. We construct a minimal diffeo-
morphism from (Σp, g1) to (Σp, g2) for each local critical point of Eg1

+ Eg2
.

We prove stability of minimal graphs in (Σp × Σp, g1 ⊕ g2) with a maximum
principle on elliptic PDE satisfied by the harmonic diffeomorphisms.

It would be interesting to study the possible connections between the
minimal map of the Main Theorem and AdS geometry. In particular, we
expect that this minimal map should be related to some “maximal” sur-
face in some AdS manifold with spin particles (as introduced in [1] in the
Minkowski case). We leave this question for a future work.

Aknowledgment. I would like to thank J.-M. Schlenker for valuable dis-
cussions about the subject and the referees for useful comments which per-
mitted to improve this paper.
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2. Fricke space with cone singularities

In this Section, we construct the moduli space Fα(Σp) of marked hyperbolic
metrics with cone singularities on Σp when the cone angles are smaller than
π. By definition, Fα(Σp) is the quotient of the infinite dimensional space
M−1

α (Σp) of hyperbolic cone metric on Σp by the action of the group D0(Σp)
of diffeomorphisms isotopic to the identity.

Given a infinitesimal deformation h of a hyperbolic metric g0∈M−1
α (Σp),

we associate a unique deformation h0 which is transverse to the orbit of
D0(Σp) and differs from h by the action of an element in D0(Σp). This is
achieved by considering a Bianchi gauge. We then show that the deformation
h0 obtained in that way is the real part of holomorphic quadratic differential
on Σp with at most simple poles at p.

This construction provides an identification between the tangent space
of Fα(Σp) at [g0] and the space of meromorphic quadratic differential on Σ
with at most simple pole at p. Riemann-Roch Theorem implies that Fα(Σp)
has complex dimension 3g − 3 + n.

2.1. Function spaces

In order to define metrics with cone singularities, we need to introduce the
Hölder-based (b-Hölder) and weighted b-Hölder spaces. We refer to [9, Sec-
tion 2.6.2] for more details about these spaces.

Fix R > 0 and α ∈ (0, 1) and set D := {z ∈ C, |z| < R}. From now and
so on, we will use the following notations

z = ρeiθ, r =
ρα

α
.

Definition 2.1. For γ ∈ (0, 1), the space C 0,γ
b (D) of b-Hölder (0, γ) func-

tions on D consists of these functions f : D −→ C such that

sup
z,z′∈D

|f(z)− f(z′)|
|θ − θ′|γ + |r−r′|γ

|r+r′|γ
< +∞.

For k ≥ 0, we set

C k,γ
b (D) := {f, (r∂r)

i(∂θ)
jf ∈ C 0,γ

b (D), i+ j ≤ k},

and finally, for ν > 0,

rνC k,γ
b (D) := {f, r−νf ∈ C k,γ

b (D)}.
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Note that for instance, for a ∈ C with <(a) > 0 and ψ ∈ C∞, the func-
tion f(z) = raψ(θ) is in rνC k,γ

b (D) for ν < <(a) and all k.

2.2. Local model of cone singularity

Definition 2.2. A metric g on D = {z ∈ C, |z| < R} has a conical singu-
larity of angle 2πα at the origin if g has the following form

g = ce2µ|z|2(α−1)|dz|2,

where c > 0 and µ ∈ rνC 1,γ
b (D) for some ν > 0 and γ ∈ (0, 1).

Equivalently (see [9, 11]), a metric on D has a conical singularity on
angle 2πα at the origin if, in polar coordinates (r, θ), with z = ρeiθ and
r = ρα

α , the metric g has the following form

g = dr2 + α2r2dθ2 + h

where

h = adr2 + brdrdθ + cr2dθ2, a, b, c ∈ rνC 1,γ
b (D).

From now and so on, all the cone angles will be considered
strictly smaller than π, that means we only consider the case α ∈(
0, 1

2

)
.

The main example of metric with cone singularity is the following:

Example 2.3. Let H2 := (D2, gp) be the unit disk equipped with the Poin-
caré metric. Cut D2 along two half-lines making an angle 2πα intersecting
at the center 0 of D2 and define H2

α as the space obtained by gluing the
boundary of the angular sector of angle 2πα by a rotation fixing 0.

Topologically, H2
α = D2 \ {0} and the induced metric gα (which is not

complete) is hyperbolic outside 0 and carries a conical singularity of angle
2πα at 0. We call H2

α = (D∗, gα) the hyperbolic disk with cone singu-
larity of angle 2πα.

In conformal coordinates, we have the well-known expression:

gp =
4

(1− |z̃|2)2
|dz̃|2.

Using the coordinates z̃ = 1
αz

α, we obtain:

gα =
4|z|2(α−1)

(1− α−2|z|2α)2
|dz|2 = 4e2µ|z|2(α−1)|dz|2,
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where µ = − ln
(
1− α−2|z|2α

)
. Note that µ ∈ rνC 1,γ

b (D2) for ν < 2α.
In polar coordinates (r, θ), the metric gα expresses as:

gα = dr2 + α2 sinh2 rdθ2 = dr2 + α2r2dθ2 + h,

where h = (sinh2 r − r2)dθ2. Note that so r−2(sinh2 r − r2) ∈ rνC 1,γ
b .

2.3. Surfaces with cone singularities

Let Σ be a closed oriented surface, p = (p1, . . . , pn) ⊂ Σ be a set of points.
Denote by Σp := Σ \ p and let α := (α1, . . . , αn) ∈

(
0, 1

2

)n
be such that

χ(Σp)−
∑n

i=1(αi − 1) < 0. By a theorem of McOwen and Troyanov [12, 25],
this condition implies the existence of hyperbolic metrics with cone singual-
rities of angle α. Note also that Σp can be a sphere with at least 3 punctures.

Definition 2.4. A metric g on Σp is a metric with cone singularities of
angle α if g is a C 2 metric on each compact K ⊂ Σp and for each punc-
ture pi ∈ p, the exists a holomorphic chart z : Ui −→ D ⊂ C where Ui is a
neighborhood of pi and g|Ui has the form of Definition 2.2.

We denote by Mα(Σp) the space of such metrics.

Remark 2.5. The space Mα(Σp) is a positive cone in the vector space of C 2

sections of the bundle of symmetric 2-tensors (where the regularity around
the puncture pi is rνC 1,γ

b ). In particular, given a metric g0 ∈Mα(Σp), a vec-
tor h ∈ Tg0

Mα(Σp) is a C 2 symmetric 2-tensor such that in a neighborhood
of each puncture, h has the following expression (see Subsection 2.2):

h = adr2 + brdrdθ + cr2dθ2, a, b, c ∈ rνC 1,γ
b .

We have the following map

K : Mα(Σp) −→ C 0(Σp)
g 7−→ K(g)

,

where K(g) is the Gauss curvature of the metric g.

Definition 2.6. The space M−1
α (Σp) of hyperbolic metrics with cone sin-

gularities of angle α is K−1(−1).

Note that, given g ∈Mα(Σp), for each puncture p ∈ p, there is a local
holomorphic chart around p such that the expression of g in that chart is
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given by gα, where gαi is the hyperbolic metric with cone singularity of angle
2παi described in Example 2.3.

We now define the group of diffeomorphisms we will consider.

Definition 2.7. Let D0(Σp) be the group of diffeomorphisms ψ of Σ =
Σp ∪ p isotopic to the identity (in the isotopy class fixing each pi ∈ p) so
that, for each compact K ⊂ Σp, ψ|K is of class C 3 and, for each marked
point pi ∈ p, the expression of ψ in a holomorphic chart centered at pi has
the form

ψ(z) = λz + f(z), f ∈ r1+νC 2,γ
b , λ ∈ C∗.

Proposition 2.8. For each g ∈Mα(Σp) and ψ ∈ D0(Σp), the pull-back
metric ψ∗g is in Mα(Σp).

Proof. Away from the singular points, ψ is C 3 and g is C 2 so in particular,
ψ∗g is C 2.

In a holomorphic chart around a point p ∈ p corresponding to an angle
2πα, ψ has the expression

ψ(z) = λz + r1+νf(z),

where f ∈ C 2,γ
b and λ ∈ C∗. Writing λ = r0e

iθ0 One gets the following ex-
pression

dψ =
(
r0 + (1 + ν)rνf + rν(r∂r)f

)
dr + (1 + r1+ν∂θf)dθ

= (r0 + η)dr + (1 + rξ)dθ

where η, ξ ∈ rνC 1,γ
b .

In particular, if g has local expression

g = dr2 + α2r2dθ2 + h, h = adr2 + brdrdθ + cr2dθ2, a, b, c ∈ rνC 1,γ ,

then we have

ψ∗g = r2
0dr

2 + α2|ψ(z)|2dθ2 + h′,

where h′ = (2r0η + η2)dr2 + α2|ψ(z)|2(2rξ + r2ξ2)dθ2 + ψ∗h.
Using |ψ(z)| = r0r + χ where χ ∈ r1+νC 2,γ

b , and setting r̂ = r0r, one ob-
tains that the pull-back metric has the form

ψ∗g = dr̂2 + α2r̂2dθ2 + h′′,

where h′′ = a′dr̂2 + b′r̂dr̂dθ + c′r̂2dθ2, a′, b′, c′ ∈ rνC 1,γ
b . �
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It follows that the space D0(Σp) acts by pull-back on M−1
α (Σp) and the

quotient space Fα(Σp) := M−1
α (Σp)/D0(Σp) is a smooth manifold called

the Fricke space with cone singularities of angles α.
One of the main reason to impose the cone angles being smaller than π

is the following proposition. It will be of main importance when studying
deformations of hyperbolic cone metrics.

Proposition 2.9. Let g ∈M−1
α (Σp) be a hyperbolic metric with cone sin-

gularities on Σp, where α ∈
(
0, 1

2

)n
. The distance between two singularities

is bounded from below by a positive constant depending only on the angles.

Proof. Let p1, p2 ∈ p be two singularities of (Σp, g) corresponding to the cone
angle 2πα1 and 2πα2 respectively. Let β the shortest geodesic joining p1 to
p2 and denote by δi the geodesic from pi making an angle παi with β.

Given a closed disk D with boundary ∂D and an embedding ι : D ↪→
Σ = Σp ∪ p such that p ∩ ι(D) = {p1, p2}, denote by γ the unique geodesic
homotopic to ι(∂D).

We have the following:

Lemma 2.10. The distance between β and γ is strictly positive.

Proof. We first claim that if the distance between γ and β is zero, then the
image of γ and β coincides. In fact, for ε > 0 small enough, consider the
ε-neighborhood Uε of β and let ψ : Uε −→ Uε be the isometric involution
given by the reflection along β ∪ δ1 ∪ δ2.

By uniqueness of the geodesic in the homotopy class of ι(∂D), the in-
tersection of Uε with the image of γ has to be fixed by ψ. In particular, if γ
intersects β, the intersection has to be tangent to β and so the image of γ
and β coincide.

Let V be one of the connected component of Uε \ {β ∪ δ1 ∪ δ2} and send
V isometrically to H2 = {(x, y) ∈ R2, y > 0}, sending β to the imaginary
axis. The vector field N = ∂x restricts to a Jacobi field along β and so the
curve ϕtN (γ) (where ϕN is the flow generated by N) is a geodesic in V .
The condition on the angle implies that παi <

π
2 and so for t small enough,

ϕtN (γ) is strictly shorter than γ (see Figure 1). In particular, the distance
between β and γ is strictly positive. �

Consider the connected component S of Σ \ γ containing p1 and p2,
and cut it along β, δ1 and δ2. The remaining surfaces are two isometric
hyperbolic quadrilaterals (see Figure 2). When the length of γ tends to
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Figure 1: The geodesic βε.

zero, each quadrilateral tends to a hyperbolic triangle of angles πα1, πα2

and 0. In such a triangle, the length on β satisfies

cosh(l(β)) =
1 + cos(πα1) cos(πα2)

sin(πα1) sin(πα2)
.

It corresponds to the lower bound for the distance between two hyperbolic
cone singularities of angles 2πα1 and 2πα2. �

Applying this result to the universal cover of (Σp, g), one gets a lower
bound for the injectivity radius of the singular points on a hyperbolic cone
surface. In particular, there exists a neighborhood Vi of each pi ∈ p such that,
the restriction of any g ∈M−1

α (Σp) to Vi is isometric to a neighborhood of
the origin in H2

αi .
From now and so on, we fix a cylindrical coordinates system (ri, θi) :

Vi → H2
αi centered at pi for each i ∈ {1, . . . , n}. Proposition 2.9 implies that,

up to a gauge, we can always assume that for each i ∈ {1, . . . , n}, every
metric g ∈M−1

α (Σp) has the following expression:

g|Vi = dr2
i + α2

i sinh2 ridθ
2
i .

We get the following Corollary:
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Figure 2: Hyperbolic quadrilateral.

Corollary 2.11. Let g0 ∈M−1
α (Σp) and let h̃ := d

dt |t=0
gt be a deforma-

tion of g0. There exists a vector field v ∈ Lie(D0(Σp)) (the Lie algebra of
D0(Σp)), so that

h̃ = h+ Lvg0, and h|Vi = 0 ∀i ∈ {1, . . . , n}.

Here Lvg0 is the Lie derivative of g in the direction v and the Vi are defined
as in Proposition 2.9. We call such a h a normalized deformation.

Analysis on hyperbolic cone manifolds. Let (Σp, g) be a hyperbolic
surface with cone singularities of angle α ∈

(
0, 1

2

)n
. It is not obvious that

classical results of geometric analysis on Riemannian manifolds (as integra-
tion by parts) extend to hyperbolic cone surfaces.

In this section, we study differential operators on vector bundles over
(Σp, g) in the framework of unbounded operators. For the convenience of
the reader, we recall here basic facts about unbounded operators between
Hilbert spaces. A good reference for the subject is [18].

Unbounded operators. Let H1 and H2 be two Hilbert spaces with
scalar product 〈., .〉1 and 〈., .〉2 respectively.
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Definition 2.12. An unbounded operator is a linear map

T : D(T ) ⊂H1 −→H2

where D(T ) is a linear subset of H1 called the domain of T .

Example 2.13. Let I ⊂ R be an interval and D an order n ∈ N linear
differential operator. We see D : C∞0 (I) ⊂ L2(I) −→ L2(I) as an unbounded
operator (here C∞0 (I) is the space of C∞ real valued functions over I with
compact support).

Of course, one notes that in this example, C∞0 (I) is probably not the
largest set (with respect to the inclusion) where D can be defined. This
motivates the following definitions:

Definition 2.14. Let T1 and T2 two unbounded operators from H1 to H2.
We say that T1 extends T2 (and we denote by T2 ⊂ T1) if D(T2) ⊂ D(T1)
and T1|D(T2)

= T2.

We have the important notion of closed and closable operators:

Definition 2.15. An unbounded operator T is closed if its graph G (T ) is
closed in H1 ⊕H2. T is called closable if the closure of G (T ) in H1 ⊕H2

is the graph of an unbounded operator T . In this case, T is called the closure
of T .

Using the scalar products of H1 and H2, we can define the adjoint of
an unbounded operator with dense domain:

Definition 2.16. Let T : D(T ) ⊂H1 −→H2 be an unbounded operator
such that D(T ) is dense in H1. We define the adjoint of T as the unbounded
operator T ∗ : D(T ∗) ⊂H2 −→H1 where:

D(T ∗) := {y ∈H2, there exists u ∈H1 such that

〈Tx, y〉2 = 〈x, u〉1, ∀x ∈ D(T )}.

As D(T ) is dense, u is uniquely defined and we set T ∗y := u.

The following proposition can be found in [18, Theorem 1.8]:

Proposition 2.17. If T : D(T ) ⊂H1 −→H2 has dense domain and D(T ∗)
is dense in H2, then T is closable with T = T ∗∗.
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Determining the domain of an adjoint operator is generally difficult.
Hence we have the notion of a formal adjoint:

Definition 2.18. Let T : D(T ) ⊂H1 −→H2 be an unbounded operator
with dense domain. We say that an operator T t : D(T t) ⊂H2 −→H1 is a
formal adjoint of T is for all x ∈ D(T ), y ∈ D(T t) we have 〈Tx, y〉2 =
〈x, T ty〉1.

Remark 2.19. By Riesz’ theorem, y ∈ D(T ∗) if and only if the applica-
tion x 7−→ 〈Tx, y〉 is continuous on D(T ). Given y ∈ D(T t), the functional
x 7−→ 〈Tx, y〉 is continuous on D(T ), so D(T t) ⊂ D(T ∗) and T t ⊂ T ∗. So
T ∗ extends every formal adjoint of T .

The following result is of main importance for us [16, Theorem 13.13]:

Proposition 2.20. If T : D(T ) ⊂H1 −→H2 is closed with dense domain,
then the operator T ∗T + Id is invertible and its inverse A := (T ∗T + Id)−1 :
H1 −→H1 is continuous with ‖A‖ ≤ 1.

Application to geometric analysis on cone surfaces. Let (Σp, g)
be a hyperbolic cone surface (recall that the cone angles are supposed
strictly smaller than π). Denote by T (r,0)Σp :=

⊗r
i=1 T

∗Σp the bundle of
(r, 0)-tensors on Σp and by S rΣp ⊂ T (r,0)Σp the sub-bundle of symmetric
r-tensors.

The cone metric g on Σp induces a metric on T (r,0)Σp and S rTΣp that
we still denote by g. In the sequel, we will consider the Hilbert spaces
L2
(
T (r,0)Σp

)
of L2 sections of T (r,0)Σp endowed with the scalar product

〈η, µ〉T (r,0) :=

∫
Σp

g(η, µ)volg.

For k ∈ N, we denote by C k
0

(
T (r,0)Σp

)
(respectively C k

(
T (r,0)Σp

)
) the

space of sections of T (r,0)Σp which are C k with compact support (respec-
tively C k). We use similar notations for S rΣp.

Note that C∞0
(
T (r,0)Σp

)
⊂ L2

(
T (r,0)Σp

)
is a dense subset.

We need some results of integration by parts in cone manifolds. Some
good references for this theory are [4, 14].
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Divergence and covariant derivative. We denote by ∇̊ the covariant
derivative associated to g. We see ∇̊ as an unbounded operator:

∇̊ : D(∇) := C 1
0

(
T (r,0)Σp

)
⊂ L2

(
T (r,0)Σp

)
−→ L2

(
T (r+1,0)Σp

)
.

Because D(∇̊) is dense in L2
(
T (r,0)Σp

)
, ∇̊ admits an adjoint denoted

∇∗. Define the operator ∇t by

∇t : D(∇t) = C 1
0

(
T (r+1,0)Σp

)
⊂ L2

(
T (r+1,0)Σp

)
−→ L2

(
T (r,0)Σp

)
,

where

∇tη(X1, . . . , Xr) = −
2∑
i=1

(∇eiη)(ei, X1, . . . , Xr),

for (e1, e2) an orthonormal framing of TΣp.
Stokes’ formula for compactly supported tensors implies that ∇t is a

formal adjoint of ∇̊. In particular, ∇t ⊂ ∇∗, so ∇∗ has dense domain and ∇̊
is closable (by Proposition 2.17). We denote by ∇ := ∇∗∗ its closure.

The divergence operator δ : D(δ) ⊂ L2 (S rΣp) −→ L2
(
S r−1Σp

)
is the

restriction of∇∗ to the sections of S rΣp. Its adjoint δ∗ is just the composition
of ∇ with the symmetrization.

In particular, for r = 1, the decomposition of (2, 0)-tensors into symmet-
ric and anti-symmetric part gives

∇ = δ∗ +
1

2
d

where d is the usual differential acting on 1-forms.
Similarly, one checks that δ∗ : D(δ∗) ⊂ L2(Σp) −→ L2

(
S 1Σp

)
is just the

differential d.
We have a result of integration by parts for covariant tensors on (Σp, g).

The proof is analogous to the proof of [15, Theorem 1.4.3], however, as it is
a central result in what follows, we include it.

Proposition 2.21. For all f ∈ C 1(Σp) ∩D(d) and u ∈ C 1(S 1Σp) ∩D(δ),
we have

〈df, u〉S1 = 〈f, δu〉L2(Σp).

Proof. Let us prove the result when (Σp, g) contains a unique cone singu-
larity p of angle 2πα. To prove the result in the general case, we just apply
the following computation to each puncture.
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Fix cylindrical coordinates (r, θ) ∈ (0, R)× R/2παZ in a neighborhood
of p so that

g|V = dr2 + sinh2 rdθ2.

For t ∈ (0, r), denote by Ut := {(r, θ) ∈ V, r < t}.
For f ∈ D(d) ∩ C 1(Σp) and u ∈ D(δ) ∩ C 1(S 1Σp), Stokes’ formula gives:∫

Σ\Ut

(
g(df, u)− fδu

)
dvg =

∫
∂Ut

f.u(∂r)dvg|∂Ut

where ∂r is the unit vector field normal to ∂Ut.
As t tends to 0, the left hand side tends to 〈df, u〉S1 − 〈f, δu〉L2(Σp).

Denote by It the right hand side. By Cauchy-Schwarz inequality,

|It| ≤
∫
∂Ut

|f ||u(∂r)|dvg|∂Ut ≤
(∫

∂Ut

|f |2dvg|∂Ut

)1/2(∫
∂Ut

|u(∂r)|2dvg|∂Ut

)1/2

.

When f 6= 0, |f | is differentiable and ∂r|f | = ±∂rf . When f = 0, we set
∂r|f | = 0. It follows that ∂r|f | is the partial derivative of |f | is the sense of
distributions. In fact, for all t, a ∈ (0, r) and θ fixed, we have

|f(t, θ)| − |f(a, θ)| =
∫ t

a
∂r|f(r, θ)|dr.

In particular, as |∂r|f || ≤ |∂rf |, we get

|f(t, θ)| ≤ |f(a, θ)|+
∫ a

t
|∂rf |dr.

So

|f(t, θ)|2 ≤ 2|f(a, θ)|2 + 2

(∫ a

t
|∂rf |dr

)2

.

Applying Cauchy-Schwarz, we obtain(∫ a

t
|∂rf |dr

)2

≤
∫ a

t

dr

r

∫ a

t
r|∂rf |2dr

≤
∣∣∣∣ln( ta

)∣∣∣∣ ∫ a

t
r|∂rf |2dr.
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Finally, we get∫
∂Ut

|f |2dvg|∂Ut ≤ 2

∫
∂Ut

|f(a, θ)|2dvg|∂Ut

+

∫
∂Ut

(
2

∣∣∣∣ln( ta
)∣∣∣∣ ∫ a

t
r|∂rf |2dr

)
dvg|∂Ut

≤ 2t

∫ 2πα

θ=0
|f(a, θ)|2dθ

+ 2

∣∣∣∣ln( ta
)∣∣∣∣ ∫

∂Ut

(∫ a

t
r|∂rf |2dr

)
dvg|∂Ut

≤ 2t

∫ 2πα

θ=0
|f(a, θ)|2dθ + 2t

∣∣∣∣ln( ta
)∣∣∣∣ ∫ 2πα

θ=0

∫ a

t
|∂rf |2rdrdθ

≤ 2t

∫ 2πα

θ=0
|f(a, θ)|2 dθ + 2t

∣∣∣∣ln( ta
)∣∣∣∣ ∫

Ua

|∂rf |2dvg

= O(t ln t).

Now, as u ∈ L2(S 2Σp),∫ a

0

(∫
∂Ut

|u(∂r)|2dvg|∂Ut

)
≤
∫ a

0

(∫
∂Ut

|u|2dvg|∂Ut

)
=

∫
Ua

|u|2dvg < +∞,

that is, the function t 7−→
∫
∂Ut
|u|2 is integrable on (0, a). As the function

(t ln t)−1 is not integrable in 0, there exists a sequence (tn)n∈N with tn → 0
such that ∫

∂Utn

|u|2dvg|∂Ut = o
(
(tn ln tn)−1

)
.

It follows that lim
n→∞

Itn = 0. �

We will use the following corollary later.

Corollary 2.22. If f ∈ D(δ ◦ d) ∩ C 2(Σp) satisfies (δd+ λId)f = 0 for λ >
0, then f = 0.

Proof. Let λ ≥ 0 and f ∈ D(δ ◦ d) ∩ C 2(Σp) such that

(δd+ λId)f = 0.

Taking the scalar product with f , and using Proposition 2.21, we get:

〈δdf + λf, f〉L2(Σp) = ‖df‖2S1 + λ‖f‖2L2(Σp) = 0,

and so f = 0. �
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2.4. Deformations of hyperbolic cone metrics

We want to understand the deformations of a hyperbolic cone metric g0 ∈
M−1

α (Σp) up to the action of diffeomorphisms in D0(Σp).
Given a smooth path (gt)t∈(−ε,ε) in M−1

α (Σp) with gt=0 = g0, the in-

finitesimal deformation h := d
dt |t=0

gt ∈ Tg0
M−1

α (Σp) is a symmetric 2-tensor

on Σp.
The fact that (gt)t∈(−ε,ε) ⊂M−1

α (Σp) implies that

d

dt |t=0
K(gt) = dKg0

(h) = 0

where K(gt) is the Gauss curvature of the metric gt.
The linearized operator dKg0

has the following well-known expression
(see for instance [24, Formula 1.5, p.33]):

(1) dKg0
(h) = δd(trg0

h) + δδh+
1

2
trg0

h,

where trg0
denote the trace with respect to g0. It follows that infinitesimal

deformations of g0 in M−1
α (Σp) correspond to vectors h ∈ Tg0

Mα(Σp) that
are solution to (1).

Given a smooth path (ψt)t∈(−ε,ε) ⊂ D0(Σp) with ψ0 = Id, the pull-back
metrics ψ∗t g0 are in M−1

α (Σp). Moreover, we have

d

dt |t=0
ψ∗t g0 = LXg0 = 2δ∗u,

where LX is the Lie derivative along the the vector field X generating ψt
and u is the 1-form dual to X. A deformation h ∈ Tg0

M−1
α (Σp) is called a

trivial deformation if h = 2δ∗u for some 1-form u dual to a vector field
X ∈ Lie(D0(Σp)).

It follows that the deformations of [g0] := D0(Σp).g0 ∈ Fα(Σp) corre-
spond to solutions of (1) up to trivial deformations.

The end of this subsection is devoted to the proof of the following:

Proposition 2.23. Given a hyperbolic metric with cone singularities g0 ∈
M−1

α (Σp) and an infinitesimal deformation h ∈ Tg0
M−1

α (Σp), there exists a
unique traceless and divergence free symmetric 2-tensor h0 ∈ Tg0

M−1
α (Σp)

which is transverse to the orbit D0(Σp).g0 and differs from h by a trivial
deformation.
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Proof. First note that, given an infinitesimal deformation

h :=
d

dt |t=0
gt,

one can always find a family of diffeomorphisms ψt such that the expression
on ψ∗t gt is constant on the neighborhood Vi of each marked point pi (see
Corollary 2.11). It means that, if we want to consider infinitesimal deforma-
tions h up to the action of D0(Σp), we can restrict ourselves to deforma-
tions vanishing in a neighborhood of the pi. These deformations belong to
C 2

0

(
S 2Σp

)
and are called normalized deformations.

A classical way to get rid of trivial deformations is to impose a gauge on
h. Here we will consider a Bianchi gauge (as in [3]).

Let β be the operator acting on symmetric 2-tensors by

β(η) := δη +
1

2
d(trg0

η).

Lemma 2.24. Given a normalized deformation h ∈ Tg0
M−1

α (Σp), there ex-
ists a unique 1-form u ∈ D(∇∇∗) such that

(2) β(h− 2δ∗u) = 0.

Proof. We want to solve the equation

2(β ◦ δ∗)u = βh,

where

2(β ◦ δ∗)u = 2δδ∗u+ d(trg0
δ∗u).

Using the decomposition of ∇ into symmetric and anti-symmetric part,
namely ∇ = δ∗ + 1

2d, we obtain

trg0
(δ∗u) = trg0

(∇u) = −∇∗u = −δu.

So

2(β ◦ δ∗)u = 2δ

(
∇u− 1

2
du

)
− dδu

= 2∇∗∇u−∆u,

where ∆ = dδ + δd is the Hodge Laplacian.
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The Weitzenböck formula gives a relation between ∇∗∇ and ∆ (see [2,
Chapter 1.]):

∆ = ∇∗∇− Id.

Note that here we used the fact that g0 is hyperbolic.
Substituting, we finally obtain

2(β ◦ δ∗)u = (∇∗∇+ Id)u.

It follows from Proposition 2.20 that the operator∇∗∇+ Id : D(∇∗∇) ⊂
L2
(
S 1Σp

)
−→ L2

(
S 1Σp

)
is invertible. Moreover, because h ∈ C 2

0

(
S 2Σp

)
,

βh ∈ C 1
0

(
S 1Σp

)
⊂ L2

(
S 1Σp

)
and the equation 2(β ◦ δ∗)u = βh admits a

unique solution. �

So far, we just know that δ∗u is L2. In particular, we will need to have a
control on the behavior of h0 = h− 2δ∗u at the punctures in order to prove
that h0 ∈ Tg0

M−1
α (Σp). This is achieved in the following lemmas.

Lemma 2.25. On each compact K ⊂ Σp, the solution u to equation (2) is
smooth.

Proof. Let K ⊂ Σp be a compact. We can assume, without loss of generality,
that K is isometric to a closed hyperbolic disk Dr ⊂ H2 of radius r. Denote
by ϕ : Dr −→ K ⊂ Σp the isometry.

By uniqueness of the Levi-Civita connection, the pull-back of the covari-
ant derivative∇ by ϕ is the covariant derivative associated to the Levi-Civita
connection on H2. It follows that the pull-back 1-form ϕ∗u satisfies

(∇∗H2∇H2 + Id)ϕ∗u = β(ϕ∗h).

The operator on the left hand side is elliptic of order two and the right hand
side is C 1. We can thus apply Schauder estimates and we obtain that u
is C 3. �

Lemma 2.26. The symmetric 2-tensors h0 := h− 2δ∗u (where u is the
solution to equation (2)) has zero trace and is divergence free.
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Proof. Because u is smooth on Σp, the flow of the vector field dual to u is a
diffeomorphism of Σp (which may not be in D0(Σp)). In particular,

dKg0
(h) = dKg0

(h0 − 2δ∗u) = dKg0
(h0) = 0.

That is,

δd(trg0
h0) + δδh0 +

1

2
trg0

h0 = 0.

On the other hand, β(h0) = δh0 + 1
2d(trg0

h0) = 0 implies that h0 satisfies

δd(trg0
h0) + trg0

h0 = 0.

The previous lemma implies that trg0
h0 is at least C 2(Σp), so by Corol-

lary 2.22, trg0
h0 = 0.

Finally, the condition β(h0) = 0 becomes δh0 = 0. �

The next lemma is classical:

Lemma 2.27. The symmetric 2-tensors h0 is the real part of a meromor-
phic quadratic differential on Σ with at most simple poles at p.

Proof. For (dx, dy) an orthonormal framing of T ∗Σp, write

h0 = u(x, y)dx2 − v(x, y)(dxdy + dydx) + w(x, y)dy2.

The condition trg0
h0 = 0 implies w(x, y) = −u(x, y). Write (∂x, ∂y) the fram-

ing dual to (dx, dy). Let us explicit the divergence-free condition:

0 = δh0(∂x)

= −(∇∂xh0)(∂x, ∂x)− (∇∂yh0)(∂y, ∂x)

= −∂xu+ ∂yv.

In the same way, we get:

0 = δh0(∂y) = ∂xv + ∂yu.

These are the Cauchy-Riemann equations. It implies in particular that ϕ =
u+ iv is holomorphic on Σp.

Now, for z = x+ iy, dz = dx+ idy, set φ = ϕ(z)dz2. It is a holomor-
phic quadratic differential on Σp such that h0 = <(φ). It follows that φ is
meromorphic on Σ with possible poles at the pi ∈ p.
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We claim that, as h0 = <(φ) ∈ L2
(
S 2Σp

)
, the poles of φ at the pi are

at most simple. In fact, let p ∈ p be a cone singularity of angle 2πα, z be a
local holomorphic coordinates around p and

φ(z) =

(
λ

zn
+ f(z)

)
dz2

for λ ∈ C∗, n ≥ 0 and f meromorphic so that znf(z) −→
z→0

0.

It follows from Proposition 2.9 that around p, each lifting g0 ∈M−1
α (Σp)

of [g0] ∈ Fα(Σp) is isometric to the expression gα given in Definition 2.2. In
particular,

φφ =
(
O(|z|−2n

)
|dz|4,

so

g0(φ, φ)(z) = O
(
|z|2(2−2α−n)

)
.

It follows,

g0(φ, φ)dvg0
= O

(
|z|2(1−α−n)

)
|dz|2.

As α ∈
(
0, 1

2

)
, g0(φ, φ)dvg0

is integrable in 0 if and only if n ≤ 1. In partic-
ular, h0 is in L2 only when n ≤ 1. �

Lemma 2.28. The symmetric 2-tensor h0 is tangent to the space of hyper-
bolic metric M−1

α (Σp) at g0.

Proof. We want to prove that h0 ∈ Tg0
Mα(Σp). By Remark 2.5, we have to

show that, for each puncture p ∈ p of angle 2πα and local polar coordinate
system (r, θ), h0 has the following expression

h0 = adr2 + brdrdθ + cdr2dθ2, a, b, c ∈ rνC 2,γ
b .

By Lemma 2.27, h0 = 1
2(φ+ φ), where φ(z) = ϕ(z)dz2, ϕ(z) = λ

z + f(z),
λ ∈ C and f is holomorphic.

As usual, we set z = ρeiθ and r = ρα

α . We have

dz2 = e2iθdρ2 + 2iρe2iθdρdθ − ρ2e2iθdθ2.

In particular, writting

h0 =
1

2
(φ+ φ) = adr2 + brdrdθ + cr2dθ2,
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one obtains 
adr2 = <

(
ϕ(z)e2iθ

)
dρ2

brdrdθ = 2<
(
iρϕ(z)e2iθ

)
dρdθ

cr2dθ2 = −<
(
ρ2ϕ(z)e2iθ

)
dθ2.

Using

r =
ρα

α
, ρ = (αr)

1

α , dρ = (αr)
1

α
−1dr,

one gets

a = <
(
ϕ(z)e2iθ

)
(αr)2( 1

α
−1)

= <
(
zλe2iθ

ρ2
+ e2iθf(z)

)
(αr)2( 1

α
−1)

= <
(
λeiθ

ρ

)
(αr)2( 1

α
−1) +O

(
r2( 1

α
−1)
)

= <(λeiθ)(αr)
1

α
−2 +O

(
r2( 1

α
−1)
)
.

b = 2<
(
iρϕ(z)e2iθ

)
(αr)

1

α
−1r−1

= 2<
(
iρ
λze2iθ

ρ2
+ iρe2iθf(z)

)
(αr)

1

α
−1r−1

= 2α
1

α
−1<(iλeiθ)r

1

α
−2 +O

(
r2( 1

α
−1)
)
.

c = −<(λeiθ)(αr)
1

α
−2 +O

(
r2( 1

α
−1)
)
.

But 1
α > 2, so in particular, for ν < 1

α − 2, a, b, c ∈ rνC 1,γ
b . �

This complete the proof of the proposition. �

In particular, one can associate a meromorphic quadratic differential on
Σ with at most simple pole at p to each deformation of g0 ∈M−1

α (Σp).
On the other hand, the real part of any (non-zero) meromorphic quadratic
differential is a deformation of g0 transverse to D0(Σp).g0. We thus get the
following:

Proposition 2.29. The tangent space to Fα(Σp) at [g0] is canonically
identified with the space of meromorphic quadratic differential on Σ = Σp ∪ p
with at most simple poles at p.
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2.5. A Weil-Petersson metric on Fα(Σp)

Here we describe the Weil-Petersson metric on the Fricke space with cone
singularities. This metric was first introduced and studied by Schumacher
and Trapani in [21].

Let h, k ∈ T[g0]Fα(Σp). Fix a lift g0 ∈M−1
α (Σp) of [g0]. It follows from

the above construction that there exists a unique lift ĥ, k̂ ∈ Tg0
M−1

α (Σp) of
h and k respectively which are divergence-free 2-symmetric tensors of zero
trace. We call such a lifting a horizontal lifting. Define:

1

8
〈h, k〉WPα := 〈ĥ, k̂〉S2 .

In the case of a closed surface, it was proved by Fischer and Tromba [6,
Theorem (0.8)] that this L2 metric coincides with the Weil-Petersson metric.
We call 〈., .〉WPα the Weil-Petersson metric with cone singularities of
angle α.

Note that in [21], the author proved that 〈., .〉WPα is a Kähler metric
and studied its curvature.

Uniformization. Here, we recall a fundamental result proved by R.C.
McOwen [12] and independently M. Troyanov [25]. Let T (Σp) be the Te-
ichmüller space of Σp, that is the moduli space of marked conformal struc-
tures on Σp. We have

Theorem 2.1 (McOwen, Troyanov). Given c ∈ T (Σp), there exists a
unique g ∈ Fα(Σp) in the conformal class c as long as χ(Σ) +

∑n
i=1(αi −

1) < 0 (where Σ = Σp ∪ p).

This theorem provides a family of identification Θα : T (Σp) −→ Fα(Σp)
for each α ∈ Rn>0 such that χ(Σp) +

∑n
i=1(αi − 1) < 0. In particular, one can

define a family (Θ∗α〈., .〉WPα)α∈(0, 1
2)
n of Weil-Petersson metric on T (Σp).

3. Energy functional on T (Σp)

In this section, we define and study the energy functional on the Teichmüller
space of Σp. Its definition is based on the following theorem, which is a
particular case of the main theorem of [7]:

Theorem 3.1 (Gell-Redman). Given two hyperbolic metrics g, g0 ∈
M−1

α (Σp) with cone singularities of angle α, there exists a unique diffeo-
morphism u ∈ D0(Σp) such that u : (Σp, g) −→ (Σp, g0) is harmonic.
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Recall that a harmonic map f : (M, g) −→ (N,h) between Riemannian
manifolds is a critical point of the energy, where the energy of f is defined
as follow:

E(f) :=

∫
M
e(f)dvg,

and e(f) = 1
2‖df‖

2 is called the energy density of f . Here, df is seen as a
section of T ∗M ⊗ f∗TN with the metric g∗ ⊗ f∗h (g∗ stands for the metric
on T ∗M dual to g).

Note that, when dimM = 2, the energy functional only depends on the
conformal class c of the metric g. We denote by uc,g0

the harmonic diffeo-
morphism isotopic to the identity from (Σp, c) to (Σp, g0).

Moreover, a complex structure Jc on Σp is canonically associated to c.
It allows us to split each symmetric 2-tensor on Σp into its (2, 0), (1, 1) and
(0, 2) part.

Definition 3.1. Let u : (Σp, c) −→ (Σp, g0) be a diffeomorphism. The Hopf
differential Φ(u) of u is the quadratic form define by

Φ(u) := (u∗g0)(2,0).

We have the following (see [7, Section 5.1])

Proposition 3.2 (J. Gell-Redman). Let g0 ∈M−1
α (Σp) be a hyperbolic

metric with cone singularities and c be a conformal structure on Σp. A dif-
feomorphism u : (Σp, c) −→ (Σp, g0) is harmonic if and only if its Hopf dif-
ferential Φ(u) is holomorphic on Σp with at most simple poles at p.

Local expressions. Let u : (Σp, g) −→ (Σp, g0) be a diffeomorphism, z =
x+ iy be a local holomorphic coordinates on (Σ, g). Set g = ρ2(z)|dz|2 and
g0 = σ2(u)|du|2. As usual, write u = u1 + iu2 and

∂z = 1
2(∂1 − i∂2), ∂z = 1

2(∂1 + i∂2)

dz = dx1 + idx2, dz = dx1 − idx2

∂u = 1
2(∂u1 − i∂u2), ∂u = 1

2(∂u1 + i∂u2).

We have the following expression:

du =

2∑
i,j=0

∂iu
jdxi ⊗ ∂uj

= ∂zudz∂u + ∂zudz∂u + ∂zudz∂u + ∂zudz∂u.
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It follows that

Φ(u) = u∗g0(∂z, ∂z)dz
2

= g0

(
du(∂z), du(∂z)

)
dz2

= σ2(u)∂zu∂zudz
2.

Moreover, for gij the coefficient of the metric dual to g,

e(u) =
1

2

2∑
α,β,i,j=0

gijg0αβ∂iu
α∂ju

β

= ρ−2(z)σ2(u)
(
|∂zu|2 + |∂zu|2

)
.

In particular, we have

(u∗g0)(1,1) =
(
u∗g0(∂z, ∂z) + u∗g0(∂z, ∂z)

)
|dz|2

= 2g0

(
du(∂z), du(∂z)

)
|dz|2

= σ2(u)(|∂zu|2 + |∂zu|2)|dz|2

= ρ2(z)e(u)|dz|2.

Note that we get the following equation for each section ξ of T ∗Σp ⊗ u∗TΣp

with the metric g∗ ⊗ u∗g:

(3) ‖ξ‖2 = 4ρ2|〈ξ(∂z), ξ(∂z)〉|,

where 〈., .〉 is the scalar product with respect to the metric g0.
Finally, noting that the framing (dz∂u, dz∂u, dz∂u, dz∂u) of (T ∗Σp ⊗

u∗TΣp, g
∗ ⊗ u∗g0) is orthogonal and each vector has norm ρ−1(z)σ(u), we

get the following expression for the Jacobian J(u) of u:

J(u) = detg∗⊗u∗g0

(
∂zu ∂zu

∂zu ∂zu

)
= ρ−2(z)σ2(u)

(
|∂zu|2 − |∂zu|2

)
.

In particular, we have the following expression:

u∗g0 = Φ(u) + ρ2(z)e(u)|dz|2 + Φ(u).

Thus Φ(u) measures the difference of the conformal class of u∗g0 with c.
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Energy functional. Fixing g0 ∈M−1
α (Σp), we define the energy func-

tional Ẽg0
on the space of conformal structures of Σp by:

Ẽg0
(c) := E(uc,g0

),

where uc,g0
: (Σp, c) −→ (Σp, g0) is the unique harmonic diffeomorphism iso-

topic to the identity.

Proposition 3.3. The energy functional Ẽg0
descends to a functional Eg0

on T (Σp).

Proof. For each diffeomorphism isotopic to the identity f ∈ D0(Σp), f :
(Σp, f

∗c) −→ (Σp, c) is holomorphic and E is invariant under holomorphic
mapping (see [5, Proposition p.126]), that is E(uc,g0

) = E(f∗uc,g0
). More-

over, f∗uc,g0
= uf∗c,g0

. In fact,

f∗uc,g0
: (Σp, f

∗c) −→ (Σp, g0)

is harmonic. So, as f ∈ D0(Σp) is isotopic to the identity, uniqueness of

the harmonic diffeomorphism implies f∗uc,g0
= uf∗c,g0

. So Ẽg0
is D0(Σp)-

invariant and descends to a functional Eg0
on T (Σp). �

Remark 3.4. The same argument shows that Eg0
only depends on the class

of g0 in Fα(Σp).

Now, we are going to prove the following main result:

Theorem 3.2. The energy functional Eg0
: T (Σp) −→ R is proper. More-

over, its Weil-Petersson gradient at [g]∈T (Σp) is given by −2<(Φ(u[g],g0
))∈

T[g]T (Σp).

3.1. Properness of Eg0

Recall that (Proposition 2.9), for each g ∈ Fα(Σp) and i ∈ {1, . . . , n}, there
exists a neighborhood Vi = {x ∈ Σp, d(x, pi) < Ri} of pi such that

g|Vi = dr2
i + sinh2 ridθ

2
i

where (ρi, θi) are fixed cylindrical coordinates on Vi. We can choose the Vi
such that Vi ∩ Vj = ∅ whenever i 6= j. We denote V :=

⋃n
i=1 Vi. We need an

important result, corresponding to Mumford’s compactness theorem for the
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case of hyperbolic surfaces with cone singularities. The proof is an extension
of Tromba’s proof in the classical case [24].

Proposition 3.5. Let (gk)k∈N ⊂M−1
α (Σp) be such that, the length of every

closed geodesic γk ⊂ (Σp \ V, gk) is uniformly bounded from below by l > 0.
There exists g ∈M−1

α (Σp) and a sequence (fk)k∈N ⊂ Diff(Σp) such that

f∗kgk −→
C 2

g.

Proof. Let (gk)k∈N be as above. It follows that there exists ρ > 0 such that,
for each k ∈ N and x ∈ Σp \ V , the injectivity radius of x is bigger than ρ
(for example, take ρ = min{l, r1, . . . , rn}).

Fix R > 0 such that R < 1
2ρ. As the area of (Σp \ V, gk) is independent

of k, there exists N > 0 such that for each k ∈ N, N is the maximum number
of disjoint disks of radius R

2 in Σp.
That is, for each k ∈ N, there exists

(
xk1, . . . , x

k
N

)
⊂ Σp \ V such that

DR

2

(
xk1
)
, . . . , DR

2

(
xkN
)
, V1, . . . , Vn are disjoints (here DR

2
(xki ) ⊂ Σp is the

disk of center xki and radius R
2 ) and DR(xk1), . . . , RR(xkN ), V1, . . . , Vn is a

covering of Σp.
For each i, j ∈ {1, . . . , N} with DR(xki ) ∩DR(xkj ) 6= ∅, note that xki ∈

D2R(xkj ), x
k
j ∈ D2R(xki ) and, as 2R < ρ, there exists isometries Ψk

i and Ψk
j

sending D2R(xki ) (resp. D2R(xkj )) to the disk B of radius 2R centered at 0

in H2.
It follows that the map τkij := Ψk

i ◦ (Ψk
j )
−1 is a positive local isometry of

H2 which uniquely extend to τkij ∈ PSL(2,R). Moreover, for each k,

τkij(Ψ
k
j (x

k
i )) = Ψk

i (x
k
j ) ∈ B,

that is (τkij)k∈N is compact. So (τkij)k∈N admits a convergent subsequence
whose limit is denoted by τij .

For each i ∈ {1, . . . , N} and j ∈ {1, . . . , n} with D2R(xki ) ∩ Vj 6= ∅,
there exists an isometry Ψk

i : D2R(xki ) −→ B ⊂ H2 and ψj : Vj −→ H2
αj . As

ψi(D2R(xki ) ∩ Vj) is a simply connected subset of H2
αj , it is isometric to a

subset of B ⊂ H2 by an isometry denoted Φj .
Pick-up a point yk ∈ D2R(xki ) ∩ Vj . The map αkij := Φj ◦ ψj ◦ (Ψk

i )
−1

(see Figure 3) is a positive local isometry of H2 which uniquely extends
to an element of PSL(2,R). Moreover, αkij sends Ψk

i (y) to Φ ◦ ψj(y) which

are both in the compact set B ⊂ H2 (the closure of B). Then, by the same
argument as before, αkij −→ αij ∈ PSL(2,R) (up to a subsequence).
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Figure 3: The map αkij .

Now, define

M := (B1 t · · · tBN t ψ1(V1) t · · · t ψn(Vn)) / ∼,

where Bi = B ⊂ H2 for each i and ∼ identifies:

• xi ∈ Bi with xj ∈ Bj whenever τij exists and τij(xj) = xi.

• xi ∈ Bi with xj ∈ ψj(Vj) whenever αij exists and αij(xi) = Φ(xj).

Obviously, M is an hyperbolic surface with cone singularities and defines
a point g ∈M−1

α (Σp).
Now, we claim that there exist diffeomorphisms fk : M −→ (Σp, gk) with

fk(Bj) ⊂ DR(xkj ), fk(Vi) ⊂ Vi and such that

Ψk
j ◦ fk −→

C 2
id on each Bj , and ψi ◦ fk −→

C 2
id on each H2

αi .
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The proof of this claim is exactly analogous to the proof of [24, Lemma C4
p.188] and will not be repeated here.

Hence, on each Bj , we have

f∗kΨk∗
j gP −→

C 2
gP ,

(where gP is the Poincaré metric) and on each Vi

f∗kψ
∗
i gαi −→

C 2
gαi .

But, as Ψk
j and ψi are isometries, we get:

f∗kgk −→
C 2

g. �

Now we are able to prove the properness of Eg0
. Let (ck)k∈N ⊂ T (Σp)

such that (Eg0
(ck))k∈N is convergent. For each k ∈ N, choose a point gk ∈

M−1
α (Σp) such that the conformal class of gk is ck. It follows that E(ugk,g0

) ≤
K for all k ∈ N.

Let γ be a simple closed curve in Σp \ V . For k ∈ N, let γk be the unique
geodesic isotopic to γ for the metric gk. Note that there exists no geodesic
homotopic to a cone point on a hyperbolic surface. In fact, if γ would be such
a geodesic, consider the surface obtained by taking two times the connected
component of Σ \ γ containing the cone point and glue them along γ. The
remaining surface would be a hyperbolic sphere with two punctures, but it
is well-know that such a hyperbolic surface does not exist.

So γ is not homotopic to ∂Vi for some i ∈ {1, . . . , n}, so by [24, Theo-
rem 3.2.4] we have:

l(γk) >
C

K
for some constant C > 0.

So (l(γk))k∈N is bounded from below and we can use Proposition 3.5 and
we get a family (fk)k∈N ⊂ Diff(Σp) such that f∗kgk −→C 2

g.

For all k ∈ N, denote by uk : (Σp, ck) −→ (Σp, g0) the harmonic diffeo-
morphism isotopic to the identity. By [24, Lemma 3.2.3], the sequence
(uk)k∈N is equicontinuous. It follows that the classes of (fk)k∈N in Diff(Σp)/
Diff0(Σp) takes only a finite set of values. In fact, as

E(uck,g0
) = E(uf∗k ck,g0

) = E(f∗kuck,g0
) < K,

the sequence (f∗kuk)k∈N is equicontinuous and admits a convergent subse-
quence by Arzelá-Ascoli. As Diff(Σp)/Diff0(Σp) is discrete, there exists a
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N ∈ N such that, for k bigger than N , [fk] ∈ Diff0(Σp) is constant. It fol-
lows that, up to a subsequence, ([f∗k ck])k∈N converges in T (Σp).

3.2. Weil-Petersson gradient of Eg0

Let c ∈ T (Σp). We are going to use real coordinates (x, y) on (Σp, c). From
now on, denote by ∂1 := ∂x and ∂2 := ∂y and by (dx1, dx2) the dual framing.
Denote by u := uc,g0

and fix g̃ ∈M−1
α (Σp) such that the conformal class of

g̃ is c. In local coordinates, we have the following expression:

du =

2∑
i,j,α,β=1

∂iu
αdxi ⊗ ∂uα ,

where (u1, u2) are the coordinates of u on (Σp, g0). Assume that (u1, u2) are
isothermal coordinates for g0, so

g0 =

2∑
α,β=1

σ2(u)δαβdu
αduβ,

(here δαβ is the Kronecker symbol). Writing g̃ in coordinates and using the
Einstein convention, we have the following expression:

E(u) =
1

2

∫
Σp

‖du‖2dvg̃ =
1

2

∫
Σp

σ2δαβ g̃
ij∂iu

α∂ju
βvolg̃.

Here, volg̃ is the volume form of (Σp, g̃) and g̃ij are the coefficients of the
metric dual to g̃ in T ∗Σp.

For h∈TcT (Σp), denote by h̃ the horizontal lift of dΘα(h) in Tg̃M
−1
α (Σp)

(recall that Θα is the application given by the uniformization). So h̃ is a zero
trace divergence-free symmetric 2−tensor on (Σp, g̃).

We are going to compute the differential of Ẽg0
at g̃ in the direction h̃.

Note that the differential of g̃ 7−→ (g̃ij) is given by h̃ 7−→ (−h̃ij) and the
differential of g̃ 7−→ volg̃ is h̃ 7−→ (1

2trg̃h̃)volg̃. So one gets:

dẼg0
(g̃)(h̃) = −1

2

∫
Σp

σ2h̃ij∂iu
α∂ju

αvolg̃

+
1

4

∫
Σp

σ2g̃ij∂iu
α∂ju

α(trg̃h̃)volg̃ +R(h̃),
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where the term R(h̃) is obtained by fixing g̃ and dvolg̃ and varying the rest.

It follows that R(h̃) correspond to the first order variation of E(u) in the
direction h̃. But as u is harmonic, R(h̃) = 0.

Moreover, the second term is zero because we have chosen a horizontal
lift of h, hence trg̃h̃ = 0.

Writing u = u1 + iu2 and using the fact that h̃11 = −h̃22 and h̃12 = h̃21

(see Section 2), we get the following expression:

dEg0
(g̃)(h̃) = −1

2

∫
Σp

σ2
(
h̃11
(
|∂1u|2 − |∂2u|2

)
+ 2h̃12<(∂1u∂2u)

)
volg̃

= 〈h̃, ϕ〉S2(Σp),

where

ϕ = −1

2
σ2(u)

(
(|∂1u|2 − |∂2u|2)(dx2 − dy2) + 2<(∂1u∂2u)(dxdy + dydx)

)
.

Note that, by definition, ϕ is the Weil-Petersson gradient ∇E (c) of E at the
point c ∈ T (Σp). On the other hand,

<(Φ(u)) = <(σ2(u)∂zu∂zudz
2)

= <
(

1

4
σ2(u)(∂1u− i∂2u)(∂1u− i∂2u)(dx2 − dy2 + i(dxdy + dydx))

)
=

1

4
σ2(u)

(
(|∂1u|2 − |∂2u|2)(dx2 − dy2) + 2<(∂1u∂2u)(dxdy + dydx)

)
.

So ∇E (c) = −2<(Φ(u)).

4. Minimal diffeomorphisms between hyperbolic
cone surfaces

In this section, we prove the Main Theorem by studying the PDE satisfied
by harmonic diffeomorphisms.

4.1. Existence

Proposition 4.1. For each α, α′ ∈
(
0, 1

2

)n
, g1 ∈ Fα(Σp) and g2 ∈ Fα′(Σp),

there exists a minimal diffeomorphism Ψ : (Σp, g1) −→ (Σp, g2) isotopic to
the identity.
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Proof. Let g1 ∈ Fα(Σp), g2 ∈ Fα′(Σp) and consider M := (Σp × Σp, g1 ⊕
g2). Given a conformal structure c ∈ T (Σp), one can consider the map

fc := (u1, u2) : (Σp, c) −→M,

where ui : (Σp, c) −→ (Σp, gi) is the harmonic diffeomorphism isotopic to the
identity (i = 1, 2).

Clearly, E(fc) = E(u1) + E(u2) (where E(f) = 1
2

∫
Σp
‖df‖2dvg). From

Section 3, the functional E := Eg1
+ Eg2

: T (Σp) −→ R is proper. Let c0 be
a critical point of E , so the map

Ψ := fc0
: (Σ, c0) −→M

is a harmonic immersion. We claim that Ψ is also conformal. In fact, Ψ =
(u1, u2), so

Ψ∗(g1 ⊕ g2) = u∗1g1 ⊕ u∗2g2

= Φ(u1) + Φ(u2) + ρ2(z)(e(u1) + e(u2))|dz|2 + Φ(u1) + Φ(u2),

where z is a local holomorphic coordinates on (Σp, c0) such that Θα(c0) =
ρ2(z)|dz|2 (where Θα : T (Σp) −→ Fα(Σp) is defined in Subsection 2.5).

Now, as c0 is a minimum of E , ∇E (c0) = −2< (Φ(u1) + Φ(u2)) = 0, so
Φ(u1) + Φ(u2) = 0 and Ψ is conformal. It follows that Ψ is a conformal har-
monic immersion, hence Ψ(Σp) is a minimal surface in M (see [5, Proposition
p. 119]).

Denoting by pi : M −→ Σp the projection on the i-th factor (i = 1, 2)
and Γ = Ψ(Σp), we get that ui = pi|Γ and Γ = graph(p2|Γ ◦ p−1

1|Γ
). It follows

that

p2|Γ ◦ p−1
1|Γ

: (Σp, g1) −→ (Σp, g2)

is a minimal diffeomorphism isotopic to the identity. �

Remark 4.2. For Ψ : (Σ, g1) −→ (Σ, g2) a minimal diffeomorphism as in
Proposition 4.1, the induced metric gΓ on Γ = graph(Ψ) carries conical sin-
gularities of angle β = (β1, . . . , βn) where βi = 2πmin(αi, α

′
i).

In fact, suppose α ≤ α′ and normalize the metrics g1 and g2 so that Ψ =
id, and choosing conformal coordinates z in a neighborhood of (pi, pi) ∈ Γ,



i
i

“5-Toulisse” — 2019/11/3 — 0:41 — page 1194 — #32 i
i

i
i

i
i
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one has the following expression:

gΓ = id∗g1 + id∗g2

=
(
ce2µ|z|2(α−1) + c′e2µ′ |z|2(α′−1)

)
|dz|2

= ce2µ|z|2(α−1)

(
1 +

c′

c
e2(µ′−µ)|z|2(α′−α)

)
|dz|2

= ce2µ̂|z|2(α−1)|dz|2

where µ̂ = µ+ ln
(
1 + c′

c e
2(µ′−µ)|z|2(α′−α)

)
∈ rνC 1,γ

b . So, by Definition 2.2,
gΓ carries a conical singularity of angle 2πα at (pi, pi).

4.2. Uniqueness

Before proving the rest of the Main Theorem, let us recall some results about
the harmonic diffeomorphisms provided by [7]. We use the same notations
as in the proof above. Let z be conformal coordinates on Γ such that

gΓ = ρ2(z)|dz|2, gi = σ2
i (ui(z))|dui|2.

The natural complex structure on Γ provides a decomposition of vector-
valued 1-forms on Γ into their C-linear and C-antilinear part. In particular,
for i = 1, 2, we get:

1√
2
dui = ∂ui + ∂ui,

where ∂ui ∈ Ω1,0(Γ, u∗iTΣp ⊗ C), ∂ui ∈ Ω0,1(Γ, u∗iTΣp ⊗ C). It follows that

e(ui) =
1

2
‖dui‖2 = ‖∂ui‖2 + ‖∂ui‖2,

which in coordinates gives{
‖∂ui‖2(z) = ρ−2(z)σ2

i (ui(z))|∂zui|2

‖∂ui‖2(z) = ρ−2(z)σ2
i (ui(z))|∂zui|2.

Then we have the following expressions (cf. Section 3):
‖Φ(ui)‖ = ‖∂ui‖‖∂ui‖
e(ui) = ‖∂ui‖2 + ‖∂ui‖2

J(ui) = ‖∂ui‖2 − ‖∂ui‖2.
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Note that, as ui is orientation preserving, J(ui) > 0 and in particular
‖∂ui‖ 6= 0.

It is well-known that these functions satisfy a Bochner type identities
everywhere it is defined (see [19])

(4)

{
∆ ln ‖∂ui‖ = ‖∂ui‖2 − ‖∂ui‖2 − 1

∆ ln ‖∂ui‖ = −‖∂ui‖2 + ‖∂ui‖2 − 1,

where ∆ = ∆gΓ
= δδ∗.

Note that, as Φ(ui) is holomorphic outside p, the singularities of ln ‖∂ui‖
on Σp are isolated and have the form c ln r for some c > 0. In fact, as J(ui) >
0, ‖∂ui‖ 6= 0. Because ‖Φ(ui)‖ = ‖∂ui‖‖∂ui‖, the singularities of ln ‖∂ui‖
correspond to zeros of Φ(ui).

Remind that, in a local holomorphic chart around a puncture p of angle
2πα,

ui(z) = λiz + r1+νfi(z),

where λi ∈ C∗, f ∈ C 2,γ
b (U).

Using {
∂z = 1

2z (r∂r − i∂θ)
∂z = 1

2z (r∂r + i∂θ)

we get that {
∂zui = λi + rεL(fi)

∂zui = rεL(fi)

where {
L = r

2z

(
(1 + ε)Id+ ∂r − i∂θ

)
L = r

2z

(
(1 + ε)Id+ ∂r + i∂θ

)
.

Let α (resp. α′) be the cone angle of the singularity of g1 (resp. g2) at p. So,
from subsection 2.2, there exists some bounded non vanishing functions c1

and c2 so that {
σ2

1(u1) = c2
1|u1|2(α−1)

σ2
2(u2) = c2

2|u2|2(α′−1).

It follows that

(5)


‖∂u1‖2 = ρ−2(z)c2

1|λ1z + r1+εf1|2(α−1)|λ1 + rεL(f1)|2

= ρ−2(z)c2
1|λ1|2αr2(α−1) (1 +O(rε))

‖∂u1‖2 = ρ−2(z)c2
1|λ1|2(α−1)r2(α−1)+2ε|L(f1)|2(1 +O(rε)).
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Proposition 4.3. If αi < α′i for all i ∈ {1, . . . , n}, the minimal diffeomor-
phism Ψ : (Σp, g1) −→ (Σp, g2) of Proposition 4.1 is unique.

The proof follows from the stability of Γ.

Lemma 4.4. Under the same conditions as in Proposition 4.3, a minimal
graph Γ ∈ (Σp × Σp, g1 ⊕ g2) is stable.

Proof. Let Γ be a minimal graph in (Σp × Σp, g1 ⊕ g2), and denote by ui
the ith projection from Γ to (Σ, gi) (for i = 1, 2). As Γ is minimal, the ui are
harmonic and Φ(u1) + Φ(u2) = 0.

Stability of minimal graph in products of surfaces has been studied for
the classical case in [26]. We have the following lemma:

Lemma 4.5. Let Γ be a minimal graph in (Σp × Σp, g1 ⊕ g2), then the
second variation of the area functional under a deformation of Γ fixing its
intersection with the singular loci is given by:

(6) A′′ = E′′2 − 4

∫
Γ

‖Φ′(u2)‖2

e(u1) + e(u2)
volΓ,

where E′′2 is the second variation of the energy of u2 and Φ′(u2) is the vari-
ation of the Hopf differential of u2.

Proof. By definition, the area of Γ is given by:

A =

∫
Γ

(det(u∗1g1 ⊕ u∗2g2))1/2 |dz|2.

But we have:

det(u∗1g1 ⊕ u∗2g2) = det
(
ρ2(e(u1) + e(u2))|dz|2 + 2<(Φ(u1) + Φ(u2))

)
= det

(
ρ2(e(u1) + e(u2))(dx2 + dy2) + 2<(φ(u1)

+ φ(u2))(dx2 − dy2)− 2=(φ(u1)

+ φ(u2))(dxdy + dydx)
)

= ρ4(e(u1) + e(u2))2 − 4|φ(u1) + φ(u2)|2,

where Φ(ui) = φ(ui)dz
2. It follows that

A =

∫
Γ

(
e(u1) + e(u2))2 − 4‖Φ(u1) + Φ(u2)‖2

)1/2
dvΓ.
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Writing

a := (e(u1) + e(u2))2 − 4‖Φ(u1) + Φ(u2)‖2,

we get

A =

∫
Γ
a1/2dvΓ.

Recall that, for i = 1, 2, we have

E(ui) =

∫
Σp

e(ui)dvΓ.

Denote by v1,t and v2,t be the variations of u1 and u2 respectively cor-
responding to a variation Γt of Γ. Set ψi := d

dt |t=0
vi,t which is a section of

u∗iTΣp. Denote by ∇ui the pull-back by ui of the Levi-Civita connection on
(Σp, gi). In particular, we have:

d

dt |t=0
dvi,t = ∇uiψi.

Now we have:

A′′(Γ) =
d2

dt2 |t=0

∫
Γ
a

1/2
t dvΓ =

1

2

∫
Γ

(
a−1/2a′′ − 1

2
a−3/2a′2

)
dvΓ.

But

a′ =
d

dt |t=0

(
(e(v1,t) + e(v2,t))

2 − 4(‖Φ(v1,t) + Φ(v2,t)‖2
)

= 2(e(u1) + e(u2))(e′(u1) + e′(u2))− 8〈Φ′(u1) + Φ′(u2),Φ(u1) + Φ(u2)〉
= 2(e(u1) + e(u2))(e′(u1) + e′(u2)),

and

a′′ =
d2

dt2 |t=0

(
(e(v1,t) + e(v2,t))

2 − 4(‖Φ(v1,t) + Φ(v2,t)‖2
)

= 2(e′(u1) + e′(u2))2 + 2(e(u1) + e(u2))(e′′(u1) + e′′(u2))

− 8‖Φ′(u1) + Φ′(u2)‖2.

Hence,

a−1/2a′′ − 1

2
a−3/2a′2 = 2(e′′(u1) + e′′(u2))− 8

‖Φ′(u1) + Φ′(u2)‖2

e(u1) + e(u2)
.
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It follows

A′′(Γ) = E′′(u1) + E′′(u2)− 4

∫
Γ

‖Φ′(u1) + Φ′(u2)‖2

e(u1) + e(u2)
dvΓ.

Now, as pointed out in [26], such a variation can be realized as a vari-
ation of u2 only since the variation of u1 can be interpreted as a change of
coordinates which does not change the area functional. So, setting ψ1 = 0,
we get the formula. �

Writing wi := ln
‖∂ui‖
‖∂ui‖

and using equation (4), we obtain:

∆wi = ∆ ln ‖∂ui‖ −∆ ln ‖∂ui‖
= 2‖∂ui‖2 − 2‖∂ui‖2

= 2‖Φ‖

(
‖∂ui‖
‖∂ui‖

−
(
‖∂ui‖
‖∂ui‖

)−1
)

= 4‖Φ‖ sinhwi,

where ‖Φ‖ = ‖Φ(u1)‖ = ‖Φ(u2)‖. That is, w1 and w2 satisfy the same equa-
tion. Note that, outside p, the singularities of w1 and w2 are the same. In
fact, singularities of wi correspond to zeros of ‖∂ui‖ (as J(ui) = ‖∂ui‖2 −
‖∂ui‖2>0). But as ‖Φ(u1)‖=‖∂u1‖‖∂u1‖=‖∂u2‖‖∂u2‖, the zeros of ‖∂u1‖
and ‖∂u2‖ are the same. In particular, w2 − w1 is a regular function on Σp

satisfying:

(7) ∆(w2 − w1) = 4‖Φ‖(sinhw2 − sinhw1).

Let us study the behavior of w1 − w2 at a singularity p ∈ p. Using the same
notation as above, the norm of the Hopf differentials satisfy:

ρ2(z)‖Φ(u1)‖(z) = σ2
1(u1)|∂zu1||∂zu1|

= c2
1|λ1z + r1+εf |2(α−1)|λi + rεL(f1)||rεL(f1)|

= c2
1|L(f1)||λi|2α−1r2(α−1)+ε(1 +O(rε))

and

ρ2(z)‖Φ(u2)‖(z) = σ2
1(u2)|∂zu2||∂zu2|

= c2
2|λ2z + r1+εf2|2(α′−1)|λ2 + rεL(f2)||rεL(f2)|

= c2
2|L(f2)||λi|2α

′−1r2(α′−1)+ε(1 +O(rε)).
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Hence, using ‖Φ(u1)‖ = ‖Φ(u2)‖,∣∣∣∣L(f1)

L(f2)

∣∣∣∣ = r2(α′−α)C,

where C is a non-vanishing bounded function. Now, using equation (5), we
obtain:

wi = ln

(
|λi|

rε|L(fi)|
(1 +O(rε))

)
= ln

(
|λi|

rε|L(fi)|

)
+O(rε).

In particular,

(8) w2 − w1 = 2(α− α′) ln r + C ′,

where C ′ is a bounded function. As α− α′ > 0, w2 − w1 tends to −∞ at the
singularities.

So we can apply the maximum principle to equation (7), and we obtain
that w2 ≤ w1. Using ‖Φ(u1)‖ = ‖Φ(u2)‖ = ‖Φ‖, we finally obtain:

‖∂u2‖ ≤ ‖∂u1‖.

Let us consider the function f(x) = x+ ‖Φ‖2x−1 defined on R>0. Its deriva-
tive is f ′(x) = 1− ‖Φ‖2x−2, so f is increasing for x ≥ ‖Φ‖. As J(u2) > 0,

‖∂u2‖2 ≥ ‖∂u2‖‖∂u2‖ =
‖Φ‖

2
.

Applying f to ‖∂u2‖2 ≤ ‖∂u1‖2, we get

e(u2) ≤ e(u1).

So, from equation (6), we obtain:

A′′ ≥ E′′2 − 2

∫
Ω

‖Φ′(u2)‖2

e(u2)
volΓ.

Let ψ := d
dt |t=0

vt be a deformation of u2 (so ψ is a section of u∗2TΣp). We

have the following expression (see e.g [22, Equation 2]):

E′′(u2) =

∫
Γ

(〈∇u2ψ,∇u2ψ〉 − trgΓ
Rg2(du2, ψ, ψ, du2)) dvΓ,

where Rg2 is the curvature tensor on (Σp, g2), ∇u2 is the pull-back by u2 of
the Levi-Civita connection on (Σp, g2) and the scalar product is taken with
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respect to the metric g∗Γ ⊗ u∗2g2 on T ∗Γ⊗ u∗2TΣp. Computing Φ′, we get:

Φ′ =
d

dt |t=0
v∗t g2(∂z, ∂z)dz

2

=
d

dt |t=0
g2(dvt(∂z), dvt(∂z))dz

2

= 2g2(∇u2ψ(∂z), du2(∂z))dz
2.

That is

‖Φ′‖2 = 4σ2(u2)|〈∇u2ψ(∂z), du2(∂z)〉|2,
(where 〈., .〉 is the scalar product with respect to g2). By Cauchy-Schwarz
and equation (3), we get

‖Φ′‖2 ≤ 4σ2(u)
∣∣∣〈∇u2ψ(∂z),∇u2ψ(∂z)〉

∣∣∣ ∣∣∣〈du2(∂z), du2(∂z)〉
∣∣∣

≤ 1

4
‖∇u2ψ‖2‖du2‖2.

Hence, ∫
Γ

‖Φ′‖2

e(u2)
volΓ ≤

1

2

∫
Γ
〈∇uψ,∇uψ〉volΓ.

Finally, we obtain:

A′′ ≥ −
∫

Γ
trgΓ

Rg2(du, ψ, ψ, du)dvΓ.

But as the sectional curvature of (Σp, g2) is −1, the right-hand side of the
last equation is strictly positive (for a non zero ψ). So Γ is strictly stable. �

Now, using the classical estimates (see [5, Proposition p.126] or the proof of
lemma 4.5),

Area(Γ) ≤ E(Ψ)

and equality holds if and only if Ψ is a minimal immersion. It follows from the
stability of Γ that the critical points of Eg1

+ Eg2
can only be minima. But a

proper function whose unique extrema are minima with non-degenerate Hes-
sian admits a unique minimum. So Ψ is the unique minimal diffeomorphism
isotopic to the identity.
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[15] G. Montcouquiol, On the rigidity of hyperbolic cone-manifolds, C. R.
Math. Acad. Sci. Paris 340 (2005), no. 9, 677–682.



i
i

“5-Toulisse” — 2019/11/3 — 0:41 — page 1202 — #40 i
i

i
i

i
i

1202 Jérémy Toulisse

[16] W. Rudin, Functional analysis, International Series in Pure and Applied
Mathematics, McGraw-Hill, Inc., New York, second edition (1991),
ISBN 0-07-054236-8.

[17] J. H. Sampson, Some properties and applications of harmonic mappings,
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