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In this paper, we study a family of curves on S2 that defines a
two-dimensional smooth projective plane. We use curve shortening
flow to prove that any two-dimensional smooth projective plane
can be smoothly deformed through a family of smooth projective
planes into one which is isomorphic to the real projective plane. In
addition, as a consequence of our main result, we show that any
two smooth embedded curves on RP2 which intersect transversally
at exactly one point converge to two different geodesics under the
flow.
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1. Introduction

1.1. Overview

The subject of smooth projective planes is intriguing in the field of geometric
topology. In contrast to the studies of topological projective planes, see [21],
the theory of smooth projective planes is not as well developed. The earliest
papers considering differentiable structure on topological projective planes
were due to Breitsprecher [7], [8], [9] and Betten [4] in the late 60’s and early
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70’s. The systematical studies of this subject were first given in the theses of
Otte [20] and Bödi [5]. Some characterizations of smooth projective planes
were contributed by Linus Kramer, Richard Bödi, Stefan Immervoll et al.,
see [16], [6], [15].

McKay proved [[19], Theorem 12] that every regular four-dimensional
projective plane can be deformed through a family of regular four-dimen-
sional projective planes into one which is isomorphic to the complex projec-
tive plane. McKay applied the Radon transform and defined plane curves
in a regular projective plane of dimension four (or more) to show that the
exterior differential systems for those curves are elliptic. The proof of this
deformation result for dimension four was based on the ellipticity argument
and the general theory of pseudocomplex structures which was developed in
[18] and [19]. However, this cannot be applied to the case of two-dimensional
smooth projective plane since the Radon transform and plane curves are not
well defined. In this paper, we use curve shortening flow (CSF) to prove the
analogous result:

Theorem 1.1. There is a smooth homotopy of two-dimensional smooth
projective planes between any two-dimensional smooth projective plane and
the real projective plane.

If C is the space of curves on RP2 with the standard metric, any two-
dimensional smooth projective plane X corresponds to a two-dimensional
submanifold X in C such that any two distinct elements of X correspond
to curves which intersect transversely and exactly once. Denote the sub-
manifold in C corresponding to RP2 by G, which is comprised of the closed
geodesics in RP2. Therefore, producing the desired one-parameter family of
maps from X to RP2 is equivalent to studying the evolution from X to G.

CSF shortens any smooth curve by moving it in the direction of its curva-
ture vector field. Gage proved [[11], Theorem 5.1] that any smooth embedded
curve on S2 which bisects the surface area converges to a unique great circle
under the flow. Hence it is not hard to believe that one can smoothly flow
X into G by CSF. Nevertheless, there are several issues arising from flowing
curves simultaneously. Firstly, we need to prove that the limit exists in the
smooth topology (Gage’s result implies only pointwise convergence). Next,
to see a family of curves defines a smooth projective plane at any time, we
need to show that CSF preserves the property of transversal intersection be-
tween any pair of curves in the family. It is known that this property holds
for any t ≥ 0 as we will discuss in §2.4. This suggests CSF to be a natural
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tool for this problem. We prove that the transversal intersection is actually
preserved in the limit; this turns out to be far more delicate to prove.

Our proof of Theorem 1.1 has the following Corollary and we are not
aware of any other proof of this result.

Corollary 1.2. Any two smooth embedded curves on RP2 which intersect
transversally at a single point converge to two distinct geodesics under curve
shortening flow.

We prove this corollary by embedding the two curves into a family of
curves which defines a smooth projective plane.

1.2. Organization of the paper

In Section 2, we review some background material and show some relevant
formulae. In Section 3, we first prove a convergence result for evolving a
compact smooth family of curves on S2 by CSF; note that this convergence
result applies to any such a family, it does not require the assumption that
the family defines a smooth projective plane. Then, we restrict attention to a
family of curves which defines a smooth projective plane and show that one
gets a smooth homotopy of smooth projective planes, after reparametriza-
tion to the time interval [0, 1). In Section 4, we extend the smooth homotopy
of smooth projective planes to the closed time interval [0, 1] by analyzing
the linearized curve shortening equation and present the proof of our main
result Theorem 1.1.

1.3. Acknowledgements

The author would like to thank Bruce Kleiner for introducing her to the
problem, and for his guidance and direction during the entire project. The
author would also like to acknowledge numerous helpful conversations with
Philip Gressman, Subhojoy Gupta, Joseph Lauer, Yair Minsky and Rishi
Raj.

2. Preliminaries

2.1. Smooth projective planes

The classical example of a smooth projective plane of dimension two is the
real projective plane, RP2. It can be thought of as the set of lines through
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the origin in R3. A line in RP2 is then the set of lines through the origin
in R3 that lie in the same plane. Any two planes through the origin in R3

intersect at a unique line through the origin in R3. Lines through the origin
in R3 can be thought of as points in RP2. Any two lines intersect at a unique
point and any two points can be joined by a unique line. Alternatively, one
can think of RP2 as the unit sphere S2 with antipodal points identified. In
this setting, a line in RP2 is a great circle and a point is a pair of antipodal
points on S2.

Definition 2.1 (Projective planes). A projective plane is a triple
(P,L,F) which consists of the point space P, the line space L and the flag
space F ⊂ P × L such that the following axioms are satisfied.

1) Any two points p, q in P can be joined by a unique line L = p ∨ q ∈ L
that is (p, L) and (q, L) are in F .

2) Any two lines l1, l2 in L intersect at a unique point p = l1 ∧ l2 ∈ P
that is (p, l1) and (p, l2) are in F .

3) There are 4 points, no three of which are on the same line.

Definition 2.2 (Smooth projective planes). A projective plane is called
a smooth projective plane if P and L are smooth manifolds and the maps
∨ : P × P \4(P)→ L and ∧ : L × L \4(L)→ P are smooth, where ∆ de-
notes the diagonal in P × P .

Theorem 2.3 (Freudenthal [10]). The dimension of a smooth projective
plane is either 0, 2, 4, 8 or 16.

Theorem 2.4 ([21] 51.29). Two-dimensional smooth projective planes are
diffeomorphic to the real projective plane.

Theorem 2.5 (Mckay [19]). Every smooth projective plane of dimension
4 is diffeomorphic to the complex projective plane.

Remark 2.6. Every smooth projective plane of positive dimension is dif-
feomorphic to RP2, CP2, HP2 or OP2. For dimensions 8 and 16, this was
proven by Kramer and Stolz [17].

Definition 2.7 (Smooth generalized plane, [6]). Suppose that (P,L,F)
is a projective plane and P and L are 2n-dimensional closed smooth man-
ifolds and F ⊂ P × L is a 3n-dimensional closed smooth embedded sub-
manifold so that the canonical projections πp : F → P : (p, l) 7→ p and πl :
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F → L : (p, l) 7→ l are both submersions. Then it is a smooth generalized
plane.

Definition 2.8 (Point rows and line pencils). Let (P,L,F) be a smooth
generalized plane. For ` ∈ L, we call the set P` = πp(π

−1
L (`)) the point row

associated with l. For p ∈ P, we call the set Lp = πL(π−1
p (p)) the line pencil

through p.

Theorem 2.9 ([16], p86). Let (P,L,F) be a smooth projective plane of di-
mension 2n. Then the point rows and the line pencils are smoothly embedded
n-sphere. The spaces P, L, and F ⊂ P × L are compact connected smooth
manifolds of dimension 2n, 2n, 3n, respectively. Moreover, πP : F → P is a
locally trivial smooth n-sphere bundle.

Definition 2.10 ([6]). Two lines `1 and `2 of a smooth generalized plane
are said to intersect transversally in some point p if the associated point
rows P`1 and P`2 intersect transversally in p as submanifolds in P, i.e. their
tangent spaces in P span the tangent space TpP. Dually, we say that two
line pencils intersect transversally in ` if their tangent spaces in L span the
tangent space T`L.

In [6] Corollary 1.4, Bödi and Immervoll have proved that a smooth
projective plane is a smooth generalized plane for which any two lines are
transverse and the pencils of any two points are transverse and vice versa.
The condition on the transversality of any two point rows implies that the
intersection map is locally well defined and smooth ([6] Theorem 1.2). One
can therefore use this characterization as a definition of smooth projective
planes.

Definition 2.11 (Smooth projective planes, alternate definition).
Let (P,L,F) be a smooth generalized plane. Suppose that πP : F → P and
πL : F → L are submersions between compact manifolds so that:

SPP1: For any two distinct lines l1, l2 ∈ L, πP(π−1
L (l1)) intersects πP(π−1

L (l2))
transversely in a single point p0 ∈ P.

SPP2: For any two distinct points p1, p2 ∈ P, πL(π−1
P (p1)) intersects

πL(π−1
P (p2)) transversely in a single point l0 ∈ L.
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Then we call the tuple (P,L,F , πP , πL) a smooth projective plane.

F
πL

��

πP

  
L P

Recall that for any smooth projective plane, P and L are both diffeo-
morphic to RP2. The point rows and line pencils are smooth embedded
1-sphere.

Remark 2.12. The real projective plane is a 2-dimensional smooth pro-
jective plane whose point rows (lines) are geodesics of the standard metric
of RP2.

Remark 2.13. Point rows of smooth projective plane are not null-homo-
topic in RP2. Suppose there exists a line `1 such that P`1 = πP(π−1

L (`1)) is
null-homotopic in RP2. Then P`1 divides RP2 into two connected components
D1 and D2. Choose two points p, q in P so that p is in D1 and q is in D2.
The projective structure implies that there must exist a unique line `2 join p
and q. Moreover, since point rows intersect transversely, P`2 must intersect
P`1 at more than one point. This contradicts with SPP1 in Definition 2.11.

Our goal is to smoothly deform any smooth projective plane to the
standard one. It is then necessary to deform the set of point rows into
the set of geodesics. To be more precise, we give the definition of such a
deformation as below.

Definition 2.14 (Smooth homotopy of smooth projective planes).
A smooth homotopy of smooth projective planes consists of a smooth
projective plane (P,L,F , πP , πL), and smooth homotopies πtL, πtP , for t ∈
[0, 1], such that for every t ∈ [0, 1], the tuple (P,L,F , πtP , πtL) is a smooth
projective plane.

2.2. Curve shortening flow

Curve shortening flow is a heat-type geometric flow which evolves curves in
the direction of their curvature vector field. In this paper, we only consider
curves on round S2 or RP2, so we define CSF and formulate Grayson’s result
of the long time existence solution to CSF on a compact surface M2 as below:
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Definition 2.15. Let γ0 : S1→M2 be a smooth curve and γ : S1×[0, t∞)→
M2 be a smooth map. Suppose that the curves γt given by γt(s) = γ(s, t)
are immersed. Then γ is the solution to the curve shortening equation
with the initial data γ0 = γ0 if

∂γ

∂t
= κN,(2.16)

for all t ∈ [0, t∞). Here, κ is the geodesic curvature of γt and N is its unit
normal vector.

Theorem 2.17 (Theorem 0.1, [12]). Let γ(0) : S1 →M2 be a smooth
curve, embedded in M2. Then the solution to (2.16), γ(t) : S1 →M2, exists
for t ∈ [0, t∞). If t∞ is finite, then γ(t) converges to a point. If t∞ is infinite,
then the curvature of γ(t) converges to zero in the C∞ norm.

In the round sphere case, M2 = S2, the fact that the geodesic curvature
tends uniformly to zero implies that the curve γ(t) is, for large t, close
to some great circle γ̄(t); however, Grayson’s methods do not imply that
γ(t) converges to a (fixed) great circle, i.e. that one may choose γ̄(t) to be
independent of t. This was proven by Gage [11]:

Theorem 2.18 (Theorem 5.1, [11]). A simple closed curve γ on the
sphere of radius 1/C which divides the sphere into two pieces of equal area
and whose total space curvature

∫
(κ2 + C2)1/2ds is less than 3π converges

to a great circle under curve shortening flow.

We now recall some computations on the evolution equations for cur-
vature functions from [11] and [12]. Let γ(x, t) : S1 × [0,∞)→ S2 be the
solution to the CSF with a smooth initial condition. The arc length s is
defined by ds = |∂γ∂x |dx. Let ν = |∂γ/∂x|. A computation shows νt = −κ2ν.
The variables x and t are independent so ∂x∂t = ∂t∂x. For the arc-length
parameter s, if we switch the order of differentiating s and t, the following
equation has to be satisfied:

(2.19)
∂

∂t

∂

∂s
=

∂

∂s

∂

∂t
+ κ2 ∂

∂s
.

The curvature κ evolves according to

∂

∂t
κ = κ(2) + κ+ κ3.(2.20)
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For n ≥ 1, we let κ(n) stand for
∂nκ

∂sn
(note that κ(0) = κ). By (2.19) and

(2.20), one can derive that κ(n) evolves according to

∂

∂t
κ(n) = κ(n+2) + κ(n) + (3 + n)(κ2)(κ(n))(2.21)

+
∑

i+j+r=n−1
0≤i,j,r≤n−1

Cijrκ
(i)κ(j)κ(r),

where Cijr’s are constants depending on n. Integration by parts yields:

∂

∂t

∫ (
κ(n)

)2
ds(2.22)

=

∫ (
− 2(κ(n+1))2 + 2(κ(n))2 + (2(3 + n)− 1)(κ2)(κ(n))2

+ 2κ(n)
∑

i+j+r=n−1
0≤i,j,r≤n−1

Cijrκ
(i)k(j)κ(r)

)
ds.

Gage [11] observed the following,

Lemma 2.23. Any simple closed smooth area-bisecting curve on S2 re-
mains area-bisecting under curve shortening flow for all time.

Proof. By Gauss-Bonnet Formula, any curve on S2 which bisects the surface
area, its curvature satisfies

∫
κds = 0 and vice versa. Flowing such a curve

by CSF, we have

d

dt

∫
κds =

∫
∂κ

∂t
ds+

∫
κ
∂

∂t
ds(2.24)

=

∫
(κ(2) + κ+ κ3)ds+

∫
κ(−κ2)ds

=

∫
κ(2) + κds.

Because κ(n) is 2π periodic, using integration by parts we get
∫
κ(2)ds = 0.

The solution to the following initial value problem

d

dt

∫
γt

κds =

∫
γt

κds∫
γ0

κds = 0

(2.25)
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equals
∫
γt
κds = et

∫
γ0
κds = 0. Hence the condition

∫
γt
κ = 0 is preserved

for any time. �

We recall Wirtinger’s inequality (Poincaré inequality of dimension one) and
Gronwall’s inequality here:

Lemma 2.26 (Wirtinger’s inequality, [13]). Let f be a periodic real
function with period 2π and let f ′ ∈ L2. Then, if

∫ 2π
0 f(x)dx = 0, the fol-

lowing inequality holds

(2.27)

∫ 2π

0
f(x)2dx ≤

∫ 2π

0

(
f ′(x)

)2
dx.

The equality holds if and only if f = A sinx+B cosx, where A and B are
constants.

Remark 2.28. If the function f in Lemma 2.26 is smooth, then for every n,

(2.29)

∫ 2π

0

(
f (n−1)(x)

)2
dx ≤

∫ 2π

0

(
f (n)(x)

)2
dx.

Lemma 2.30 (Gronwall’s inequality). Let η(·) be a nonnegative, abso-
lutely continuous function on [0, T ] which satisfies for a.e. t the differential
inequality

(2.31) η′(t) ≤ φ(t)η(t) + ψ(t).

where φ(t) and ψ(t) are nonnegative, integrable functions on [0, T ]. Then

(2.32) η(t) ≤ e
∫ t
0
φ(s)ds

(
η(0) +

∫ t

0
ψ(s)ds

)
.

2.3. Curve shortening equation in local coordinates

In [3], the corresponding PDE for CSF in local coordinates was derived in
a general form ((67) in page 39). Here we consider a parametrization of S2
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at p as follows:

x(x, z) =

(
cosx√
1 + z2

,
sinx√
1 + z2

,
z√

1 + z2

)
,(2.33)

where x ∈ [0, 2π], z ∈ [−r, r], for some small r > 0, and the metric g on S2

can be written as

g =

(
1

1+z2 0

0 1
(1+z2)2

)
for

E =
∂

∂x
x(x, z) · ∂

∂x
x(x, z) =

1

1 + z2

F = 0

G =
∂

∂z
x(x, z) · ∂

∂z
x(x, z) =

1

(1 + z2)2
.

Let σ : S1 × [−r, r]→ S2 be a local diffeomorphism such that the para-
metrization of γ0 is given by x 7→ σ(x, 0). Firstly, we compute the unit tan-
gent T to the graph {(x, h(x))|x ∈ S1}, and the geodesic curvature κ of it
as below:

(2.34) T =
1

ν
(∂x + hx∂z), ν =

√
1 + h2 + (hx)2

(1 + h2)2
.

Since the Christoffel symbols of the Riemannian connection are Γzxx = h,
Γhhh = −2h

1+h2 , Γxxz = −h
(1+h2) , we have

∇TT =
1

ν2

[
(T x∂zT

x + T xT zΓxxz)∂x + T z∂zT
z + T xT zΓzzx)∂x

+ T z∂zT
z + T zT xΓzxz + T xT zΓzzz)∂z + T x∂xT

z + T xT xΓzxx)∂z
]

=
1

ν2

[
−2hhx

(1 + h2)∂x
+ (hxx + h− 2hh2

x

(1 + h2)
)∂z

]
.

Hence κ = T ∧∇TT is

(2.35)
1

ν3

(
1 hx

−2hxh
1+h2 hxx + h− 2h2

xh
1+h2

)
=

1

ν3
(hxx + h).
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Flowing γ by CSF, the corresponding time evolution equation for h can
be derived by T ∧ ht∂z = T ∧∇TT . Since

T ∧ ht∂z =
1

ν3

(
1 hx
0 ht

)
=

1

ν
ht

together with (2.35) we have

(2.36) ht =
(1 + h2)2

1 + h2 + (hx)2
(hxx + h) .

For instance, it is clear that under CSF, great circles on S2 will not move at
all (geodesic curvature is 0). They correspond to solutions h(x) = a sinx+
b cosx, where a, b are constants, to (2.36). We can look at two easy examples:
if h(x) = 0 (a, b are both 0), the corresponding great circle is the equator
and if h(x) = cosx, we obtain the corresponding great circle by intersecting
the plane x = z with the sphere.

2.4. Zeros of linear parabolic PDEs and intersection points of
pairs of solutions to CSF

In [1], the author studies the zero set of a solution u(x, t) of the equation

(2.37) ut = a(x, t)uxx + b(x, t)ux + c(x, t)u

under the assumptions

a1: a, a−1, at, ax, and axx ∈ L∞

a2: b, bt, and bx ∈ L∞

a3: c ∈ L∞

where the number of zeros of u(·, t) is defined to be the supremum over all
k such that there exists 0<x1<x2< · · ·<xk<1 with u(xi, t) · u(xi+1, t)<0
for i = 1, 2, . . . , k − 1. Let z(t) denote this supremum. The following theorem
says that z(t) is a nonincreasing function with time.

Theorem 2.38 (Theorem C, [1]). Let u : [0, 1]× [0, T ]→ R be a bounded
solution of (2.37) which satisfies either Dirichlet, Neumann or periodic
boundary condition. Assume that the coefficients a, b and c satisfy assump-
tions a1, a2 and a3, and in addition, in the case of Neumann boundary
conditions, assume that a ≡ 1, b ≡ 0. Let z(t) denote the number of zeros
of u(·, t) in [0, 1], then
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(a) for t > 0, z(t) is finite

(b) if (x0, t0) is a multiple zero of u (i.e. if u and ux vanish simultane-
ously), then for all t1 < t0 < t2, z(t1) > z(t2).

Remark 2.39. If a new point of intersection is developed, it must be a
multiple zero. This contradicts with (b). Therefore z(t) cannot increase with
time.

In §3.2.2, we will derive the linearized curve shortening equation (LCSF):

(2.40) vt = (1 + a(x, t))vxx + b(x, t)vx + (1 + c(x, t))v,

where ||a||Ck , ||b||Ck , and ||c||Ck are all less than εke
−t for some εk = εk(k)

sufficiently small. If we set a(x, t) = 1 + a(x, t), b(x, t) = b(x, t) and c(x, t) =
1 + c(x, t), then conditions a1, a2, and a3 are satisfied. Moreover, since we
only consider smooth embedded area-bisecting curves on S2, the boundary
condition for v is periodic. We can apply Theorem 2.38 to the LCSF and
conclude the following:

Proposition 2.41. The number of transverse zeros of the solution v to the
linearized flow (2.40) cannot increase with time.

Let α0 and β0 be two smooth embedded curves on RP2 which intersect
transversely at exactly one point. Let αt and βt be the solutions to CSF with
initial conditions α0 and β0. By Theorem 1.3 in [2], the number of transverse
intersections cannot increase with time. On the other hand, it won’t decrease
to zero since any curve lifted from RP2 to S2 bisects the surface area, and
by Lemma 2.23 it remains to do so under CSF. Therefore one can conclude:

Proposition 2.42. Suppose αt and βt are defined as above. At any T > 0,
the number of transverse intersection of αT and βT stays one.

Remark 2.43. Two different curves cannot coincide at any finite time
since they would have infinitely many oriented tangencies which contradicts
Theorem 1.1 in [2], page 175.
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3. Constructing a smooth homotopy using CSF

3.1. Long time behavior of an individual curve under CSF

In this section, γ is assumed to be a smooth embedded closed curve in S2 that
divides the surface area into two equal pieces and γt denotes the solution to
the CSF with initial data γ0 = γ.

Theorem 3.1. For any integer k, there is an εk > 0 such that for any
0 < ε ≤ εk, there is an δ = δ(ε) > 0 so that if γ is Ck+3 δ-close to a great
circle, then the curvature of γt satisfies

‖κ‖Ck ≤ εe
−t.

Remark 3.2. In fact, one can prove ‖κ‖Ck ≤ εe−ηt for some other constant
1 < η < 3 using the same argument in our proof.

The following Corollary follows directly from Theorem 3.1.

Corollary 3.3. Let ε and δ be chosen as above, if γ is Ck+3 δ-close to
a great circle then there is a (perhaps different) great circle γg such that
dCk(γt, γg) ≤ εe−t for all t ≥ 0. In this case, we say that γt converges uni-
formly exponentially to γg in the Ck norm.

Let γg(θ) : S1 → S2 be a parametrization of a great circle, where θ is the
usual angle parameter on S1 ⊂ R2. For each great circle, there is a C2 local
diffeomorphism σg : S1 × (−r, r)→ S2 such that if γ is C2 close to γg, then
there exists a C2 function h : [0, 2π]→ (−r, r) so that γ(θ) = σg(θ, h(θ)). In
particular γg(θ) = σg(θ, 0).

For a curve which is C2 close to a great circle, there are two natu-
ral parametrizations, one by θ, and one by arclength, s = s(θ) with ds =
|γ′(θ)|dθ. The following Lemma says that the closeness does not depend on
which of those two parametrizations we choose.

Lemma 3.4. For any 0 < δ < 1
2π , if γ is Ck δ-close to a geodesic γg when

parametrized by θ, then γ is Ck 2δ-close to γg when parametrized by its
arclength s, and vice versa.

Proof. By (2.34) and a straightforward computation, we have that for any
0 < δ < 1

2π , if ‖h(θ)‖Ck ≤ δ then ‖s(θ)− θ‖Ck ≤ δ. Therefore, the Lemma
follows. �
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The following inequality plays a key role in our proof of Theorem 3.1.

Lemma 3.5 (Inequality of Poincaré Type for κ). There exists a con-
stant δ0 such that for any 0 < δ ≤ δ0 if γ is C1 δ0-close to a great circle,
then ∫

γ
κ2ds ≤ 2

5

∫
γ

(
κ(1)

)2
ds.(3.6)

Remark 3.7. The constant 2
5 appearing in (3.6) is enough for the purpose

of the present paper. In the sequel we only consider curves which are C1

δ-close with δ < δ0.

Note that, for n ≥ 2, integration by parts and the Hölder’s inequality
imply ∫

γ
κ(n−1)κ(n−1) ds ≤

(∫
γ
(κ(n−2))2ds

)1/2 (∫
γ
(κ(n))2ds

)1/2

,

that is,

(3.8)

(∫
γ

(
κ(n−1)

)2
ds

)2

≤
∫
γ

(
κ(n−2)

)2
ds

∫
γ

(
κ(n)

)2
ds.

Remark 3.9. Inequality (3.6) implies the following:

(3.10)

∫
γ

(
κ(n−1)

)2
ds ≤ 2

5

∫
γ

(
κ(n)

)2
ds, for all n ≥ 1.

This can be proved by induction and (3.8).

In order to prove Lemma 3.5, we study the Fourier expansion of κ(s)
of γ in s. Let C be the space of smooth, L periodic (L is the length of γ),
real-valued functions with the inner product 〈f, g〉 =

∫
γ fg ds. Let S0 be the

subspace of C spanned by the constant functions, S be the subspace of C
spanned by sin(2πs/L) and cos(2πs/L), and S⊥ be the orthogonal com-
plement of S0 and S in C. Since γ divides the surface area into two equal
pieces, Gauss-Bonnet formula implies that

∫
γ κ ds = 0, i.e. the projection of

κ onto S0 is always zero. Hence κ = κS ⊕ κS⊥ . If, in addition, κ is orthog-
onal to S, then we obtained an improved version of Wirtinger’s inequality
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(Lemma 2.26): ∫
γ
κ2ds ≤ 1

4

∫
γ

(
κ(1)

)2
ds.(3.11)

The following Lemma shows that κ is almost orthogonal to S.

Lemma 3.12. Let γ be C1 δ-close to a great circle γg. There are real valued
functions u(s) and w(s) so that

∫
γ κu ds = 0, and

∫
γ κw ds = 0, where

‖u(s)− sin(2πs/L)‖C0 ≤ 2δ,

‖w(s)− cos (2πs/L)‖C0 ≤ 2δ.

Proof. Without loss of generality, we may assume that γg lies in the xy-plane.
Let Rx(φ) be the matrix of rotation about the x-axis and let Γφ = Rx(φ)(γ).
Then Vγ = d

dφ |φ=0Γφ represents the variation vector field along γ. Since Rx
is an isometry, by the first variation formula of length,

0 =
d

dφ

∣∣∣
φ=0

L(Γφ) = −
∫
γ
κ 〈Vγ , Nγ〉 ds

where Nγ is the unit normal of γ.
Define u = 〈Vγ , Nγ〉, then

∫
γ κu ds = 0. Since γ is C1 δ-close to a great

circle, we have∥∥〈Vγ(s(θ)), Nγ(s(θ))

〉
−
〈
Vγg(θ), Nγg(θ)

〉∥∥
C0 ≤ δ,

where Vγg is the variation vector field along γg generated by Rx. One can
compute that

〈
Vγg(θ), Nγg(θ)

〉
= sin θ. Hence,

‖u(s(θ))− sin(θ)‖C0 ≤ δ

which implies ‖u(s)− sin(2πs/L)‖C0 ≤ 2δ by Lemma 3.4.
Analogously, w is defined by considering the variation vector field gen-

erated by the matrix of rotation about y-axis. �

Proof of Lemma 3.5. Let γ be C1 δ0-close to a great circle. As in the para-
graph preceding (3.11), we consider the Fourier expansion of κ(s). Let κ(s) =∑

n κne
2πins/L, where L=L(γ) and κn= 1

L

∫
γ κe

−2πins/Lds is the nth Fourier

coefficient (note that κ0 = 0). Then
∫
γ κ

2ds = L
∑

n |κn|2. Let u(s) and w(s)
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be chosen in Lemma 3.12.

|κ1| =
∣∣∣∣ 1L
∫
γ
κe−2πis/Lds

∣∣∣∣
≤ 1

L

∫
γ
|κ|
∣∣∣(e−2πis/L − (w + iu)

)∣∣∣ ds
≤ 4δ

(∫
γ
κ2ds

)1/2

.

Hence |κ1|2 ≤ 16δ2L
∑
n

|κn|2. Choose δ0 =
√

3
16
√

2π
, then for any 0 < δ ≤ δ0,

|κ1|2 ≤
3

16

∑
n

|κn|2, and

3

5

∑
|n|6=1

|κn|2 − 2|κ1|2 =
3

5

∑
n

|κn|2 −
16

5
|κ1|2 ≥ 0.

Therefore, ∫
γ
κ2
Sds ≤

3

5

∫
γ
κ2
S⊥ds.(3.13)

By (3.11) and (3.13),∫
γ
κ2ds− 2

5

∫
γ

(
κ(1)

)2
ds

=

∫
γ

(
(κS)2 + (κS⊥)2 − 2

5

(
κ(1)

)
S

)2

− 2

5

((
κ(1)

)
S⊥

)2 )
ds

≤ 8

5

∫
γ

(κS⊥)2 ds− 8

5

∫
γ

(κS⊥)2 ds = 0.

�

Note that for any curve γ0 that is C1 close to a great circle, we have
2π ≤ L(γt) ≤ 3π for all t ≥ 0.

The next Lemma is intuitively clear since κ is a 2nd order quality. The
proof is by induction and straightforward computations.

Lemma 3.14. For any ε > 0, there is a δ1(ε, k) > 0 such that for any
0 < δ ≤ δ1 if γ is Ck+3 δ-close to a geodesic, then ||κ(k+1)||C0 < ε

3π(k+1) .
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Proof. Recall that if γ is C2 close to a great circle γg, then there exists a C2

function h : [0, 2π]→ (−r, r) so that γ(θ) = σg(θ, h(θ)) and by (2.35),

κ(s(θ)) =

( (
1 + h2

)2
1 + h2 + h2

θ

)3/2

(hθθ + h)(3.15)

=

(
1 +

h2 + h4 − h2
θ

1 + h2 + h2
θ

)3/2

(hθθ + h) .

It’s enough to control the factor
(

1 + h2+h4−h2
θ

1+h2+h2
θ

)3/2
and its derivatives

in (3.15).
Note that

d

dθ

(
1 +

h2 + h4 − h2
θ

1 + h2 + h2
θ

)3/2

=
3

2

(
1 +

h2 + h4 − h2
θ

1 + h2 + h2
θ

)1/2
d

dθ

(
h2 + h4 − h2

θ

1 + h2 + h2
θ

)
.

We know that 3
2
d
dθ

(
h2+h4−h2

θ

1+h2+h2
θ

)
= O(δ2), and by choosing δ = δ(k) small

enough, we can say d
dθ

(
h2+h4−h2

θ

1+h2+h2
θ

)
< δ/2. Hence,

κθ =
d

dθ

( (
1 + h2

)2
1 + h2 + h2

θ

)3/2

(hθθ + h)

(3.16)

≤

( (
1 + h2

)2
1 + h2 + h2

θ

)3/2

(hθθθ + hθ) + δ/2.

When k = 0, by (3.16) we have ||κθ||C0 < 2δ, hence if we choose δ =
ε

6π(k+1) , then ||κ(1)||C0 < ε
3π(k+1) . Similarly, dk

dθk

(
h2+h4−h2

θ

1+h2+h2
θ

)
= O(δ2), and by

choosing δ = δ(ε, k) small enough, we have

(3.17) κ(k+1) ≤

( (
1 + h2

)2
1 + h2 + h2

θ

)3/2

(h(k+3) + h(k+1)) + δ/2.

�

For any integer k, choose εk so that

(3.18)
1

εk
≥ max

7 + 2k,
∑

i+j+r=k
0≤i,j,r≤k

Cijr
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where Cijr’s are the constants from (2.22).
By Lemma 3.14, for any 0 < ε ≤ εk, there is a δ1 = δ1(ε) such that if γ

is Ck+3 δ-close to a great circle, then

(3.19)

∫
γ

(
κ(k+1)

)2
ds < 3π||κ(k+1)||2C0 <

ε2

3π (k + 1)2 .

Fix δ0 as in Lemma 3.5, choose δ = min{δ0, δ1}.

Remark 3.20. For any 0 ≤ i ≤ k, since∫
κ(i) = 0 and

∫ (
κ(i)
)2
≤
∫ (

κ(i+1)
)2
,

we have

sup
(
κ(i)
)2
≤
(

inf |κ(i)|+
∫
|κ(i+1)|

)2

(3.21)

≤ 3π

∫ (
κ(i+1)

)2
≤ 3π

∫ (
κ(k+1)

)2
.

This implies that

(3.22) ‖κ‖Ck ≤
√

3π

k+1∑
i=1

∥∥∥κ(i)
∥∥∥
L2
≤
√

3π (k + 1)
∥∥∥κ(k+1)

∥∥∥
L2
.

Therefore, to prove Theorem 3.1 it is enough to show

(3.23)
∥∥∥κ(k+1)

∥∥∥2

L2
≤ ε2

3π(k + 1)2
e−2t.

Proof of Theorem 3.1. For any 0 < ε ≤ εk, let δ be chosen as above. Recall
(2.22),

∂

∂t

∫ (
κ(k+1)

)2
ds =

∫
−2
(
κ(k+2)

)2
ds+ 2

∫ (
κ(k+1)

)2
ds(3.24)

+

∫
(5 + 2(k + 1))

(
κ2
) (
κ(k+1)

)2
ds

+
∑

i+j+r=k
0≤i,j,r≤k

2Cijr

∫
κ(i)κ(j)κ(r)κ(k+1)ds.

We assume that (3.19) holds for at least short time, say t ∈ [0, t1). Then
by (3.21) we have that ||κ||Ck < ε for all t ∈ [0, t1).
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By (3.18) and the Peter-Paul inequality,

∑
i+j+r=k
0≤i,j,r≤k

2Cijr

∫
κ(i)κ(j)κ(r)κ(k+1)ds

≤
∑

i+j+r=k
0≤i,j,r≤k

2Cijr

(
1

2ε2

∫ (
κ(i)κ(j)κ(r)

)2
ds+

ε2

2

∫ (
κ(k+1)

)2
ds

)

≤
∑

i+j+r=k
0≤i,j,r≤k

Cijr

(
ε2
∫ (

κ(k)
)2
ds+ ε2

∫ (
κ(k+1)

)2
ds
)

≤ 2ε

∫ (
κ(k+1)

)2
ds.

Together with (3.10), (3.24) becomes

∂

∂t

∫ (
κ(k+1)

)2
ds ≤ −2

∫ (
κ(k+1)

)2
ds(3.25)

Therefore we conclude that
∥∥κ(k+1)

∥∥2

L2 ≤ ε2e−2t/
(
3π(k + 1)2

)
for all t ∈

[0, t1).
We then extend the estimate to the time interval [0,∞). Suppose there

is a time T so that [0, T ) is the maximal interval on which (3.19) holds.

In other words, T is the first time so that
∫
γT

(
κ(k+1)

)2
ds = ε2

3π(k+1)2
. We

have shown that
∫
γ

(
κ(k+1)

)2
ds < ε2e−2t

3π(k+1)2
for all t ∈ [0, T ). By continuity,∫

γT

(
κ(k+1)

)2
ds < ε2

3π(k+1)2
. This is a contradiction. �

3.2. Flowing a family of curves on (S2, g) by CSF

Consider a smooth map

F0 : S1 × U → S2,

where U ⊂ R2 is open, and for every ξ ∈ U ,

F0|S1×{ξ} : S1 → S2

is a smooth embedding which bisects the area of S2.
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Curve shortening flow evolves F0 into a family of smooth maps

Ft : S1 × U → S2.

Our goal is to show that for every k ∈ N, the family of maps {Ft}t∈[0,∞)

converges in the Ck topology to some limit map F∞, as t→∞. In §3.1, we
studied the long time behavior of the individual curves under the flow. By
Corollary 3.3, for each fixed ξ ∈ U , Ft|S1×ξ converges in the Ck topology to a
parametrization for a great circle, with uniform and exponential convergence
in ξ. The uniform convergence in ξ implies that the limit map F∞ restricts
to a Ck map on S1 × {ξ}, for every ξ ∈ U . In this section, we will study the
convergence of Ft in the U -direction. In other words, we will show that for
every x ∈ S1, and every k ∈ N, the k-jet of Ft|{x}×U at any point (x, ξ) ∈
S1 × U converges uniformly as t→∞.

3.2.1. Setting up the variation. According to Corollary 3.3, there ex-
ists T > 0 and an open set D ⊂ U such that for t > T and ξ ∈ D, Ft|S1×ξ is
close to a geodesic γg. For t > T we estimate the derivatives of Ft using the
method outlined in §2.3. That is, by composing with a local diffeomorphism
from S2 to R2 and considering the equivalent evolution in R2.

For fixed t > T , define h(x, τ) = Ft(x, (τ, 0)), that is the variation of Ft
in a particular direction. We then have

(3.26) h(x, τ) = u0 + τv0 + τ2(w2)0 + · · ·+ τm(wm)0 +O(τm+1).

In the local coordinates, this one-parameter family of maps evolves by

(3.27) ht =

(
1 + h2

)2
1 + h2 + (hx)2 (hxx + h) ,

and we denote the solution by

H(x, t; τ) ≡ u(x, t) + τv(x, t) + τ2w2(x, t) + · · ·+ τmwm(x, t) +O(τm+1).

The evolution equations of u, v, wi, 2 ≤ i ≤ m can be derived by the follow-
ing:

(3.28)
∂j

∂τ j

∣∣∣∣
τ=0

Ht =
∂j

∂τ j

∣∣∣∣
τ=0

(
1 +H2

)2
1 +H2 + (Hx)2 (Hxx +H) ,

for j = 0, 1, 2, . . . ,m.
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Note that the wi’s and v are 2π-periodic functions in x, and that∫ 2π
0 v(n)dx=0 and

∫ 2π
0 w

(n)
i dx=0 for every n≥0, at any t≥0 (Lemma 2.23).

Therefore, by Poincaré inequality (Lemma 2.26), we have that for every
0 ≤ ` ≤ n, ∫ (

v(`)
)2
≤
∫ (

v(n+1)
)2
,(3.29) ∫ (

w
(`)
i

)2
≤
∫ (

w
(n+1)
i

)2
, 2 ≤ i ≤ m.(3.30)

With this notation established the necessary result is the following:

Theorem 3.31. For any integer k ≥ 0, the family of maps ∂kξFt converges
uniformly as t→∞ for every ξ ∈ D.

Using Lemma A.1 it is enough to prove convergence along the coordinate
axes.

Lemma 3.32. For any integer m ≥ 0, ∂mτ Ft converges uniformly exponen-
tially as t→∞.

To prove Lemma 3.32, we need to show that for every 0 ≤ j ≤ m the
solution to (3.28) converges uniformly exponentially as t→∞ in the C0

norm. For any given integer m ≥ 0, we choose k ≥ 5m+ 1 and let εk be
the constant chosen in Theorem 3.1. In the sequel, we will always assume
that m, k and εk have been chosen in this way. Our proof of Lemma 3.32 is
technical but elementary. We will break the proof into several lemmas and
summarize the results in §3.2.3.

3.2.2. Linearized curve shortening equation. We begin by analyzing
the solution to the linearized equation of (3.27) at u:

vt =

(
1 + u2

)2
1 + u2 + u2

x

vxx −
2ux

(
1 + u2

)2
(u+ uxx)

(1 + u2 + u2
x)2 vx

(3.33)

+
(1 + u2)(1 + 4u2 + 3u4 + 2u(1 + u2)uxx + u2

x(1 + 5u2 + 4uuxx)

(1 + u2 + u2
x)2 v

:= (1 + a(x, t))vxx + b(x, t)vx + (1 + c(x, t)) v.

Remark 3.34. A special case is when a, b, and c are all zeros, equation
(3.33) becomes vt = vxx + v. This corresponds to the linearized CSF at a
great circle.
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In the sequel, we assume the following condition holds. (We can make
this assumption because of Corollary 3.3.)

Condition 3.35. The Ck norm of a, b and c are less than εke
−t for all

t ≥ 0.

Lemma 3.36. There is a constant C = C(k, u0, v0) such that the solution
v(x, t) to (3.33) satisfies

(3.37)

∥∥∥∥ ∂∂tv(·, t)
∥∥∥∥
Ck−6

≤ Ce−t

for all t ≥ 0.

Note that because v satisfies (3.29), and
∫
v(n) = 0, it is enough to bound∥∥v(k+1)

∥∥
L2 instead of ‖v‖Ck (Remark 3.20). The same applies to the solutions

of the higher order variation equations.

Proof of Lemma 3.36. We prove this Lemma by showing that

1) ‖v(·, t)‖Ck−1 ≤ C

2)
∥∥∥(vxx + v)(k−5)

∥∥∥2

L2
≤ Ce−6t

for some constant C = C(k, u0, v0). These steps will be proved in Lemma 3.43
and Lemma 3.46 respectively. Then together with Condition 3.35, and equa-
tion (3.33), we have (3.37). �

Lemma 3.38. There is a constant C1 = C1(k, u0) such that

(3.39)
∂

∂t

∥∥∥v(k)
∥∥∥2

L2
≤ C1e

−t
∥∥∥v(k)

∥∥∥2

L2
,

for all t ≥ 0.

Proof. The evolution equation of
∥∥v(k)

∥∥2

L2 is:
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1

2

∂

∂t

∫
(v(k))2dx

(3.40)

=

∫ (
(1 + a(x, t))v(2) + b(x, t)v(1) + (1 + c(x, t))v

)(k)
v(k)dx (by (3.33))

=

∫
(1 + a(x, t))v(k+2)v(k)dx+

∫
b(x, t)v(k+1)v(k)dx

+

∫
(1 + c(x, t))v(k)v(k)dx

+

k−1∑
`=0

(
k

`

)(∫
a(x, t)(k−`)v(`+2)v(k)dx+

∫
b(x, t)(k−`)v(`+1)v(k)dx

+

∫
c(x, t)(k−`)v(`)v(k)dx

)
.

Note that (fg)(k) =
∑k

`=0

(
k
`

)
f (k−`)g(`), and max`

(
k
`

)
=
(
k
b k

2
c
)
< 2k.

Using integration by parts and the Peter-Paul inequality the first term
in the last equality in (3.40) satisfies∫

(1 + a(x, t))v(k+2)v(k)dx(3.41)

= −
∫ (

(1 + a(x, t)) v(k)
)(1)

v(k+1)dx

≤ −
∫

(1 + a(x, t))
(
v(k+1)

)2
dx+

1

2

∫ ∣∣∣a(x, t)(1)
∣∣∣ (v(k)

)2
dx

+
1

2

∫ ∣∣∣a(x, t)(1)
∣∣∣ (v(k+1)

)2
dx.

Applying the Peter-Paul inequality to the rest of the terms in (3.40) and by
(3.29), we get

1

2

∂

∂t

∥∥∥v(k)
∥∥∥2

L2
≤
(
−1 + ‖a‖C1 +

1

2
‖b‖C0 +

1

2

(
k

bk2c

)
‖a‖Ck

)∫ (
v(k+1)

)2
dx

+

(
1 +

1

2
‖a‖C1 +

1

2
‖b‖C0 + ‖c‖C0

)∫ (
v(k)

)2
dx

+

(
k

bk2c

)(
1

2
‖a‖Ck + ‖b‖Ck + ‖c‖Ck

)∫ (
v(k)

)2
dx.
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Note that if necessary one can replace the restriction in (3.18) by

1

3εk
≥ max

7 + 2k,
∑

i+j+r=k
0≤i,j,r≤k

Cijr,

(
k

bk2c

)
so that the coefficient of

∫ (
v(k+1)

)2
dx is less than zero for all t ≥ 0. Using

(3.29), we can find a constant C1 = C1(k, u0) such that

∂

∂t

∥∥∥v(k)
∥∥∥2

L2
≤ 2

(
2 ‖a‖C1 + ‖b‖C0 +

1

2
‖c‖C0

)∫ (
v(k)

)2
dx(3.42)

+ 2

(
k

bk2c

)
(‖a‖Ck + ‖b‖Ck + ‖c‖Ck)

∫ (
v(k)

)2
dx

≤ C1e
−t
∥∥∥v(k)

∥∥∥2

L2
.

�

Lemma 3.43. There is a constant C = C(k, u0, v0) such that v(x, t) satis-
fies

(3.44) ‖v(·, t)‖Ck−1 ≤ C

for all t ≥ 0.

Proof. By Lemma 3.38 and Lemma 2.30,

(3.45)
∥∥∥v(k)

∥∥∥2

L2
≤
∥∥∥v(k)(·, 0)

∥∥∥2

L2
eC1−C1e−t ≤

∥∥∥v(k)(·, 0)
∥∥∥2

L2
eC1

for all t ≥ 0. �

Lemma 3.46. There is a constant C = C(k, u0, v0) such that v(x, t) satis-
fies ∥∥∥(vxx + v)(k−5)

∥∥∥2

L2
≤ Ce−6t

for all t ≥ 0.
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Remark 3.47. If f is a smooth 2π-periodic function and
∫ 2π

0 f(x)dx = 0
for all n, then ∥∥∥(fxx + f)(n)

∥∥∥2

L2
≤ 1

4

∥∥∥(fxx + f)(n+1)
∥∥∥2

L2
.(3.48)

Note that u, v, and wi’s satisfy this.

Proof of Lemma 3.46. We study the time evolution equation for∥∥∥(vxx + v)(k−5)
∥∥∥2

L2
.

∂

∂t

∫ (
(vxx + v)(k−5)

)2
dx

= −2

∫ (
(v(2) + v)(k−4)

)2
dx+ 2

∫ (
(v(2) + v)(k−5)

)2
dx

+ 2

∫ ((
av(2) + bv(1) + cv

)(k−3)
+
(
av(2) + bv(1) + cv

)(k−5)
)

×
(
v(2) + v

)(k−5)
dx.

By (3.29), Lemma 3.43 and Condition 3.35, there is a constant K =
K(k, u0, v0) such that

2

∫ ((
av(2) + bv(1) + cv

)(k−3)
+
(
av(2) + bv(1) + cv

)(k−5)
)

×
(
v(k−3) + v(k−5)

)
dx ≤ Ke−t.

In addition, by Remark 3.48,

(3.49)
∂

∂t

∫ (
(vxx + v)(k−5)

)2
dx ≤ −6

∫ ((
v(2) + v

)(k−5)
)2

dx+Ke−t.

Thus Lemma 2.30 implies that∥∥∥(vxx + v)(k−5)
∥∥∥2

L2
≤e−6t

(∥∥∥(vxx + v)(k−5) (·, 0)
∥∥∥2

L2
+K −Ke−t

)
≤ Ce−6t.

�

3.2.3. Higher order variation equations. In this section, we study the
higher order evolution equations. A computation shows that the evolution
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equation of wi for 2 ≤ i ≤ m satisfies

(wi)t = (wi)xx + wi + a(x, t)(wi)xx(3.50)

+ b(x, t)(wi)x + c(x, t)wi + di(x, t)

where a, b and c are defined in (3.33), and

d2 = (u+ uxx)U2 + (v + vxx)V1,

di = (u+ uxx)Ui + (v + vxx)Vi−1

+

i−1∑
j=2

(
w

(2)
j + wj

)
Vi−j , i ≥ 3

(3.51)

where

U2 =
4u2v2 + 2(1 + u2)v2

1 + u2 + u2
x

− 4u(1 + u2)v(2uv + 2uxvx)

(1 + u2 + u2
x)2

+

(
(2uv + 2uxvx)2

(1 + u2 + u2
x)3 −

v2 + v2
x

(1 + u2 + u2
x)2

)(
1 + u2

)2
V1 =

4u(1 + u2)v

1 + u2 + u2
x

− (1 + u2)2(2uv + 2uxvx)

(1 + u2 + u2
x)2 ,

and Ui, Vi−j are functions of u, v, wj for 2 ≤ j ≤ i− 1 and their first and
second partial derivatives in the x direction. They can be derived as follows:

Ui =
1

i!

i−1∑
j=1

(
i

j

)( ∂i−j
∂τ i−j

∣∣∣∣
τ=0

(1 +H2)2
)( ∂j

∂τ j

∣∣∣∣
τ=0

((
1 +H2 + (Hx)2

)−1
)
,

Vi−j =
j!

i!

∂i−j

∂τ i−j

∣∣∣∣
τ=0

(
1 +H2

)2
1 +H2 + (Hx)2 .

Lemma 3.52. There is a constant C = C(k, u0, v0, (w2)0, . . . , (wi)0) such
that the solution wi(x, t) satisfies

(3.53)

∥∥∥∥ ∂∂twi(·, t)
∥∥∥∥
Ck−1−5i

≤ Ce−t

for all t ≥ 0.

We will show inductively that the following are satisfied.
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1)
∥∥∥d(k−5(i−1)))

i

∥∥∥2

L2
≤ Ce−6t

2) ‖wi(·, t)‖Ck−5(i−1)−1 ≤ C1

3)
∥∥∥((wi)xx + wi)

(k−5i)
∥∥∥2

L2
≤ C2e

−6t

for constants C, C1 and C2 depending on k, and initial values u0, v0 and
(w`)0, for all ` ≤ i. The Lemma follows immediately from these three in-
equalities.

We have the following estimate for d2:

Lemma 3.54. There is a constant C = C(k, u0, v0) such that

(3.55)
∥∥∥d(k−5)

2

∥∥∥2

L2
=
∥∥∥((uxx + u)U2)(k−5) + ((vxx + v)V1)(k−5)

∥∥∥2

L2
≤ Ce−6t.

Proof. Because ‖U2‖Ck−5 and ‖V1‖Ck−5 are both bounded by a constant and

we proved in Lemma 3.46 that
∥∥(vxx + v)(k−5)

∥∥2

L2 ≤ Ce−6t, it is enough to
show that

(3.56)
∥∥∥(uxx + u)(k−5)

∥∥∥2

L2
≤ Ce−6t.

Recall that

(3.57) ut =
(1 + u2)2

1 + u2 + u2
x

(uxx + u) ≡ (1 + a0)(uxx + u),

where ‖u‖Ck ≤ εke−t and ‖a0‖Ck ≤ εke−t. The result follows by the same
argument in Lemma 3.46 with a = a0, b = 0 and c = 0. �

With the estimate for d2, we are now ready to derive the estimate for w2.

Lemma 3.58. There is a constant C = C(k, u0, v0, (w2)0) such that w2

satisfies

‖w2‖Ck−6 ≤ C
for all t ≥ 0.

Proof. Recall

(w2)t = (w2)xx + w2 + a(x, t)(w2)xx + b(x, t)(w2)x + c(x, t)w2 + d2(x, t).

Note that a, b and c satisfy the Condition 3.35 and w2 satisfies (3.30).
Therefore, one can use the same method as in Lemma 3.43 to derive L2
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estimates for (w2)t − d2. This gives

(3.59)
∂

∂t

∥∥∥w(k−5)
2

∥∥∥2

L2
≤ Ke−t

∥∥∥w(k−5)
2

∥∥∥2

L2
+ 2

∫
d

(k−5)
2 w

(k−5)
2 ,

where K = K(k, u0, v0, (w2)0, . . . , (wi)0).
By (3.55) and the Peter-Paul inequality,∫

d
(k−5)
2 w

(k−5)
2 ≤ e2t

∫ (
d

(k−5)
2

)2
+ e−2t

∫ (
w

(k−5)
2

)2
(3.60)

≤ Ce−4t + e−2t
∥∥∥w(k−5)

2

∥∥∥2

L2
.

Hence

∂

∂t
‖w(k−5)

2 ‖2L2 ≤Ke−t
∥∥∥w(k−5)

2

∥∥∥2

L2
+ 2Ce−4t + 2e−2t

∥∥∥w(k−5)
2

∥∥∥2

L2
.(3.61)

Lemma 3.58 follows by Lemma 2.30. �

Next, we repeat the same argument as in Lemma 3.46 to derive the fol-
lowing Lemma. The only difference is that there is an extra term contributed
by d2.

Lemma 3.62. There is a constant C = C(k, u0, v0, (w2)0) such that∥∥∥((w2)xx + w2)(k−10)
∥∥∥2

L2
≤Ce−6t,(3.63)

for all t ≥ 0.

Proof. We can apply the same estimate derived in (3.49) to (w2)t − d2. In
Lemma 3.46, we used that ‖v‖Ck−1 is bounded by a constant. In this case,
we have ‖w2‖Ck−6 < C. Hence, we get an estimate only up to order k − 10.

∂

∂t

∫ (
((w2)xx + w2)(k−10)

)2
dx

≤ −6

∫ (
((w2)xx + w2)(k−10)

)2
dx+Ke−t

+ 2

∫
((w2)xx + w2)(k−10)

(
d

(2)
2 + d2

)(k−10)
dx.

From (3.55) and Lemma 3.58,

(3.64)

∫
((w2)xx + w2)(k−10)

(
d

(2)
2 + d2

)(k−10)
dx ≤ Ce−3t.
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Hence

∂

∂t

∫ (
((w2)xx + w2)(k−10)

)2
dx(3.65)

≤ −6

∫ (
((w2)xx + w2)(k−10)

)2
dx+ Ce−3t +Ke−t.

The Lemma follows by Lemma 2.30. �

Proof of Lemma 3.52. When i = 2 we showed

1)
∥∥∥d(k−5)

2

∥∥∥2

L2
≤ Ce−6t

2) ‖w2(·, t)‖Ck−6 ≤ C1

3)
∥∥∥((w2)xx + w2)(k−10)

∥∥∥2

L2
≤ C2e

−6t

in Lemma 3.54, Lemma 3.58, and Lemma 3.62 respectively. Together with
Condition 3.35, we conclude that there is a constant C = C(k, u0, v0, (w2)0,
. . . , (wi)0) such that

(3.66)

∥∥∥∥ ∂∂tw2(·, t)
∥∥∥∥
Ck−11

≤ Ce−t

for all t ≥ 0. From (3.51), and Lemma 3.62 we have

(3.67)
∥∥∥d(k−10)

3

∥∥∥2

L2
≤ Ce−6t,

for all t ≥ 0. Inductively, for every 3 ≤ i ≤ m, one may apply the same ar-
guments in Lemma 3.58 and in Lemma 3.62 to get the result. �

3.2.4. Proof of Lemma 3.32.

Proof. For any integer m ≥ 0, we let k = 5m+ 1. By Corollary 3.3, Lemma
3.36 and Lemma 3.52, we have that ∂iτF

t converges uniformly exponentially
in the C0 norm for all 0 ≤ i ≤ m. �

3.3. A family of smooth projective planes

In this section, we will use CSF to construct a family of smooth projective
planes. We first prove a proposition which provides a sufficient condition
for a family of curves to define a smooth projective plane. We begin with a
tuple (P,L,F , πP , πL) which satisfies the following: (P,L,F) is a projective
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space. The set of points P, and the set of lines L are closed smooth manifolds
of dimension 2, and the flag space F ⊂ P × L is a closed smooth manifold
of dimension 3. We call p ∈ P on a line ` ∈ L if (p, `) ∈ F and we define the
projections by πP : F → P : (p, `) 7→ p and πL : F → L : (p, `) 7→ `.

Suppose πL is a submersion and πP is a smooth map. For any ` ∈ L,
we denote ˆ̀= π−1

L (`) = {(p, `)|p ∈ P`} ⊂ F and ¯̀= πP(ˆ̀) ⊂ P. Note that a

nonzero tangent vector ξ ∈ T`L corresponds to a “variation of ˆ̀” in F . To
see this, consider a smooth path s 7→ `s ∈ L with `0 = ` and ∂

∂s`s = ξ; then

π−1
L (`s) = ˆ̀

s ⊂ F is a family of curves depending on the parameter s. Using
the fact that πL is a smooth fiber bundle, we may use a trivialization of πL
near ` to obtain a smooth map τ`,`′ : ˆ̀→ ˆ̀′ which depends smoothly on `,

`′ ∈ L. Hence, ˆ̀ τ`,`s−−→ ˆ̀
s
πP−−→ P determines a family of smooth curves in P

depending on the parameter s; denote it by ¯̀
s. Suppose the map πP satisfies

that for every two distinct `1, `2 ∈ L, the lines ¯̀
1, ¯̀

2 ⊂ P intersect exactly
once, and transversely. Assume further that for every ` ∈ L, the restriction
of πP to ˆ̀⊂ F is a smooth embedding. Then for any vector ξ ∈ T`L, we call
ξ̄ = ∂

∂s |s=0
¯̀
s the corresponding variation of ¯̀.

Proposition 3.68. For any tuple (P,L,F , πP , πL) defined as above, sup-
pose for every ` ∈ L and every nonzero vector ξ ∈ T`L, the normal compo-
nent of the corresponding variation ξ̄ of ¯̀ has precisely one zero, which is
transverse. Then πP is a submersion.

Proof. Fix ` ∈ L, for any p on ¯̀, the tangent space TpP is two dimensional
and one can decompose it into Tp ¯̀⊕Np

¯̀, where Tp ¯̀ is a space of dimension
one that is tangent to ¯̀at p and Np

¯̀= (Tp ¯̀)⊥ is its orthogonal complement.
We will show that πP is a submersion by showing its differential is surjective
onto both subspaces.

Define a map φp : T`L → Np
¯̀ such that any vector ξ ∈ T`L is mapped to

the normal component of corresponding variation field ξ̄ at p on ¯̀. We will
show that the map φp is onto. Suppose not, since dimNp

¯̀= 1, φp has to be
a zero map. Choose another point q 6= p on ¯̀ and define the decomposition
of the tangent space TqP and the map φq : T`L → Nq

¯̀ as we did for the
point p. Since dim(T`L) = 2 > 1 = dim(Nq

¯̀), the kernel of the map φq must
be at least one dimensional. Hence there is a vector ξ′ ∈ T`L such that the
normal component of the corresponding vector field ξ̄′ along ¯̀ vanishes at
q, that is φq(ξ

′) = 0. On the other hand, since φp is a zero map, φp(ξ
′) = 0.

So, we found a nonzero vector ξ′ ∈ T`L such that the normal component of
the corresponding vector field ξ̄′ along ¯̀ has two transverse zeros, p and q.
This contradicts with our assumption that there is precisely one transverse
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zero, therefore φp is onto. In addition, since πP |ˆ̀ is a smooth embedding, a

nonzero tangent v̂p ∈ T(p,`)
ˆ̀ is mapped to a nonzero tangent vp ∈ Tp ¯̀. We

therefore conclude that πP is a submersion. �

Our next goal is to show that the CSF gives rise to a smooth homotopy,
when applied to an arbitrary smooth projective plane. We will prove in a
later section that this is in fact a smooth homotopy of smooth projective
planes from the initial smooth projective plane to the standard RP2. In the
sequel, we let the tuple (P,L,F , π0

P , πL) be a smooth projective plane. Note
that P, L are diffeomorphic to RP2. We endow P with a Riemannian metric
of constant curvature 1, making it isometric to RP2 with its usual metric.
We use CSF to deform π0

P through a family of smooth maps by defining

(3.69) πtP : F → P

to be the unique map with the property that πtP |ˆ̀ is the result of applying

the CSF to ˆ̀ πP // P for time t. The solutions to the CSF exist for any time
and depend smoothly on the initial conditions [14]. Since π0

P is smooth, this
gives a smooth map φ : F × [0,∞)→ P by setting φ(−, t) = πtP . The next
Proposition shows that limt→∞ π

t
P exists and is smooth, and φ induces a

smooth homotopy from π0
P to this limit map.

Proposition 3.70. Let (P,L,F , π0
P , πL) and {πtP : F → P}t∈[0,∞) be as

above. Then π∞P := limt→∞ π
t
P exists and is smooth. Moreover, we can find

a reparametrization α : [0, 1]→ [0,∞] so that Φ := φ ◦ α : F × [0, 1]→ P is
a smooth homotopy from π0

P to π∞P .

Proof. Since πL is a submersion between compact manifolds, it is a smooth
locally trivial fibration. For every ` ∈ L, π−1

L (`) is diffeomorphic to S1. Let
Λ ⊂ L be an open set contains `, then π−1

L (Λ) ∼= S1 × Λ ⊂ F . Recall that
lines of smooth projective plane are not null-homotopic (Remark 2.13) and
any curve that is not null-homotopic in P (diffeomorphic to RP2) lifts to an
area-bisecting curve in S2. By Lemma 3.1, for each ` ∈ Λ, the lift of πtP |S1×{`}
converges in the Ck norm to a parametrization of a great circle as t→∞,
with the convergence uniform in `. The uniform convergence in ` implies
that πtP converges uniformly (i.e. in the C0 topology) to π∞P as t→∞.
Theorem 3.31 implies that for every x ∈ S1, and every k ∈ N, the k-jet of
πtP |{x}×Λ at any point (x, λ) ∈ S1 × Λ converges uniformly in λ as t→∞.
By Lemma A.1, we have that for any k ≥ 0 the family of maps πtP |π−1

L (Λ)

converges to π∞P |π−1
L (Λ) in the Ck topology as t→∞, so that the latter is

smooth. Since ` ∈ L was arbitrary, π∞P is smooth.
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Let Φ0 : F × [0, 1]→ P be defined by Φ0(−, s) = φ(−, s
1−s). Then Φ0

is a continuous homotopy from π0
P to π∞P , but not necessarily a smooth

one, since its left derivatives at s = 1 need not exist. Our goal is to find
a continuous reparametrization β : [0, 1]→ [0, 1] so that Φ := Φ0 ◦ β is the
desired smooth homotopy from π0

P to π∞P . Clearly β will be smooth on [0, 1)
but not necessarily at 1.

In what follows, we will think of Φ0 as a map from [0, 1] to C∞(F ,P).
Further, using a smooth embedding of P into R4, we realize C∞(F ,P) as
a subset of C∞(F ,R4), which is a Fréchet space with a Fréchet metric, say
| · |F . The C∞ convergence of πtP to π∞P (proved above) is equivalent to the
continuity of Φ0(s) at s = 1, and the smooth dependence of πtP on t ∈ [0,∞)
implies that Φ0(s) is smooth on [0, 1), in the sense of Gâteaux. Our goal is
to find a continuous reparametrization β : [0, 1]→ [0, 1], which is smooth
on [0, 1), so that Φ0(β(s)) is also smooth at s = 1, i.e. its left (Gâteaux)
derivatives at s = 1 exist to all orders.

Clearly, it is enough to find a continuous reparametrization β : [0, 1]→
[0, 1], smooth except at 1, so that |Φ0(β(1))− Φ0(β(s))|F = o((1− s)k) as
s→ 1−, for all k ∈ N; indeed, Φ0(β(s)) would then not just be smooth but
also flat at s = 1, i.e. all its left derivatives would be 0. We construct such
a β as follows:

First, find a continuous strictly decreasing function ρ on [0,1], such that
ρ is smooth on [0,1), ρ(s) > |Φ0(1)− Φ0(s)|F for 0 ≤ s < 1, and ρ(1) = 0.
Such a ρ can be constructed by first assigning the values ρ(1− 1

n) := 1
n +

sups∈[1− 1

n−1
,1] |Φ0(1)− Φ0(s)|F , for n = 2, 3, 4, . . ., and ρ(0) := ρ(1− 1

2) + 1.

(The sups exist since Φ0(s) is continuous.) Next, interpolate ρ(s) linearly
over each interval [1− 1

n , 1−
1

n+1 ], n = 1, 2, 3, . . .. This gives a piecewise-
linear function that satisfies all the desired properties, except differentiabil-
ity at the points 1− 1

n , n ∈ N. Finally, “smooth out” this piecewise-linear
function at these points in such a way that the resulting function ρ(s) con-
tinues to be strictly decreasing, and stays bigger than the function |Φ0(1)−
Φ0(s)|F .

Define

β(s) := ρ−1

(
ρ(0)

∫ 1−s
0 e−u

−2

du∫ 1
0 e
−u−2du

)
.

It is easy to see that β(0) = 0, β(1) = 1, β : [0, 1]→ [0, 1] is continuous
and strictly increasing, and β is smooth on [0, 1). It only remains to check
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that Φ0(β(s)) is flat at s = 1, and we do this as follows:

|Φ0(β(1))− Φ0(β(s))|F = |Φ0(1)− Φ0(β(s))|F < ρ(β(s))

= ρ(0)

∫ 1−s
0 e−u

−2

du∫ 1
0 e
−u−2du

< ρ(0)
(1− s)e−(1−s)−2∫ 1

0 e
−u−2du

= o((1− s)k)

as s→ 1−, for all k ∈ N, as desired.
To deduce the statement of the Proposition, define α : [0, 1]→ [0,∞] by

α(s) = β(s)
1−β(s) , so that Φ := φ ◦ α = Φ0 ◦ β, which we have just shown to be

a smooth homotopy from π0
P to π∞P . �

By Proposition 3.70 and the following argument, we see that for every t ∈
[0,∞], the flag space F of the tuple (P,L,F , πtP , πL) is a smooth submanifold
of P × L. Define

Ψt : (πtP , πL) : F → P × L.

Since both component maps are smooth, this is a smooth map.
To see that Ψt is one-to-one, note that two elements (p1, `1), (p2, `2)

with the same image must in particular have the same image under πL,
which means that `1 = `2. But then the restriction of πtP to a fiber of πL is
a parametrization of an embedded curve in RP2, and is injective; therefore
p1 = p2.

To see that Ψt is an immersion, consider the derivative of Ψt at some
(p, `) in F . If a tangent vector lies in the kernel, of DΨt, then it must lie in
the kernel of DπL, which means that it is tangent to the fiber of πL passing
through `; but the restriction of πtP to this fiber is a diffeomorphism onto
an embedded curve, and has injective derivative. Thus the derivative of Ψt

is injective.
Since Ψt is an injective immersion of a compact smooth manifold into a

smooth manifold, it is an embedding, i.e. F is a submanifold of P × L.

Lemma 3.71. Let (P,L,F , π0
P , πL) be a smooth projective plane. Then for

each t ∈ [0,∞), the tuple (P,L,F , πL, πtP) is a smooth projective plane.

Proof. We first verify that the tuple (P,L,F , πL, πtP) satisfies SPP1 in

Definition 2.11. For every ` ∈ L, the restriction of πP to ˆ̀⊂ F is a smooth
embedding and it remains smoothly embedded under CSF [see Theorem 3.1,
[11]]. We adopt the notation ¯̀

t = πtP(ˆ̀) ⊂ P, so for fixed ` ∈ L we get a
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family of smooth curves in P depending on the parameter t. Since we begin
with a smooth projective plane, at t = 0 any two point rows P 0

`1
:= ( ¯̀

1)0 =
π0
P(πL(`1)), P 0

`2
:= ( ¯̀

2)0 = π0
P(πL(`2)) intersect transversely at precisely one

point. By Corollary 2.42, the point rows P t`1 and P t`2 remain intersecting
transversely at exactly one point at any t ∈ [0,∞).

Then we will use Proposition 3.68 to show that πtP is a submersion for
all time. Recall that for ` ∈ L and a smooth path s 7→ `s ∈ L with `0 =
`, π−1

L (`s) = ˆ̀
s ⊂ F is a family of curves depending on the parameter s.

For every s, we obtain a CSF t 7→ πtP |ˆ̀s : ˆ̀
s → P. Since πL is a smooth

fiber bundle, we can use the smooth map τ`,`′ : ˆ̀→ ˆ̀′ (It is defined in the
beginning of this section.) to adjust the domains so that for all s, t the

composition ˆ̀ τ`,`s−−→ ˆ̀
s
πtP−−→ P defines a family of CSF’s depending on the

parameter s.
Differentiating the family of CSF’s with respect to s, we obtain a solution

to the linearized CSF, linearized at t 7→ πtP |ˆ̀, which (at time t) is a vector
field along ¯̀

t.
At t = 0 the solution to the linearized flow is a vector field ξ̄ along

π0
P |ˆ̀ : ˆ̀→ P corresponding to the variation of ¯̀⊂ P defined by ξ ∈ T`L.

Recall that if ξ 6= 0, then the component of ξ̄ normal to ¯̀ is a normal vector
field which vanishes precisely once, and transversely. At any t ∈ [0,∞), the
number of transverse zeros of the solution to the LCSF cannot increase due
to Proposition 2.41, and it cannot decrease to zero since the normal bundle
of ¯̀ is a twisted line bundle, i.e. it is a Mobius band; hence it does not
have a nowhere vanishing section. Therefore, at each t ∈ [0,∞), the normal
component of the corresponding variation of ¯̀

t has precisely one transverse
zero. By Proposition 3.68, πtP is a submersion for all t.

What remains to check is SPP2 in Definition 2.11. For any tuple, we
denote the line pencil through p ∈ P by Ltp := πL((πtP)−1(p)). Any element
(line) of Ltp corresponds to a point row through p. The line pencil Ltp corre-
sponds to a family of point rows where any pair of point rows intersect only
at p, and transversely.

Moreover, any two line pencils Ltp and Ltq intersect at exactly one point
` in L because if they intersect at more than one point, then there are point
rows intersecting at two points, p and q.

Next, we will verify that Ltp and Ltq intersect transversally at `. Let
ξp ∈ T`Ltp, then the normal component of the corresponding variation of ¯̀

t

vanishes at exactly one point p. Similarly, if ξq ∈ T`Ltq, then the normal
component of the corresponding variation of ¯̀

t vanishes at precisely one
point q. Recall that for any p ∈ ¯̀

t, there is a one dimensional subspace
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of Vp ⊂ T`L such that ξ ∈ Vp iff ξ̄ is tangent to ¯̀
t at p. Since p 6= q and

dimT`L = 2, ξp and ξq must span the tangent space T`L.
By Definition 2.11 we can conclude that at each t ∈ [0,∞), the tuple

(P,L,F , πL, πtP) is a smooth projective plane. �

4. Proof of Theorem 1.1

In this section, we present the proof of our main result in this paper, Theo-
rem 1.1. The proof requires the following Lemma:

Lemma 4.1. The tuple (P,L,F , π∞P , πL) is a smooth projective plane.

Proof of Theorem 1.1. Let (P,L,F , πP , πL) be a two-dimensional smooth
projective plane, then P is diffeomorphic to RP2 (Theorem 2.4). We endow
P with a Riemannian metric of constant curvature 1, making it isometric
to RP2 with its usual metric. Define πtP as in (3.69) using CSF. We prove
in Proposition 3.70 that the limiting map π∞P is smooth and πtP defines a
smooth homotopy after reparametrization to the time interval [0, 1]. More-
over, we show in Lemma 3.71 and Lemma 4.1 that (P,L,F , πtP , πL) is a
smooth projective plane for every t ∈ [0, 1], after reparametrization. Note
that as t = 1, (P,L,F , π1

P , πL) is the real projective plane since for every
` ∈ L, π1

Pπ
−1
L (`) represents a geodesic in RP2. �

The rest of this paper is devoted to the proof of Lemma 4.1. We will
first prove that as t→∞, the number of transverse zeros of the solutions
to the LCSF stays one. Since we begin with curves that defines a smooth
projective plane, the number of transverse zeros of the solutions to the LCSF
cannot increase. But this does not rule out the possibility that the solution
to the LCSF vanish as t→∞. We will show in Lemma 4.6 that this cannot
happen.

Recall that the linearized equation of (3.27) at u is

(4.2) vt = (1 + a(x, t))vxx + b(x, t)vx + (1 + c(x, t))v

where

(4.3) ‖a(·, t)‖Ck , ‖b(·, t)‖Ck , ‖c(·, t)‖Ck are less than εke
−t

and the initial condition satisfies

v(x+ π) = −v(x) for all x ∈ R(4.4)

v has exactly one transverse zero in every interval [x, x+ π)(4.5)
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Lemma 4.6. If v : R→ R is a smooth function satisfying (4.4) and (4.5)
then the solution v(x, t) to (4.2) satisfies

(4.7) lim
t→∞
‖v(·, t)‖C0 6= 0.

The proof of Lemma 4.6 will be given in §4.3.

4.1. The linear growth property of Fourier coefficients

Define the nth Fourier coefficients of any 2π-periodic, smooth, real valued
function f as

(4.8) cn =
1

2π

∫ 2π

0
f(x) e−inxdx.

Lemma 4.9. Let f : R→ R be a smooth function satisfying conditions

(4.4), (4.5). Then |cn| ≤
√

2
2 n|c1| and |c−n| ≤

√
2

2 n|c1| for all n ∈ N.

Proof. We can assume that zeros of f are mπ, m ∈ Z (We could translate
f in x to make it true). Hence f is either nonnegative or non-positive in
[0, π]. Let an = 1

π

∫ 2π
0 f(x) cosnx dx and bn = − 1

π

∫ 2π
0 f(x) sinnx dx, then

cn = an+ibn
2 and c−n = an−ibn

2 .

|an+2 − an|(4.10)

=

∣∣∣∣ 1π
∫ 2π

0
f(x) cos((n+ 2)x)dx− 1

π

∫ 2π

0
f(x) cos(nx)dx

∣∣∣∣
= 2

∣∣∣∣ 1π
∫ 2π

0
f(x) sinx sin((n+ 1)x)dx

∣∣∣∣
≤ 2

1

π

∫ 2π

0
|f(x) sinx| dx

By the condition (4.5) and the assumption that f is nonnegative (or
non-positive) in [0, π], we have that f(x) sinx is always nonnegative (or
non-positive) in [0, 2π]. Hence

|an+2 − an|(4.11)

≤ 2

∣∣∣∣ 1π
∫ 2π

0
f(x) sinxdx

∣∣∣∣
= 2|b1|
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A similar inequality can be derived for bn.

|bn+2 − bn|(4.12)

=

∣∣∣∣− 1

π

∫ 2π

0
f(x) sin ((n+ 2)x) dx+

1

π

∫ 2π

0
f(x) sin(nx)dx

∣∣∣∣
= 2

∣∣∣∣ 1π
∫ 2π

0
f(x) sinx cos((n+ 1)x)dx

∣∣∣∣
≤ 2

1

π

∫ 2π

0
|f(x) sinx|dx

= 2

∣∣∣∣ 1π
∫ 2π

0
f(x) sinxdx

∣∣∣∣
= 2|b1|

By induction, (4.10) and (4.12) imply

|an| ≤ (n− 1)|b1|+ |a1| if n is odd and n ≥ 3

|an| ≤ n|b1| if n is even

|bn| ≤ n|b1|

Therefore,

|cn| =
|an + ibn|

2
≤
√

2

2
n|c1|

|c−n| =
|an − ibn|

2
≤
√

2

2
n|c1|

for all n ∈ N. �

4.2. Infinite dimensional system of ODEs

We convert the PDE (4.2) into a linear system of ODEs by rewriting func-
tions in (4.2) in terms of their Fourier series and taking the inner product
with einx on both sides of the equation. Because of the orthonormality of
einx, one can derive the following infinite dimensional coupled system of
ODEs.

d

dt
vn(t) =

(
(−n2 + 1) + (−n2)a0 + in b0 + c0

)
vn(t)(4.13)

+
∑
j 6=n

(
(−j2)an−j + ij bn−j + cn−j

)
vj(t).
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Let a
(k)
` (t) be the `th Fourier coefficient for a(k), that is

(4.14) a
(k)
` (t) =

1

2π

∫ 2π

0
a(k)(x, t)e−i`x dx.

Applying integration by parts k times, one can derive

(4.15) a
(k)
` (t) = (i`)ka`(t).

On the other hand, from (4.3) the condition that the Ck norms of a, b and
c are less than εke

−t, we know that

∣∣∣a(k)
` (t)

∣∣∣ =

∣∣∣∣ 1

2π

∫ 2π

0
a(k)(x, t)e−i`xdx

∣∣∣∣(4.16)

≤
∥∥a(k)(·, t)

∥∥
C0

2π

∫ 2π

0

∣∣∣e−i`x∣∣∣ dx ≤ εke−t.
Hence (4.15) and (4.16) imply

(4.17)
∣∣∣(i`)ka`(t)∣∣∣ ≤ εke−t.

Note that by the same argument, we also have (4.17) for b and c. Choose
k = 6, then

(4.18) |a`(t)| ≤
ε6e
−t

`6
, |b`(t)| ≤

ε6e
−t

`6
, |c`(t)| ≤

ε6e
−t

`6
,

for all ` 6= 0.

4.3. Proof of Lemma 4.6

Proof. For any t ≥ 0, since

(4.19) sup
x
|v(x, t)| ≥ 1√

2π
‖v(x, t)‖L2 =

(∑
n

|vn(t)|2
)1/2

≥ |v1(t)| ,

it is enough to show that limt→∞ |v1(t)| has a nonzero lower bound.
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With n = 1 in (4.13), we have

d

dt
v1(t) = (−a0 + i b0 + c0) v1(t)(4.20)

+
∑
j 6=1

(
−j2a1−j + i j b1−j + c1−j

)
vj(t).

Therefore

d|v1|
dt

=
1

2|v1|

(
dv1

dt
v̄1 +

dv̄1

dt
v1

)
=

1

2|v1|

(
(−a0 + i b0 + c0)v1 +

∑
j 6=1

(−j2a1−j + i j b1−j + c1−j)vj

)
v̄1

+
1

2|v1|

(
(−ā0 − i b̄0 + c̄0)v̄1 +

∑
j 6=1

(−j2ā1−j − i j b̄1−j + c̄1−j)v̄j

)
v1

(By (4.20))

≥ − (|a0|+ |b0|+ |c0|) |v1| −
1

|v1|
|v1|

∑
j 6=1

( j2 |a1−j |+ |j||b1−j |+ |c1−j | )|vj |

(We use the fact that z + z̄ ≤ 2|z|)

≥

− (|a0|+ |b0|+ |c0|)−
√

2

2

∑
j 6=1

( |j|3|a1−j |+ |j|2|b1−j |+ |j||c1−j |

 |v1|

(By Lemma 4.9, |vj | ≤
√

2

2
|j||v1|)

≥ −ε6e−t
3 +

√
2

2

∑
j 6=1

|j|3 + |j|2 + |j|
(1− j)6

 |v1|.

(By (4.18))

Let C = ε6

(
3 +

√
2

2

∑
j 6=1

|j|3+|j|2+|j|
(1−j)6

)
> 0. Then

d|v1|
dt
≥ −Ce−t|v1|.(4.21)

Note that at any t ∈ [0,∞), |v1| cannot be zero. Because if it is zero, then
by Lemma 4.9, we have v = 0 at that time and this contradicts with Theo-
rem 2.38.
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Integrating (4.21) with respect to t, we get that for all t ≥ 0,

(4.22) |v1(t)| ≥ eC(e−t−1)|v1(0)| ≥ e−C |v1(0)| > 0.

Hence

lim
t→∞
|v1(t)| ≥ e−C |v1(0)|.

�

4.4. Proof of Lemma 4.1

Proof. We first verify that the tuple (P,L,F , π∞P , πL) satisfies SPP1 in Def-
inition 2.11. Pick a point p in P. Then for every t ∈ [0,∞] there is a line
pencil Ltp, consisting of the lines passing through p; this is a subset of the
manifold of lines L. By the submersion property of πP , one can use the im-
plicit function theorem to say that the line pencil is a smooth 1-dimensional
submanifold of L, which varies smoothly with t. Then there is a smooth map
from Ltp to the projectivized tangent space P (TpP) of P at p, which takes a
line ` in Ltp to its direction at p (which is an element of P (TpP)). Since the
solutions to the LCSF have transverse zeroes, this map

Ltp → P (TpP)

is an immersion, and hence a covering map. As it varies continuously with t,
and is injective for t <∞, it is injective when t =∞. In particular, distinct
lines `1, `2 give rise to distinct point rows, which intersect transversely.
The number of intersection points of the point rows for `1 and `2 varies
continuously with t, and must therefore be 1.

For every ` ∈ L, the restriction of π∞P to ˆ̀⊂ F is a smooth embedding.
In addition, Lemma 4.6 implies that the number of transverse zero of the
LCSF stays one. By Proposition 3.68, π∞P is a submersion.

Any two line pencils intersect at exactly one point ` in L because if
they intersect at more than one point, then there are point rows intersecting
at more than one point. By Lemma 4.6, for any 0 6= ξ ∈ T`L, the normal
component of the corresponding variation of ¯̀∞ vanishes at exactly one
point. Hence, the transverse intersection of line pencils SPP2 follows from
the same argument as in the proof of Lemma 3.71.

By Definition 2.11 we can conclude that the tuple (P,L,F , π∞P .πL) is a
smooth projective plane. �
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Appendix A.

Lemma A.1. Suppose {ut : Rm × Rn → R`}, t ∈ [0,∞) is a family of
smooth functions. Assume that for every k, the kth derivatives ∂kxut, ∂

k
yut

converge uniformly as t→∞, where ∂kx, ∂ky refer to the derivatives in the Rm
and Rn directions, respectively. Then for every k, the family {ut}converges
in the Ck-topology as t→∞.

Proof. It suffices to prove the following claim: if u is a continuous function
on the n-cube [0, 2π]n, such that the partial derivatives in the coordinate
directions ∂ku

∂xki
exist and are continuous for all i and k, then u is smooth

on the subcube [π2 ,
3π
2 ]n. Furthermore, for every k, if N > n/2 + k, then the

Ck norm of u on [π2 ,
3π
2 ]n, ‖u‖Ck([π

2
, 3π

2
]n), is bounded by the C0 norm of the

partial derivatives ∂mu
∂xmi

in [0, 2π]n, for all i and m ≤ N .

To prove this claim one can take a smooth cutoff function φ : [0, 2π]n →
R which is 1 on a neighborhood of [π2 ,

3π
2 ]n, and has support in [π4 ,

7π
4 ]n, and

verify the claim for φu instead.
The function φu defines a L2 function on Tn = Rn/(2πZn), the n-torus.

Let {EJ(x) = eiJ ·x | J = (j1, . . . , jn) ∈ Zn, x ∈ Tn} be an orthonormal basis

for L2(Tn). We define the Fourier coefficient of φu by cj1...jn = φ̂u(J) =∫
Tn(φu)(x)E−J(x)dx.

Since the distribution derivatives of φu of all orders in the coordinate
directions are in L2, its Fourier coefficients cj1...jn{j`∈Z} are square summable

with the weight |j`|k, for any k. This implies that the Fourier coefficients de-
cay faster than any polynomial. By the Sobolev embedding theorem, we have
φu ∈ C∞(Tn). Furthermore, for every k, if N > n/2 + k, then ‖φu‖2Ck ≤∑
{α| |α|≤N} ‖Dαφu‖2L2 where α = (α1, . . . , αn) is an n-dimensional multi-

index of non-negative integers, |α| = α1 + · · ·+ αn and Dα = ∂|α|

∂
α1
x1 ···∂

αn
xn

. To

prove the second part of the claim, it is enough to show that

∑
{α| |α|≤N}

‖Dαφu‖2L2 ≤ C
N∑
m=0

∥∥∂mx`φu∥∥2

L2 ,

for some constant C = C(k, n).∑
{α| |α|≤N}

‖Dαφu‖2L2 =
∑

{α| |α|≤N}

∥∥∥D̂αφu
∥∥∥2

L2

=
∑

{|α| |α|≤N}

∑
j`∈Z

(j1)2α1 · · · (jn)2αn |cj1...jn |2
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≤
∑

{|α| |α|≤N}

∑
j`∈Z

(
(j1)2|α| + · · ·+ (jn)2|α|

)
|cj1...jn |2

=

N∑
m=0

(
m+ n− 1

m

)∑
j`∈Z

(
(j1)2m + · · ·+ (jn)2m

)
|cj1...jn |

2

≤ C
N∑
m=0

n∑
i=1

∥∥∥∂̂mxiφu∥∥∥2

L2

≤ C
N∑
m=0

n∑
i=1

∥∥∂mxiφu∥∥2

C0 .

�
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M. Stroppel, Compact Projective Planes, Vol. 21 of de Gruyter Expo-
sitions in Mathematics, Walter de Gruyter & Co., Berlin (1995), ISBN
3-11-011480-1. With an introduction to octonion geometry.



i
i

“4-Hsu” — 2019/12/13 — 1:08 — page 1324 — #44 i
i

i
i

i
i

1324 Yu-Wen Hsu

Department of Mathematics, Brown University

Providence, RI 02912

E-mail address: yu-wen hsu@brown.edu

Received August 16, 2013

Accepted June 3, 2017


	Introduction
	Preliminaries
	Constructing a smooth homotopy using CSF
	Proof of Theorem 1.1
	Appendix 
	References

