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We classify the homogeneous and isoparametric hypersurfaces of
S2 × S2. In the classification, besides the hypersurfaces S1(r)×
S2, r ∈ (0, 1], it appears a family of hypersurfaces with three differ-
ent constant principal curvatures and zero Gauss-Kronecker cur-
vature. Also we classify the hypersurfaces of S2 × S2 with at most
two constant principal curvatures and, under certain conditions,
with three constant principal curvatures.
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1. Introduction

Let (N, g) be a compact 4-dimensional Riemannian manifold and Φ : M →
N a two-sided hypersurface. We are interested in the following properties:
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1382 Francisco Urbano

1) M is (extrinsically) locally homogeneous, i.e., for any points p, q ∈M
there exist neighbourhoods V and W of p and q in M and an isometry
F of N such that F (Φ(V )) = Φ(W ).

2) M has constant principal curvatures.

3) M is isoparametric, i.e., there exists an isoparametric function F :
N → R such that M = F−1(t), for some regular value t of F . F is
isoparametric if the gradient and the Laplacian of F satisfy

|∇F |2 = f(F ), ∆F = g(F ),

where f, g : R→ R are smooth functions.

When N is the 4-dimensional sphere S4 or the complex projective plane
CP2, these properties have been studied and the corresponding classifica-
tions have been done (see [C], [K], [M] and [T]). In both cases, the above
three properties are equivalent and the number of possible different principal
curvatures are 1, 2 or 3 when N = S4 and 2 or 3 when N = CP2.

Besides the above ambient spaces, S2 × S2 is the most interesting com-
pact 4-manifold to study its hypersurfaces. It is, together with CP2, the only
compact Hermitian symmetric 4-manifold.

In this paper we start the study of the above properties for the hyper-
surfaces of S2 × S2. In section 3, we give a complete description of the most
important examples, which appear in two families of isoparametric hyper-
surfaces. The first one, {S1(r)× S2, r ∈ (0, 1]}, is a family of homogeneous
and isoparametric hypersurfaces with 1 or 2 constant principal curvatures.
The second one, {Mt, t ∈ (−1, 1)}, with

Mt = {(p, q) ∈ S2 × S2 | < p, q >= t},

is also a family of homogeneous and isoparametric hypersurfaces but with
three constant principal curvatures and with Gauss-Kronecker curvature
K = 0. All these examples are tubes over distinguish totally geodesic sur-
faces of S2 × S2, and, in contrast with the cases of S4 and CP2, the geodesic
spheres of S2 × S2 do not belong to the above families of examples.

As it is well-known, the Gauss and Codazzi equations (and hence the
curvature of S2 × S2) play an important role in the study of the above prop-
erties. In our case, the curvature depends of the product structure of S2 × S2

(see section 2 ) and so the Codazzi equation reflects the behaviour of the
hypersurface with respect to the product structure. This behaviour is de-
scribed by a function C (see (2.2)) defined on the hypersurface and satisfying
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On hypersurfaces of S2 × S2 1383

−1 ≤ C ≤ 1, and so, the properties of this function will be quite important
throughout the paper. This function is constant in all the above examples
(C = 1 for the first family and C = 0 for the second one).

The first important results in the paper, Theorem 1 and Corollary 1,
provide a local characterization of the above examples among the family of
hypersurfaces of S2 × S2 where the function C is constant. This characteri-
zation will be used along the paper.

In Corollary 2 and Corollary 3 we prove the following local result, which
classifies the homogeneous and isoparametric hypersurfaces of S2 × S2:

1) Open subsets of {S1(r)× S2, r ∈ (0, 1]} and {Mt, t ∈ (−1, 1)}
are, up to congruences, the only locally homogeneous ori-
entable hypersurfaces of S2 × S2.

2) {S1(r)× S2, r ∈ (0, 1]} and {Mt, t ∈ (−1, 1)} are, up to con-
gruences, the only isoparametric orientable hypersurfaces of
S2 × S2.

In fact, in Theorem 2 we prove a stronger result than in (2): we character-
ize locally the above examples as the only orientable hypersurfaces whose
parallel hypersurfaces have constant mean curvature. It is well-known that
this property is satisfied by any isoparametric hypersurface.

Finally in section 6, we study the orientable hypersurfaces of S2 × S2

with constant principal curvatures. In Theorem 3 we locally classify them,
when the number of constant principal curvatures is one or two, proving
that

1) Up to congruences, open subsets of S1 × S2 are the only ori-
entable hypersurfaces of S2 × S2 with one constant principal
curvature.

2) Up to congruences, open subsets of {S1(r)× S2, r ∈ (0, 1)},
are the only orientable hypersurfaces of S2 × S2 with two dif-
ferent constant principal curvatures.

When the number of different principal curvatures is three, the clas-
sification problem is harder, and we have only got partial results. Using
Theorem 4, where we study the critical points of the function C in such
hypersurfaces, we prove in Corollary 4 the following result:

{Mt, t ∈ (−1, 1)} are, up to congruences, the only orientable com-
pact hypersurfaces with three different constant principal curva-
tures, with scalar curvature ρ 6= 1/2 and Gauss-Kronecker cur-
vature K = 0.
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It is interesting to remark that, in [BD], the authors classify the hypersur-
faces of the complex hyperbolic plane with three different constant principal
curvatures. Their proof is novel, but unfortunatelly we have not be able to
adapt their ideas to get the complete classification of the hypersurfaces of
S2 × S2 with three different constant principal curvatures.

To finish it could be interesting to study hypersurfaces in the product
of two spheres of different radii. In this case, although the ambient manifold
loses important geometric properties and its curvature is more complicated,
we think that the behaviour of its hypersurfaces could be similar to our case.

2. Preliminaries

Let S2 be the 2-dimensional unit sphere, 〈, 〉 its standar metric and J its
complex structure defined by

Jpv = p ∧ v, p ∈ S2, v ∈ TpS2.

We endow S2 × S2 with the product metric (also denoted by 〈, 〉) and the
complex structures

J1 = (J, J), J2 = (J,−J)

which define two structures of Kähler surface on S2 × S2. It is clear that,
if Id : S2 → S2 is the identity map and F : S2 → S2 is any anti-holomorphic
isometry of S2, then Id× F : (S2 × S2, J1)→ (S2 × S2, J2) is a holomorphic
isometry.

The product structure P on S2 × S2, defined by

P (v1, v2) = (v1,−v2), v1, v2 ∈ TS2,

satisfies P = −J1J2 = −J2J1 and ∇̄P = 0, where ∇̄ is the Levi-Civita con-
nection on S2 × S2.

On the other hand, using that S2 × S2 is a product manifold, its curva-
ture tensor R̄ is given by

R̄(v, w, x, y) =
1

2
{〈v, y〉〈w, x〉 − 〈v, x〉〈w, y〉

+ 〈Pv, y〉〈Pw, x〉 − 〈Pv, x〉〈Pw, y〉},

where v, w, x, y ∈ T (S2 × S2), and hence S2 × S2 is an Einstein manifold with
scalar curvature 4 and non-negative sectional curvature.
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On hypersurfaces of S2 × S2 1385

Finally, the group of isometries of S2 × S2 is the 6-dimensional subgroup
of the orthogonal group O(6) given by

(2.1)

{(
A 0
0 B

)
,

(
0 A
B 0

)
/A,B ∈ O(3)

}
.

Let Φ : M → S2 × S2 be an orientable hypersurface of S2 × S2 and N
a unit normal vector field to Φ. The behaviour of M with respect to the
product structure is given by the smooth function C and the vector field X
tangent to M defined by

C : M → R, C = 〈PN,N〉 = 〈J1N, J2N〉,
X = PN − CN.

(2.2)

It is clear that −1 ≤ C ≤ 1, that X is the tangential component of PN
and that |X|2 = 1− C2.

From the Gauss equation it follows that the scalar curvature ρ of M is
given by

ρ = 2 + 9H2 − |σ|2,
where σ is the second fundamental form and H = 1

3 trσ the mean curvature
vector field of Φ. The Codazzi equation is given by

(∇σ)(v, w, x)− (∇σ)(w, v, x) =
1

2

(
〈X, v〉〈Pw, x〉 − 〈X,w〉〈Pv, x〉

)
,

where ∇σ is the covariant derivative of the second fundamental form.
In the following result we describe some properties of C and X which

will be used along the paper.

Lemma 1. Let Φ : M → S2 × S2 be an orientable hypersurface and A the
shape operator associated to the unit normal field N . Then

1) The gradient of C and the covariant derivative of X are given by

∇C = −2AX, ∇VX = CAV − P TAV,

2) The Hessian of C is given by

(∇2C)(V,W ) = −2(∇σ)(V,X,W )− 2C〈AV,AW 〉+ 2〈PAV,AW 〉.

3) The Laplacian of C and the divergence of X are given by

∆C = −6〈X,∇H〉 − 2C|σ|2 + 2 tr(P TA2), divX = 3CH − tr(P TA),
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where P T : TM → TM is the tangential component of the restriction of P
to M , tr stands for the trace and V,W are vector fields on M .

Proof. Derivating the second equation of (2.2) and taking into account that
P is parallel, we get easily (1). Now, (2) and (3) follow easily from (1) using
the Codazzi’s equation. �

Finally, if Φ : M → S2 × S2 is an orientable hypersurface and {e1, e2, e3} is
an orthonormal reference of M such that {e1, e2, e3, N} is positively oriented
and Pij = 〈Pei, ej〉, bi = 〈Pei, N〉 = 〈X, ei〉, then the product structure P ,
in the above reference, is written as follows

P =


P11 P12 P13 b1
P21 P22 P23 b2
P31 P32 P33 b3
b1 b2 b3 C


It is clear that P = P t and that tr P = 0 because P = −J1J2 and Ji, i = 1, 2
are complex structures. Also, as 〈Pv, Pw〉 = 〈v, w〉, ∀v, w ∈ T (S2 × S2) and
P preserves the orientation of S2 × S2, it follows that, for any p ∈M , the
matrix P (p) ∈ SO(4). Hence, for i 6= j 6= k

CPii − b2i = PjjPkk − P 2
jk, CPij − bibj = PikPjk − PijPkk,

biPij − bjPii = −bkPkj + bjPkk.
(2.3)

3. Examples

In this section we are going to give the most regular examples of hypersur-
faces of S2 × S2, some of them will be characterized in the paper.

3.1. Hypersurfaces with function C satisfying C2 = 1.

Given a ∈ S2, let G : S2 × S2 → R be the function defined by

G(p, q) = 〈p, a〉.

Then it is easy to check that the gradient and the Laplacian of G satisfy

|∇̄G|2 = 1−G2, ∆̄G = −2G.
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On hypersurfaces of S2 × S2 1387

This means that G is an isoparametric function on S2 × S2 and hence the
level hypersurfaces of G define a one-parameter family of hypersurfaces of
S2 × S2 with constant mean curvature.

In this particular case, G−1(t) = ∅ if |t| > 1, G−1(1) = {a} × S2 and
G−1(−1) = {−a} × S2 are the focal sets, which are totally geodesic surfaces
of S2 × S2. Finally, for t ∈ (−1, 1) we have that

G−1(t) = {(p, q) ∈ S2 × S2 | 〈p, a〉 = t}

is a hypersurface of S2 × S2 with constant mean curvature. The isometry of
S2 × S2 given by −Id× Id transforms G−1(−t) onto G−1(t). Also, it is clear
that, up to congruences, we can take a = (0, 0, 1). So we have a family of
hypersurfaces

G−1(t) = S1(r)× S2, r2 = 1− t2, t ∈ [0, 1), r ∈ (0, 1],

where S1(r) = {(x, y,
√

1− r2) ∈ S2}. It is trivial to check that G−1(0) =
S1 × S2 is totally geodesic and that S1(r)× S2, r ∈ (0, 1), has two constant

principal curvatures: 0 with multiplicity two and
√

1−r2
r with multiplicity

one.
Also, {S1(r)× S2, r ∈ (0, 1]} are tubes of radius arcos

√
1− r2 over the

focal surface {a} × S2, with a = (0, 0, 1).
Finally, the group of isometries of S2 × S2 given by{(

A 0
0 B

)
/A =

(
Â 0
0 1

)
, Â ∈ SO(2) , B ∈ SO(3)

}
acts transitively on S1(r)× S2 and hence these hypersurfaces are homoge-
neous. Sumarizing, we have that

{S1(r)× S2, r ∈ (0, 1]} is a family of homogeneous isoparametric
hypersurfaces of S2 × S2 with two constant principal curvatures
when r ∈ (0, 1) and totally geodesic when r = 1.

These hypersurfaces satisfy that C = 1, because the unit normal field has
no component in the second factor. We remark that the isometry of S2 × S2

given by (p, q) 7→ (q, p) transforms S1(r)× S2 onto S2 × S1(r) whose function
C = −1.

Now we are going to characterize locally the hypersurfaces satisfying
C2 = 1. Without loss of generality we can assume that C = 1.

If Φ = (φ, ψ) : M → S2 × S2 is an orientable hypersurface with C = 1,
then X = 0, PN = N and J1N = J2N . Hence, from Lemma 1 we get that
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A = PA. Moreover the tangent bundle decomposes as TM =< J1N > ⊕D,
where D is the two-dimensional distribution orthogonal to J1N . As P (J1N)
= J1N , it is clear that P|D = −Id, and so A|D = 0. Also, if V,W are vector
fields on D, we have that

〈∇VW,J1N〉 = −〈W, ∇̄V J1N〉 = 〈W,J1(AV )〉 = 0,

which means that D is a totally geodesic foliation on M . If Σ is a leaf of D,
it follows that ψ : Σ→ S2 is a local isometry, and hence

Any hypersurface of S2 × S2 with C ≡ 1 is locally the product of
a integral curve of J1N in S2 and an open subset of S2.

3.2. Hypersurfaces with three constant principal curvatures

Let F : S2 × S2 → R be the function defined by

F (p, q) = 〈p, q〉.

Then it is not difficult to check that

|∇̄F |2 = 2(1− F 2), ∆̄F = −4F,

and so F is an isoparametric function on S2 × S2. Hence the level hypersur-
faces of F have constant mean curvature. In this case, F−1(t) is empty if
|t| > 1, and the diagonal surface F−1(1) = {(p, p) ∈ S2 × S2} and the anti-
diagonal surface F−1(−1) = {(p,−p) ∈ S2 × S2} of S2 × S2 are the focal sets
of F .

For t ∈ (−1, 1) we have that

Mt = {(p, q) ∈ S2 × S2 | 〈p, q〉 = t}

is an hypersurface of S2 × S2 with constant mean curvature.
The hypersurfaces Mt and M−t are congruents because the isometry I

of S2 × S2 given by I(p, q) = (p,−q) transforms Mt onto M−t.
Moreover, the tube of radius arccos(t/

√
2) over the diagonal surface

F−1(1) = {(p, p) ∈ S2 × S2} is given by the sets of points {(x, y) ∈ S2 × S2}
such that
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(x, y) =

(
cos

(
t√
2

)
p+
√

2 sin

(
t√
2

)
v, cos

(
t√
2

)
p−
√

2 sin

(
t√
2

)
v

)
,

p ∈ S2, v ∈ TpS2, |v| = 1/
√

2.

As 〈x, y〉 = cos2 t√
2
− sin2 t√

2
= cos(

√
2t), we obtain that the hypersurface

Mt is a tube of radius arccos(t/
√

2) over the diagonal surface.
On the other hand, it is clear that SO(3) acts transitively by isometries

on Mt by

A(p, q) = (Ap,Aq), A ∈ SO(3),

and hence {Mt, t ∈ (−1, 1)} is a family of homogeneous hypersurfaces.
Also, the isotropy subgroup of the above action at any point of Mt is the

identity. SoMt is diffeomorphic to SO(3) ≡ RP3. HenceMt is a homogeneous
Riemannian manifold and SO(3) is the group of isometries of Mt when t 6= 0
and that SO(3) joint with the one-parameter group of isometries {ht : M0 →
M0, t ∈ R} defined by

ht(p, q) = (tp+
√

1− t2q,
√

1− t2p− tq),

is the group of isometries of M0. We remark that {ht} is only well-defined
on M0 and that they are the restriction to M0 of isometries of O(6), which
no define isometries of S2 × S2.

In [MP], the simply connected homogeneous Riemannian three-manifolds
are described in detail. Following its notation, M0 is the Berger projective
space with κ = 1 and τ2 = 1/2. Also, Mt, t 6= 0 is the projective space with
the metric given by the parameters c1 = 2 = c2 + c3 with c2 = 1 + t and
c3 = 1− t.

Now, we are going to study more properties of the hypersurfaces {Mt}.
It is easy to check that

N(p,q) =
1√

2(1− t2)
(q − tp, p− tq)

is a unit normal vector field to Mt in S2 × S2 and so we have that these
hypersurfaces have the function C constantly zero. Hence, if Ji, i = 1, 2,
and P are the complex structures and the product structure on S2 × S2,



i
i

“7-Urbano” — 2019/12/13 — 1:18 — page 1390 — #10 i
i

i
i

i
i

1390 Francisco Urbano

then

J1N(p,q) =
(p ∧ q,−p ∧ q)√

2(1− t2)
, J2N(p,q) =

(p ∧ q, p ∧ q)√
2(1− t2)

,

X = PN(p,q) =
1√

2(1− t2)
(q − tp,−p+ tq),

is a trivialization of Mt by orthonormal vectors fields, where ∧ stands for
the vectorial product in R3. If A denotes the shape operator associated to
N , then for any vector (v1, v2) tangent to Mt, we have that

A(v1, v2) =
1√

2(1− t2)
{t(v1, v2)− (v2, v1) + 〈p, v2〉(p,−q)} .

From here we obtain that

A(J1N) =
1√
2

√
1 + t

1− t
J1N, A(J2N) = − 1√

2

√
1− t
1 + t

J2N, AX = 0.

So, {Mt, t ∈ (−1, 1)} are hypersurfaces of S2 × S2 with three constant prin-
cipal curvatures, λ1 = 0, λ2λ3 = −1/2. So the Gauss-Krocneker curvature
of Mt is zero. The lengths of the mean curvature vector field and the second
fundamental form are given by

H =

√
2t

3
√

1− t2
, |σ| =

√
1 + t2

1− t2
.

Among all the Mt, only M0 is minimal. From the Gauss equation we obtain
that the sectional curvature, the Ricci tensor and the scalar curvature of Mt

satisfy the following properties:

K(J1N ∧ J2N) = −1

2
, K(J1N ∧X) = K(J2N ∧X) =

1

2
,

Ric(v) = 〈v,X〉2 ≥ 0, ρ = 1.

We remark that the curvatures of Mt do not depend of t. Sumarizing, we
have that

{Mt = {(x, y) ∈ S2 × S2 | 〈x, y〉 = t}, t ∈ (−1, 1)} is a family of
homogeneous isoparametric hypersurfaces of S2 × S2 with three
constant principal curvatures. Their Gauss-Krocneker curvatures
vanish and only M0 is a minimal hypersurface. Moreover, all
these hypersurfaces have C = 0.
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Remark 1. The above examples can be defined in higher dimension. In
fact, if Sn is the n-dimensional unit sphere with its canonical metric and in
Sn × Sn we consider the product metric, then

Mt = {(p, q) ∈ Sn × Sn | 〈p, q〉 = t}, t ∈ (−1, 1)

define a one-parameter family of homogeneous isoparametric hypersurfaces
of Sn × Sn with three constant principal curvatures: 0 with multiplicity one

and
√

1+t√
2(1−t)

,−
√

1−t√
2(1+t)

with multiplicities n− 1.

3.3. Other interesting examples

1) Given a, b ∈ S2 we define

Ma,b = {(p, q) ∈ S2 × S2 | 〈p, a〉+ 〈q, b〉 = 0}.

Then it is easy to check that Ma,b is a compact hypersurface of S2 × S2 with
two isolated singularities: (a,−b), (−a, b). Outside of these singularities, a
unit normal vector field to Ma,b is defined by

N(p, q) =
1√

2(1− 〈p, a〉2)
(a− 〈p, a〉p, b− 〈q, b〉q),

and hence the function C = 〈PN,N〉 = 0.
Also it is straighforward to see that the orthonormal reference {X,E2 =

(J1N + J2N)/
√

2, E3 = (J1N − J2N)/
√

2} diagonalizes the second funda-
mental form with

AX = 0, AE2 =
〈p, a〉√

2(1− 〈p, a〉2)
E2, AE3 =

−〈p, a〉√
2(1− 〈p, a〉2)

E3.

Hence Ma,b is a minimal hypersurface with Gauss-Kronecker curvature K =
0 and with scalar curvature

ρ(p, q) =
2− 3〈p, a〉2

1− 〈p, a〉2
, −∞ < ρ ≤ 2.

A parametrization of Ma,b when a = (0, 0, 1), b = (0, 0,−1), is given by the
triply periodic ramified immersion

Φ : R3 → S2 × S2

Φ(t, r, s) = cos

(
t√
2

)(
(cos r, sin r, 0), (cos s, sin s, 0)

)
+ sin

(
t√
2

)
(a,−b).



i
i

“7-Urbano” — 2019/12/13 — 1:18 — page 1392 — #12 i
i

i
i

i
i

1392 Francisco Urbano

2) Given a, b ∈ S2 we define

M̂a,b = {(p, q) ∈ S2 × S2 | 〈p, a〉2 + 〈q, b〉2 = 1}.

Then it is easy to check that M̂a,b is a compact hypersurface of S2 × S2 with
four curves of singularities

{(p,±b) | 〈p, a〉 = 0}, {(±a, q) | 〈q, b〉 = 0}.

Outside of these singularities, a unit normal vector field to M̂a,b is defined
by

N(p, q) =
1√

2 |〈p, a〉〈q, b〉|
(
〈p, a〉(a− 〈p, a〉p), 〈q, b〉(b− 〈q, b〉q)

)
,

and hence the function C = 〈PN,N〉 = 0.
Also it is straighforward to see that the orthonormal reference {X,E2 =

(J1N + J2N)/
√

2, E3 = (J1N − J2N)/
√

2} diagonalizes the second funda-
mental form with

AX = 0, AE2 =
〈p, a〉2√

2 |〈p, a〉〈q, b〉|
E2, AE3 =

〈q, b〉2√
2 |〈p, a〉〈q, b〉|

E3.

Hence M̂a,b is a hypersurface with Gauss-Kronecker curvature K = 0, with
constant curvature 1/2 and the length of the mean curvature vector field is
given by

H(p, q) =
1

3
√

2 |〈p, a〉〈q, b〉|
.

A parametrization of M̂a,b, when a = b = (0, 0, 1), is given by the triply
periodic ramified immersion

Φ = (φ, ψ) : R3 → S2 × S2

φ(t, r, s) =
cos
(

t√
2

)
− sin

(
t√
2

)
√

2
(cos r, sin r, 0)

+

0, 0,
cos
(

t√
2

)
+ sin

(
t√
2

)
√

2

 ,
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ψ(t, r, s) =
cos
(

t√
2

)
+ sin

(
t√
2

)
√

2
(cos s, sin s, 0)

+

0, 0,
cos
(

t√
2

)
− sin

(
t√
2

)
√

2

 .

4. Characterizations of the examples.
Homogeneous hypersurfaces

In the next result we give two local characterizations of the examples defined
in section 3.

Theorem 1. Let Φ : M → S2 × S2 be an orientable hypersurface with C =
〈PN,N〉 constant, where N is a unit normal field to Φ. Then

1) M has constant mean curvature if and only if either
a) C2 = 1 and Φ(M) is congruent to an open set of S1(r)× S2 for

some r ∈ (0, 1],
b) or C = 0 and Φ(M) is congruent to an open set of Mt for some

t ∈ (−1, 1),
c) or C = 0 and M is a non-compact minimal hypersurface with non-

constant scalar curvature.

2) M has constant scalar curvature if and only if either
a) C2 = 1 and Φ(M) is congruent to an open set of S1(r)× S2 for

some r ∈ (0, 1],
b) or C = 0 and Φ(M) is congruent to an open set of Mt for some

t ∈ (−1, 1),
c) or C = 0 and M is a non-complete hypersurface with constant cur-

vature 1/2 and non-constant mean curvature.

Remark 2. 1) The family of minimal hypersurfaces in item (1c) is not
empty, because the hypersurface Ma,b given in section 3.3 is a non-
complete minimal hypersurface with non-constant scalar curvature and
with C = 0.

2) The family of hypersurfaces in item (2c) is also not empty, because the
hypersurface M̂a,b given in section 3.3 is a non-complete hypersurface
with constant curvature 1/2 , non-constant mean curvature and with
C = 0.
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Corollary 1. 1) {S1(r)×S2, r∈(0, 1]}, {Mt, t∈(−1, 1)} and their com-
pact coverings are the only compact orientable constant mean curvature
hypersurfaces of S2 × S2 with C constant.

2) {S1(r)× S2, r ∈ (0, 1]}, {Mt, t ∈ (−1, 1)} and their compact coverings
are the only complete orientable hypersurfaces with constant scalar cur-
vature of S2 × S2 with C constant.

3) Open subsets of {S1(r)× S2, r ∈ (0, 1]} and {Mt, t ∈ (−1, 1)}, are the
only orientable hypersurfaces of S2 × S2 which have the mean curva-
ture, the scalar curvature and the function C constants.

Proof. Taking into account section 3, the sufficient conditions in (1) and (2)
are clear.

In order to prove the neccesary conditions, first we suppose that C2 = 1,
and without loss of generality we consider C = 1. In Section 3.1, we prove
that M is locally congruent to the product of a curve in S2 and an open
subset of S2. If the mean curvature or the scalar curvature of the hypersurface
is constant, then the curvature of the curve of S2 is also constant and so we
obtain the case (1a) or (2a).

Now we suppose that C = c0 ∈ (−1, 1). Then from Lemma 1 (1), it fol-
lows that AX = 0 with |X|2 = 1− c2

0 > 0. So, at any point of M , 0 is a
principal curvature of the hypersurface with corresponding eigenvector X.
Hence, on M we can consider the orthonormal reference {Ei, i = 1, 2, 3}
where

E1 =
X√

1− c2
0

, E2 =
J1N + J2N√

2(1 + c0)
, E3 =

J1N − J2N√
2(1− c0)

.

Using (2.2), the shape operator A and the tangential component of the
product structure P T are given, with respect to this reference, by

A =

 0 0 0
0 σ22 σ23

0 σ23 σ33

 , P T =

 −c0 0 0
0 1 0
0 0 −1

 .

Using Lemma 1 and that Ji, i = 1, 2, are Kähler structures on S2 × S2,
i.e. ∇̄Ji = 0, it is not difficult to check that the Levi-Civita connection ∇ of
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the induced metric on M is given by

∇E1
Ei = 0, ∇E2

E3 = −
√

1 + c0

1− c0
σ23E1, ∇E3

E2 = −
√

1− c0

1 + c0
σ23E1,

∇E2
E1 = −

√
1− c0

1 + c0
σ22E2 +

√
1 + c0

1− c0
σ23E3,

∇E3
E1 = −

√
1− c0

1 + c0
σ23E2 +

√
1 + c0

1− c0
σ33E3,

∇E2
E2 =

√
1− c0

1 + c0
σ22E1, ∇E3

E3 = −
√

1 + c0

1− c0
σ33E1.

The knowledge of the Levi-Civita connection and the Codazzi equation,
joint with Lemma 1, allow us to get the derivatives of the second fundamental
form, obtaining

X(σ22) =
1− c2

0

2
+ (1− c0)σ2

22 − (1 + c0)σ2
23,

X(σ33) =
c2

0 − 1

2
+ (1− c0)σ2

23 − (1 + c0)σ2
33,

X(σ23) = (1− c0)σ22σ23 − (1 + c0)σ33σ23,

E2(σ33) = E3(σ23), E3(σ22) = E2(σ23).

(4.1)

Case (1): the mean curvature H is constant.
In this case, from Lemma 1,(3) it follows that c0|σ|2 = traceP TA2. Using

the above reference, this equation becomes in

(4.2) c0|σ|2 = 3H(σ22 − σ33).

First we are going to prove that c0 = 0. In fact, if H = 0, as the hyper-
surface cannot be totally geodesic because in such case C2 = 1, the equa-
tion (4.2) says that c0 = 0. If H 6= 0, derivating the equality 9H2 − |σ|2 =
2(σ22σ33 − σ2

23) with respect to X and using (4.1) and (4.2) it is not difficult
to get that

X(|σ|2) =
c0

(
(1− c2

0)|σ|2 + (9H2 − |σ|2)2
)

3H
.

On the other hand, using (4.1) and (4.2) it is straightforward to get that

X(σ22 − σ33) = 1− |σ|2 − c2
0(1 + |σ|2) + 9H2 +

c2
0|σ|4

9H2
.
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Now, derivating (4.2) with respect to X and taking into account the last
two equations we obtain that

(4.3) |σ|2 =
9H2(1 + 9H2)

c2
0 + 9H2

.

In particular |σ|2 is constant and from (4.2) , the function σ22 − σ33 is
also constant. This implies, taking into account that H and |σ|2 are con-
stant functions, that all the functions σij are constants. Using in (4.1) that
X(σ23) = 0 and (4.2) we get

c0σ23(9H2 − |σ|2) = 0.

If 9H2 − |σ|2 = 0, equation (4.3) says that c2
0 = 1, which is imposible. If

σ23 = 0, using that X(σ22) = 0 in (4.1), it follows that c0 = 1, which is im-
posible. Hence last equation says that c0 = 0 again.

Hence we have proved that c0 = 0 and so (4.2) says that either M is
minimal, i.e. H = 0, or σ22 = σ33. We are going to study these cases sepa-
rately.

First case: σ22 = σ33. In this case we have that 3H = 2σ22 and hence
σ22 and σ33 are constant functions. Using this in (4.1) we obtain that σ2

23 =
1/2 + σ2

22 and so σ23 is also constant and the hypersurface has constant
scalar curvature ρ = 1.

Now, taking into account that c0 = 0, the second fundamental form, with
respect to the orthonormal reference on M given by {X, J1N, J2N}, is given
by

AX = 0, A(J1N) = (σ22 + σ23)J1N, A(J2N) = (σ22 − σ23)J2N,

with (σ22 + σ23)(σ22 − σ23) = −1/2. As these principal curvatures are con-
stant and their product is −1/2, these numbers can be written, without loss
of generality, as

σ22 + σ23 =
1√
2

√
1 + t

1− t
, σ22 − σ23 = − 1√

2

√
1− t
1 + t

for certain 0 ≤ t < 1.
Now to find the focal set of M , we consider the parallel hypersurfaces to

M . As C = 0, we have that N = (N1, N2) with |N1|2 = |N2|2 = 1/2. Hence,
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the parallel hypersurfaces to M are given by Φs : M → S2 × S2, s ≥ 0, where

Φs(p, q) = (expp(sN1), expq(sN2)) = cos

(
s√
2

)
(p, q) +

√
2 sin

(
s√
2

)
N.

Then

(Φs)∗(X) = cos

(
s√
2

)
X − 1√

2
sin

(
s√
2

)
Φ̂

(Φs)∗(J1N) =

(
cos

(
s√
2

)
−
√

1 + t

1− t
sin

(
s√
2

))
J1N,

(Φs)∗(J2N) =

(
cos

(
s√
2

)
+

√
1− t
1 + t

sin

(
s√
2

))
J2N,

where Φ̂ = S ◦ Φ, S being the isometry of S2 × S2 given by S(p, q) = (p,−q).
Hence, the focal surface of M happens when cot

(
s√
2

)
=
√

1+t
1−t , i.e.,

when

cos

(
s√
2

)
=
√

(1 + t)/2, sin

(
s√
2

)
=
√

(1− t)/2.

But this means that cos(
√

2s) = t, and so s = 1√
2

arcos t.

It Σ is the focal surface of M and we denote by Ψ the restriction of Φs

(with s = 1√
2

arcos t) to Σ, then the immersion Ψ : Σ→ S2 × S2 is given by

Ψ =

√
1 + t√

2
Φ +
√

1− tN.

As (Φs)∗(J1N) = 0, for s = 1√
2

arcos t, it is clear that {X, J2N} is an or-

thonormal reference of the tangent bundle to Σ and that

(Ψ)∗(X) =

√
1 + t√

2
X −

√
1− t
2

Ψ̂,

(Ψ)∗(J2N) =

√
2√

1 + t
J2N.

Hence, {J1N,
√

1−t
2 Φ−

√
1+t√

2
N} is an orthonormal reference on the normal

bundle of Ψ. Now, it is easy to check that the corresponding Weingarten
endomorphisms associated to these two unit normal vector fields vanish,
and so Ψ is a totally geodesic immersion. Moreover, as J1X = J2N , the
immersion Ψ is a complex surface with respect to the complex structure J1
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and a Lagrangian surface with respect to the other complex structure J2.
From [CU], we have that Ψ is congruent to an open subset of the diagonal
surface {(p, p) ∈ S2 × S2 | p ∈ S2} and our hypersurface M is an open subset
of the tube of radius s = 1√

2
arcos t over the diagonal surface. Taking into

account section 3.2, we get that M is locally congruent to some {Mt, t ∈
(−1, 1)}. Hence we have obtained (1b).

Second case: H = 0. In this case, equation (4.1) becomes in

X(σ22) =
1

2
+ σ2

22 − σ2
23, X(σ23) = 2σ22σ23,

〈∇σ22, E2〉 = −〈∇σ23, E3〉, 〈∇σ22, E3〉 = 〈∇σ23, E2〉.
(4.4)

Now, if ∆ =
∑3

i=1(EiEi −∇Ei
Ei) is the Laplacian of the induced metric on

M , from (4.4) we have that

∆σ22 = ∆σ23 = 0,

that is σ22 and σ23 are harmonic functions on M .
If M is compact, then σ22 and σ23 are constant functions. Using (4.4)

again we have two posibilities: σ22 = 0 or σ23 = 0. In the first case, σ2
23 = 1/2

and hence we are again in the situation of the first case. So our hypersurface
is congruent to M0 and we obtain (1b). In the second case (σ23 = 0) and as
σ22 is constant, we get from (4.4) that 0 = X(σ22) = 1/2 + σ2

22, which is a
contradiction. Hence the hypersurface cannot be compact.

Also, if the scalar curvature is constant, then σ2
22 + σ2

23 will be constant,
and so, derivating with respect to X and using (4.4) we will obtain that

0 = σ22(1 + 2σ2
22 + 2σ2

23),

which implies that σ22 = 0 and hence σ2
23 = 1/2. This says that M is locally

congruent toM0. Hence, in this case we get that eitherM is locally congruent
to M0 or H = 0, C = 0 and M is not compact with non-constant scalar
curvature. This implies (1c).

Case (2): the scalar curvature ρ is constant.
In this case, as the scalar curvature ρ = 2 + 2(σ22σ33 − σ2

23) is constant,
from (4.1) and X(ρ) = 0 it follows that

(4.5) (c0 − 1)(c0 − ρ+ 3)σ22 = (c0 + 1)(c0 + ρ− 3)σ33.
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Derivating equation (4.5) with respect to X, using (4.1), (4.5) and the ex-
pression of ρ, it is straightforward to obtain

(ρ− 1)(ρ− 3) + c2
0 = 0.

Hence there are two possible values of the scalar curvature: ρ = 2±
√

1− c2
0.

First case: ρ = 2−
√

1− c2
0. Puting this information in (4.5) it follows

that

(4.6)
√

1− c0 σ22 =
√

1 + c0 σ33.

As in this case σ22σ33 − σ2
23 = −

√
1−c20
2 , (4.6) becomes in

√
1− c0√
1 + c0

σ2
22 − σ2

23 = −
√

1− c2
0

2
.

Using the last equation of (4.1) in the above equation and taking into ac-
count (4.6) we get

σ23E2(σ23)− σ22E3(σ23) = 0,√
1− c0√
1 + c0

σ22E2(σ23)− σ23E3(σ23) = 0.

Now, the only solution to this compatible homogeneous system is E2(σ23) =
E3(σ23) = 0.

But

[E2, E3] = − 2c0√
1− c2

0

σ23E1,

and so 0 = [E2, E3](σ23) = −2c0
1−c20

σ23X(σ23) = −2c0(
√

1−c0−
√

1+c0)√
1−c20

σ2
23σ22. Now,

as σ2
23 =

√
1−c0√
1+c0

σ2
22 +

√
1− c2

0/2 > 0, we get that either c0 = 0 or σ22 = 0

and so σ33 = 0. In the second case, going again to (4.1) we get that c0 = 0.
At any case c0 = 0, and so ρ = 1. This situation has been studied en Case
1, and we obtain (2b).

Second case: ρ = 2 +
√

1− c2
0. As in the above case, putting the value

of the scalar curvature in (4.5) it follows that

√
1− c0(

√
1 + c0 −

√
1− c0)σ22 = −

√
1 + c0(

√
1 + c0 −

√
1− c0)σ33.
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If c0 6= 0, from the above equation we get that
√

1− c0 σ22 = −
√

1 + c0 σ33

and using that σ22σ33 − σ2
23 =

√
1−c20
2 we have that

−
(√

1− c0√
1 + c0

σ2
22 + σ2

23

)
=

√
1− c2

0

2

which is impossible. Hence, in this second case, we get that c0 = 0, ρ = 3
and σ22σ33 − σ2

23 = 1
2 .

If {v, w} is an orthonormal basis of a plane Π ⊂ TpM , then the Gauss
equation says that the curvature K of Π is given by

K = R̄(v, w,w, v) + σ(v, v)σ(w,w)− σ(v, w)2.

Using the above information it is easy to check that

R̄(v, w,w, v) = 1/2− 1/2(〈v,E2〉〈w,E3〉 − 〈v,E3〉〈w,E2〉)2,

σ(v, v)σ(w,w)− σ(v, w)2

= (σ22σ33 − σ2
23)(〈v,E2〉〈w,E3〉 − 〈v,E3〉〈w,E2〉)2,

and so K = 1/2. This means that M has constant curvature 1/2.
Now, we are going to see that M is not complete. In fact, if M is com-

plete, as M has constant positive curvature, Myers’ theorem says that M is
compact. On the other hand, from (4.1) we have that

X(σ22 − σ33) = 2 + (σ22 − σ33)2.

But Lemma 1 says that div (X) = −(σ22 − σ33). So

div((divX)X) = X(divX) + (divX)2

= −2− (σ22 − σ33)2 + (σ22 − σ33)2 = −2,

and the divergence Theorem gives a contradiction. Hence M is not complete.
Also, we are going to see that the mean curvature H is not constant. In

fact, if H is constant, from Lemma 1 we get that

0 = tr (P TA2) = 3H(σ22 − σ33).

As H cannot be zero, because σ22σ33 − σ2
23 = 1/2, we obtain that σ22 −

σ33 = 0, which contradicts, using (4.1), the equation of its derivative with
respect to X. Hence M has not constant mean curvature, and we get (2c).

�
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As a consequence of Corollay 1 we classify locally the homogeneous hyper-
surfaces of S2 × S2.

Corollary 2. Let Φ : M → S2 × S2 be an orientable hypersurface . If M
is locally homogeneous, then Φ(M) is congruent to either an open subset of
S1(r)× S2, r ∈ (0, 1], or an open subset of Mt, t ∈ (−1, 1).

Proof. �

Let N be a unit normal vector field. We fix a point p0 ∈M . Then, as
M is locally homogeneous, for any p ∈M there exist open sets p0 ∈ U0,
p ∈ U and an isometry F of S2 × S2 such that (F ◦ Φ)(U0) = Φ(U) and
F (Φ(p0)) = Φ(p). Then Np = ±dFp0(Np0) and dFp0 ◦ P = ±P ◦ dFp0 . Hence
C(p) = ±C(p0) and as M is connected, C is constant. Also, it is clear that
F keeps the second fundamental form, and so the mean curvature and the
scalar curvature of M are also constant. Hence Corollay 2 follows from Corol-
lay 1.

5. Isoparametric hypersurfaces

In this section we classify the isoparametric hypersurfaces of S2 × S2. If M is
an isoparametric hypersurface of S2 × S2, then there exists an isoparametric
function F : S2 × S2 → R such that M = F−1(t0) for some regular value
t0. Then it is well-known that Mt := F−1(t) are also hypersurfaces for t ∈
(t0 − δ, t0 + δ), parallel to M and with constant mean curvature. We start
classifying hypersurfaces of S2 × S2 satisfying this property.

Theorem 2. Let Φ : M → S2 × S2 be an orientable hypersurface. If the
parallel hypersurfaces Φt : M → S2 × S2, t ∈ (−ε, ε), Φ0 = Φ, have constant
mean curvature, then Φ(M) is congruent either to an open subset of S1(r)×
S2, r ∈ (0, 1], or to an open subset of Mt, t ∈ (−1, 1).

Proof. We are going to consider the open subset of M defined by O = {p ∈
M |C2(p) < 1}. If O is empty, then M has constant mean curvature and
C2 = 1, and hence Theorem 1 says that Φ(M) is congruent to an open
subset of S1(r)× S2, r ∈ (0, 1].

Now we suppose thatO is not empty. We write Φ = (φ, ψ) : O → S2 × S2,
with φ, ψ : O → S2. If N = (N1, N2) is a unit normal vector field to Φ, then
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the parallel hypersurfaces Φt : O → S2 × S2 are given by

Φt = (expφ tN1, expψ tN2), t ∈ (−ε, ε), Φ0 = Φ,

where exp denotes the exponential map in S2. As |N1|2 = (1 + C)/2 and
|N2|2 = (1− C)/2, then Φt = (φt, ψt) is defined by

φt = cos(C+t)φ+ (1/C+) sin(C+t)N1,

ψt = cos(C−t)ψ + (1/C−) sin(C−t)N2,

where C+ =
√

1 + C/
√

2 and C− =
√

1− C/
√

2.
Now, it is straightforward to check that N t = (N t

1, N
t
2) defined by

N t
1 = cos(C+t)N1 − C+ sin(C+t)φ,

N t
2 = cos(C−t)N2 − C− sin(C−t)ψ,

is a unit normal vector field to the hypersurface Φt. Under these conditions
it is easy to see that

Ct = C, J1N
t = J1N, J2N

t = J2N, ∀t ∈ (−ε, ε).

Hence, in (Φt)∗(TM|O) we can consider the orthonormal reference {Eti , i =
1, 2, 3} where

Et1 =
Xt√

1− C2
, Et2 =

J1N
t + J2N

t√
2(1 + C)

, Et3 =
J1N

t − J2N
t√

2(1− C)
.

Taking into account the above relations, if we denote E0
i = Ei, it is clear

that Et2 = E2, , E
t
3 = E3, ∀t ∈ (−ε, ε).

Now, let {e1, e2, e3} be a local orthonormal reference on O such that
Φ∗(ei) = Ei, i = 1, 2, 3. We denote σij = 〈Φ∗(Aei),Φ∗(ej)〉 the second fun-
damental form of Φ associated to the normal field N . Then, from a simply
but long computation, we obtain that

(Φt)∗(ei) = (δ1i − tσ1i)E
t
1 +

(
δ2i cos(C+t)− σ2i

sin(C+t)

C+

)
Et2

+

(
δ3i cos(C−t)− σ3i

sin(C−t)

C−

)
Et3
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and

(Φt)∗(A
tei) = σ1iE

t
1 +

(
σ2i cos(C+t) + δ2iC

+ sin(C+t)
)
Et2

+
(
σ3i cos(C−t) + δ3iC

− sin(C−t)
)
Et3,

where At is the shape operator of Φt associated to the normal field N t.
If we denote (Φt)∗(ei) =

∑3
j=1QijE

t
j , it is clear from the above expres-

sions that (Φt)∗(A
tei) = −

∑3
j=1Q

′
ijE

t
j , where ′ stands for derivative with

respect to t. Hence the induced metric gt on O by the immersion Φt and the
second fundamental form σt of Φt are given by

gt = QQT , σt = −Q(QT )′,

where Q is the matrix Q = (Qij) and (·)T stands for the transpose. The
mean curvatures of the immersions Φt are given by

3H(t) = tr (g−1
t σt) = − tr

(
(QT )−1Q−1Q(QT )′

)
= −(detQ)′

detQ
,

where tr stands for the trace and det stands for the determinant. Hence
(detQ)′ = −3H(t) detQ and as Q(0) = Id, an inductive argument says that

(
dk detQ

dtk

)
(0), k ≥ 0,

are constants functions on O.
From the definition, the determinant of Q is given by

detQ = (1− tσ11) cos(C+t) cos(C−t) + (H23 − tK)
sin(C+t) sin(C−t)

C+C−

+ (−σ22 + tH12)
sin(C+t) cos(C−t)

C+

+ (−σ33 + tH13)
cos(C+t) sin(C−t)

C−
,

where Hij = σiiσjj − σ2
ij and K = detA is the Gauss-Kronecker curvature

of M .
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Now, computing the Taylor serie of the function detQ around t = 0 and
from a very long computation we get that

detQ = 1− 3H t+
ρ− 3

2
t2 +

9H − 6K − (1 + C)σ22 − (1− C)σ33

3!
t3

+
2(3− ρ)− C2 − 4((1− C)H12 + (1 + C)H13)

4!
t4

+
−5(2− C2)3H + 20K + 4(1 + C − C2)σ22 + 4(1− C − C2)σ33

5!
t5

+
4(ρ− 3) + (5− ρ)C2 + 4((1− C)(4 + C)H12 + (1 + C)(4− C)H13)

6!
t6

+ · · ·

As all the coefficients of the above serie are constant functions, we get that
not only the mean curvature but also the scalar curvature ρ of M is constant.

Now we work on the open subset V = {p ∈ O |C(p) 6= 0}. Taking into
account that the coefficients corresponding to t4 and t6 are constant and
that ρ is also constant, we obtain on V that

H12 =
(1 + C)R2(C)

8C(1− C2)
, H13 =

(1− C)R3(C)

8C(1− C2)
,

where R2 and R3 are non-trivial polynomials of degree 3 in C with constant
coefficients. Computing the term of the Taylor serie corresponding to t8, we
have that

− 8(ρ− 3) + 4(ρ− 4)C2 + C4 + 8(−6 + 4C + 3C2 − C3)H12

+ 8(−6− 4C + 3C2 + C3)H13 = λ,

for certain constant λ. Using the above expressions of H12 and H13 in this
equation, we finally prove that C satisfies a non trivial polynomial of degree 7
with constant coefficients. This means that C is constant on each connected
component of the open set V .

Hence the function C on the connected hypersurface M takes only a
discrete number of values. This means that the function C is constant and
the result follows from Corollay 1. �

Corollary 3. Let Φ : M → S2 × S2 be an isoparametric hypersurface. Then
M is congruent either to S1(r)× S2, r ∈ (0, 1], or to Mt, t ∈ (−1, 1).
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6. Hypersurfaces with constant principal curvatures

In this section we are going to study orientable hypersurfaces of S2 × S2 with
constant principal curvatures.

6.1. Hypersurfaces with one or two constant principal curvatures

In the following result we classify locally the orientable hypersurfaces of
S2 × S2 with at most two constant principal curvatures.

Theorem 3. Let Φ : M → S2 × S2 be an orientable hypersurface of S2 ×
S2. If M has at most two constant principal curvatures, then Φ(M) is either
an open subset of S1 × S2 (M is totally geodesic), or Φ(M) is an open subset
of S1(r)× S2, r ∈ (0, 1) (if M has two constant principal curvatures).

Remark 3. When the hypersurface has only one principal curvature, not
necessarely constant, i.e.,when the hypersurface is umbilical, it is easy to
conclude that the mean curvature is constant and hence the hypersurface is
totally geodesic.

Proof. If M has only one constant principal curvature, then M is an umbili-
cal hypersurface with constant mean curvature. Then in [TU], Proposition 1,
it was proved that M is congruent to an open subset of S1 × S2.

Now, we suppose that M has two constant principal curvatures. Let
λ1, λ2 be the corresponding different principal curvatures having λ1 multi-
plicity one and λ2 multiplicity two.

Under these conditions, let E1 be a unit vector field on M such that
AE1 = λ1E1. Then, we have that the second fundamental form and its co-
variant derivative are given by

σ(V,W ) = λ2〈V,W 〉+ (λ1 − λ2)〈V,E1〉〈W,E1〉,
(∇σ)(Z, V,W ) = (λ1 − λ2)

(
〈W,E1〉〈V,∇ZE1〉+ 〈V,E1〉〈W,∇ZE1〉

)
,

(6.1)

for any vector fields V,W,Z on M .
Using (6.1), Codazzi equation and the fact that M has constant mean

curvature, we obtain



i
i

“7-Urbano” — 2019/12/13 — 1:18 — page 1406 — #26 i
i

i
i

i
i

1406 Francisco Urbano

0 =

3∑
i=1

(∇σ)(Z, ei, ei)

=

3∑
i=1

(∇σ)(ei, Z, ei) +
1

2

3∑
i=1

{〈X,Z〉〈Pei, ei〉 − 〈X, ei〉〈PZ, ei〉}

= (λ1 − λ2)
(
〈E1, Z〉divE1 + 〈∇E1

E1, Z〉
)
− 1

2

(
C〈X,Z〉+ 〈PX,Z〉

)
= (λ1 − λ2)

(
〈E1, Z〉divE1 + 〈∇E1

E1, Z〉
)
,

for any vector field Z on M , being {e1, e2, e3} an orthonormal reference on
M and div the divergence operator.

As |E1|2 = 1, from the last equation we get that the vector field E1 is a
geodesic vector field with zero divergence, i.e.,

(6.2) divE1 = 0 and ∇E1
E1 = 0.

Using (6.2) in the second equation of (6.1) we obtain

(∇σ)(E1, V,W ) = 0, (∇σ)(V,E1,W ) = (λ1 − λ2)〈∇VE1,W 〉,

and hence, the Codazzi equation says that

(6.3) ∇VE1 =
〈X,V 〉P TE1 − 〈X,E1〉P TV

2(λ1 − λ2)
,

for any vector field V tangent to M , where P T denotes the tangential com-
ponent of P , i.e., P TZ = PZ − 〈X,Z〉N .

Now, from (6.2) and (6.3) and making a direct computation, we obtain
that the Ricci curvature of E1 is given by

Ric(E1) = − 〈X,E1〉2

2(λ1 − λ2)2
.

But, on the other hand, the Gauss equation says that

Ric(E1) =
1

2
+ 2λ1λ2 +

〈X,E1〉2

2
− C〈PE1, E1〉

2
,

and hence finally we get that

(6.4) 1 + 4λ1λ2 = C〈PE1, E1〉 −
(

1 +
1

(λ1 − λ2)2

)
〈X,E1〉2.
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Now we proceed as follows. From Lemma 1,(1) and (6.3) it is clear that

E1(C) = −2λ1〈X,E1〉, E1(〈PE1, E1〉) = 2λ1〈X,E1〉,
E1(〈X,E1〉) = λ1(C − 〈PE1, E1〉).

Hence, taking derivatives in (6.4) with respect to E1 and taking into account
the above expressions, we get that

0 = λ1〈X,E1〉
(
〈PE1, E1〉 − C

)
.

If λ1 = 0, them from (6.4) we get

1 ≤ 1 +

(
1 +

1

λ2
2

)
〈X,E1〉2 = C〈PE1, E1〉 ≤ 1,

because −1 ≤ C, 〈PE1, E1〉 ≤ 1. So the equality holds in the above equation
and in particular C = 1. This fact contradicts the classification given at the
end of section 3.1. Hence λ1 6= 0 and we finally get

0 = 〈X,E1〉
(
〈PE1, E1〉 − C

)
.

Taking derivatives again this equation with respect to E1 and using again
the above expressions we obtain 4〈X,E1〉2 = (〈PE1, E1〉 − C)2, and hence
the above equation implies that

〈X,E1〉 = 0, 〈PE1, E1〉 = C.

Now, (6.4) becomes in C2 = 1 + 4λ1λ2. This means that C is a constant
function and the result follows from Corollary 1. �

6.2. Hypersurfaces with three constant principal curvatures

From now on, let Φ : M → S2 × S2 be an orientable hypersurface with three
different constant principal curvatures {λ1, λ2, λ3}. Then there exists a trivi-
alization of M by unit vector fields {E1, E2, E3} with AEi = λiEi, i = 1, 2, 3.
These principal curvatures are the roots of the polynomial

(6.5) λ3 − 3Hλ2 +
ρ− 2

2
λ−K = 0.
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For simplicity, we will denote

σij = σ(Ei, Ej), ∇σijk = (∇σ)(Ei, Ej , Ek), Pij = 〈PEi, Ej〉,
bi = 〈X,Ei〉, Γkij = 〈∇Ei

Ej , Ek〉.

Lemma 2. The above functions satisfy the following properties

1) Γkij + Γjik = 0, 1 ≤ i, j, k ≤ 3.

2) ∇σijk + (λk − λj)Γkij = 0, 1 ≤ i, j, k ≤ 3.

3) (λk − λj)Γkij − (λk − λi)Γkji = 1
2

(
bjPik − biPjk

)
, 1 ≤ i, j, k ≤ 3

4) Γjii = biPij−bjPii

2(λi−λj) , 1 ≤ i, j ≤ 3, i 6= j.

5) (λi − λj)Γjii = −(λk − λj)Γjkk, 1 ≤ i, j ≤ 3, i 6= j 6= k.

Proof. (1) is trivial. Taking derivatives in σjk = λjδjk with respect to Ei we
get (2). From Codazzi equation and (2) we prove (3). Taking k = i in (3)
and using (1) we get (4). Finally from (2.3) and (4) it follows (5). �

Lemma 3. The functions Λi = b2i − CPii, i = 1, 2, 3, satisfy the following
equation

BΛ = B0 +D,

where

B =

 λ2 −λ1 2(λ1 − λ2)
λ3 2(λ1 − λ3) −λ1

2(λ2 − λ3) λ3 −λ2

 , Λ =

 Λ1

Λ2

Λ3



B0 =

 (λ1 − λ2)(1 + 2λ1λ2)
(λ1 − λ3)(1 + 2λ1λ3)
(λ2 − λ3)(1 + 2λ2λ3)

 , D =

 D12

D13

D23


and Dij , i 6= j are defined by

Dij = 4(λi − λj)((Γjii)
2 + (Γijj)

2) + 4(λk − λj)(Γkij)2 − 4(λk − λi)(Γkji)2,

with k 6= i 6= j.

Remark 4. We observe that Lemma 3 provides that the functions Λi sat-
isfy a compatible linear system because

detB = −6(λ1 − λ2)(λ1 − λ3)(λ2 − λ3) 6= 0.
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Proof. For i, j ∈ {1, 2, 3}, i 6= j, let Kij be the sectional curvature of the
plane spanned by {Ei, Ej}. Then from the definition of the sectional curva-
ture we have that

Kij = Ei(Γ
i
jj) + Ej(Γ

j
ii)− (Γjii)

2 − (Γijj)
2 − ΓkiiΓ

k
jj

− Γkij(Γ
i
jk + Γikj) + ΓkjiΓ

i
kj ,

where k 6= i and k 6= j.
Now, using Lemma 2 and Lemma 1, (1) and from a straightforward

computation it is easy to conclude that

Kij = −2((Γjii)
2 + (Γijj)

2)− 1

2
(PiiPjj − P 2

ij) +
1

2(λj − λi)
(λiΛj − λjΛi)

+
2

(λj − λi)
((λk − λj)(Γkij)2 − (λk − λi)(Γkji)2), k 6= i 6= j.

Finally using the Gauss equation, 2Kij = 1 + PiiPjj − P 2
ij + 2λiλj , and

(2.3) in the above equation we obtain that

λjΛi − λiΛj + 2(λi − λj)Λk = (λi − λj)(1 + 2λiλj) +Dij , i 6= j 6= k,

and the Lemma is proved. �

Lemma 4. If there exists a point p on M with C2(p) = 1, then

Λi(p) =
2

3
(λ2
i − 3Hλi + ρ− 1

2
)

+
12|∇σ|2(p)

(detB)2
{2(ρ− 2− 6H2)λ2

i + 3(3K + 12H3 − 5

2
H(ρ− 2))λi

+(ρ− 2)(ρ− 2− 3H2)− 18HK}, i ∈ {1, 2, 3},

and

1− 2ρ = 18{(ρ− 2)(ρ− 2− 3H2/2)− 27HK}|∇σ|
2(p)

(detB)2
.

Proof. Suppose now that p is a point with C2(p) = 1. Then Xp = 0 and so
bi(p) = 0, 1 ≤ i ≤ 3. Using Lemma 2 we have that

Dij(p) =
4(λj − λi)(λk − λj)

λk − λi
(Γkij)

2(p), 1 ≤ i, j, k ≤ 3, i < j, k 6= i, k 6= j.
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On the other hand, using again Lemma 2 it is easy to check that

|∇σ|2(p) = 6(λk − λj)2(Γkij)
2(p), i 6= j 6= k.

From the last two equatios it follows that

D(p) =
4|∇σ|2(p)

detB

 (λ1 − λ2)2

−(λ1 − λ3)2

(λ2 − λ3)2


Now, solving the system of Lemma 3 and using (6.5) we get the first part.
The last assertion in the Lemma follows from the fact that

∑3
i=1 Λi = 1,

which easily follows from Lemma 2. �

Theorem 4. Let Φ : M → S2 × S2 be an orientable hypersurface with three
constant principal curvatures.

1) If the scalar curvature ρ satisfies 2ρ 6= 1 and the Gauss-Kronecker cur-
vature K = 0, then C2 < 1.

2) If p0 is a critical point of the function C, then either C2(p0) = 1 or
C(p0) = 0. Moreover, in the second case, the Gauss-Kronecker curva-
ture K = 0 and the scalar curvature ρ = 1.

Proof. First we are going to prove part (1).
Suposse that there exists a point p0 ∈M such that C2(p0) = 1 and with-

out loss of generality we can take C(p0) = 1. Then we are going to get a
contradiction.

As K = 0, one of the principal curvatures is zero, for instance λ1 = 0.
Let γ : (−ε, ε)→M be the integral curve of E1 with γ(0) = p0. Then

C ′(t) = 〈(∇C)(t), E1(t)〉 = −2〈AX(t), E1(t)〉 = 0,

and hence C(t) = 1 for all t ∈ (−ε, ε). Now, as the Gauss-Kronecker curva-
ture K = 0, from Lemma 4 it follows that

(1− 2ρ)(detB)2 = 18(ρ− 2)(ρ− 2− 3H2/2)|∇σ|2(t).

As 1− 2ρ 6= 0, we have that |∇σ|2(t) = 6(λ3 − λ2)2(Γ3
12)2(t) is a non-null

constant function and that ρ 6= 2. Hence, from Lemma 4, the functions
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Λi(t) = −Pii(t) are also constant. So

0 = P ′22(t) = 2Γ3
12(t)P23(t),

which implies that P23(t) = 0. Derivating again

0 = P ′23(t) = Γ3
12(t)(P33(t)− P22(t)),

and so P22(t) = P33(t). Using all the information about the Pij in (2.3) we
obtain that

P11(t) = −P22(t) = −P33(t) = 1.

Using the first part of Lemma 4, and as Λ2(t) = Λ3(t) and 3H = λ2 + λ3 we
get that

18H(ρ− 2)
|∇σ|2(t)

(detB)2
= 0,

which implies that H = 0 because ρ 6= 2.
Now, as Λ1(t) = −1, H = 0 and λ1 = 0, first part of Lemma 4 says that

−(ρ+ 1) = 18(ρ− 2)2 |∇σ|2(t)

(detB)2
,

that joint with the information given in the second part of Lemma 4

1− 2ρ = 18(ρ− 2)2 |∇σ|2(t)

(detB)2

imply that ρ = 2, which is a contradiction. This proves (1).

Now, we are going to prove part (2).
Let p0 be a point of M such that (∇C)(p0) = 0 and C2(p0) < 1. We are

going to prove that C(p0) = 0.
In this case, AX(p0) = 0 and as |X|2 = 1− C2(p0) > 0, one of the three

principal curvatures is zero. For instance λ1 = 0 and so

X(p0) =
√

1− C2(p0)E1(p0).

Now, let γ : (−ε, ε)→M be the integral curve of E1 with γ(0) = p0. As

C ′(t) = 〈(∇C)(t), E1(t)〉 = −2〈AX(t), E1(t)〉 = 0,
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because AE1 = 0, then C is constant along γ and (∇C)(t) = α(t)E2(t) +
β(t)E3(t). Hence, derivating with respect to t we have that

(∇2C)(E1, E2)(t) = α′(t)− Γ3
12(t)β(t),

(∇2C)(E1, E3)(t) = β′(t) + Γ3
12(t)α(t).

On the other hand, from Lemma 1 we obtain that

(∇2C)(E1, E2) = −2λ2Γ1
22〈X,E2〉+ 2λ3Γ3

21〈X,E3〉,
(∇2C)(E1, E3) = 2λ2Γ2

31〈X,E2〉 − 2λ3Γ1
33〈X,E3〉.

But, by definition α(t) = −2λ2〈X,E2〉(t) and β(t) = −2λ3〈X,E3〉(t), and so
the above information about the Hessian of C says that α and β satisfy the
following ODE system

α′(t) = Γ1
22(t)α(t) + (Γ3

12(t)− Γ3
21(t))β(t)

β′(t) = −(Γ3
12(t) + Γ2

31(t))α(t) + Γ1
33(t)β(t).

As (∇C)(0) = 0, i.e. α(0) = β(0) = 0, it follows that α = β = 0 is the only
solution to the above system with that initial conditions. Hence, (∇C)(t) =
0, ∀t, and so

X(t) =
√

1− C2(p0)E1(t).

This relation between X and E1 joint with (2.3) and Lemma 2 imply that
on the curve γ we have the following relations

b1(t) =
√

1− C2(p0), b2(t) = b3(t) = 0,

Λ1(t) = 1, Λ2(t) + Λ3(t) = 0, P12(t) = P13(t) = 0,

Γ2
11(t) = Γ3

11(t) = Γ3
22(t) = Γ2

33(t) = 0, λ2Γ1
32(t) = λ3Γ1

23(t).

Now, using the above relations and Lemma 2, the linear system of
Lemma 3 becomes in

2λ2(Γ1
22)2(t) + 2(λ2 − λ3)(Γ3

12)2(t) + 2λ3(Γ3
21)2(t) = −λ2(1 + Λ2(t)),

− 2λ2
2

λ3
(Γ1

22)2(t) + 2(λ2 − λ3)(Γ3
12)2(t)− 2λ2

3

λ2
(Γ3

21)2(t) = λ3(1− Λ2(t)),

−4λ3

λ2
(Γ3

21)2(t) = 1− 2λ2λ3 +
λ3 + λ2

λ2 − λ3
Λ2(t).

(6.6)

This means that the functions (Γ1
22)2(t), (Γ3

12)2(t) and (Γ3
21)2(t) satisfy a

linear system whose determinant is 16(λ3 − λ2)(λ3 + λ2).
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In what follows we are going to consider two cases:
First case: H = λ2 + λ3 = 0. In this case, (6.6) becomes in

Λ2(t) = 0,

4(Γ3
21)2(t) = 1 + 2λ2

2,

2(Γ1
22)2(t) + 4(Γ3

12)2(t) = −1

2
+ λ2

2.

(6.7)

Firstly we prove that C(p0) = 0. If not, as Λ2(t) = b22(t)− C(p0)P22(t) =
−C(p0)P22(t), it follows from (6.7) that P22(t) = 0 and so P23(t)2 = 1. Hence

0 = P ′22(t) = 2Γ3
12(t)P23(t),

which means that Γ3
12(t) = 0. But, from Lemma 2, Γ1

22(t) = 0 and so (6.7)
says that λ2

2 = 1/2 and (Γ3
21)2(t) = 1/2. Finally, from Lemma 2 it follows

that λ2Γ3
21(t) = −b1P23(t)/2, which implies using the above information that

b21 = 1. This is a contradiction because b21 = 1− C2(p0) and we are assuming
that C(p0) 6= 0.

Secondly we prove that the scalar curvature ρ = 1. From Lemma 2 we
have that

(6.8) P22(t) = −2λ2Γ1
22(t), P23(t) = 4λ2Γ3

12(t)− 2λ2Γ3
21(t).

Now using (6.7), (6.8) and the fact that P 2
22(t) + P 2

23(t) = 1, we obtain that
Γ3

12(t) satysfies the following non-trivial second order equation

8λ2
2(Γ3

12)2(t)− 16λ2
2Γ3

21Γ3
12(t) + 4λ4

2 − 1 = 0.

As from (6.7) the function Γ3
21(t) is constant, the coefficients of the above

polynomial are constant, and so Γ3
12(t) is also constant. Now (6.7) says that

Γ1
22(t) is also a constant function and from (6.8) we get that P22(t) and
P23(t) are constant functions too. Hence

0 = P ′22(t) = 2Γ3
12P23, 0 = P ′23(t) = Γ3

12P33 + Γ2
13P22 = −2Γ3

12P22.

So Γ3
12(t) = 0 and from the above equation it follows that λ2

2 = 1/2, i.e., the
scalar curvature ρ = 1.
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Second case: H 6= 0. In this case the system (6.6) is compatible and it is
easy to check that

(6.9)
2λ2

λ3
(Γ1

22)2(t) = −1 + 2λ2λ3

2
+
λ2

3 + λ2
2 − 6λ3λ2

2(λ2
3 − λ2

2)
Λ2(t).

Firstly we prove that C(p0) = 0. If not, from Lemma 2, it follows that

Γ1
22(t) = −b1C(P0)P22(t)

2λ2C(P0)
=
b1Λ2(t)

2λ2C0
.

Putting this information in (6.9), it follows that Λ2(t) satisfies a non-trivial
polynomial of degree two with constant coefficients. This means that Λ2(t) is
a constant function and hence P22(t) and P23(t) are also constant. Using that
P ′22(t) = P ′23(t) = 0, like in the above minimal case, we get that Γ3

12(t) = 0.
But then, the solution of Γ3

12(t) which provides (6.6) implies that

(6.10) Λ2(t) =
(λ3 + λ2)(1 + 2λ3λ2)

λ3 − λ2
.

From (6.9) and (6.10) it follows that

(Γ1
22)2(t) = −λ

2
3(1 + 2λ3λ2)

(λ3 − λ2)2
= − λ2

3

λ2
3 − λ2

2

Λ2(t).

But we know that

(Γ1
22)2(t) =

(1− C2(p0))Λ2
2

4λ2
2C

2(p0)
,

which implies that

Λ2

(
(1− C2(p0))Λ2

4λ2
2C

2(p0)
+

λ2
3

λ2
3 − λ2

2

)
= 0.

Hence we have two possibilities. If Λ2 = 0, then P22 = 0 and from (6.10)
it follows that λ2λ3 = −1/2 and Γ1

22 = 0. Now (6.6) says that Γ3
12 = 0 and

(Γ3
21)2 = λ2

2. Finally, from Lemma 2, (3) we get that 1− C2(p0) = 1 which
is a contradiction.

On the other hand, if (1−C2(p0))Λ2

4λ2
2C

2(p0) + λ2
3

λ2
3−λ2

2
= 0, then (6.10) implies that

C2(p0) =
(λ3 + λ2)2(1 + 2λ3λ2)

(λ3 + λ2)2 + 2λ3λ2(λ2
3 + λ2

2)
> 1,

which is also a contradiction. Hence we have proved that C(p0) = 0.
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Secondly we prove that the scalar curvature ρ = 1. In this case, as

Λ2(t) = b22(t)− C(p0)P22(t) = 0,

(6.6) becomes in the following equations

(Γ3
21)2(t) =

λ2(2λ2λ3 − 1)

4λ3
,

−2λ2(Γ1
22)2(t) + 2(λ3 − λ2)(Γ3

12)2(t) = λ2(λ2λ3 + 1/2),

2λ2
2

λ3
(Γ1

22)2(t) + 2(λ3 − λ2)(Γ3
12)2(t) = −λ3(λ2λ3 + 1/2),

which implies that

(Γ1
22)2(t) =

−λ3(λ2λ3 + 1/2)

2λ2
, (Γ3

12)2(t) = −(λ2λ3 + 1/2)

2
.

As (Γ1
22)2(t) and (Γ3

12)2(t) are non-negative functions, the above equations
say that λ2λ3 + 1/2 = 0 and so the scalar curvature of M is 1. �

Corollary 4. Let Φ : M → S2 × S2 be an orientable compact hypersurface
with three different constant principal curvatures. If the scalar curvature ρ
satisfies 2ρ 6= 1 and the Gauss-Kronecker curvature K = 0, then Φ(M) is
congruent to Mt for some t ∈ (−1, 1).

Proof. From Theorem 4, (1), the function C satisfies C2 < 1. As M is com-
pact, from Theorem 4, (2), the maximum and the minimum of C is zero. So
C ≡ 0 and the resul follows from Corollary 1. �
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