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Regularity result for a shape optimization

problem under perimeter constraint

Beniamin Bogosel

We study the problem of optimizing the eigenvalues of the Dirich-
let Laplace operator under perimeter constraint. We prove that
optimal sets are analytic outside a closed singular set of dimension
at most d− 8 by writing a general optimality condition in the case
the optimal eigenvalue is multiple. As a consequence we find that
the optimal k-th eigenvalue is strictly smaller than the optimal
(k + 1)-th eigenvalue. We also provide an elliptic regularity result
for sets with positive and bounded weak curvature.

1. Introduction

For a given domain Ω ∈ Rd we can consider the eigenvalue problem for
the Laplace operator with Dirichlet boundary conditions defined by{

−∆u = λk(Ω)u in Ω

u = 0 on ∂Ω.

This operator has compact resolvent if L2(Ω) injects compactly inH1(Ω) and
in this case the spectrum consists of an increasing sequence of eigenvalues

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) ≤ · · · → ∞.

The optimization of the eigenvalues of the Dirichlet Laplace operator under
various constraints is a classical problem which recently had important de-
velopments. Authors were initially concerned with considering volume con-
straints, but in some recent works like [6], [11] the perimeter constraint
gained some interest. In fact, having a perimeter constraint allows the use
of techniques related to perimeter quasi-minimizers [25] which allow impor-
tant gains in regularity properties. More precisely, the basic form of the
problem which we consider is the minimization of λk(Ω) under a perimeter
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constraint

min
Per(Ω)=c

λk(Ω).

Using the nice behavior of these eigenvalues under homotheties, λk(tΩ) =
λk(Ω)/t2 one can deduce that the above problem is equivalent, up to a
homothety, to the problem

(1) min
Ω∈Rd

(λk(Ω) + Per(Ω)) .

This latter formulation has the advantage of being unconstrained and will be
used throughout the paper. In [10] the authors study existence and regularity
properties of problems of the form

min
|Ω|=m

(Per(Ω) + G(Ω))

where G is the Dirichlet energy or a spectral functional. The authors focus
on showing how to recover the C1,α regularity of the relaxed optimizers.
They also describe how to perform a bootstrap argument in certain cases
and be able to show that optimal sets are C∞. The case where the functional
depends on spectral quantities is not treated in full detail as one needs to
take care of the case where the optimal eigenvalues are multiple, thus losing
some differentiability properties.

The aim of this paper is to improve the known regularity properties for
problem (1). In fact for the same problem with volume constraint regularity
issues are more delicate. Existence results are proved in [5], [19] in the class
of quasi-open sets, which are basically level sets of H1 functions. Initial reg-
ularity results are presented in [7] where the authors prove that in certain
cases the solution to the analogue spectral optimization problem under vol-
ume constraint is an open set. From now on we consider only the perimeter
constraint.

The Faber-Krahn inequality and the isoperimetric inequality immedi-
ately imply that the first eigenvalue is minimized by the ball in any dimen-
sion. A first result concerning higher eigenvalues is due to Bucur, Buttazzo
and Henrot [6]. The authors consider the minimization of the second eigen-
value among domains Ω in R2. Some results particular to this case, like
convexity of the optimizers, H2 regularity for elliptic problems on convex
domains [14] and simplicity of the second eigenvalue, allow the use of a
bootstrap procedure which shows that the optimal set is C∞.

In [11] De Philippis and Velichkov show that problem (1) has solutions in
every dimension and the optimal shapes have regularity at least C1,α outside
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Regularity result for a shape optimization problem 1525

a closed set of Hausdorff dimension less or equal than d− 8. The fact that
minimizers are not known and do not have a simple structure even in the
case of the second eigenvalue [6] motivated the numerical study of problem
(1). Simulations were performed in R2 and R3 with two distinct methods in
[2] and [3]. In addition to numerical simulations Bogosel and Oudet [3] also
present an optimality condition applicable in the case of multiple eigenvalues
inspired by methods from [12]. The need of these more general optimality
conditions is motivated by the numerical observations. Indeed, we observe
that except some particular cases the eigenvalues of the optimal shapes seem
to have multiplicity higher than one. Thus classical methods based on op-
timality conditions obtained directly from the derivative of the eigenvalue,
like the one used in [6], are not always applicable. The more general opti-
mality condition presented in [3] states that if the optimal set Ω∗ is of class
C3 then there exist a family of eigenfunctions {φi}mi=1 such that the mean
curvature H of Ω∗ can be expressed as

H =

m∑
i=1

(∂nφi)
2.

This optimality condition allows the use of a bootstrap argument which
shows that optimal shapes are smooth. These optimality conditions were
also used in [3] as a tool for validating the numerical computations.

The purpose of this note is to remove the additional C3 regularity hy-
pothesis used in the deduction of the above optimality condition. We prove
the following result.

Theorem 4.1 If Ω∗ is a local minimizer for problem (1) then Ω∗ is analytic
for d ≤ 7. If d ≥ 8 then Ω∗ is analytic outside a closed set of Hausdorff
dimension d− 8.

The arguments used in the proof are different from the ones used in [4]
which used heavily the C3 regularity. There are also common points such as
the analytic parametrization of eigenvalues under regular perturbations and
the use of a variant of the Hahn-Banach theorem to conclude. A summary
of the steps employed in the proof is presented below.

1) We want to be able to recover some differentiability information in the
case the eigenvalue is multiple. It is well known (see [16]) that in this
case the eigenvalue may not be differentiable. Nevertheless, applying
a classical result of Rellich [24] we can deduce that the eigenvalues
and eigenfunctions of an analytic perturbation of the domain can be
reparametrized analytically. This fact implies, in particular, that even
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if we lose differentiability we still recover some facts about directional
derivatives.

2) A second aspect is writing the lateral derivatives of the eigenvalues
using expressions similar to the shape derivative formula. In order to
do this we would like to have more information about the regularity
of the eigenfunctions. In the work of Grisvard [14, Theorem 3.2.1.2]
it is proved that if Ω is convex then solving −∆u = f in H1

0 (Ω) with
f ∈ L2(Ω) implies that u is a H2(Ω) function. The proof of this uses
the fact that convex sets can be approximated uniformly from inside
with C2 convex sets. This brings us naturally to the next point.

3) In [11] it is proved that solutions of problem (1) exist, are of class C1,α

and that any optimizer has non-negative and bounded weak mean
curvature. The question which arises is the following: can we approxi-
mate C1,α sets with weak non-negative bounded mean curvature with
smoother sets (at least C2) with non-negative mean curvature? The
answer is affirmative and a proof is presented in [20, Lemma 3.8]

4) The final step consists in using a variant of the Hahn-Banach theo-
rem which allows us to deduce that the mean curvature is a convex
combination of squares of normal derivatives of an orthonormal basis
of the eigenspace corresponding to the k-th eigenvalue. Once we have
this formula we use a result of Landais [18] on the regularity of solu-
tions to the mean curvature equation to deduce that the optimal set is
C2,α. Results concerning the regularity of solutions to equations of the
mean curvature type can also be found in [1, Section 7.7]. A bootstrap
algorithm similar to the one used in [6] or [18] allows us to conclude
that optimal shapes are C∞.

After proving the regularity result we turn our attention to the case
where the eigenvalues of the optimal set are multiple. We prove a result which
was observed in the numerical computations from [3]. The result says that
when the optimal k-th eigenvalue is multiple then the multiplicity cluster
ends at λk, namely · · · = λk−1(Ω∗) = λk(Ω

∗) < λk+1(Ω∗). This implies, in
particular, that the optimal costs

(2) ck = min
Ω∈Rn

(λk(Ω) + Per(Ω)) , dk = min
Per(Ω)=1

λk(Ω)

form a strictly increasing sequence.
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2. Elliptic regularity for sets of positive mean curvature

As the results of [11] prove that the solutions of problem (1), denoted
by Ω∗ in the sequel, are C1,α domains (outside a residual closed set of di-
mension at most d− 8) with non-negative weak mean curvature, we start
from this setting and we prove the H2 regularity of the eigenfunctions for
the optimizers of (1). In the first part of this section we restrict ourselves
to dimension d at most 7, where we do not have singularities. In this case
we conclude that u ∈ H2(Ω). At the end of the section we give an argument
which allows us to deduce local H2 regularity outside the singular set. This
type of results are new up to the author’s knowledge. Results relating the
regularity of the solution to the curvature of the boundary can be found,
for example in [13, Section 14.3], however the problem we are interested in
is not covered by these. The results in [14, Chapter 3] concerning elliptic
problem on convex domains are similar to the ones we are interested in and
we follow similar methods in the proofs below.

Thus, following the results of [11] we know that solutions of (1) can be
represented locally around each point in the regular part of the boundary as
epigraphs of C1,α functions. Thus, in a local coordinate system with origin
in a regular point x0, the boundary ∂Ω∗ can be represented as the graph of
h : D ⊂ Rd−1 ∈ R, where D is an open set containing 0. Moreover, following
the results of [11], for every ψ ∈ C1(D), ψ ≥ 0 we have

0 ≤
∫
D

∇h · ∇ψ√
1 + |∇h|2

≤ K∞

where K∞ is a constant. Thus the mean curvature of an optimizer Ω∗ can
be represeted as an L2(∂Ω) integrable function, since Ω∗ has finite perime-
ter. Note that if Ω∗ is C2 then these inequalities simply say that its mean
curvature is non-negative and bounded above by K∞.

In [14, Chapter 3] we can find results concerning the regularity of elliptic
problems in terms of the mean curvature of the boundary. In particular, for
convex sets the solution of −∆u = f in H1

0 for f ∈ L2 is an H2 function. The
scope of this section is to extend such results to the case of C1,α domains
which have weak non-negative mean curvature. In order to do this we fol-
low a similar approach. In a first stage we approximate C1,α domains with
non-negative weak mean curvature with C2 sets with non-negative mean
curvature. This approximation stage is presented in [20] and uses notions
related to weak mean curvature flows. A second stage, which is a simple con-
sequence of Theorem 3.1.2.1 and Remark 3.1.2.2 in [14] gives some results
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for C2 domains with non-negative mean curvature. We conclude the general
case using an approach similar to Theorem 3.1.2.1 from [14].

Proposition 2.1. Let Ω be a C1,α domain with non-negative weak mean
curvature in L2(∂Ω). Then for each ε > 0 there exists a smooth set Ωε, with
non-negative mean curvature such that Ωε ⊂ Ω and dH(∂Ω, ∂Ωε) < ε (where
dH represents the Hausdorff distance).

Proof. We see that the set Ω verifies the hypotheses of Lemma 3.8 in [20].
Indeed, Ω has non-negative weak mean curvature in L2(∂Ω) so there exists
a sequence (Ωε)ε>0 such that Ωε → Ω in C1 (and thus uniformly), Ωε are
smooth for ε > 0 and the mean curvature of Ωε is strictly positive. �

We state below a few standard regularity results for regular domains.
Proofs can be found, for example, in Theorems 2.2.2.3 and 3.1.2.1 from [14].

Proposition 2.2. 1. If Ω is a domain with C2 boundary. Then for every
f ∈ L2(Ω) the problem {

−∆u = f in Ω

u = 0 on ∂Ω

has a unique solution solution u ∈ H2(Ω).
2. If Ω is an open, bounded subset of R2 with C2 boundary and non-

negative mean curvature, then there exists a constant C(Ω), which depends
only on the diameter of Ω, such that

‖u‖H2(Ω) ≤ C(Ω)‖∆u‖L2(Ω),

for every u ∈ H2(Ω) ∩H1
0 (Ω).

Now we are ready to prove the desired regularity result.

Theorem 2.3. Suppose Ω is a C1,α set with non-negative weak mean cur-
vature in L2(∂Ω). Then for every f ∈ L2(Ω) the problem{

−∆u = f in Ω

u = 0 on ∂Ω

has a unique solution u ∈ H2(Ω).
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Proof. Proposition 2.1 implies the existence of a sequence of C2 sets Ωn such
that Ωn ⊂ Ω, Ωn has non-negative mean curvature and dH(∂Ωn, ∂Ω)→ 0.
We consider the solution um ∈ H2(Ωm) of the Dirichlet problem in Ωm:{

−∆um = f in Ωm

um = 0 on ∂Ωm,

solution which exists by Proposition 2.2. Applying Theorem 1.5.1.5 from
[14] we deduce that ũm ∈ H1(Rd), where ũm is the extension by zero of um
outside Ωm. Proposition 2.2 implies that there exists a constant C such that
‖um‖H2(Ωm) ≤ C. This implies that ũm is bounded in H1(Rd) and that the

sequences vm,i,j = ∂i∂jum are bounded in L2(Rd). Therefore, up to choosing
a subsequence, we can assume that there exist U ∈ H1(Rd) and Vi,j ∈ L2(Rd)
such that

um ⇀ U weakly in H1(Rd) and vm,i,j ⇀ Vi,j weakly in L2(Rd).

In the following we denote by u the restriction of U to Ω. Since the
supports of ũm are all contained in Ω, it follows that U is also supported
on Ω. Thus u = 0 on ∂Ω. Now let ϕ ∈ C∞c (Ω) be a smooth function with
compact support in Ω. Then there exists m0 such that for every m ≥ m0

the support of ϕ is contained in Ωm. Thus, for all m ≥ k0 we have∫
Ω
fϕ = −

∫
Ωm

∆umϕ =

∫
Ωm

∇um · ∇ϕ =

∫
Ω
∇ũm · ∇ϕ.

Taking the limit as m→∞ we get∫
Ω
fϕ =

∫
Ω
∇u · ∇ϕ.

Since this is true for every ϕ ∈ C∞c (Ω) we conclude that −∆u = f on Ω
in the sense of distributions. Until now we have the existence of a solution
u ∈ H1(Ω). In order to complete the proof we need to prove that the second
derivatives of u are in L2. We take again ϕ ∈ C∞c (Ω) and for m ≥ m0 we
have ∫

Ω
ũm∂i∂jϕ =

∫
Ωm

um∂i∂jϕ =

∫
Ωm

∂i∂jumϕ =

∫
Ω
vm,i,jϕ.

Taking the limit as m→∞ we obtain∫
Ω
u∂i∂jϕ =

∫
Ω
Vi,jϕ,
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which means that the distributional derivatives of order 2 denoted by ∂i∂ju
are given by Vi,j and they are in L2 for all i, j = 1, . . . , d. Thus we have proved
the existence of a solution u ∈ H2(Ω) ∩H1

0 (Ω). The uniqueness follows at
once using the estimates in Proposition 2.2 along with an approximation
argument. �

We note that the above arguments work if Ω does not have a singular
part Σ. Indeed, the result stated in Proposition 2.1 is for the case when Ω
is globally C1. When we have a singular set Σ it is no longer possible to use
this. We can however prove that outside the singularity the eigenfunction is
locally H2. In order to do this, let’s recall the following integration by parts
formula.∫

Ω
ϕ|D2u|2dx+

∫
∂Ω
ϕH|∇u|2dσ =

∫
Ω
ϕ(∆u)2dx+

∫
Ω

(∇ϕ · ∇u)∆udx

−
∫

Ω
∇ϕ ·D2u∇udx.

For the sake of completness an idea of the proof, as well as some references
are given in the Appendix C. Note that for a solution of (1) we know that
the corresponding eigenfunction u is Lipschitz so ∇u ∈ L∞(Ω). See [11] for
details. Moreover, since −∆u = λku and u ∈ L∞(Ω) we may as well assume
that ∆u ∈ L∞(Ω). See for example [9, Example 2.1.8] where we have the
estimate ‖u‖∞ ≤ e1/8πλk(Ω)d/4.

Let x0 be a point outside the singular set Σ. Since this set is closed, there
is an open neighborhood of x0 which does not intersect the singular part.
Let Br be a ball centered in x0 of radius r small enough such that Br ∩ ∂Ω is
C1,α. Consider a smooth cutoff function 0 ≤ ϕ ≤ 1 such that, ϕ = 1 on Br/2
and ϕ = 0 on ∂Br, where Br/2 is a ball concentric with Br, having radius
r/2. With these considerations note that∫

∂(Ω∩Br)
ϕH|∇u|2dσ ≥ 0

since on ∂Ω ∩Br the curvature is non-negative in the distributional sense
and on ∂Br ∩ Ω we have ϕ = 0. Thus, applying the above integration by
parts formula for Ω ∩Br and ϕ described above, we get∫

Ω∩Br
ϕ|D2u|2dx ≤

∫
Ω∩Br

ϕ(∆u)2dx+

∫
Ω∩Br

(∇ϕ · ∇u)∆udx

−
∫

Ω∩Br
∇ϕ ·D2u∇udx.
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Applying the inequality ab ≤ a2+b2

2 and Cauchy-Schwarz we obtain∫
Ω∩Br

ϕ|D2u|2dx ≤
∫

Ω∩Br
ϕ(∆u)2dx+

1

2

∫
Ω∩Br

(∆u)2dx

+
1

2

∫
Ω∩Br

(∇ϕ · ∇u)2dx+

∫
Ω∩Br

∇ϕ ·D2u∇udx.

Integrating again by parts the last term in the above inequality, we obtain∫
Ω
∇ϕ ·D2u∇udx =

n∑
i,j=1

∫
Ω
∂iϕ∂i∂ju∂ju

∂j
=

n∑
i,j=1

∫
∂Ω
∂iu∂ju∂iϕνjdσ −

n∑
i,j=1

∫
Ω
∂iu∂i∂jϕ∂judx−

n∑
i,j=1

∫
Ω
∂iu∂iϕ∂

2
j udx

=

∫
∂Ω

(∇u · ∇ϕ)(∇u · n)dσ −
∫

Ω
∇u ·D2ϕ∇udx−

∫
Ω

(∇u · ∇ϕ)∆udx.

Since ∇u is in L∞(Ω) and in our case −∆u = λku ∈ L∞(Ω), the above
expression is bounded and we may conclude that∫

Ω∩Br
ϕ|D2u|2dx < +∞

which means that u ∈ H2(Br/2). Since this argument is valid for any point
x0 outside Σ, it follows that u ∈ H2

loc(Ω \ Σ).

3. Analytic perturbations for eigenvalue problems

We know that the eigenvalues of the Dirichlet Laplace operator on Ω are
differentiable if they are simple. We refer to [16] for further details. How-
ever, numerical results found in [2, 3] show that optimizers of problem (1)
tend to have multiple eigenvalues. It is possible to recover some information
regarding the differentiability of the eigenvalues, even when the multiplicity
is greater than one, by using the theory of operator perturbations.

Rellich proved in [24] that analytic perturbations of a self-adjoint oper-
ator with the same domain allows an analytic parametrization of the eigen-
values and the eigenfunctions. More recent results can be found in [17]. The
article of Micheletti [21] contains details about the application of Rellich’s
result to the study of eigenvalue problems. Indeed, it is proved that the
Laplace operator defined on Ωε = (Id + εV )(Ω) has the same spectrum as a
self-adjoint operator Aε which depends analytically on ε and has a domain
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of definition independent of ε. The result of Rellich, stated above, implies
that the eigenvalues and eigenvectors of (−∆) on Ωε can be parametrized
analytically with respect to ε. Thus, if λ is an eigenvalue of Ω with multiplic-
ity m, with the associated orthonormal basis (ui)

m
i=1, there exist m functions

ε 7→ λε,i and the associated family of eigenfunctions ε 7→ ϕε,i orthonormal
in L2(Ωε), such that both dependencies are analytic in ε, λ0,i = λ, ϕ0,i = ui
and {

−∆ϕε,i = λε,iϕε,i in Ωε

ϕε,i = 0 on ∂Ωε,

for every i = 1, . . . ,m. Differentiating with respect to ε we obtain the clas-
sical derivative formula

(3)
dλε,i
dε

∣∣∣∣
ε=0

= −
∫
∂Ω

(
∂ui
∂n

)2

V.ndσ

For details see [23] where a formal argument shows how to deduce relation
(3). The formal argument is rigorous once we know that the eigenvalues and
eigenfunctions depend analytically on ε. The H2 regularity (local H2 when
singularities are present) of the eigenfunctions proved in the previous section
allows writing the derivative of the eigenvalues using the above boundary
integral depending on the normal derivative. For details see [16, Theorem
5.7.4].

4. Main result

Theorem 4.1. If Ω∗ is a local minimizer for problem (1) then Ω∗ is analytic
for d ≤ 7. If d ≥ 8 then Ω∗ is analytic outside a closed set of Hausdorff
dimension at most d− 8.

Proof. Since Ω∗ has C1,α regularity outside an eventual closed singular set Σ
of dimension at most d− 8, it is possible to represent the boundary around
a point x0 ∈ ∂Ω∗ \ Σ as the graph of a C1,α function h : Ba ⊂ Rd−1 → R,
where Ba is a ball of radius a, small enough such that we are still outside
the singular set. We denote by Ωε = (Id + εV )(Ω∗) for a C1(Rd,Rd) vector
field. Using this type of graph representation we deduce that if ψ is the
perturbation of this graph associated to V then ε 7→ Per(Ωε) is differentiable
at zero and its derivative is equal to∫

Ba

∇ψ · ∇h√
1 + |∇h|2

.
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As noted in the previous section, the function ε 7→ λk(Ωε) has left and right
derivatives. Furthermore, we know that there is an orthonormal basis of the
associate eigenspace, denoted (ui)

p
i=1, such that the directional derivatives

of λk are in the set (
−
∫
Ba

|∇ui|2ψ(x)dx

)p
i=1

.

This is just a simple consequence of the derivative formula (3) in the local
coordinate system. Indeed, the normal derivative is just the gradient since
the tangential derivative is zero. On the other hand the term V.n is equal
to ψ(x)/

√
1 + |∇h|2 and the Jacobian is

√
1 + |∇h|2.

Thus, at the optimum, regardless of the multiplicity and the C1 pertur-
bation considered, there exist left and right derivatives for λk(Ωε) + Per(Ωε)
at ε = 0. The case where the eigenvalue is simple is straightforward and
is similar to the approach used in [6]. Suppose now that λk is multiple.
The local optimality of Ω∗ implies that the left and right derivatives of
λk(Ωε) + Per(Ωε) at ε = 0 in any direction given by ψ in the local co-
ordinates are of different signs. As a consequence, given a perturbation
ψ ∈ C1(Ba) we have two indices i, j such that∫

Ba

∇ψ · ∇h√
1 + |∇h|2

−
∫
Ba

|∇ui|2ψ ≥ 0(4) ∫
Ba

∇ψ · ∇h√
1 + |∇h|2

−
∫
Ba

|∇uj |2ψ ≤ 0(5)

We define the linear functionals F ,Gi on C1(Ba) by

F(ψ) =

∫
Ba

∇ψ · ∇h√
1 + |∇h|2

Gi(ψ) =

∫
Ba

|∇ui|2ψ

Equations (4) and (5) tell us that for every ψ ∈ C1(Ba) there exist indices
i, j such that F(ψ) ≥ Gi(ψ) and F(ψ) ≤ Gj(ψ). This implies, in particular,
that for every ψ ∈ C1(Ba) we have F(ψ) ∈ conv{Gi(ψ)}. Using a variant of
the Hahn-Banach separation theorem presented in Proposition B.2 it follows
that F ∈ conv{Gi}. For the sake of completeness a proof of the result can
be found in Appendix B. For more details see [8, Section 2.4].
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Therefore there exist µ1, . . . , µm ∈ [0, 1] with µ1 + · · ·+ µn = 1 such that∫
Ba

∇ψ · ∇h√
1 + |∇h|2

=

m∑
i=1

µi

∫
Ba

|∇ui|2ψ,

for every ψ ∈ C1(Ba). Since h is already C1,α, we know that each ui is also
C1,α [13, Theorem 6.18]. Therefore ∇ui are all in C0,α.

In [18] it is proved that if h ∈ C1,α(Ba). f ∈ C0,α(Ba) and the distribu-
tional equation ∫

Ba

∇ψ · ∇h√
1 + |∇h|2

=

∫
Ba

fψ,∀ψ ∈ C1(Ba)

holds, then h ∈ C2,α(Ba). Using this result we conclude that h ∈ C2,α and
h is a strong solution of the equation

(6) − div

(
∇h√

1 + |∇h|2

)
=

m∑
i=1

µi|∇ui|2

with µ1 + · · ·+ µp = 1. Using straightforward computations equation (6) is
equivalent to

− ∆h√
1 + |∇h|2

+
∇h · ∇h

(1 + |∇h|2)3/2
=

m∑
i=1

µi|∇ui|2

which leads to

(7) −∆h =
√

1 + |∇h|2
(

m∑
i=1

µi|∇ui|2
)
− |∇h|2

1 + |∇h|2
.

Since h ∈ C2,α(Ba) and this is true for any local chart which does not
intersect Σ, the set Ω is a domain with C2,α boundary outside Σ. Therefore
using again the standard Schauder regularity results [13, Theorem 6.18]
we see that the eigenfunctions (ui)

p
i=1 are in C2,α(Ba). This means that

the right hand side of equation (7) is in C1,α(Ba). Theorem 9.19 from [13]
allows us to deduce that h belongs to C3,α(Ba). In general we see that
if h ∈ Ck,α(Ba), k ≥ 2, then the right hand side of (7) is in Ck−1,α(Ba)
and thus h ∈ Ck+1,α(Ba). An inductive bootstrap argument allows us to see
that h ∈ C∞(Ba). Moreover, since the coefficients of the partial differential
equation (7) are analytic and h is C∞ the results of Morrey [22] allow us
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to deduce that h is analytic. Repeating the argument around each point
outside Σ, we conclude that ∂Ω \ Σ is analytic. �

Remark 4.2. Theorem 4.1 improves the results in [3] in yet another di-
rection. In the cited reference the authors prove that at the optimum there
exists a family of eigenfunctions (ϕi)

m
i=1 in the eigenspace associated to λk

such that

H =

m∑
i=1

(∂nϕi)
2.

In the proof of our result we deduce a more precise result which says more
about the family (ϕi) and about the number of eigenfunctions present in
the optimality condition. Indeed we prove that if (ui)

m
i=1 is an orthonormal

basis of the eigenspace associated to λk then there exist µ1, . . . , µm ∈ [0, 1]
with µ1 + · · ·+ µm = 1 such that

H =

m∑
i=1

µi(∂nui)
2.

We note that this behavior has been conjectured by the numerical results
presented in [4].

Remark 4.3. The results of Theorem 4.1 can be generalized to problems
of the type

min
Ω∈Rd

[
F (λk1(Ω), . . . , λkp(Ω)) + Per(Ω)

]
where F : Rp → R+ satisfies the properties

(P1) F (x)→∞ as |x| → ∞.

(P2) F is of class C1 and at least one of its partial derivatives does not
vanish when evaluated at (λk1(Ω

∗), . . . , λkp(Ω
∗)).

(P3) F is increasing in each variable, furthermore, for any compact K ⊂
Rp \ {0} there exists a > 0 such that if x, y ∈ Rp with xj ≥ yj , j =
1, . . . , p then F (x)− F (y) ≥ a|x− y|.

Properties (P1) and (P3) are taken from [11] to guarantee existence. Prop-
erty (P2) is stronger than the analogous property in [11] (locally Lipschitz
continuity) and allows us to differentiate the functional at the optimum.
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Remark 4.4. The techniques presented here should also apply to the prob-
lem

min{λk(Ω) + Per(Ω), |Ω| = m}
introduced in [10]. Indeed, the functional is the same, but there is a volume
constraint. The existence of a solution which is C1,α regular outside a closed
singular set of dimension at most d− 8 has been treated in [10]. Like above
it is possible to write the expression of the shape derivative, but we need to
work with flows which preserve the volume. Such flows can be constructed for
any perturbation V such that

∫
∂Ω V.n = 0 (see [12]). Then, using techniques

similar to the ones in [12] we may deduce that at the optimality condition (6)
becomes

−div

(
∇h√

1 + |∇h|2

)
=

m∑
i=1

µi|∇ui|2 + const.

This allows us to deduce the full regularity of the above problem in the same
way as in Theorem 4.1.

The results in this section allow us to give a different argument for [6,
Theorem 2.5] and extend the corresponding result to all dimensions. The
following result also generalises [3, Theorem 5.7].

Corollary 4.5. If Ω∗ is a solution for problem (1) then

• ∂Ω∗ does not contain flat parts

• ∂Ω∗ does not contain open subsets of spheres unless Ω∗ is a ball.

Proof. This is a simple consequence of the fact that ∂Ω∗ is analytic outside
a singular set of dimension at most d− 8. �

5. The multiplicity cluster

Once the regularity of the minimizers of (1) is proved we may look into
other facts about the optimal set. As noted in [2] and [3] the numerical
experiments show that in most cases the multiplicity of the k-th eigenvalue
of the optimal set is larger than 1. Numerical experiments also suggest that
when λk(Ω

∗) is multiple then λk(Ω
∗) < λk+1(Ω∗). A first result in this sense

has been obtained in [3] and is similar to [15, Lemma 2.5.9]. For the sake of
completness we give a sketch of the proof.

Theorem 5.1. Suppose Ω∗ is a minimizer for problem (1). If we have
λk−1(Ω∗)<λk(Ω

∗) then the k-th eigenvalue is simple, i.e. λk(Ω
∗)<λk+1(Ω∗).
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Proof. Suppose λk(Ω
∗) is multiple and λk(Ω

∗) = · · · = λk+m−1(Ω∗). Since
λk is the smallest eigenvalue in the cluster and Ω∗ is a local minimizer, the
m analytic parametrizations of the eigenvalues of the spectrum, described in
Section 3, have derivative zero at ε = 0. This would imply that (∂nui)

2 = H
for all i = 1, . . . ,m.

If m > 1 this implies the existence of two different eigenfunctions u, v
associated to λk(Ω

∗) such that (∂nu)2 = (∂nv)2 = H. The Hölmgren unique-
ness theorem implies that H cannot vanish on a relatively open set of ∂Ω
(see [3, Theorem 5.7] for an alternative argument). Thus, there exists a rel-
atively open set γ ⊂ ∂Ω such that H > 0 on γ. We can see that in this
situation ∂nu = ±

√
H and ∂nv = ±

√
H on γ. This implies that we have

either ∂n(u+ v) = 0 or ∂n(u− v) = 0 on γ. By Hölmgren’s uniqueness the-
orem we deduce that u = ±v which is a contradiction. Therefore λk(Ω

∗) is
simple. �

We can provide a stronger result based on the methods used in Theo-
rem 2.5.8 and Lemma 2.5.9 from [15]. We note that we have already proved
that optimal sets Ω∗ are analytic outside a singular set Σ so the cited results
apply in our case. Below we prove a generalization of Lemma 2.5.9 from [15].

Lemma 5.2. Suppose Ω is a smooth set in Rd and that λk+1(Ω) = · · · =
λk+m(Ω). Then there exist vector fields V such that ` of the derivatives

dλk+i(Ωε)

dε

∣∣∣∣∣
ε=0

are strictly negative and the other m− ` are strictly positive,

for ` ∈ {1, 2, . . . ,m− 1}. Moreover, V can be chosen in such a way that the
derivative of the perimeter of Ω in the direction of V is zero, which means

that

∫
∂Ω
HV.ndσ = 0.

Remark 5.3. Working like in [3, Lemma 2.6] we may construct a family
of sets Ωε = φε(Ω) such that Ωε have the same perimeter as Ω = Ω0 and the
derivative of the flow φε at ε = 0 is V .

Proof of Lemma 5.2. Theorem 2.5.8 from [15] says that the derivatives of
the eigenvalues of the perturbations Ωε of Ω are the eigenvalues of the m×m
matrix

AV = (ai,j) where ai,j = −
∫
∂Ω
∂nui∂nujV.ndσ, 1 ≤ i, j ≤ m.
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As a consequence, the derivatives of λk(Ω
∗) + Per(Ω∗) in the direction V are

the eigenvalues of A shifted by the derivative of the perimeter for the same
direction V .

As in the proof of the previous theorem we place ourselves in a relatively
open subset γ of ∂Ω where the mean curvature H is strictly positive. For a
point X ∈ γ we denote ψ(X) = (∂nu1(X), . . . , ∂num(X)) ∈ Rm. We can find
points X1, . . . , Xn ∈ γ such that the vectors ψ(Xi), i = 1, . . . ,m are linearly
independent. We present a simple proof of this fact in Appendix A.

Once chosen X1, . . . , Xn we consider a vector field Vδ such that Vδ is
supported on O1 ∪ · · · ∪On, where Xp ∈ Op and Hn−1(Op) = δ. Given j ∈
{1, 2, . . . , n} we can consider Vδ to be of the form

Vδ =

{
(kp/δ)~n(x) on Op \Qp
(fp(x)/δ)~n(x) on Qp

where constants kp satisfy kp < 0 for p ≤ ` and kp > 0 for p > `, Qp are
portions around the boundary of Op of Hd−1 measure O(δ2), fp smooth
extensions of the constant such that fp ≤ kp and ~n(x) denotes the normal to

∂Ω. Furthermore, the constants ki are chosen such that

∫
∂Ω
HVδ.ndσ = 0,

so that the derivative of the perimeter is zero. This can always be done.
It suffices to fix the first ` constants ki = c < 0 and choose the rest equal
to a positive constant which makes the above integral zero. Note that the
derivative of the perimeter cannot be equal to zero if we choose all ki to
have the same sign. This is due to the fact that γ is a region where H is
strictly positive.

It is not difficult to see that

lim
δ→0

∫
Op

∂nui∂nujVδ.ndσ = kp∂nui(Xi)∂nuj(Xi), p = 1, . . . , n.

Therefore, the matrix AVδ converges to

k1ψ(Xi)
Tψ(Xi) + · · ·+ knψ(Xn)Tψ(Xn)

as δ goes to 0. For a general vector X ∈ Rn we have

XTAVδX → k1(X.ψ(X1))2 + · · ·+ kn(X.ψ(Xn))2.

Since the vectors ψ(Xi) are linearly independent we deduce that this limit
matrix is associated to a quadratic form of signature (n− `, `) so it has `
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negative eigenvalues and n− ` positive ones. The continuity of the eigenval-
ues of the matrices with respect to the entries implies that for δ small enough
AVδ has ` negative eigenvalues and n− ` positive ones. Thus ` eigenvalues
from the cluster have negative derivatives and n− ` have positive deriva-
tives. �

Note that even if the above result is stated for smooth sets, we may
apply it in our case by performing only perturbations supported outside the
singularity. An immediate corollary is the following.

Corollary 5.4. If Ω∗ is an optimizer for (1) corresponding to the index k
then λk(Ω

∗) < λk+1(Ω∗).

Proof. Suppose that λk(Ω
∗) is multiple and

λs(Ω
∗) = · · · = λk(Ω

∗) = λk+1(Ω∗) = · · · = λS(Ω∗).

Apply Lemma 5.2 to deduce that it is possible to find a perturbation V of Ω∗

such that the derivatives of the eigenvalues in the cluster are strictly negative
for indices in [s, k] and strictly positive for indices in [k + 1, S]. Moreover,
the perturbation can be chosen so that the perimeter has derivative zero in
the direction of V . This perturbation would then decrease λk + Per, thus
contradicting optimality. Therefore we can only have λk(Ω

∗) < λk+1(Ω∗).
�

Remark 5.5. A direct consequence of the previous theorem is that the
optimal cost for problem (1) is a strictly increasing function of k, i.e.

min
Ω∈Rd

λk(Ω) + Per(Ω) < min
Ω∈Rd

λk+1(Ω) + Per(Ω).

Denote Ωk and Ωk+1 solutions of problem (1) for k and k + 1, respectively.
Then we have the following inequalities

λk(Ωk) + Per(Ωk) ≤ λk(Ωk+1) + Per(Ωk+1) ≤ λk+1(Ωk+1) + Per(Ωk+1),

where the first inequality comes from the optimality of Ωk and the second
from the ordering of the eigenvalues. If the optimal costs ck, ck+1 defined
in (2) satisfy ck = ck+1 then the above inequalities imply that λk(Ωk+1) =
λk+1(Ωk+1) and that Ωk+1 is also solution of (1) for k. This is in contradic-
tion with the previous corollary.
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Remark 5.6. Remark 5.3 allows us to conclude a similar result for the
constrained problem

dk = min{λk(Ω) : Per(Ω) = c}.

In this case we also have dk < dk+1.

Remark 5.7. Using the results above it is possible to deduce that for the
shape Ω∗ which minimizes λ2(Ω) + Per(Ω) the second eigenvalue is simple
and thus we have (∂nu2)2 = H. Indeed, the optimal set Ω∗ is connected [11]
so we have λ1(Ω∗) < λ2(Ω∗). The results above show that λ2(Ω∗) < λ3(Ω∗)
so λ2(Ω∗) is simple.

Appendix A. From discrete to continous linear dependence

Consider a positive integer n ≥ 2 and let f1, f2, . . . , fn be real continuous
functions defined on an open connected set I ⊂ Rd. For a point x ∈ I we de-
note ψ(x) = (f1(x), . . . , fn(x)) ∈ Rn. We suppose that none of the functions
fi is identically zero on I. Suppose that for each set of n different points
x1, . . . , xn ∈ I the vectors

ψ(x1), . . . , ψ(xn)

are linearly dependent on an open connected subset of I. Then the functions
f1, . . . , fn are linearly dependent, i.e. there exist constants α1, . . . , αn not all
zero such that

α1f1 + · · ·+ αnfn = 0.

Let’s start with the case n = 2. Pick x1 6= x2 in I. We know that the
vectors ψ(x1), ψ(x2) are linearly dependent which means that(

f1(x1)
f2(x1)

)
= λ

(
f1(x2)
f2(x2)

)
We find that on the set {f2 6= 0} the function f1/f2 is constant. Thus, picking
eventually a connected component of {f2 6= 0} we find that f1, f2 are linearly
dependent on a connected open set.

We can prove the result for general n ≥ 2 by induction. Indeed, let’s sup-
pose that the result holds for n functions. Consider now f1, . . . , fn+1 defined
on I such that for every n+ 1 points x1, . . . , xn+1 the vectors ψ(x1), . . . ,
ψ(xn+1) are linearly dependent. Suppose that no two functions fi are equal
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or else we have nothing to prove. Furthermore, we choose x1 such that
f(x1) 6= 0. Thus there exist scalars λ1, . . . , λn, not all zero such that

λ1f1(x1) + λ2f1(x2) + · · ·+ λn+1f1(xn+1) = 0

λ1f2(x1) + λ2f2(x2) + · · ·+ λn+1f2(xn+1) = 0

· · ·
λ1fn+1(x1) + λ2fn+1(x2) + · · ·+ λn+1fn+1(xn+1) = 0.

Without loss of generality suppose that λ1 6= 0. Eliminating the elements
below λ1f1(x1) in the first column leaves us with a system of the form

µ2(f2 − f1)(x2) + · · ·+ µn+1(f2 − f1)(xn+1) = 0

· · ·
µ2(fn+1 − f1)(x2) + · · ·+ µn+1(fn+1 − f1)(xn+1) = 0

Therefore f2 − f1, . . . , fn+1 − f1 satisfy the induction hypothesis and thus
they are linearly dependent. It is obvious that this implies that f1, . . . , fn+1

are linearly dependent.

Appendix B. A variant of the Hahn-Banach Theorem

We recall below the well known Hahn-Banach separation theorem. For
a proof or more details see [8, Section 2.4].

Theorem B.1. Ket K1,K2 be nonempty, disjoint convex subsets of the
normed vector space X. Then if K1 is open, there exist ζ ∈ X∗ and θ ∈ R
such that

〈ζ, x〉 < θ ≤ 〈ζ, y〉∀x ∈ K1, y ∈ K2.

An immediate consequence is the following.

Proposition B.2. Let {ζi : i = 1, 2, . . . , k} be a finite subset in X∗. The
following are equivalent:

(a) There is no ν ∈ X such that 〈ζi, ν〉 < 0, ∀i ∈ {1, 2, . . . , k}.

(b) The set {ζi : i = 1, 2, . . . , k} is positively linearly dependent: there ex-
ists a non zero nonnegative vector γ ∈ Rk such that

∑k
i=1 γiζi = 0.



i
i

“3-Bogosel” — 2019/12/30 — 21:31 — page 1542 — #20 i
i

i
i

i
i

1542 Beniamin Bogosel

Proof. First let’s note that we may suppose that none of the functionals ζi
are identically zero, since the problem would reduce itself to a smaller value
of k or to the trivial case when all functionals considered vanish.

We start with the implication (b) =⇒ (a). Suppose that
∑k

i=1 γiζi = 0.
Now, if ν ∈ X we have

0 =

k∑
i=1

γi〈ζi, ν〉 ≤ (

k∑
i=1

γi) max
i
〈ζi, ν〉,

which implies maxi〈ζi, ν〉 ≥ 0, since
∑k

i=1 γi > 0.
For the implication (a) =⇒ (b) we consider the following subsets of Rk:

K1 = {y ∈ Rk : yi < 0∀i ∈ {1, 2, . . . , k}}

K2 = {(〈ζ1, ν〉, 〈ζ2, ν〉, . . . , 〈ζk, ν〉) : ν ∈ X}.

We see immediately that (a) implies K1 ∩K2 = ∅ and furthermore K1 is
open. Therefore, we can apply the Hahn-Banach separation theorem B.1
and find a functional ϕ : Rk → R and θ ∈ R such that

〈ϕ, x〉 < θ ≤ 〈ϕ, y〉,∀x ∈ K1, y ∈ K2.

We know that such a functional is of the form

ϕ(x) =

k∑
i=1

γixi,

where γ = (γ1, . . . , γk) is a non-zero element of Rk. Therefore 〈ϕ, y〉 ≥ θ,∀y ∈
K2 becomes

θ ≤

〈
k∑
i=1

γiζi, ν

〉
,∀ν ∈ X,

which is only possible when
∑k

i=1 γiζi = 0. On the other hand, we have

k∑
i=1

γiyi < θ for all y = (yi) ∈ K1.

Taking yni = −n, ynj = −1/n, j 6= i and taking n→∞ we see that this is
possible only if all γi are non-negative. This finishes the proof. �
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Appendix C. A formula relating the Laplacian and the
Hessian

Theorem 3.1.1.1. from [14] says that for v ∈ H1(Ω)n and Ω of class C2

we have∫
Ω
|div v|2dx−

n∑
i,j=1

∫
Ω
∂ivj∂jvidx = (tangential part) +

∫
∂Ω
H(v · nν)2dσ,

where H is the mean curvature of Ω. If we put v = ∇u for u = 0 on ∂Ω, then
the tangential part is zero and we obtain a relation between the Laplacian
and the Hessian. The aim here is to write a similar relation when we have
an additional multiplication with a function ϕ ∈ H1(Rd).

We wish to prove the following

Proposition C.1. If Ω is of class C2, ϕ ∈ H1(Rd) and u is smooth in
Ω ∩ suppϕ then∫

Ω
ϕ|D2u|2dx+

∫
∂Ω
ϕH|∇u|2dσ

=

∫
Ω
ϕ(∆u)2dx+

∫
Ω

(∇u · ∇ϕ)∆udx−
∫

Ω
∇ϕ ·D2uDudx.

Proof. We integrate by parts two times and we obtain∫
Ω
ϕ|div v|2 =

n∑
i,j=1

∫
Ω
ϕ∂ivi∂jvjdx

∂i= −
n∑

i,j=1

∫
Ω
viϕ∂i,jvjdx−

n∑
i,j=1

∫
Ω
vi∂iϕ∂jvjdx+

n∑
i,j=1

∫
∂Ω
ϕvi∂jvjνidσ

∂j
=

n∑
i,j=1

∫
Ω
ϕ∂jvi∂ivjdx+

n∑
i,j=1

∫
Ω
∂jϕvi∂ivjdx−

n∑
i,j=1

∫
∂Ω
ϕvi∂ivjνjdσ−

−
n∑

i,j=1

∫
Ω
vi∂iϕ∂jvjdx+

n∑
i,j=1

∫
∂Ω
ϕvi∂jvjνidσ

Therefore we have

I(v) =

∫
Ω
ϕ| div v|2 −

n∑
i,j=1

∫
Ω
ϕ∂jvi∂ivjdx

= AΩ (terms on Ω) +A∂Ω (terms on ∂Ω)



i
i

“3-Bogosel” — 2019/12/30 — 21:31 — page 1544 — #22 i
i

i
i

i
i

1544 Beniamin Bogosel

The terms integrated on Ω are

AΩ =

n∑
i,j=1

∫
Ω
∂jϕvi∂ivjdx−

n∑
i,j=1

∫
Ω
vi∂iϕ∂jvjdx

=

∫
Ω
{(v · ∇)v · ∇ϕ}dx−

∫
Ω

(v · ∇ϕ) div vdx.

In order to avoid possible complications, unnecessary in our case, we
recall that we want to use this computation for v = ∇u with u = 0 on ∂Ω.
This means, in particular, that the tangential part of v is vτ = (∇u)τ = 0.
Therefore, in the following, we suppose that the tangential part of v is zero.
Using the reasoning from [14, Theorem 3.1.1.1] and neglecting the tangential
components we obtain

A∂Ω = −
n∑

i,j=1

∫
∂Ω
ϕvi∂ivjνjdσ +

n∑
i,j=1

∫
∂Ω
ϕvi∂jvjνidσ

=

∫
∂Ω
ϕvν div vdσ −

∫
∂Ω
ϕ{(v · ∇)v} · νdσ

=

∫
∂Ω
ϕHv2dσ

As stated before, we replace v by ∇u where u = 0 on ∂Ω and we get∫
Ω
ϕ(∆u)2dx−

∫
Ω
ϕ|D2u|2dx =

∫
Ω
∇ϕ ·D2uDudx−

∫
Ω

(∇u · ∇ϕ)∆udx

+

∫
∂Ω
ϕH|∇u|2dσ.

Therefore∫
Ω
ϕ|D2u|2dx+

∫
∂Ω
ϕH|∇u|2dσ =

∫
Ω
ϕ(∆u)2dx+

∫
Ω

(∇u · ∇ϕ)∆udx

−
∫

Ω
∇ϕ ·D2uDudx.

�

Note that even if the result above is stated for C2 sets, we may apply it
in the case where Ω is C1,α with non-negative and bounded distributional
curvature. Analysing the proof we notice that the only difficulty comes from
the boundary integrals A∂Ω where which are considered for fields v with zero
tangential components.
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Annali dell’Università’ di Ferrara 34 (1988), no. 1, 183–217.

Laboratoire Jean Kuntzmann
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