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Global generation and very ampleness for

adjoint linear series

Xiaoyu Su and Xiaokui Yang

Let X be a smooth projective variety over an algebraically closed
field K with arbitrary characteristic. Suppose L is an ample and
globally generated line bundle. By Castelnuovo–Mumford regular-
ity, we show that KX ⊗ L⊗ dimX ⊗A is globally generated and
KX ⊗ L⊗(dimX+1) ⊗A is very ample, provided the line bundle
A is nef but not numerically trivial. On complex projective va-
rieties, by investigating Kawamata-Viehweg-Nadel type vanishing
theorems for vector bundles, we also obtain the global generation
for adjoint vector bundles. In particular, for a holomorphic sub-
mersion f : X → Y with L ample and globally generated, and A
nef but not numerically trivial, we prove the global generation of
f∗(KX/Y )⊗s ⊗KY ⊗ L⊗ dimY ⊗A for any positive integer s.

1. Introduction

In [20], Fujita proposed the following conjecture

Conjecture. Let X be a smooth projective variety and L be an ample line
bundle. Then

1) KX ⊗ L⊗(dimX+1) is globally generated;

2) KX ⊗ L⊗(dimX+2) is very ample.

Fujita’s conjecture is a deceptively simple open question in classical algebraic
geometry. Up to dimension 4, the global generation conjecture has been
proved ([13, 31, 47]). Recently, Fei Ye and Zhixian Zhu proved it in dimension
5 ([56]). Also, there are many other “Fujita Conjecture type” theorems have
been proved, and we refer the reader to [1–3, 9, 18, 19, 23, 28, 29, 32, 34,
44, 45, 48, 50–52, 55]) and the references therein.

In this paper, we prove Fujita Conjecture type theorems by using an-
alytic methods in complex geometry when the twisted line (resp. vector)
bundle is nef (resp. Nakano semi-positive).

1639
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1640 X.-Y. Su and X.-K. Yang

1.1. Fujita Conjecture type theorems on projective varieties over
arbitrary fields

Let K be an algebraically closed field with arbitrary characteristic. By using
characteristic p methods, Keeler proved in [32, Theorem 1.1] the following
interesting result.

Theorem 1.1 (Keeler). Let X be a smooth projective variety over K with
dimension n. Suppose L is an ample and globally generated line bundle, and
A is an ample line bundle. Then

1) KX ⊗ L⊗n ⊗A is globally generated;

2) KX ⊗ L⊗(n+1) ⊗A is very ample.

In the case K = C, Angehrn and Siu proved the very ampleness part of
Theorem 1.1 by analytic methods ([1, Lemma 11.1]). In [48, Corollary 4.8],
Schwede generalized the global generation part of Theorem 1.1 to the case
when A is nef and big, and ch(K) = p > 0. The first result of our paper deals
with a more general case when A is nef but not numerically trivial.

Theorem 1.2. Let X be a smooth projective variety over K with dimension
n. Suppose L is an ample and globally generated line bundle. If A is a nef
but not numerically trivial line bundle, then

1) KX ⊗ L⊗n ⊗A is globally generated;

2) KX ⊗ L⊗(n+1) ⊗A is very ample.

As far as the authors know, this is the greatest generality in which Fujita
Conjecture type theorem has been proved in any characteristic. Theorem 1.2
is also optimal in the sense that one can not drop the non-triviality condition
on A, which can be seen from the example (X,L) = (Pn,O(1)). One may
want to know the limit case when A is indeed a trivial line bundle. For the
global generation part, Smith proved in [52, Theorem 2] that, this example
is the only exceptional case, i.e., if (X,L) 6= (Pn,O(1)), then KX ⊗ L⊗n is
globally generated. Her proof relies on the “tight closure” methods in the
frame of commutative algebra.
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Global generation and very ampleness 1641

1.2. Fujita Conjecture type theorems on complex projective
varieties

In this subsection, we focus on the cases in complex geometry, i.e. X is
defined over the complex number field C. At first, we obtain a general version
of the global generation part in Theorem 1.2:

Theorem 1.3. Let X be a compact Kähler manifold of dimension n and
L be an ample and globally generated line bundle. Suppose (A, e−2ϕ) be a
pseudo-effective line bundle and I(ϕ) is the multiplier ideal sheaf. If the
numerical dimension of (A,ϕ) is not zero, i.e. nd(A,ϕ) 6= 0, then

(1.1) KX ⊗ L⊗n ⊗A⊗ I(ϕ)

is globally generated.

A key ingredient in the proof of Theorem 1.3 relies on vanishing theorems
for pseudo-effective line bundles ([26, Corollary 1.7], [11, Theorem 0.15], [25,
Corollary 3.2] or a weaker version [5, Theorem 1.3]).

By using analytic methods, we also investigate the globally generated
property for adjoint vector bundles.

Theorem 1.4. Let X be a compact Kähler manifold of dimension n and
L be an ample and globally generated line bundle. Let (E, h) be a Hermitian
holomorphic vector bundle with Nakano semi-positive curvature. Suppose A
is a nef but not numerically trivial line bundle, then the adjoint vector bundle

(1.2) KX ⊗ L⊗n ⊗ (E ⊗A)

is globally generated.

Theorem 1.4 is derived from the following vanishing theorem for vector bun-
dles, building on ideas in [26], [10] and [5].

Theorem 1.5. Let X be a complex projective variety with dimX = n. If
(A, e−2ϕ) is a pseudo-effective line bundle and (E, h) a Nakano semi-positive
vector bundle, then

(1.3) Hq(X,KX ⊗ E ⊗A⊗ I(ϕ)) = 0 for q > n− nd(A,ϕ).

Remark. According to [27], it is not hard to see that Theorem 1.5 is also
true on compact Kähler manifolds. Hence, there is a version of Theorem 1.4
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1642 X.-Y. Su and X.-K. Yang

for pseudo-effective line bundle (A, e−2ϕ) (e.g. Theorem 4.3). For simplicity,
we only formulate applications for nef line bundles (see Theorem 4.4 for
general cases).

As an application of Theorem 1.4, we obtain the following result in pure
algebraic language.

Theorem 1.6. Let f : X → Y be a holomorphic submersion between two
complex projective varieties and dimY = n. Suppose L→ Y is an ample
and globally generated line bundle, and A→ Y is a nef but not numerically
trivial line bundle. Then

(1.4) f∗(KX/Y )⊗s ⊗KY ⊗ L⊗n ⊗A

is globally generated for any s ≥ 1.

As a special case of Theorem 1.6, we obtain the following well-known
result of Kollár ([33, Theorem 3.5, Theorem 3.6]):

Corollary 1.7 (Kollár). Let f : X → Y be a holomorphic submersion be-
tween two smooth projective varieties and dimC Y = n. Suppose L→ Y is
an ample and globally generated line bundle, then

f∗(KX/Y )⊗s ⊗KY ⊗ L⊗(n+1)

is globally generated for s ≥ 1.

As another application of Theorem 1.4, we also get global generation of
pluricanonical adjoint bundles of canonically polarized families.

Theorem 1.8. Let f : X → S be a holomorphic family of canonically po-
larized compact Kähler manifolds effectively parameterized by a smooth pro-
jective variety S with dimension n. Suppose L→ S is an ample and globally
generated line bundle, and A→ S is a nef line bundle. Then

(1.5) f∗(K
⊗s
X )⊗ L⊗n ⊗A

is globally generated for s > 1.

2. Fujita Conjecture type theorems on projective varieties
over arbitrary fields

In this section, we investigate Fujita Conjecture type theorems on projective
varieties over algebraically closed fields and prove Theorem 1.2. Let K be an
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Global generation and very ampleness 1643

algebraically closed field with arbitrary characteristic, and X be a smooth
projective variety over K. Firstly we introduce the theory of Castelnuovo–
Mumford regularity.

2.1. Castelnuovo–Mumford regularity

Suppose L is an ample and globally generated line bundle over X.

Definition 2.1. A coherent sheaf F on X is m-regular with respect to L
if

(2.1) Hq(X,F ⊗ L⊗(m−q)) = 0 for q > 0.

The following results are well-known (e.g. [35, Section 1.8], or [14, Sec-
tion 5.2]), and for the sake of completeness we include a proof here.

Lemma 2.2 (Mumford). Let F be a 0-regular coherent sheaf on X with
respect to L, then F is generated by its global sections.

Proof. Suppose dimX = n. We shall use standard hyperplane induction
method to prove it. For simplicity, we write L = OX(1). Since the coherent
sheaf F has finitely many associated points, we can choose s ∈ H0(X,L)
such that the corresponding divisor B does not contain any associated point
of F . Hence, for any i ≥ 0, we have the exact sequence

(2.2) 0→ F(−i− 1)
⊗s→ F(−i)→ FB(−i)→ 0.

By using the associated long exact sequence

(2.3) · · · → H i(X,F(−i))→ H i(X,FB(−i))→ H i+1(X,F(−i− 1))→ · · ·

and 0-regularity of F , we see H i(X,FB(−i)) = 0 for i > 0, i.e. FB is 0-
regular with respect to L. Similarly, for any q ≥ 0, we have
(2.4)
· · · → Hq(X,F(−q))→ Hq(X,F(1)(−q))→ Hq(X,FB(1)(−q))→ · · · .

We show F(1) is 0-regular if F is 0-regular. Indeed, we have FB is 0-regular
and by hyperplane induction hypothesis, FB(1) is 0-regular. By (2.4), F(1) is
0-regular. Hence, we know F(k) is 0-regular for all k ≥ 0. In the commutative



i
i

“6-Su” — 2019/12/30 — 21:42 — page 1644 — #6 i
i

i
i

i
i

1644 X.-Y. Su and X.-K. Yang

diagram

H0(X,F(k))⊗H0(X,O(1))

ιX
��

rk⊗1// H0(X,FB(k))⊗H0(X,OX(1))

ιB
��

H0(X,F(k))
⊗s // H0(X,F(k + 1))

rk+1 // H0(X,FB(k + 1)),

rk ⊗ 1 and rk+1 are surjective according to long exact sequence associated
to (2.2). By diagram chasing, it is obvious that ιX is surjective if and only
if ιB is surjective. Note that in the above commutative diagram we can
replace B by intersections of suitable divisors in |L|. Hence, we can show ιX
is surjective by induction on dimB. When dimB = 0, it is easy to see ιB
is surjective. Hence, by induction, we know ιX is surjective. For any x ∈ X
and large N , in the commutative diagram

H0(X,F)⊗H0(X,O(1))⊗N

1⊗ev1
��

ι // H0(X,F(N))

ev2

��
H0(X,F)⊗ (O(1)|x)⊗N

f // (F(N))|x,

ι is surjective since ιX is surjective. On the other hand, 1⊗ ev1 and ev2 are
both surjective and so f is surjective, and we deduce H0(X,F)→ F|x is
surjective. �

2.2. The proof of Theorem 1.2

Before giving the proof of Theorem 1.2, we present a more general result.

Theorem 2.3. Let X be a smooth projective variety over K with dimension
n. Suppose L is an ample and globally generated line bundle. If A is a line
bundle such that L⊗A is ample and the Kodaira-Iitaka dimension κ(A∗) =
−∞, then

1) KX ⊗ L⊗n ⊗A is globally generated;

2) KX ⊗ L⊗(n+1) ⊗A is very ample.

Proof. Suppose ch(K) = p > 0. We shall show that F k∗ (KX)⊗ L⊗n ⊗A is 0-
regular for all k ≥ k0 where F : X → X is the absolute Frobenius morphism.
When 0 < q < n, i.e. n− q ≥ 1, L⊗(n−q) ⊗A is ample since both L and
L⊗A are ample. Hence, by the Serre vanishing theorem, for each q with
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0 < q < n, there exists a positive constant kq = k(q) > 0 such that

(2.5) Hq(X,KX ⊗ L⊗p
k(n−q) ⊗A⊗pk) = 0,

for k ≥ kq. By the projection formula, one has

(2.6) F k∗ (KX ⊗ L⊗p
k(n−q) ⊗A⊗pk) = F k∗ (KX)⊗ L⊗(n−q) ⊗A.

Since the Frobenius morphism F is a finite morphism, we get

Hq(X,F k∗ (KX)⊗ L⊗(n−q) ⊗A) ∼= Hq(X,F k∗ (KX ⊗ L⊗p
k(n−q) ⊗A⊗pk))

∼= Hq(X,KX ⊗ L⊗p
k(n−q) ⊗A⊗pk)

= 0.

When q = n, we want to show

(2.7) Hn(X,F k∗ (KX)⊗A) = 0.

By the projection formula again, we have F k∗ (KX)⊗A = F k∗

(
KX ⊗A⊗p

k
)

and

Hn(X,F k∗ (KX)⊗A) ∼= Hn
(
X,F k∗ (KX ⊗A⊗p

k

)
)

∼= Hn(X,KX ⊗A⊗p
k

)

∼= H0(X, (A⊗p
k

)∗)∗.

Since the Kodaira-Iitaka dimension κ(A∗) = −∞, we have H0(X, (A∗)⊗`) =
0 for any ` > 0. Hence we get (2.7). By Definition 2.1, F k∗ (KX)⊗A⊗
L⊗n is 0-regular for all k ≥ k0 where k0 = max{k1, . . . , kn−1}. According
to Lemma 2.2, F k∗ (KX)⊗ L⊗n ⊗A is globally generated. Thanks to [32,
Lemma 3.3], KX ⊗ L⊗n ⊗A is a quotient of

F k∗ (KX)⊗A⊗ L⊗n

for all k ≥ k0 and so KX ⊗ L⊗n ⊗A is globally generated.
It is well-known that KX ⊗ L⊗(n+1) ⊗A is very ample if and only if for

every x ∈ X, mx ⊗KX ⊗ L⊗(n+1) ⊗A is globally generated. Since F k∗ (KX)⊗
L⊗n ⊗A is 0-regular with respect to L, it is proved in [32] that for ev-
ery x ∈ X, mx ⊗ F k∗ (KX)⊗ L⊗(n+1) ⊗A is also 0-regular and so it is glob-
ally generated. By [32, Lemma 3.3], mx ⊗KX ⊗ L⊗(n+1) ⊗A is a quotient
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of mx ⊗ F k∗ (KX)⊗ L⊗(n+1) ⊗A. Hence mx ⊗KX ⊗ L⊗(n+1) ⊗A is globally
generated.

When ch(K) = 0, L⊗k ⊗A is ample for every k > 0. Hence by Kodaira
vanishing theorem, we have

(2.8) Hq(X,KX ⊗ L⊗(n−q) ⊗A) = 0

for 0 < q < n. Since κ(A∗) = −∞, we also have

(2.9) Hn(X,KX ⊗A) ∼= H0(X,A∗) = 0.

Hence, by Lemma 2.2 again, we know KX ⊗ L⊗n ⊗A is 0-regular with
respect to L and hence it is globally generated. The very ampleness of
KX ⊗ L⊗(n+1) ⊗A can be proved similarly. �

Lemma 2.4. Let A be a nef but not numerically trivial line bundle over
a smooth projective variety X over K. Then the Kodaira-Iitaka dimension
κ(A∗) = −∞, i.e. H0(X, (A∗)⊗`) = 0 for all ` > 0.

Proof. We also use A to denote the divisor class of A. Since A is nef but
not numerically trivial, it is well-known that (e.g. [6, Section 3.8]) that there
exists an ample divisor H, such that A ·Hn−1 > 0. We show κ(A∗) = −∞.
Suppose H0(X,O(−`A)) 6= 0 for some ` > 0. Then −`A is effective. Let
−`A =

∑
νiDi where Di are irreducible divisors and νi ≥ 0. Since −`A is

not numerically trivial, there is at least one νi > 0. By Nakai-Moishezon
criterion for ampleness, for ample divisor H in X, we have Hn−1 · (−`A) > 0,
i.e. Hn−1 ·A < 0 which contradicts A ·Hn−1 > 0. �

The proof of Theorem 1.2. It follows from Lemma 2.4 and Theorem 2.3.

Remark 2.5. Theorem 2.3 is more general than Theorem 1.2. In Theo-
rem 2.3, A can be certain numerically trivial line bundles. It is easy to see
that, if A is a non-torsion point in Pic0(X), Theorem 2.3 also works. For in-
stance, let E = C/(Z⊕

√
−1Z) be an elliptic curve. Suppose A = O(P −Q)

where P is a rational point and Q is an irrational point on E. Then A is
numerically trivial and κ(A∗) = −∞. Indeed, (A∗)⊗` has no nonzero section
for any ` > 0. Otherwise, the divisor `(P −Q) is linearly equivalent to the
zero divisor, which is absurd.
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3. Vanishing theorems for vector bundles on compact
Kähler manifolds

In this section, we investigate various vanishing theorems for vector bun-
dles, which are the key ingredients in the proof of Fujita Conjecture type
theorems. In particular, we give the proof of Theorem 1.5.

Let E be a holomorphic vector bundle over a compact complex manifold
X and h be a smooth Hermitian metric on E. There exists a unique connec-
tion ∇ which is compatible with the Hermitian metric h and the complex
structure on E. It is called the Chern connection of (E, h). Let {zi}ni=1 be
local holomorphic coordinates on X and {eα}rα=1 be a local frame of E. The
curvature tensor ΘE ∈ Γ(X,Λ2T ∗X ⊗ E∗ ⊗ E) has components

(3.1) Rijαβ = −
∂2hαβ
∂zi∂zj

+ hγδ
∂hαδ
∂zi

∂hγβ
∂zj

.

Here and henceforth we sometimes adopt the Einstein convention for sum-
mation.

Definition 3.1. A Hermitian holomorphic vector bundle (E, h) is called
Nakano positive (resp. Nakano semi-positive) if

Rijαβu
iαujβ > 0 (resp. ≥ 0)

for nonzero vector u = (uiα) ∈ Cnr.

Let’s describe some elementary properties on positive vector bundles.

Lemma 3.2 (Nakano vanishing theorem). Let X be a compact Kähler
manifold. Suppose (E, h)→ X is a Hermitian holomorphic vector bundle
with Nakano positive curvature, then

(3.2) Hq(X,KX ⊗ E) = 0, q ≥ 1.

Lemma 3.3. Let (X,ωg) be a compact Kähler manifold.

1) Let (E, h) be a Nakano positive vector bundle and A a nef line bundle.
Then E ⊗A admits a Hermitian metric with Nakano positive curva-
ture.

2) Let (E, h) be a Nakano semi-positive vector bundle and A be an am-
ple line bundle. Then E ⊗A admits a Hermitian metric with Nakano
positive curvature.



i
i

“6-Su” — 2019/12/30 — 21:42 — page 1648 — #10 i
i

i
i

i
i

1648 X.-Y. Su and X.-K. Yang

3) Let (E, hE) and (Ẽ, hẼ) be two Nakano semi-positive vector bundles,
then (E ⊗ Ẽ, h⊗ h̃) is also Nakano semi-positive.

Proof. (1). For the fixed Kähler metric ωg on X, there exists a constant
ε > 0 such that

√
−1ΘE(u(x), u(x)) ≥ 2ε|u(x)|2g⊗h

for any u ∈ Γ(X,T 1,0X ⊗ E). On the other hand, by analytic definition of
nefness (e.g. [10]), there exists a smooth metric h0 on the nef line bundle A
such that

(3.3)
√
−1ΘA ≥ −εωg.

The curvature of h⊗ h0 on E ⊗A is ΘE⊗A = ΘE · idA + idE ·ΘA. Hence,
for any u ∈ Γ(X,T 1,0X ⊗ E) and v ∈ Γ(X,A)

√
−1ΘE⊗A(u⊗ v, u⊗ v) ≥

(√
−1ΘE(u, u)− ε|u|2g⊗h

)
|v|2h0

(3.4)

≥ ε|u|2g⊗h|v|2h0
.

Therefore, E ⊗A is Nakano positive. The proof of (2) is similar to that
of (1).

(3). By using curvature formula of h⊗ h̃ on E ⊗ Ẽ,

ΘE⊗A = ΘE · idẼ + idE ·ΘẼ ,

for any (local) vectors u∈Γ(X,T 1,0X⊗E⊗Ẽ) with the form u=uiαAdzi⊗
eα ⊗ eA in the local holomorphic frames {zi, eα, eA} of {X,E, Ẽ}, we obtain

(3.5) ΘE⊗Ẽ(u, u) = ΘE
ijαβ

uiαAujβB · hẼ
AB

+ ΘẼ
ijAB

uiαAujβB · hE
αβ
.

It is nonnegative and one can see that by choosing normal coordinates for

hE and hẼ at a fixed point. �

We need the following fundamental result in [12, Proposition 1.16].

Lemma 3.4. Let E → X be a nef vector bundle over a compact complex
manifold X. Suppose σ ∈ H0(X,E∗) is a nonzero section, then σ does not
vanish anywhere.

By refining the Bochner technique, we obtain the following vanishing theo-
rem for vector bundles with “degenerate” curvature tensors.
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Theorem 3.5. Let (X,ω) be a compact Kähler manifold of dimension n.
Let (E, h) be a holomorphic vector bundle and A be a line bundle. Suppose
either

1) E is nef and the second Ricci curvature trωΘE is semi-positive, and
A is semi-ample but non-trivial; or

2) the second Ricci curvature trωΘE is strictly positive and A is nef.

Then

(3.6) H0(X,E∗ ⊗A∗) = 0.

Proof. (1). Since A is semi-ample, Ak is generated by its global sections for
large k. Hence, there is an induced smooth Hermitian metric hA on A such
that the curvature ΘA is semi-positive, i.e.

√
−1ΘA = −

√
−1∂∂ log hA ≥ 0.

On the other hand, since A is not trivial, for the fixed Kähler metric ω on
X, the scalar curvature function

trωΘA

is non-negative, but not identically zero. Indeed, if it is identically zero, we
deduce that ΘA is identically zero, and so A is trivial. The curvature tensor
of E ⊗A can be written as

ΘE⊗A = ΘE ⊗ idA + idE ⊗ΘA.

In order to prove (3.5), we argue by contradiction. Suppose H0(X,E∗ ⊗
A∗) 6= 0, i.e. there exists a nonzero section σ ∈ H0(X,E∗ ⊗A∗). By
Lemma 3.4, σ is nowhere vanishing. By using standard Bochner identity
over E∗ ⊗A∗,

(3.7) ∆∂ = ∆∂ + [
√
−1ΘE∗⊗A∗

,Λω],

we obtain

(3.8) 0 = ‖∇σ‖2 − (trωΘE∗⊗A∗
σ, σ).

Note that ΘE∗
= −(ΘE)T as (1, 1)-form valued r × r matrices. Hence,

(3.9) 0 = ‖∇σ‖2 +
(([

trωΘE
]T ⊗ idA + idE ⊗ trωΘA

)
σ, σ

)
.
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By using local holomorphic frames {zi}, {e1, . . . , er}, {e} of X, E and A
respectively, we write

ω =
√
−1gijdz

i ∧ dzj ,
ΘE = Rβ

ijα
dzi ∧ dzj ⊗ eα ⊗ eβ,

ΘA = RA
ij
dzi ∧ dzj ,

σ = σαeα ⊗ e.

We obtain

(3.10)

∫
X
hA
(
gijRijβασ

ασβ + gijRA
ij
hαβσ

ασβ
)
ωn = 0.

By assumption, the (transposed) second Ricci curvature

[
trωΘE

]T
=

∑
i,j

gijRijβα


is Hermitian semi-positive as a (r × r) matrix and so

(3.11) gijRijβασ
ασβ + gijRA

ij
hαβσ

ασβ ≡ 0.

It implies

gijRA
ij

(hαβσ
ασβ) ≡ 0.

Since σ is nowhere vanishing, we obtain hαβσ
ασβ > 0 at each point. There-

fore

trωΘA = gijRA
ij
≡ 0.

This is a contradiction.
(2). For nef A, we use similar ideas as described in the first part of

Lemma 3.3. Since trωΘE is strictly positive, there exists ε > 0 such that

(trωΘE)T (u(x), u(x)) ≥ (n+ 1)ε|u(x)|2h

for any u ∈ Γ(X,E) since X is compact. On the other hand, since A is
nef, there exists a smooth metric h0 on the nef line bundle A such that
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√
−1ΘA ≥ −εωg. Hence, for any u ∈ Γ(X,E) and v ∈ Γ(X,A)([

trωΘE
]T ⊗ idA + idE ⊗ trωΘA

)
(u⊗ v, u⊗ v)

≥
(
(trωΘE)T (u, u)− nε|u|2h

)
|v|2h0

≥ ε|u|2h|v|2h0
.

Therefore in (3.11), σ ≡ 0, i.e. H0(X,E∗ ⊗A∗) = 0. �

Remark 3.6. The semi-positivity of the second Ricci curvature trωΘE

can be replaced by the semi-stability of E with respect to ω following
Donaldson-Uhlenbeck-Yau’s theorem. Moreover, the Griffiths (or Nakano,
or dual Nakano) semi-positivity of E can also imply the semi-positivity of
the second Ricci curvature trωΘE .

The following Kawamata-Viehweg-Nadel type vanishing theorem for a
semi-positive vector bundle twisted by a big line bundle is essentially known
to experts (e.g., [7, Theorem 4.2.4], [10, Theorem 5.11], [15, Theorem 1.2],
[16, Theorem 1.1], [46, Theorem 1.1], [17], [39]), although the statement is
not written down precisely. For the sake of completeness, we include a short
sketch here, following the approach in [10, Theorem 5.11] for line bundles.

Lemma 3.7. Let (X,ω) be a Kähler weakly pseudo-convex manifold, and
let A be a holomorphic line bundle over X equipped with a (possibly) singular
Hermitian metric h = e−2ϕ. Assume that

√
−1ΘA ≥ εω

for some continuous positive function ε on X. If (E, hE) is a Nakano semi-
positive vector bundle, then

(3.12) Hq(X,KX ⊗ E ⊗A⊗ I(ϕ)) = 0

for all q ≥ 1.

Proof. Let L q be the sheaf of germs of (n, q)-forms u with values in
E ⊗A and with measurable coefficients such that both |u|2hE · e−2ϕ and

|∂E⊗Au|g⊗hE · e−2ϕ are locally integrable. The ∂
E⊗A

operator defines a com-

plex of sheaves (L •, ∂
E⊗A

) which is a fine resolution of the sheaf O(KX ⊗
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E ⊗A)⊗ I(ϕ), i.e. we have the following exact sequence

(3.13) 0→ O(KX ⊗ E ⊗A)⊗ I(ϕ)→ L 0 → L 1 → · · · → L n → 0.

Indeed, it follows from a vector bundle version of Hörmander L2-estimate
([10, Corollary 5.3]) since the vector bundle E ⊗A has a singular metric
which is Nakano positive in the sense of current. By using the L2 estimate
again (e.g. [10, Theorem 5.11]), one can show Hq(Γ(X,L •)) = 0 for q ≥ 1
and we obtain the desired vanishing cohomologies. �

Next, we introduce two different concepts on numerical dimension for nef
and pseudo-effective line bundles.

Definition 3.8. Let N be a nef line bundle over a compact Kähler manifold
X with dimCX = n. The numerical dimension ν(N) of N is defined as ([10,
Definition 6.20])

(3.14) ν(N) = max{k = 0, . . . , n | ck1(N) 6= 0 ∈ H2k(X,R).}

Definition 3.9. Let (A, e−2ϕ) be a pseudo-effective line bundle over a com-
pact Kähler manifold X of dimension n. The numerical dimension nd(A,ϕ)
of A is defined in [5, Definition 3.1] as the largest number such that the
cohomological product 〈(

√
−1∂∂ϕ)k〉 6= 0.

Note that, in general these two definitions do not coincide even for nef
line bundles ([5, Remark 7], or [11, Remark 4.3.5]). For a discussion of the
relationship between various definitions of numerical dimensions, we refer to
the paper [11, Section 4.3].

Based on their solution to Demailly’s strong openness conjecture ([25]),
Guan-Zhou achieved in [26, Corollary 1.7] (see also [25, Corollary 3.2]) a
celebrated Kawamata-Viehweg-Nadel type vanishing theorem which gener-
alizes a theorem in [5, Theorem 1.3] (see also Demailly’s survey paper [11]
for a variety of vanishing theorems).

Lemma 3.10. Let (A, e−2ϕ) be a pseudo-effective line bundle over a com-
pact Kähler manifold X of dimension n. Then for any q > n− nd(A,ϕ),

(3.15) Hq(X,KX ⊗A⊗ I(ϕ)) = 0.

We shall use the ideas in the proof of Lemma 3.10 (e.g. [5] and [25]) and
Lemma 3.7 to prove Theorem 1.5.
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The proof of Theorem 1.5. Suppose nd(A,ϕ) = n. By using Guan-Zhou’s
solution to Demailly’s strong openness conjecture ([25]) and the construction
in [5, Lemma 5.5], there exists a singular metric e−2ϕ1 on the pseudo-effective
line bundle A such that

I(ϕ1) = I(ϕ)

and it is curvature current

√
−1∂∂ϕ1 > cω

for some smooth positive (1, 1) form ω and constant c > 0. By applying
Lemma 3.7 to (X,E,A, I(ϕ1)), we get

(3.16) Hq(X,KX ⊗ E ⊗A⊗ I(ϕ)) = 0, for q > 0.

Now we assume that nd(A,ϕ) < n. We use similar ideas as in [10, The-
orem 6.25], [5, Proposition 5.6]. Let B be a very ample divisor such that
B ⊗A is ample and I(ϕ|B) = I(ϕ)|B ([17, Theorem 1.10]). We consider the
exact sequence

0→ OX(−B)→ OX → (iB)∗OB → 0.

By tensoring with KX ⊗ E ⊗A⊗B ⊗ I(ϕ) and using adjunction formula,
one gets

· · · → Hq(X,KX ⊗ E ⊗A⊗ I(ϕ))

→ Hq(X,KX ⊗ E ⊗A⊗B ⊗ I(ϕ))

→ Hq(B,KB ⊗ (E ⊗A)|B ⊗ I(ϕ|B))

→ Hq+1(X,KX ⊗ E ⊗A⊗ I(ϕ))→ · · · .

Since E is Nakano semi-positive, and A⊗B is ample, by Lemma 3.7, we
have

(3.17) Hq(X,KX ⊗ E ⊗A⊗B ⊗ I(ϕ)) = 0 for q > 0.

Therefore

(3.18) Hq(B,KB ⊗ (E ⊗A)|B ⊗ I(ϕ|B)) ∼= Hq+1(X,KX ⊗ E ⊗A⊗ I(ϕ))

for every 0 < q < n. Moreover, E|B is also Nakano semi-positive over B.
Hence the induction hypothesis implies that the cohomology group on B on
the right hand side of (3.18) is zero when q > n− nd(A,ϕ). �
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Similarly, we have the following variant of Theorem 1.5 (see also [10,
Theorem 6.17] for the line bundle case.)

Proposition 3.11. Let X be a smooth projective variety. Let A be a line
bundle over X such that some positive multiple mA can be written as mA =
N +D where N is a nef line bundle and D is an effective divisor. If (E, h)
is a Nakano semi-positive vector bundle, then

(3.19) Hq(X,KX ⊗ E ⊗A⊗ I(m−1D)) = 0 for q > n− ν(N),

where ν(N) is the numerical dimension of the nef line bundle N .

As a special case, one has

Corollary 3.12. If (E, hE) is a Nakano semi-positive vector bundle and A
is a nef line bundle, then

(3.20) Hq(X,E∗ ⊗A∗) = 0 if q < ν(A).

In particular, if in addition, A is not numerically trivial, then

(3.21) H0(X,E∗ ⊗A∗) = 0.

Proof. We can take m = 1, D = 0 and A = N in Proposition 3.11. By Serre
duality, we obtain (3.20). Hence, when ν(A) ≥ 1, or equivalently, ν(A) 6= 0,
H0(X,E∗ ⊗A∗) = 0. It is well-known that for a nef line bundle A, ν(A) = 0
if and only if A is numerically trivial. �

As an application of Theorem 1.5, we obtain general vanishing theorems
on the relative setting which generalize Kollár’s vanishing theorems.

Theorem 3.13. Let f : X → Y be a holomorphic submersion between two
smooth complex projective varieties and dimC Y = n. Let (A, e−2ϕ) be a
pseudo-effective line bundle over X. If both E1 and E2 are Nakano semi-
positive vector bundles, then for any s ≥ 1 and q > n− nd(A,ϕ), we have

Hq
(
Y, f∗(KX/Y ⊗ E1)

⊗s ⊗KY ⊗ E2 ⊗A⊗ I(ϕ)
)

= 0,

as long as f∗(KX/Y ⊗ E1) is locally free.
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Proof. By using Theorem 1.5, we only need to show that

f∗(KX/Y ⊗ E1)
⊗s ⊗ E2

is Nakano semi-positive for any s ≥ 1. Indeed by a result of [41] (see also
[38]), if f∗(KX/Y ⊗ E1) is locally free, then f∗(KX/Y ⊗ E1) has a Nakano
semi-positive metric. By part (3) of Lemma 3.3, we deduce

f∗(KX/Y ⊗ E1)
⊗s ⊗ E2

is Nakano semi-positive for any s ≥ 1. �

Remark 3.14. Theorem 3.13 also holds when X and Y are compact Kähler
manifolds.

4. Fujita Conjecture type theorems on complex projective
varieties

In this section, we derive Fujita Conjecture type theorems on complex pro-
jective varieties and prove Theorem 1.3, Theorem 1.4, Theorem 1.6 and
Theorem 1.8.

The proof of Theorem 1.3. We show the coherent sheaf KX ⊗ L⊗n ⊗
A⊗ I(ϕ) is 0-regular, and so by Lemma 2.2, it is globally generated. When
0 < q < n, L⊗(n−q) ⊗A is indeed a big line bundle, and we can apply Nadel
vanishing theorem ([42] or [11, Theorem 0.3] or Lemma 3.10),

(4.1) Hq(X,KX ⊗ L⊗(n−q) ⊗A⊗ I(ϕ)) = 0.

When q = n, we need to show

(4.2) Hn(X,KX ⊗A⊗ I(ϕ)) = 0,

which follows from Lemma 3.10 and the assumption nd(A,ϕ) ≥ 1. �
The proof of Theorem 1.4. By Castelnuovo-Mumford regularity (e.g.

Lemma 2.2), we only need to prove KX ⊗ L⊗n ⊗ (E ⊗A) is 0-regular with
respect to L. Hence, it suffices to show

(4.3) Hq(X,KX ⊗ L⊗(n−q) ⊗ (E ⊗A)) = 0 for all q > 0.

For 0 < q < n, we claim that the vector bundle L⊗(n−q) ⊗ (E ⊗A) has
a smooth metric with strictly positive curvature in the sense of Nakano, and
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by Nakano vanishing theorem( Lemma 3.2), we have the desired vanishing
cohomologies. Indeed, since n− q ≥ 1, L⊗(n−q) ⊗A is ample. By Lemma 3.3,
E ⊗ L⊗(n−q) ⊗A is strictly positive in the sense of Nakano.

When q = n, we need to show Hn(X,KX ⊗ E ⊗A) = 0 or equivalently
H0(X,E∗ ⊗A∗) = 0 when E is Nakano semi-positive and A is nef but not
numerically trivial. This is assured by Corollary 3.12.

The case when q > n is obvious and we complete the proof of Theo-
rem 1.4. �

We have the following variant of Theorem 1.4.

Theorem 4.1. Let X be a compact Kähler manifold and L be an ample
and globally generated line bundle. Let (E, h) be a Hermitian holomorphic
vector bundle with Nakano positive curvature. Suppose A to be a nef line
bundle, then the vector bundle

(4.4) KX ⊗ L⊗n ⊗ E ⊗A

is globally generated.

Proof. We use similar ideas as described in the proof of Theorem 1.4. Sup-
pose E is Nakano positive and A is nef, then by Lemma 3.3, the vector
bundle E ⊗A admits a smooth Hermitian metric whose curvature is strictly
positive in the sense of Nakano. In particular, the second Ricci curvature
trωΘE⊗A is strictly positive. We obtain the vanishing cohomology in Theo-
rem 3.5. Finally, one can follow the steps in the proof of Theorem 1.4. �

It is proved in [4, Theorem 1.2] that if E is a semi-ample (resp. ample) vector
bundle, then E ⊗ detE is Nakano semi-positive (resp. Nakano positive).
Hence, by Theorem 1.4 and Theorem 4.1, we get

Corollary 4.2. Let X be a smooth complex projective variety and L be an
ample and globally generated line bundle. Let E be a vector bundle and A be
a line bundle. Suppose either

1) E is semi-ample, A is nef but not numerically trivial; or

2) E is ample and A is nef.

Then the vector bundle

(4.5) KX ⊗ L⊗n ⊗ (E ⊗ detE)⊗A

is globally generated.
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Thanks to Theorem 1.5, one can also get the following variant of Theo-
rem 1.4.

Theorem 4.3. Let (X,ω) be a compact Kähler manifold and L→ X be
an ample and globally generated line bundle. Suppose (A, e−2ϕ) is a pseudo-
effective line bundle and I(ϕ) is the multiplier ideal sheaf. Let E be a Nakano
semi-positive vector bundle. If the numerical dimension nd(A,ϕ) 6= 0, then

KX ⊗ L⊗n ⊗ E ⊗A⊗ I(ϕ)

is globally generated.

The proof of Theorem 1.6. By the assumption, the direct image sheaf of
the relative canonical line bundle f∗(KX/Y ) is indeed a holomorphic vector
bundle. In the literatures, it is known that the vector bundle f∗(KX/Y ) is
weakly positive in suitable sense (e.g. [54, Theorem III], [24, Corollary 5], [33,
Corollary 3.7]). Here, we use a recent fact [4, Theorem 1.2] of Berndtsson
that f∗(KX/Y ) is actually semi-positive in the sense of Nakano. Let E =
f∗(KX/Y )⊗s and so

(4.6) f∗(KX/Y )⊗s ⊗KY ⊗ L⊗n ⊗A = KY ⊗ L⊗n ⊗ (E ⊗A).

According to Lemma 3.3, E is also semi-positive in the sense of Nakano. By
Theorem 1.4, KY ⊗ L⊗n ⊗ (E ⊗A) is globally generated as long as A is nef
but not numerically trivial. The proof of Theorem 1.6 is completed. �

As an application of Theorem 3.13, we have the following slightly general
version of Theorem 1.6 .

Theorem 4.4. Let f : X → Y be a holomorphic submersion between two
smooth complex projective varieties and dimC Y = n. Suppose that L→ Y is
an ample and globally generated line bundle, and (A, e−2ϕ)→ Y be a pseudo-
effective line bundle with nd(A,ϕ) 6= 0. Suppose both E1 and E2 are Nakano
semi-positive, then for any s ≥ 1

(4.7) f∗(KX/Y ⊗ E1)
⊗s ⊗KY ⊗ L⊗n ⊗ E2 ⊗A⊗ I(ϕ)

is globally generated as long as f∗(KX/Y ⊗ E1) is locally free.

The proof of Theorem 1.8. When the family X → S is effectively param-
eterized, Schumacher proved in [49, Theorem 1] that the naturally induced
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Hermitian metric on the relative canonical line bundle KX/S is strictly pos-
itive. By [49, Corollary 2] or [4, Theorem 1.2], we know

(4.8) f∗(K
⊗s
X/S)

is strictly Nakano positive for all s > 1. One can write

(4.9) f∗(K
⊗s
X )⊗ L⊗n ⊗A = f∗(K

⊗s
X/S)⊗KS ⊗ L⊗n ⊗ (K

⊗(s−1)
S ⊗A)

We first observe that the canonical bundle KS is nef. Indeed, by a recent re-
sult in [53, Theorem 1], the compact complex base S is actually (Kobayashi)
hyperbolic. Hence, it contains no rational curve. By using Mori’s cone the-
orem [40], we deduce KS is nef since it is a projective manifold without ra-
tional curve. The global generation of the vector bundle f∗(K

⊗s
X/S)⊗KS ⊗

L⊗n ⊗ (K
⊗(s−1)
S ⊗A) follows from Theorem 4.1 since f∗(K

⊗s
X/S) is Nakano

positive and K
⊗(s−1)
S ⊗A is nef. �

Remark 4.5. On smooth complex projective varieties, we can also derive
globally generation for symmetric powers and wedge powers of vector bun-
dles by using the corresponding vanishing theorems (e.g. [38]).

Acknowledgements

This work was partially supported by China’s Recruitment Program of
Global Experts and NSFC 11688101. It was carried out when the authors
attended the seminar on “Fujita conjecture and related topics ” held at
Math Institute of Chinese Academy of Sciences, and the authors would like
to thank all members of this seminar for stimulating discussions. In partic-
ular, the authors wish to thank Yifei Chen, Baohua Fu and Xiaotao Sun for
some useful suggestions. The second author would like to thank Professor
S.-T. Yau for his advice, support and encouragement. He also thanks Ke-
feng Liu, Valentino Tosatti and Xiangyu Zhou for helpful discussions. The
authors would also like to thank the anonymous referees whose comments
and suggestions helped improve and clarify the paper.

References

[1] U. Angehrn and Y.-T. Siu, Effective freeness and point separation for
adjoint bundles, Invent. Math. 122 (1995), no. 2, 291–308.



i
i

“6-Su” — 2019/12/30 — 21:42 — page 1659 — #21 i
i

i
i

i
i

Global generation and very ampleness 1659

[2] D. Arapura, Frobenius amplitude and strong vanishing theorems for vec-
tor bundles (with an appendix by Dennis S. Keeler), Duke Math. J. 121
(2004), no. 2, 231–267.

[3] A. Bayer, A. Bertram, E. Macri, and Y. Toda, Bridgeland stability con-
ditions of threefolds II: An application to Fujita’s conjecture, J. Alge-
braic Geom. 23 (2014), no. 4, 693–710.

[4] B. Berndtsson, Curvature of vector bundles associated to holomorphic
fibrations, Ann. of Math. (2) 169 (2009), no. 2, 531–560.

[5] J.-Y. Cao, Numerical dimension and a Kawamata-Viehweg-Nadel-type
vanishing theorem on compact Kähler manifolds, Compos. Math. 150
(2014), no. 11, 1869–1902.

[6] O. Debarre, Higher-Dimensional Algebraic Geometry, Springer Sci-
ence& Business Media, (2013).

[7] M. A. de Cataldo, Singular Hermitian metrics on vector bundles, J.
Reine Angew. Math. 502 (1998), 93–122.
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