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We study ends of an oriented, immersed, non-compact, complete
Willmore surfaces, which are critical points of the integral of the
square of the mean curvature, in asymptotically flat spaces of any
dimension; assuming the surface has L2-bounded second funda-
mental form and satisfies a weak power growth on the area. We
give the precise asymptotic behavior of an end of such a surface.
This asymptotic information is very much dependent on the way
the ambient metric decays to the Euclidean one. Our results apply
in particular to minimal surfaces in any codimension.
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1. Introduction

1.1. Setting and main results

Let m ≥ 3 be an integer, and let (M,hM ) be a smooth and complete Rie-
mannian manifold of dimension m. We will suppose that (M,hM ) is asymp-
totically flat, i.e. that there exists a compact set Z ⊂M such that M \ Z
consists of finitely many ends, namely M \ Z =

⋃N
k=1Ek. Each end Ek is dif-

feomorphic to Rm \Bm
rk(0), where Bm

rk(0) ⊂ Rm is the ball of radius rk > 0
centered at the origin. Let fk : Ek → Rm \Bm

rk(0) be this diffeomorphism.

1
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2 Y. Bernard and T. Rivière

Let p denote the asymptotically flat coordinate induced by fk. We require
that the pull-back metric satisfy (for each k)

hαβ(p) :=
((
f−1
k

)∗
hM

)
αβ

(p) = δαβ + bαβ(p),

with1

(1.1) bαβ(p) = O2(|p|−τ ) for some 0 < τ ≤ 1 and for |p| � 1.

We will henceforth assume that M \ Z has only one such end, diffeomorphic,
say, to Rm \Bm

1 (0).
In the literature, the asymptotic behavior of the remainder bαβ(p) is

dictated by the applications which one has in mind. Oftentimes, the metric
is chosen to be a higher-order perturbation of the Schwarzschild metric (a so-
called “strongly asymptotically flat” condition) [Car1, Car2, HY, LMS, Met].
This essentially amounts to choosing τ = 1, along with some radial-only
dependency condition on the leading term of bαβ. This Schwarzschild-type
hypothesis is also related to the proof of the positive mass theorem by Schoen
and Yau [SY], whose first step is an approximation argument of general
asymptotically flat data by means of asymptotically Schwarzschildean ones.
In this paper, we will only be concerned with obtaining information on
the second fundamental form, which is why we only require the asymptotic
behavior of bαβ to hold up to second-order derivatives. In [Hua], where the
existence of a foliation by constant mean curvature spheres is shown, the
author requires the asymptotic decay to satisfy a so-called Regge-Teitelboim
condition, namely (1.1) with 1 ≥ τ > 1/2. The present work is concerned,
in parts, with finding results that hold for the smallest possible value of τ .

We study a certain class of complete non-compact surfaces in (Rm, h),
namely Willmore surfaces, which will be made precise below. Let us point
out that minimal surfaces are Willmore surfaces, so all of our results apply
in particular to complete non-compact minimal surfaces in asymptotically
flat spaces.

Let S be a connected, oriented, non-compact, complete, two-dimensional
surface immersed in (Rm, h). We let ~AhS denote the second fundamental form
of S (this is a normal vector mapping into Rm, hence the arrow notation).

1Throughout this paper, we will use the following standard notation. We write
f(X) = ON (|X|s) to indicate that f (j)(X) = O(|X|s−j) for all integers j ∈ [0, N ].
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Ends of immersed minimal and Willmore surfaces 3

We assume that

(1.2)

∫
S
| ~AhS |2hdµh <∞,

where µh denote the induced measure on S. One can also understand S as
a complete immersed surface into Rm equipped with the Euclidean metric.
Naturally, the corresponding fundamental form ~Ah0

S differs from ~AhS . One
might wonder whether (1.2) holds with the Euclidean metric h0 in place of
h. This is in general false, and an additional hypothesis is needed. Namely,
if the area growth satisfies2

(1.3) H 2
h

(
S ∩Bm

r (p)
)
≤ Θrq, ∀ p ∈ ~ξ(D1(0)),

for some universal constant Θ, and some 0 < q < 2(1 + τ), where τ is as
in (1.1), then indeed

(1.4)

∫
S
| ~Ah0

S |
2
h0
dµh0

<∞.

We will verify that (1.2) and (1.3) together imply (1.4). In turn, a classical
result by Huber [Hub] (see also [Whi]), guarantees that S is of finite topo-
logical type: it is homeomorphic to S̄ \ {a1, . . . , ak}, where S̄ is a compact
surface and {ai}i=1,...,k is a set of points. We will be concerned with un-
derstanding the surface S around one of these points. For this reason, we
suppose there is only such point and we label it 0. Our surface S may thus
be reduced to a connected, oriented, immersed, punctured disk in Rm. The
immersion will be denoted by ~ξ : D1(0) \ {0} → (Rm, h). We will suppose
that ~ξ is a weak immersion [Riv1], that is ~ξ is Lipschitz and its Gauss map
~n~ξ lies in the Sobolev space W 1,2(D1(0)). Moreover, we suppose that

(1.5) ~ξ(Dr(0)) is non-compact ∀ r ∈ (0, 1),

and that

(1.6)

∫
D1(0)

| ~Ah~ξ |
2
hdvol~ξ∗h <∞,

where ~Ah~ξ
is the second fundamental form of ~ξ. We also impose the area

growth condition:

(1.7) H 2
h

(
~ξ(D1(0)) ∩Bm

r (p)
)
≤ Θrq, ∀ p ∈ ~ξ(D1(0)),

2this will be proved in section 1.2.1.
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4 Y. Bernard and T. Rivière

for some q < 2(1 + τ), and τ as is in (1.1).
A sharpened version of Huber’s result due to Stefan Müller and Vladimir

Sverak [MS] will also be useful to obtain some first information about the
asymptotic behavior of the immersion near the branch point located at the
origin of the unit disk. More precisely:

Proposition 1.1. Let ~ξ : D1(0)\{0} → (Rm, h) be a weak immersion into
Euclidean space equipped with the asymptotically flat Riemannian metric h
satisfying (1.1). Suppose that the image of ~ξ is non-compact, complete, has
square-integrable fundamental form (1.6), area growth (1.7), and satisfies
(1.5). Then the immersion is proper, and there exists a reparametrization of
the immersion, still denoted ~ξ, such that ~ξ is conformal. Moreover, for an
integer θ0 ≥ 1, it holds

|~ξ|h(x) ' |x|−θ0 and |∇~ξ|h(x) ' |x|−1−θ0 , |x| � 1.

Here ∇ is the flat gradient with respect to the variable x parametrizing the
unit disk.

Remark 1.1. As we will see, Proposition 1.1 implies that the surface has
quadratic area growth:

H 2
h

(
~ξ(D1(0)) ∩Bm

R (p)
)
≤ ΘR2,

for some universal constant Θ, and for all radii R > 0 and all points p.

The main object of study of this paper are Willmore surfaces, which are
the critical points of the Willmore energy∫

Σ
| ~Hh

~ξ
|2hdvol~ξ∗h.

Clearly, minimal surfaces are Willmore surfaces, so all of our results will
in particular apply to complete non-compact minimal surfaces in asymp-
totically flat space. Being a critical point of the Willmore energy improves
the asymptotic behavior of the immersion ~ξ. Imposing only on the ambient
metric a general decay to the flat metric as given in the condition (1.1), it
is possible to show that the second fundamental form of a Willmore surface
with finite energy and area growth of type (1.7) has certain decay properties,
as stated in the following theorem, which is our first main result.
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Ends of immersed minimal and Willmore surfaces 5

Theorem 1.1. Let the weak Willmore immersion ~ξ : D1(0)\{0} → (Rm, h)
and the metric h be as in Proposition 1.1. Then3

(1.8) | ~Ah~ξ |(p) . |p|
−1, ∀ p ∈ ~ξ(D1(0)) with |p| � 1.

The decay rate given in Theorem 1.1 is unfortunately not sufficient to
guarantee that the tangent cone at infinity is unique. In order to reach such
a result, as well as for reasons pertaining to applications relevant in general
relativity, one must improve (1.8). To this end, it is necessary to impose
further decay on the metric h, and demand that it be “flatter” than the
mere (1.1). In particular, if we suppose that the decay of the metric h is
appropriately synchronized with the asymptotic behavior of ~ξ, it is possible
to improve (1.8). This is the content of the next result.

Theorem 1.2. Let the weak Willmore immersion ~ξ : D1(0)\{0}→(Rm, h),
the metric h, and the integer θ0 ≥ 1 be as in Proposition 1.1, with the addi-
tional assumption that

(1.9) hαβ(p) = δαβ + O2(|p|−τ ) for some τ > 1− 1

θ0
and for |p| � 1.

Then we have for all ε′ > 0:

| ~Ah~ξ |(p) . |p|
−1− 1

θ0
+ε′
, ∀ p ∈ ~ξ(D1(0)) with |p| � 1.

Furthermore, in conformal parametrization, ~ξ has near the origin the asymp-
totic behavior

~ξ(x) = <
(
~ax−θ0 + ~a1x

1−θ0 + ~a2|x|−2θ0x1+θ0
)

(1.10)

+ O2

(
|x|θ0(τ−1)−ε′ + |x|2−θ0−ε′

)
, ∀ ε′ > 0,

where ~a, ~a1, ~a2 are constant vectors in Cm. Here x is to be understood as
x1 + ix2 ∈ D1(0), and ~a = ~aR + i~aI ∈ R2 ⊗ Rm is a nonzero constant vector
satisfying

(1.11) |~aR|h = |~aI |h, 〈~aR,~aI〉h = 0, and π~nh(0)~a = ~0.

Moreover π~nh(0) denotes the projection onto the normal space of ~ξ(D1(0)) at
the point x = 0.

3We use the notation |f | . |g| to indicate that |f | ≤ c|g| for some constant c > 0
irrelevant to our discussion.
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6 Y. Bernard and T. Rivière

Naturally, depending upon the relative sizes of τ and θ0, one or more
terms in the expansion (1.10) are to be absorbed in the most relevant of the
two remainders.

Examples of branched minimal surfaces show that this result is optimal
up to the error ε′ > 0. A remarkable special case of Theorem 1.2 occurs when
the surface under study is an embedding. In that case, it is apparent from
the asymptotics given in Proposition 1.1 that necessarily θ0 = 1, and thus
the synchronisation hypothesis (1.9) holds for any τ > 0. We feel it is worth
rewriting the previous theorem in this special setting.

Corollary 1.1. Let ~ξ : D1(0)\{0}→(Rm, h) be a weak Willmore embedding
into Euclidean space equipped with the asymptotically flat Riemannian met-
ric h satisfying (1.1). Suppose that the image of ~ξ is non-compact, complete,
that it has square-integrable fundamental form (1.6), area growth (1.7), and
that it satisfies (1.5). Then for all ε′ > 0, we have

| ~Ah~ξ |(p) . |p|
−2+ε′ , ∀ p ∈ ~ξ(D1(0)) with |p| � 1.

Furthermore, in conformal parametrization, ~ξ has near the origin of the unit
disk the asymptotic behavior

~ξ(x) = <
(
~ax−1

)
+ O2(|x|−1+τ−ε′), ∀ ε′ > 0,

where ~a is as in (1.11).

Aside from the case θ0 = 1, the synchronized hypothesis (1.9) might
seem somewhat artificial – although, the authors contend, it is decisive – for
it ties together the asymptotic behavior of the ambient metric h to that of
the surface. To obliterate this drawback, it is necessary to assume that the
decay of metric h to the Euclidean metric is yet faster, namely we suppose
that h is asymptotically Schwarzschild:

(1.12) hαβ(p) =
(
1 + c|p|−1

)
δαβ + O2(|p|−1−κ) for |p| � 1,

for some constant c and some κ ∈ (0, 1]. As far the authors know, when
θ0 ≥ 2, it is not possible to significantly improve the asymptotic expansion
(1.10), even under the stronger hypothesis (1.12). However, when θ0 = 1, i.e.
when the surface is embedded, slightly more can be said.



i
i

“1-Bernard” — 2020/3/12 — 11:48 — page 7 — #7 i
i

i
i

i
i

Ends of immersed minimal and Willmore surfaces 7

Theorem 1.3. Let the weak Willmore embedding ~ξ : D1(0)\{0} → (Rm, h)
be as in Proposition 1.1 with θ0 = 1, and let the metric h satisfy (1.12). Then
for all ε′ > 0, near the origin of the unit disk, the conformal parametrization
~ξ has the asymptotic behavior

(1.13) ~ξ(x) = <
(
~ax−1 + ~a1 + ~a2|x|2x−2

)
+ ~c0 log |x|2 + O2(|x|κ−ε′),

where ~a is as in Theorem 1.2, while ~a1, ~a2, and ~c0 are constant vectors in
Cm. The constant vector ~c0 is normal near the origin:

(1.14) π~nh(0)~c0 = ~c0.

If κ < 1 in (1.12), we can choose ε′ = 0 in (1.13).

This holds for Willmore immersions and thus in particular for minimal
immersions. In the latter case, more can actually be obtained since ~ξ is
(nearly) harmonic. Owing to the properties of the vectors ~a and ~c0 given
in (1.11) and (1.14), one can show that the image of ~ξ can be written as a
simple graph over R2 \DR(0), for some large enough R > 0.

Corollary 1.2. Let ~ξ be a minimal embedding into Euclidean space Rm
equipped with a Riemannian metric h satisfying the asymptotically Schwarz-
schild condition (1.12). Suppose that the image of ~ξ is non-compact, com-
plete, has square-integrable fundamental form (1.6), area growth (1.7), and
satisfies (1.5). Then for R large enough, the image of ~ξ can be written as a
graph over R2 \DR(0), namely for all ε′ > 0, it holds:

(1.15) (r, ϕ) 7−→
(
r cosϕ, r sinϕ,~c0 log r + ~a0 + O2(r−κ+ε′)

)
,

in the range ϕ ∈ [0, 2π) and r > R, for some R chosen large enough, and
for some Rm-valued constant vectors ~c0 and ~a0.

If κ < 1 in (1.12), we can choose ε′ = 0 in (1.15).

With this last statement, we recover Alessandro Carlotto’s extension
[Car1, Car2] to complete minimal surfaces in asymptotically Schwarzschild
space of Richard Schoen’s classical result [Sch] about the end of a complete
minimal surface in Euclidean space R3. Our version is more general as it
encompasses minimal surfaces in any codimension. One should also note
that in [Car2], a “geometric” hypothesis on the finiteness of the Morse index
is imposed, whereas in the present work, we require that the surface have
finite total curvature and that it satisfy a weak q-type area growth condition
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(1.7). In both the present work and in [Car2], gaining a quadratic control
on the area growth plays a decisive role.

1.2. Reformulation of the problem

The angle of attack chosen in this paper is as follows. As the metric h
is asymptotically flat and our surface satisfies the area growth condition
(1.7), we will first obtain that the immersion ~ξ has square-integrable second
fundamental form with respect to the standard Euclidean metric on Rm.
A classical result of Müller and Sverak [MS] (see also [Hub]) guarantees
that ~ξ may be reparametrized into an immersion which is conformal with
respect to the flat metric. For notational convenience, we continue to denote
the so-obtained reparametrized immersion by ~ξ. The strategy then consists
in “folding back” the end of the Willmore surface and study the resulting
surface, which is the image of an immersion of the punctured unit disk with
a singularity at the origin. The main problem in this strategy is to guarantee
that the inverted surface satisfies an appropriate variational problem. If the
ambient metric were Euclidean, there would be no major problem. Indeed,
Willmore surfaces are known to remain Willmore surfaces (possibly singular
at a finite set of isolated points) once inverted. This is because inversion in
Rm is a conformal transformation. The presence of the metric h destroys this
argument. However, because h is nearly Euclidean in the “far space”, it is
possible to apply an inversion to the intersection of Rm with the complement
of a large enough ball. The resulting surface satisfies a perturbed Willmore
equation. Using Noether’s theorem and its corresponding conservation laws,
the Willmore equation, which is a-priori a fourth-order system, can be recast
into a second-order larger system with good analytical dispositions. This
technique was originally devised in [Riv1] and made more precise in [Ber2].

1.2.1. Euclidean versus Riemannian descriptions. We can of course
view our immersion ~ξ into (Rm, h) as an immersion into (Rm, h0), where h0

stands for the standard Euclidean metric in Rm. We will respectively denote
by h̃ and by h̃0 the induced metrics ~ξ∗h and ~ξ∗h0. Let us observe once and
for all, that

|~w| ' |~w|h ∀ ~w ∈ Rm.

We write a ' b is to mean that the ratios |a/b| and |b/a| remain bounded
as x approaches the origin of D1(0), i.e. as ~ξ(x) approaches ∞.
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Ends of immersed minimal and Willmore surfaces 9

The goal of this paragraph is to show that the integrability of the second
fundamental form | ~Ah~ξ |

2
h along with the hypothesis (1.7) imply the integra-

bility of | ~Ah0

~ξ
|2, where ~Ah0

~ξ
is the second fundamental form of the immersion

~ξ into (Rm, h0). We begin by inspecting the Gauss maps4:

~nh := ?h
∂x1~ξ ∧ ∂x2~ξ∣∣∂x1~ξ ∧ ∂x2~ξ

∣∣
h

and ~n0 := ?
∂x1~ξ ∧ ∂x2~ξ∣∣∂x1~ξ ∧ ∂x2~ξ

∣∣ .
One verifies that

~nh = ~n0 +

(
|h̃|
|h̃0|
− 1

)
~n0 + |h̃|−1(?h − ?)

(
∂x1~ξ ∧ ∂x2~ξ

)
(1.16)

= ~n0 + O2

(
|~ξ|−τ

)
,

where τ is as in (1.1).
For every choice of a p-vector α and a q-vector β (with p ≥ q), the interior

multiplication h between α and β is implicitly defined through the identity

〈α h β, γ〉h = 〈α, β ∧ γ〉h ∀ (p− q)-vector γ.

As shown in [MR], the normal projection of an arbitrary 1-vector ~w satisfies

π~nh ~w = (−1)m−1~nh h(~nh h ~w).

The projection π~n0
~w is defined mutatis mutandis, only with respect to the

standard Euclidean metric h0 on Rm. With these definitions, it can be ver-
ified without much difficulty that for all ~w, it holds5:∣∣π~nh ~w − π~n0

~w
∣∣ . (|~nh|+ 1

)(
|~nh − ~n0|+ O2

(
|~ξ|−τ

)
|~nh|

)
|~w|(1.17)

= O2

(
|~ξ|−τ

)
|~w|.

We let ∇0 , ∇h̃0 , ∇h , and ∇h̃ respectively denote the covariant deriva-
tives of the flat Euclidean metric on R2, and of the metrics h̃0, h, and h̃. The
corresponding Christoffel symbols Γh̃0 , Γh , and Γh̃ are defined analogously.

4?h and ? are the Hodge-star operators associated respectively with the metrics
h and h0 in Rm.

5further elaborations in codimension 1 are found in [MSc].
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By definition, we have

~Ah0

~ξ
(∂xi~ξ, ∂xj~ξ) = ∇h0

∂xi
~ξ
∂xj~ξ − ∇h̃0

∂xi
~ξ
∂xj~ξ = ∂2

xixj
~ξ − Γh̃0 k

ij∂xk
~ξ;

and thus

~Ah~ξ (∂xi~ξ, ∂xj~ξ) = ∇h
∂xi

~ξ
∂xj~ξ − ∇h̃ ∂xi

~ξ
∂xj~ξ

= ∂2
xixj

~ξ − Γh α
βγ∂xiΞ

β∂xjΞ
γ ~Eα − Γh̃ k

ij∂xk
~ξ

= ~Ah0

~ξ
(∂xi~ξ, ∂xj~ξ)− Γh α

βγ∂xiΞ
β∂xjΞ

γ ~Eα

− Γh̃ k
ij∂xk

~ξ + Γh̃0 k
ij∂xk

~ξ,

where Ξα are the components of ~ξ in a fixed orthonormal basis { ~Eα}α=1,...,m

of Rm. Repeated Greek indices indicate summation over 1 to m, while re-
peated Latin indices indicate summation over 1 and 2. For notational con-
venience, we set

(
~Ah~ξ

)
ij

:= ~Ah~ξ
(∂xi~ξ, ∂xj~ξ). Projecting the latter on the Eu-

clidean normal space spanned by ~n0 shows that

(1.18)
(
~Ah0

~ξ

)
ij
− π~n0

(
~Ah~ξ

)
ij

= Γh α
βγ∂xiΞ

β∂xjΞ
γπ~n0

~Eα.

The asymptotic form of the metric h given by (1.1) implies that

| Γh | = O
(
|~ξ|−1−τ).

It then easily follows from (1.18) that

(1.19)
∣∣ ~Ah0

~ξ

∣∣2 . ∣∣ ~Ah~ξ ∣∣2h + |~ξ|−2−2τ ,

Using that ∣∣∣∣ |h̃|1/2|h̃0|1/2
− 1

∣∣∣∣ = O
(
|~ξ|−τ

)
� 1,

we obtain

(1.20)

∫
D1(0)

∣∣ ~Ah0

~ξ

∣∣2dvolh̃0
.
∫
D1(0)

∣∣ ~Ah~ξ ∣∣2hdvolh̃ +

∫
D1(0)

|~ξ|−2−2τdvolh̃.

The first summand on the right-hand side of (1.20) is bounded by hy-
pothesis (1.6). In light of hypothesis (1.7), we will now investigate the second
summand on the right-hand side of (1.20) and verify that it is bounded.
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Ends of immersed minimal and Willmore surfaces 11

Using that ~ξ(D1(0)) ⊂ Rm \Bm
1 (0), we get

∫
D1(0)

|~ξ|−2−2τdvolh̃ =

∫
~ξ(D1(0))

|~ξ|−2−2τdH 2
h

=
∑
j≥0

∫
~ξ(D1(0))∩(Bm

2j+1 (0)\Bm
2j

(0))
|~ξ|−2−2τdH 2

h

≤
∑
j≥0

2−2(1+τ)jH 2
h

(
~ξ(D1(0)) ∩Bm

2j+1(0)
)
.

The q-type area growth given in (1.3) then gives

(1.21)

∫
D1(0)

|~ξ|−2−2τdvol~ξ∗h . 2q
∑
j≥0

2(q−2−2τ)j <∞.

This guarantees that the second summand on the right-hand side of (1.20)
is bounded, and thus that ~ξ has square-integrable second fundamental form
as an immersion into the flat Euclidean space (Rm, h0). Moreover, by hy-
pothesis, we know that ~ξ is complete with ~ξ(Dr(0)) being non-compact for
all r > 0. We may now call upon the result in [MS] to infer that ~ξ may
be reparametrized into a proper conformal immersion of the unit disk into
(Rm, h0). This reparametrization will simply be denoted ~ξ, for convenience.
Moreover, as shown in [MS], there exists an integer θ0 ≥ 1 such that:

(1.22) |~ξ|(x) ' |x|−θ0 and |∇~ξ|(x) ' |x|−θ0−1, |x| � 1,

where, as before and throughout this paper, ∇ denotes the flat gradient with
respect to the variable x parametrizing the unit disk.

Remark 1.2. From the work of Müller and Sverak [MS], more is known
about the conformal factor eσ. Namely,

eσ(x) = eσ0 |x|−θ0−1 + o
(
|x|−θ0−1

)
,

where σ0 is a finite number. Hence, in particular,

|~ξ|2(x) = eσ0 |x|−θ0 + o
(
|x|−θ0

)
.
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Let R > 1 be sufficiently large, and let rR be such that rθ0R := σ0/R. Note
that (1.22) yields∫
{x∈D1(0) | |~ξ|2(x)≤R}

|∇~ξ|2(x)dx =
(
1 + o(1)

) ∫
D1(0)\DrR (0)

|∇~ξ|2(x)dx

'
∫
D1(0)\DrR (0)

|x|−2θ0−2dx ' r−2θ0
R ' R2.

Since the quantity on the left-hand side of the latter is the area of the surface
~ξ(D1(0)) restricted to the ball Bm

R (0), we obtain the quadratic area growth:

H 2
(
~ξ(D1(0)) ∩Bm

R (0)
)
. R2,

up to an irrelevant multiplicative constant. Naturally, choosing R large
enough and calling upon the fact that the ambient metric h is nearly flat
at infinity, we deduce

(1.23) H 2
h

(
~ξ(D1(0)) ∩Bm

R (0)
)
. R2 for R� 1.

1.2.2. Folding back the surface. Let I denote the inversion in Rm
about the origin, namely I(p) =

p

|p|2
=: y. One easily verifies that

(1.24) gαβ(y) := |y|4(I∗h)αβ(y) = δαβ + O2(|y|τ ), |y| � 1,

where τ is as in (1.1).
We let ~Ψ := I ◦ ~ξ : D1(0)→ (Bm

1 (0), g). It is readily seen that ~Ψ is con-
formal with respect to the flat metric on Rm, since ~ξ is as well (cf. previous
subsection). Also,

~Ψ(D1(0)) has finite area and ~Ψ(0) = ~0.

We have shown in the previous section that∫
D1(0)

∣∣ ~Ah0

~ξ

∣∣2dvol~ξ∗h0
<∞.

Owing to the conformal invariance of the Willmore energy, we obtain without
difficulty6 that ∫

D1(0)

∣∣ ~Ah0

~Ψ

∣∣2dvol~Ψ∗h0
<∞.

6see the proof of Theorem 1.1 in [KS].
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This and (1.24) are then used mutatis mutandis equation (1.20) to find

∫
D1(0)

∣∣ ~Ag~Ψ∣∣2dvol~Ψ∗g .
∫
D1(0)

∣∣ ~Ah0

~Ψ

∣∣2
h
dvol~Ψ∗h0

+

∫
D1(0)

|~Ψ|−2+2τdvol~Ψ∗g

. 1 +

∫
D1(0)

|~Ψ|−2+2τdvol~Ψ∗g.

The second summand on the right-hand side is bounded, thanks to (1.21):

(1.25)

∫
D1(0)

|~Ψ|−2+2τdvol~Ψ∗g =

∫
D1(0)

|~ξ|−2−2τdvol~ξ∗h <∞.

Accordingly,

(1.26)

∫
D1(0)

∣∣ ~Ag~Ψ∣∣2dvol~Ψ∗g <∞.

Next, we have

∫
D1(0)

∣∣ ~Hg
~Ψ

∣∣2
g
dvol~Ψ∗g =

∫
D1(0)

∣∣ ~HI∗g
~ξ

∣∣2
I∗g
dvol~ξ∗(I∗g)(1.27)

=

∫
D1(0)

∣∣ ~H |p|−4h
~ξ

∣∣2
|p|−4h

dvol~ξ∗(|p|−4h)
.

It is shown in [Wei] that

Λ(~ζ, k) :=

∫
S

[∣∣ ~Hk
~ζ

∣∣2
k

+K
k
(T~ζ)

]
dvol~ζ∗k +

∫
∂S
κkdSk

is an invariant quantity under conformal changes of the metric of N . In
this generically written expression, ~ζ : S → (N, k) is an immersion of a two-
dimensional surface S into a Riemannian manifold equipped with the metric
k. The sectional curvature of the ambient manifold (N, k) computed on

the tangent space of ~ζ(S) is denoted by K
k
(T~ζ), while κk is the geodesic

curvature of ∂S, and dSk is the induced measure on ∂S.
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Using (1.27), we thus find∫
D1(0)

∣∣ ~Hh
~ξ

∣∣2
h
dvol~ξ∗h = Λ(~ξ, h)−

∫
D1(0)

K
h
(T ~ξ)dvol~ξ∗h −

∫
∂D1(0)

κhdSh

= Λ(~ξ, |p|−4h)−
∫
D1(0)

K
h
(T ~ξ)dvol~ξ∗h −

∫
∂D1(0)

κhdSh

=

∫
D1(0)

∣∣ ~H |p|−4h
~ξ

∣∣2
|p|−4h

dvol~ξ∗(|p|−4h)
+

∫
D1(0)

K
|p|−4h

(T ~ξ)dvol~ξ∗(|p|−4h)

−
∫
D1(0)

K
h
(T ~ξ)dvol~ξ∗h +

∫
∂D1(0)

κ|p|−4hdS|p|−4h −
∫
∂D1(0)

κhdSh

=

∫
D1(0)

∣∣ ~Hg
~Ψ

∣∣2
g
dvol~Ψ∗g +

∫
D1(0)

K
|p|−4h

(T ~ξ)dvol~ξ∗(|p|−4h)

−
∫
D1(0)

K
h
(T ~ξ)dvol~ξ∗h +

∫
∂D1(0)

κ|p|−4hdS|p|−4h −
∫
∂D1(0)

κhdSh.

A well-known identity states that

K
|p|−4h

(T ~ξ)dvol~ξ∗(|p|−4h)
−Kh

(T ~ξ)dvol~ξ∗h =
(
∆~ξ∗h

log |p|2
)
dvol~ξ∗h.

Thus we find∫
D1(0)

∣∣ ~Hg
~Ψ

∣∣2
g
dvol~Ψ∗g =

∫
D1(0)

∣∣ ~Hh
~ξ

∣∣2
h
dvol~ξ∗h −

∫
D1(0)

∆~ξ∗h
log |~ξ|2dvol~ξ∗h

−
∫
∂D1(0)

κ|p|−4hdS|p|−4h +

∫
∂D1(0)

κhdSh.(1.28)

The last three summands are boundary integrals. Because we will only be
concerned with local results, we may safely ignore them from our variational
analysis. As ~ξ is by hypothesis a weak Willmore immersion on D1(0) \ {0},
it follows that ~Ψ is likewise weak Willmore on D1(0) \ {0}. Indeed, from the
result in [MR], we know that ~ξ is smooth away from the origin. Accordingly,
~Ψ is also smooth7 on D1(0) \ {0}. Now consider a variation of the type

~ξt = ~ξ + t ~F

for t ∈ [0, 1] and ~F ∈ C∞0 (D1(0) \ {0}). A simple calculation shows that

~Ψt := |~ξt|−2~ξt = |~ξ|−2~ξ + t
(
|~ξ|−2 ~F − 2|~ξ|−4(~F · ~ξ)~ξ

)
+ o(t) =: ~Ψ + t ~G+ o(t),

7since ~ξ(0) =∞, we can indeed suppose that |~ξ| > 0 in a neighborhood of the
origin.
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where the function ~G is clearly smooth and compactly supported on D1(0) \
{0}. Thus to every compactly supported smooth variation of ~ξ onD1(0) \ {0}
corresponds a compactly supported smooth variation of ~Ψ on D1(0) \ {0}
and vice-versa. Accordingly, ~Ψ is Willmore outside of the origin if and only
if ~ξ is.

We will henceforth suppose that

~Ψ ∈ C∞(D1(0) \ {0}) ∩ C0(D1(0)).

Singular Willmore immersions in Euclidean space were studied at length
in [BR]. The occurrence of the nearly-flat metric g in the present paper
will naturally give rise to a perturbed Willmore equation, and our work
will consist mainly in showing that this perturbation can be handled to
produce results akin to those in [BR]. Analyzing a specific class of singular
perturbed Willmore immersions (so-called conformally constrained Willmore
immersions) was done in [Ber1]. On the other hand, the Willmore equation
in the Riemannian setting was derived in [MR]. Combining the tools and
ideas developed in these articles is our strategy.

1.2.3. Quasiconformality of the immersion ~Ψ: proof of Proposition
1.1. We have seen that the immersion is conformal with respect to the
Euclidean metric on Rm. In particular, from (1.22), we have

(1.29) |~Ψ|(x) ' |x|θ0 and (g̃0)ij := ∂xi ~Ψ · ∂xj ~Ψ ' |x|2(θ0−1)δij , |x| � 1,

where as before θ0 ≥ 1 is an integer. Because the metric g is only nearly
Euclidean, namely

(1.30) gαβ(y) = δαβ + O2(|y|τ ), |y| � 1,

for some τ > 0, we cannot expect the induced metric g̃ := ~Ψ∗g to be confor-
mal. At best, it is quasiconformal. The goal of this section is to produce an
orthonormal basis of vectors for g̃ and obtain information about it.

We start by defining the quantities

σ :=
1

4

[
g̃11 + g̃22 + 2

(
g̃11g̃22 − g̃2

12

)1/2]
and

µ :=
1

σ

[
g̃11 − g̃22 + 2ig̃12

]
.
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Setting z := x1 + ix2 and z̄ := x1 − ix2, one easily verifies that

g̃ = σ
∣∣dz + µdz̄

∣∣2.
Upon letting w ∈W 1,2(D1(0),C) satisfy the Beltrami equation

∂z̄w = µ∂zw,

we arrive at the conformal representation

g̃ =
σ

∂zw
|dw|2.

Note that

(1.31) g̃ij = e2ν
(
δij + O2

(
|~Ψ|τ

)
Iij
)
,

where Iij = 1 for all i and j. Here ν denotes the conformal parameter of the

pull-back of the Euclidean metric by ~Ψ. In particular, eν ' |x|θ0−1. Hence,

|x|−2(θ0−1)σ = 1 + O2

(
|~Ψ|τ

)
and µ = O2

(
|~Ψ|τ

)
.

An exact expression for µ shall not be necessary for our purposes. Let µ̃ := µ
on D1(0) and µ̃ := 0 on C \D1(0). Consider the Beltrami problem on C:

(1.32) ∂z̄f = µ̃∂zf.

As |µ̃| < 1, it is known [AIM, Boj] that there exists a solution with f(0) = 0,
which is a homeomorphism of C, and moreover

(1.33)
∥∥∂zf − 1

∥∥
Lp(C)

+
∥∥∂z̄f∥∥Lp(C)

<∞, for some p > 2.

More can be said. Indeed, we have
(1.34)

|∇µ̃| . |~Ψ|−1+τ |∇~Ψ| ' |x|τθ0−1 ∈ L2+η0(D1(0)), where η0 <
2τθ0

1− τθ0
,

where we have used (1.29). Naturally, if τθ0 > 1, we set η0 =∞. As the
gradient of the solution of the Beltrami equation inherits the regularity of
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Ends of immersed minimal and Willmore surfaces 17

the coefficients (see [CMO]), it follows that

f ∈W 2,2+η0 ⊂ C1,a ∀ a < τθ0.

Accordingly, for some (irrelevant) nonzero constant c ∈ C, there holds

f(z) =
z

c
+ O1(|z|1+a).

Naturally, f is invertible on D1(0) and

(1.35) f−1(w) = cw + O1(|w|1+a).

The map ~Φ(w) := (~Ψ ◦ f−1)(w) is a continuous immersion of the unit
disk, which lies in W 1,∞ ∩W 2,2. By construction, we have that ~Φ(w) is
conformal with respect to the metric g:

gαβ∂uiΦ
α∂ujΦ

β = e2λδij ,

where λ is the conformal parameter and u1 + iu2 := w. Now we find

2e2λ(w) = |∂w~Φ|2g = |∂z~Φ|2g|∂wz|(1.36)

= |∂z~Ψ|2g
(
c+ O(|w|a)

)
= |∂z~Φ|2

(
c+ O(|w|a)

)(
1 + O(|~Φ|τ )

)
= 2e2ν(w)

(
c+ O(|w|a)

)(
1 + O(|w|τθ0)

)
= 2e2ν(w)

(
c+ O(|w|a)

)
.

For our discussion, we will need a result which describes more precisely
the behavior of the conformal parameter λ.

Lemma 1.1. Suppose that eλ ~Ah0

~Φ
lies in Lq(D1(0)) for some q ∈ (2, 4].

Then

eλ(w) = |w|θ0−1
(
a0 + O(|w|β)

)
,

for some nonzero constant a0 and β < min

{
τθ0,

q − 2

2

}
.

Proof. By hypothesis,

‖eλ ~Ah0

~Φ
‖L2(Dr(y)) . r

1− 2

q ∀ Dr(y) ⊂ D1(0).

As the L2-norm of the second fundamental form is invariant under repara-
metrization, and as λ ' ν, we have that

(1.37) ‖eν ~Ah0

~Ψ
‖L2(Dr(y)) . r

1− 2

q .
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It is proved in [MS], that the conformal parameter ν of ~Ψ satisfies

(1.38) ν(w) = (θ0 − 1) log |w|+ U(w),

where U is solution of the Liouville equation

∆U = e2νK~Ψ on D1(0),

and K~Ψ is the Gauss curvature. Owing to (1.37), we thus have

‖∆U‖L1(Dr(y)) . r
2− 4

q .

so that

sup
r>0

r−2+ 4

q ‖∆U‖L1(Dr(y)) <∞.

Moreover, it is clear that ∆U is integrable on D1(0). We may then use
Proposition 3.2 from [Ad] to deduce that

1

|y|
∗∆U ∈ Ls,∞(D1(0)) for s :=

4

4− q
,

and thus that

U ∈W 1,b(D1(0)) ∀ b < 4

4− q
.

In particular, we have

|U(w)− U(0)| . |w|β0 , ∀ β0 <
q − 2

2
.

Put into (1.38), the latter yields

eν(w) = |w|θ0−1
(
c0 + O(|w|β0

)
),

for some nonzero constant c0. Finally, with (1.36), we find the desired

eλ(w) = |w|θ0−1
(
a0 + O(|w|β)

)
,

for some nonzero constant a0 and β < min{θ0τ, β0}. �

We will henceforth in this paper only deal with the immersion ~Φ and the
coordinate chart {u1, u2} on the unit-disk. However, for notational ease, we
will denote the coordinates by {x1, x2}. From the way it was constructed, it
is clear that ~Φ is a conformal immersion for the metric g, and that it lies in
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the space W 1,∞. It is continuous at the origin with ~Φ(0) = ~0. Its conformal
factor eλ is comparable to |x|θ0−1. Its second fundamental form (understood
with respect to the metric g or to the flat metric) is bounded in L2. Of
course, because this “new” immersion is merely a reparametrized version of
its “old” self, it continues to be a critical point of the Willmore energy.

We shall not prove directly Theorem 1.1, Theorem 1.2, and Theorem
1.3 as they are stated in Section I.1. We will instead prove the following
counterpart versions, from which the statements given in Section I.1 easily
ensue. We will suppose that the ambient metric g satisfies

(1.39) gαβ(y) = δαβ + O2(|y|τ ), |y| � 1,

for some τ > 0 as in (1.1). The conformal immersion ~Φ is a critical point of
the Willmore functional and it satisfies

~Φ ∈ C∞(D1(0) \ {0}) ∩ C0(D1(0)), ~Φ(0) = ~0,(1.40) ∫
D1(0)

| ~Ag~Φ|
2
gdvol~Φ∗g <∞.

Moreover, its conformal parameter satisfies for some integer θ0 ≥ 1:

(1.41) eλ(x) ' |x|θ0−1.

Theorem 1.4. Let the conformal Willmore immersion ~Φ : D1(0)\{0} →
(Rm, g), the metric g, and the integer θ0 ≥ 1 be as in (1.39)-(1.41). Then

| ~Ag~Φ|(y) . |y|−1, ∀ y ∈ ~Φ(D1(0) \ {0}) with |y| � 1.

Theorem 1.5. Let the Willmore conformal immersion ~Φ : D1(0)\{0} →
(Rm, g), the metric g, and the integer θ0 ≥ 1 be as in (1.39)-(1.41), with the
additional assumption that

gαβ(y) = δαβ + O2

(
|y|τ
)

for some τ > 1− 1

θ0
and for |y| � 1.

Then for all ε′ > 0, we have

| ~Ag~Φ|(y) . |y|−1+ 1

θ0
−ε′
, ∀ y ∈ ~Φ(D1(0)) with |y| � 1.
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Furthermore, in parametrization, ~Φ has near the origin the asymptotic be-
havior

~Φ(x) = <
(
~Bxθ0 + ~B1x

θ0+1 + ~B2|x|2θ0x1−θ0)(1.42)

+ O2

(
|x|θ0(τ+1)−ε′ + |x|θ0+2−ε′), ∀ ε′ > 0,

where ~B, ~B1, and ~B2 are constant vectors in Cm. Here, x is to be understood
as x1 + ix2 ∈ C, and ~B = ~BR + i ~BI ∈ R2m is a nonzero constant vector sat-
isfying

| ~BR|g = | ~BI |g, 〈 ~BR, ~BI〉g = 0, and π~ng(0)
~B = ~0.

Here, π~ng(0) denotes the projection onto the normal space of ~Φ(D1(0)) at the
point x = 0.

The mean curvature vector has the expansion

(1.43) ~Hg
~Φ

(x) = −2~γ0 log |x|+ <
(
~E0x

1−θ0)+ O
(
|x|2−θ0−ε′

)
∀ ε′ > 0,

where ~γ0 ∈ Rm and ~E0 ∈ Cm are constant vectors.
Naturally, depending upon the relative sizes of θ0 and τ , one or more

summands in the expansions (1.42) and (1.43) are to be absorbed in the
remainder.

Finally, the pendant of Theorem 1.3, namely embeddings (i.e. θ0 = 1) in
asymptotically Schwarzschild spaces, reads:

Theorem 1.6. Let the Willmore conformal embedding ~Φ : D1(0)\{0} →
(Rm, g) satisfy (1.40) and let the metric g be such that

(1.44) gαβ(y) =
(
1 + c|y|

)
δij + O2(|y|1+κ), |y| � 1,

for some 0 < κ ≤ 1 and some constant c. Then for all ε′ > 0, we have

| ~Ag~Φ|(y) . |y|κ−ε′ , ∀ y ∈ ~Φ(D1(0)) with |y| � 1.

Furthermore, in parametrization, ~Φ has near the origin the asymptotic be-
havior

(1.45) ~Φ(x) = <
(
~Bx+ ~B1x

2
)

+ ~C0|x|2
(

log |x|2 − C1

)
+ O2

(
|x|κ+2−ε′),
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where ~B is as in Theorem 1.5, while ~B1 ∈ Cm, C1 ∈ R are constant, and ~C0

is a constant vector in Cm with

πTg(0)
~C0 = ~0.

If κ < 1 in (1.44), we can choose ε′ = 0 in (1.45).
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2. Proofs of the Theorems

2.1. The Willmore equation

As is shown in [MR], a conformal immersion ~Φ (with conformal factor λ) in
a Riemannian space (Rm, g), which is a critical point of the Willmore energy∫
| ~Hg

~Φ
|2gdvol~Φ∗g satisfies the following partial differential equation:

(2.1) Dg ∗( Dg ~Hg
~Φ
− 2π~ng D

g ~Hg
~Φ

+ | ~Hg
~Φ
|2g∇~Φ

)
− e2λ

(
R̃( ~Hg

~Φ
)−R⊥~Φ(T ~Φ)

)
= ~0,

where Dg and Dg ∗ are respectively the covariant gradient and divergence
corresponding to the metric g, namely

Dg ~f :=
(
∇g ∂x1 ~Φ

~f, ∇g ∂x2 ~Φ
~f
)

and Dg ∗(~u,~v) := ∇g ∂x1 ~Φ
~u+ ∇g ∂x2 ~Φ

~v.

As before, ∇g is the covariant derivative associated with the metric g, while
∇ stands for the flat gradient: ∇~f := (∂x1 ~f, ∂x2 ~f). The other two terms
appearing in the variation of the Willmore energy are defined as follows.

(2.2)

e2λR̃( ~Hg
~Φ

) = −π~ng
[∑

j=1,2 Riemg( ~Hg
~Φ
, ∂xj ~Φ)∂xj ~Φ

]
e2λR⊥~Φ

(T ~Φ) =
[
πTg
(
Riemg(∂x1~Φ, ∂x2~Φ) ~Hg

~Φ

)]⊥
,

where π~ng and πTg denote respectively the projection onto the normal and

onto the tangent space of ~Φ. The operator ⊥ is intrinsically defined as

~X⊥ := (~Φ∗) ◦ ?g ◦ (~Φ∗)
−1( ~X) for ~X ∈ ~Φ∗(TD1(0)),
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where ~Φ∗ is the push-forward of ~Φ, and ?g is the Hodge-star operator cor-
responding to the metric g.

Naturally, to us, the equation (2.1) will only hold on D1(0)\{0}. The
goal will be to understand how ~Hg

~Φ
(x) and ~Φ(x) behave near the origin

x = 0.

2.1.1. The asymptotically flat case and proof of Theorem 1.4. As
before, we suppose that the metric g satisfies (1.39). The components of the
Riemann tensor of the metric g computed on the surface parametrized by
~Φ satisfy

Riemg(~u,~v)~w = O
(
|~Φ|−2+τ |~u||~v||~w|

)
∀ ~u, ~v, ~w.

Hence (2.2) and (2.1) give

Dg ∗( Dg ~Hg
~Φ
− 2π~ng D

g ~Hg
~Φ

+ | ~Hg
~Φ
|2g∇~Φ

)
= O

(
|~Φ|−2+τ |∇~Φ|2| ~Hg

~Φ
|
)

(2.3)

on D1(0) \ {0}.

Using once more the hypothesis on the metric g, we also verify that

Dg
∂xj

~Φ
~f := ∂xj ~f + Γg α

βγ∂xjΦ
βfγ ~Eα = ∂xj ~f + O

(
|~Φ|−1+τ |∇~Φ||~f |

)
holds for all ~f . In this expression, Γg α

βγ are the Christoffel symbols of the

metric g, while Φβ and fγ are respectively the components of ~Φ and of ~f
in a fixed basis { ~Eα}α=1,...,m of Rm. Introducing this information into (2.3)
gives now the following equation holding on the punctured unit disk:

div
(
∇ ~Hg

~Φ
− 2π~ng∇ ~H

g
~Φ

+ | ~Hg
~Φ
|2∇~Φ + ~w1

)
(2.4)

= ~w2 − ~Eα
∑
j=1,2

Γg α
βγ∂xjΦ

β
(
∂xj ~H

g
~Φ
− 2πTg∂xj ~H

g
~Φ

)γ
,

where

(2.5)

{
~w1 = O

(
|~Φ|−1+τ |∇~Φ|| ~Hg

~Φ
|
)

~w2 = O
(
|~Φ|−1+τ |∇~Φ|2| ~Hg

~Φ
|2 + |~Φ|−2+τ |∇~Φ|2| ~Hg

~Φ
|
)
.

Note that we have used the simple fact that πTg = id− π~ng .



i
i

“1-Bernard” — 2020/3/12 — 11:48 — page 23 — #23 i
i

i
i

i
i

Ends of immersed minimal and Willmore surfaces 23

One checks that

πTg D
g

∂xj
~Φ
~Hg
~Φ

= −
∑
k=1,2

〈
~Hg
~Φ
,
(
~Ag~Φ

)
jk

〉
g
∂k~Φ,

whence ∣∣πTg∂xj ~Hg
~Φ

∣∣ . |∇~Φ|| ~Hg
~Φ
|| ~Ag~Φ|+ | Γg ||∇~Φ|| ~Hg

~Φ
|(2.6)

= O
(
|∇~Φ|| ~Hg

~Φ
|| ~Ag~Φ|+ |

~Φ|−1+τ |∇~Φ|| ~Hg
~Φ
|
)
.

On the other hand, we have∑
j=1,2

Γg α
βγ∂xjΦ

β
(
∂xj ~H

g
~Φ

)γ ~Eα(2.7)

= div
(

Γg α
βγ∇Φβ( ~Hg

~Φ
)γ ~Eα

)
−
(
∇ Γg α

βγ · ∇Φβ + Γg α
βγ∆Φβ

)
( ~Hg

~Φ
)γ ~Eα.

As was done in section 1.2.1, we have

(2.8) ~Ag~Φ
(∂xi~Φ, ∂xj ~Φ) = ∂2

xixj
~Φ− Γg α

βγ∂xiΦ
β∂xjΦ

γ ~Eα − Γg̃ k
ij∂xk

~Φ.

Since g̃ij = e2λδij , we contract this identity and use the well-known fact that
for a conformal metric g̃ij

(
Γg̃ k
ij

)
= 0, to find

(2.9) 2e2λ ~Hg
~Φ

= ∆~Φ + O
(
| Γg ||∇~Φ|2

)
= ∆~Φ + O

(
|~Φ|τ−1|∇~Φ|2

)
,

where ∆ is simply the flat Laplace operator, and we have used the previously
encountered fact that Γg = O(|~Φ|τ−1). Brought into (2.7), this information
yields ∣∣∣∣ ∑

j=1,2

Γg α
βγ∂xjΦ

β
(
∂xj ~H

g
~Φ

)γ ~Eα − div
(

Γg α
βγ∇Φβ( ~Hg

~Φ
)γ ~Eα

)∣∣∣∣
= O

(
|~Φ|−2+τ |∇~Φ|2| ~Hg

~Φ
|+ |~Φ|−1+τ |∇~Φ|2| ~Hg

~Φ
|2
)
,

where we have used that |∇ Γg | = O(|~Φ|−2+τ |∇~Φ|). Introducing the latter
and (2.6) into (2.4)-(2.5) gives the following equation which holds on the
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punctured unit disk:

div
(
∇ ~Hg

~Φ
− 2π~ng∇ ~H

g
~Φ

+ | ~Hg
~Φ
|2∇~Φ + ~u1

)
= ~u2,

where {
~u1 = O

(
|~Φ|−1+τ |∇~Φ|| ~Hg

~Φ
|
)

~u2 = O
(
|~Φ|−1+τ |∇~Φ|2| ~Hg

~Φ
|2 + |~Φ|−2+τ |∇~Φ|2| ~Hg

~Φ
|
)
.

Since, as seen in section 1.2.3, it holds near the origin that

|~Φ|(x) ' |x|θ0 and |∇~Φ|(x) ' |x|θ0−1,

the problem which we are considering is

(2.10) div
(
∇ ~Hg

~Φ
− 2π~ng∇ ~H

g
~Φ

+ | ~Hg
~Φ
|2∇~Φ + ~u1

)
= ~u2 on D1(0) \ {0},

with

(2.11)

{
~u1 = O

(
|x|θ0(τ−1)|∇~Φ|| ~Hg

~Φ
|
)

~u2 = O
(
|x|θ0(τ−1)|∇~Φ|2| ~Hg

~Φ
|2 + |x|θ0(τ−2)|∇~Φ|2| ~Hg

~Φ
|
)
.

Mutatis mutandis in (1.16), we have

∇~ng = ∇~n0 + O
(
|~Φ|−1+τ |∇~Φ|

)
.

We have already seen in (1.25) that |~Φ|−1+τ |∇~Φ| belongs to L2(D1(0)). In
addition, one easily checks that∫

D1(0)
|∇~n0|2dx =

∫
D1(0)

| ~Ah0

~Φ
|2dvol~Φ∗h0

<∞.

Recall that h0 stands for the standard Euclidean metric on Rm.
Thus, owing to (1.16), there holds easily

∇
(
?g~ng − ?~n0

)
= O

(
|~Φ|τ |∇~ng|+ |~Φ|−1+τ |∇~Φ||~ng|

)
∈ L2(D1(0)).

Hence

‖∇(?g~ng)‖L2(D1(0)) <∞.

We are only interested in local results around the origin of the punctured
disk. Rescaling the domain if necessary, we may and will assume that for
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some ε0 > 0 chosen as small as we deem useful, it holds

(2.12)

∫
D1(0)

|∇(?g~ng)|2dx+

∫
D1(0)

|∇~ng|2dx < ε0,

without any loss on the quantitative equation (2.10) or on the qualitative
hypotheses (2.11). We will now prove Theorem 1.4. To this end, we define

(2.13) δ(r) := r‖eλ ~Hg
~Φ
‖L∞(∂Dr(0)),

and we prove the following lemma.

Lemma 2.1. There holds

lim
r→0

δ(r) = 0 and

∫ 1/2

0
δ2(r)

dr

r
<∞.

Proof. The argument relies on a so-called ε-regularity estimate for equations
of the type (2.10) under the hypothesis (2.12). In [BWW], it is proved that

(2.14) s‖eλ ~Hg
~Φ
‖L∞(Ds) ≤ C0M(D2s)

hold for any flat disk D2s ⊂ D1(0) \ {0}, where C0 is a universal constant,
and where

(2.15) M(D2s) = s
3

2 ‖eλ~u1‖L4(D2s) + s2‖eλ~u2‖L2(D2s) + ‖∇~ng‖L2(D2s).

Let r ∈ (0, 1/2). Clearly, there exists a finite number of points xj ∈ ∂Dr(0)
and a positive constant c < 1/4 such that

∂Dr(0) ⊂
N⋃
j=1

Dcr(xj) and D2cr(xj) ⊂ D2r(0) \Dr/2(0).

For some point xj ∈ ∂Dr(0), we have

r
3

2 ‖eλ~u1‖L4(D2cr(xj)) . r
θ0τ+ 1

2

∥∥eλ ~Hg
~Φ

∥∥
L4(D2cr(xj))

(2.16)

. rθ0τ+1‖eλ ~Hg
~Φ
‖L∞(D2cr(xj)).
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On the other hand, using (2.11), we find

r2‖eλ~u2‖L2(D2cr(xj)) . r
θ0τ+1

∥∥eλ ~Hg
~Φ

∥∥2

L4(D2cr(xj))
+ rθ0τ

∥∥eλ ~Hg
~Φ

∥∥
L2(D2cr(xj))

. rθ0τ+1‖eλ ~Hg
~Φ
‖L∞(D2cr(xj))‖∇~ng‖L2(D2cr(xj))

+ rθ0τ‖∇~ng‖L2(D2cr(xj)).(2.17)

As all quantities involved are assumed to be smooth away from the singu-
larity, we can invoke the estimate (2.14) and use (2.16) and (2.17) to find8

(2.18) r‖eλ ~Hg
~Φ
‖L∞(Dcr(xj)) . r

θ0τ+1‖eλ ~Hg
~Φ
‖L∞(D2cr(xj)) + ‖∇~ng‖L2(D2cr(xj)).

From the latter it is not hard to deduce that

(2.19) lim
r↘0

r‖eλ ~Hg
~Φ
‖L∞(Dcr(xj)) = 0 ∀ xj ∈ ∂Dr(0).

Inserting this information in (2.16) and (2.17) and using (2.15) gives

M(D2cr(xj)) . r
θ0τ + ‖∇~ng‖L2(D2cr(xj))(2.20)

. rθ0τ + ‖∇~ng‖L2(D2r(0)\Dr/2(0)).

Using (2.14) then yields that for some point xj , we have

δ(r) := r‖eλ ~Hg
~Φ
‖L∞(∂Dr(0) . r‖eλ ~H

g
~Φ
‖L∞(Dcr(xj)) .M(D2cr(xj))

. rθ0τ + ‖∇~ng‖L2(D2r(0)\Dr/2(0)).

From this it easily follows that

lim
r↘0

δ(r) = 0.

Moreover, we have

r−1δ2(r) . r2θ0τ−1 + r−1‖∇~ng‖2L2(D2r(0)\Dr/2(0)),

whence, using Fubini’s theorem,∫ 1/2

0
r−1δ2(r)dr . 1 + ‖∇~ng‖2L2(D1(0)) <∞,

as announced. �

8recall that ∇~ng lies in L2.
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With the same notation as in the previous lemma, it is also shown in
[BWW] that

s‖eλ ~Ag~Φ‖L∞(Ds) ≤ C0(M(D2s) + 1)2

holds for all disks D2s ⊂ D1(0) \ {0}, for some universal constant C0. Pro-
ceeding as in the proof of the lemma and using (2.20), we obtain

r‖eλ ~Ag~Φ‖L∞(∂Dr(0) . 1 + rθ0τ + ‖∇~ng‖L2(D2r(0)\Dr/2(0)) . 1,

so that

| ~Ag~Φ|(x) . |x|−θ0 ∀ x ∈ ~Φ(D1(0) \ {0}) with |x| � 1.

Since |y| := |~Φ|(x) ' |x|θ0 , the latter yields the result of Theorem 1.4, namely

| ~Ag~Φ|(y) . |y|−1 ∀ y ∈ ~Φ(D1(0) \ {0}) with |y| � 1.

2.1.2. The asymptotically synchronized case and the proof of The-
orem 1.5. Throughout this section, we will suppose that τ is related to
the integer θ0 in such a way that τ > 1− 1/θ0.

Let us rewrite (2.10) in the equivalent form

div
(
−∇ ~Hg

~Φ
+ 2πTg∇ ~H

g
~Φ

+ | ~Hg
~Φ
|2∇~Φ + ~u1) = ~u2 on D1(0) \ {0}.

Using Lemma 2.1, it is not difficult to verify that (2.11) gives

(2.21)

{
~u1 = O

(
|x|θ0(τ−1)−1δ(|x|)

)
~u2 = O

(
|x|θ0(τ−1)−2δ(|x|)

)
.

On the other hand, we have also from Lemma 2.1:

πTg∂xj ~H
g
~Φ

= πTg D
g

∂xj
~Φ
~Hg
~Φ

+ O
(
|~Φ|−1+τ |∇~Φ|| ~Hg

~Φ
||
)

= −
∑
k=1,2

〈
~Hg
~Φ
,
(
~Ag~Φ

)k
j

〉
g
∂k~Φ + O

(
|x|θ0(τ−1)−1δ(|x|)

)
= O

(
|x|−θ0−1δ(|x|)

)
.(2.22)

Owing to the latter and to (2.21), we may thus recast (2.10) in the form

div
(
∇ ~Hg

~Φ
+ ~v1

)
= −~u2 on D1(0) \ {0},
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where

~v1 := −2πTg∇ ~H
g
~Φ
− | ~Hg

~Φ
|2∇~Φ + ~u1 = O

(
|x|−θ0−1δ(|x|)

)
.

As seen in Lemma 2.1, |x|−1δ(|x|) is square integrable. It then follows that
|x|θ0~v1 lies in L2(D1(0)).

As for ~u2, it is such that |x|1+θ0(1−τ)~u2 lies in L2(D1(0)). For notational
convenience, we switch to the complex notation and replace the coordinates
(x1, x2) by the complex number z, in the usual way. Note that for some
positive η1 and η2, we have∣∣z(1+θ0(1−τ))/2~u2

∣∣ ≡ |z|−(1+θ0(1−τ))/2|z|1+θ0(1−τ)|~u2| ∈ L2+η1 · L2 ⊂ L1+η2 ,

where we have used the synchronization hypothesis τ > 1− 1/θ0. We may
thus introduce a Hodge decomposition

∂z̄ ~w2 = z(1+θ0(1−τ))/2~u2 on D1(0)

and find that ~w2 lies in L2+η3 , for some η3 > 0. Hence, we have∣∣z−(1+θ0(1−τ))/2 ~w2

∣∣ ≡ |z|−(1+θ0(1−τ))/2|~w2| ∈ L2+η1 · L2+η3 ⊂ L1+η4 ,

for some η4 > 0. We again perform a Hodge decomposition

∂z~v2 = −z−(1+θ0(1−τ))/2 ~w2 on D1(0)

and find that the (necessarily real-valued) ~v2 satisfies

−∆~v2 = ~u2 on D1(0) \ {0}.

Moreover, since θ0 ≥ 1, we have that

|x|θ0 |∇~v2| ≡ |z|θ0 |∂z~v2| = |z|(−1+θ0(1+τ))/2|~w2|(2.23)

∈ L∞ · L2+η3 ⊂ L2+η3 ,

where we have used that

−1 + θ0(1 + τ) > −1 + θ0(2− 1/θ0) = 2(θ0 − 1) ≥ 0,

which follows again from the synchronization hypothesis.
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Altogether, using the fact that θ0 ≥ 1, the function ~Hg
~Φ

satisfies a prob-
lem of the type

div
(
∇ ~Hg

~Φ
+ ~V

)
= ~0 on D1(0) \ {0},

where ~V := ~v1 +∇~v2 satisfies |x|θ0 ~V ∈ L2. In addition, we know that
|x|θ0−1| ~Hg

~Φ
| lies as well in L2. According to Proposition A.1 in the appendix,

we deduce that

(2.24) |x|θ0∇ ~Hg
~Φ
∈ L2(D1(0)).

For the record, let us note that (2.23) gives that |x|θ0−1∇~v2 lies in L1+η0 for
some η0 > 0 chosen small enough.

For the sake of our future needs, it is necessary to recast (2.10) once
more in a slightly more manageable form, namely

div
(
∇ ~Hg

~Φ
− 2π~n0

∇ ~Hg
~Φ

+ | ~Hg
~Φ
|2∇~Φ + ~u

)
= ~0 on D1(0) \ {0},

where

~u := ~u1 +∇~v2 + 2(π~n0
− π~ng)∇ ~H

g
~Φ
.

We have just seen that |x|θ0−1∇~v2 lies in L1+η0 for some η0 > 0. Furthermore,
from our previous computations and (1.17), we find that

|x|θ0−1
∣∣~u+∇~v2

∣∣ . |x|θ0τ−2δ(|x|) + |x|θ0(τ+1)−1|∇ ~Hg
~Φ
|

. |x|θ0τ−1
(
|x|−1δ(|x|) + |x|θ0 |∇ ~Hg

~Φ
|
)
,(2.25)

which, we have shown, lies in the product of L2+η and of L2, for some η > 0.
It then follows that

(2.26) |x|θ0−1~u ∈ L1+η0(D1(0)) for some η0 > 0.

An analogous argument reveals that

(2.27) |x|θ0~u ∈ L2(D1(0)).

We will now proceed studying (2.10) in further details. To do so, we
begin by defining the following constant vector called residue:

~γ0 :=

∫
∂D1(0)

~ν ·
(
∇ ~Hg

~Φ
− 2π~n0

∇ ~Hg
~Φ

+ | ~Hg
~Φ
|2∇~Φ + ~u

)
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where ~ν is the outward unit-normal to the flat unit-disk D1(0), and the dot
product is understood, as always, as the standard Euclidean product in Rm.

The equation (2.10) implies that for any disk Dρ(0) of radius ρ centered
on the origin and contained in D1(0) \ {0}, there holds∫

∂Dρ(0)
~ν ·
(
∇ ~Hg

~Φ
− 2π~n0

∇ ~Hg
~Φ

+ | ~Hg
~Φ
|2∇~Φ + ~u

)
= 4π~γ0 ∀ ρ ∈ (0, 1).

An elementary computation shows that∫
∂Dρ(0)

~ν · ∇ log |x| = 2π, ∀ ρ > 0.

Thus, upon setting

~X := ∇ ~Hg
~Φ
− 2π~n0

∇ ~Hg
~Φ

+ | ~Hg
~Φ
|2∇~Φ + ~u− 2~γ0∇ log |x|,

we find

div ~X = 0 on D1(0) \ {0}, and

∫
∂Dρ(0)

~ν · ~X = 0 ∀ ρ ∈ (0, 1).

As ~X is smooth away from the origin, the Poincaré lemma implies the ex-
istence of an element ~L ∈ C∞(D1(0) \ {0}), defined up to an additive con-
stant, such that

~X = ∇⊥~L := (−∂x2~L, ∂x1~L) on D1(0)\{0}.

Note that Lemma 2.1 yields

|x|θ0 | ~Hg
~Φ
|2|∇~Φ|(x) . |x|−1δ2(|x|) ∈ L2(D1(0)).

From this, (2.24), and (2.27), we deduce that |x|θ0∇~L belongs to L2(D1(0)).
A classical Hardy-Sobolev inequality gives the estimate

(2.28) θ2
0

∫
D1(0)

|x|2(θ0−1)|~L|2dx ≤
∫
D1(0)

|x|2θ0 |∇~L|2dx+ θ0

∫
∂D1(0)

|~L|2 <∞.

The immersion ~Φ has near the origin the asymptotic behavior |∇~Φ(x)| '
|x|θ0−1. Hence (2.28) yields that

(2.29) ~L · ∇~Φ, ~L ∧∇~Φ ∈ L2(D1(0)).
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Next, we compute

− div(~L · ∇⊥~Φ) = ∇~Φ · ∇⊥~L(2.30)

= ∇~Φ · ∇ ~Hg
~Φ

+ | ~Hg
~Φ
|2|∇~Φ|2 +

(
~u− 2~γ0∇ log |x|

)
· ∇~Φ

= div( ~Hg
~Φ
· ∇~Φ) +

(
|∇~Φ|2 − |∇~Φ|2g

)
| ~Hg

~Φ
|2

+
(
~u− 2~γ0∇ log |x|

)
· ∇~Φ + f1,

where we have used (2.9), and

|f1| = O
(
|~Φ|τ−1|∇~Φ|2|| ~Hg

~Φ
|
)

= |x|θ0τ−1O
(
|∇~Φ|| ~Hg

~Φ
|
)
∈ L1+η.

Let f be the solution of

(2.31)


∆f =

(
|∇~Φ|2 − |∇~Φ|2g

)
| ~Hg

~Φ
|2

+
(
~u− 2~γ0∇ log |x|

)
· ∇~Φ + f1 in D1(0)

f = 0 on ∂D1(0).

According to the asymptotic behavior of the metric near the origin, to
Lemma 2.1, and to (2.26), we have

|∆f | . |x|θ0τ−2δ(|x|) + |x|θ0−1|~u|+ |x|θ0−2 + |f1| ∈ L1+η0(D1(0))

for some η0 > 0,

so that, in particular,

(2.32) ∇f ∈ L2+η(D1(0)) for some η > 0.

For our future needs, we note that (2.30) states

(2.33) div
(
~L · ∇⊥~Φ + ~Hg

~Φ
· ∇~Φ +∇f

)
= 0 in D1(0)\{0}.

Similarly, again using (2.9), we now compute

− div(~L ∧∇⊥~Φ) = ∇~Φ ∧∇⊥~L(2.34)

= ∇~Φ ∧∇ ~Hg
~Φ
− 2∇~Φ ∧ π~n0

∇ ~Hg
~Φ
−
(
~u− 2~γ0∇ log |x|

)
∧∇~Φ

= div( ~Hg
~Φ
∧∇~Φ) + ~F1 + 2∇~Φ ∧ πT0

∇ ~Hg
~Φ

−
(
~u− 2~γ0∇ log |x|

)
∧∇~Φ,
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where it is easy to check from (2.9) that for some η > 0:

(2.35) |~F1| = O
(
|~Φ|τ−1|∇~Φ|2|| ~Hg

~Φ
|
)

= |x|θ0τ−1O
(
|∇~Φ|| ~Hg

~Φ
|
)
∈ L1+η.

This will be used shortly.
Previously encountered estimates give

∇~Φ ∧ πT0
∇ ~Hg

~Φ
= ∇~Φ ∧ πTg∇ ~H

g
~Φ

+ O
(
|∇~Φ||∇ ~Hg

~Φ
||~Φ|τ

)
(2.36)

= ∂x1~Φ ∧ πTg ∇g ∂x1 ~Φ
~Hg
~Φ

+ ∂x2~Φ ∧ πTg ∇g ∂x2 ~Φ
~Hg
~Φ

+ O
(
|∇~Φ||∇ ~Hg

~Φ
||~Φ|τ + |∇~Φ|2| ~Hg

~Φ
||~Φ|τ−1

)
= |x|θ0τ−1O

(
|x|θ0 |∇ ~Hg

~Φ
|+ |x|θ0−1| ~Hg

~Φ
|
)
,

where we have used the easily-verified fact that

∂x1~Φ ∧ πTg ∇g ∂x1 ~Φ
~Hg
~Φ

+ ∂x2~Φ ∧ πTg ∇g ∂x2 ~Φ
~Hg
~Φ

= ~0

which follows from the symmetry of the second-fundamental form.
According to (2.24), the bracketed term on the right-hand side of (2.36)

lies in L2. In addition, the factor |x|θ0τ−1 surely lies in L2+η′ , for some
suitably chosen η′ > 0. It then follows that

(2.37) ∇~Φ ∧ πT0
∇ ~Hg

~Φ
∈ L1+η0(D1(0)) for some η0 > 0.

Let now ~F be the solution of{
∆~F = 2∇~Φ ∧ πT0

∇ ~Hg
~Φ
−
(
~u− 2~γ0∇ log |x|

)
∧∇~Φ + ~F1 in D1(0)

~F = ~0 on ∂D1(0).

With the help of (2.26), (2.35), and (2.37), we have that ∆~F lies in
L1+η0(D1(0)) for some η0 > 0. Hence,

(2.38) ∇~F ∈ L2+η(D1(0)) for some η > 0.

For our future needs, we note that (2.34) states

(2.39) div
(
~L ∧∇⊥~Φ + ~Hg

~Φ
∧∇~Φ +∇~F

)
= ~0 in D1(0)\{0}.

Note that the terms under the divergence symbols in (2.33) and in (2.39)
both belong to L2(D1(0)), owing to (2.24), (2.29), (2.32), and to (2.38). The
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distributional equations (2.33) and (2.39), which are a priori to be under-
stood on D1(0)\{0}, may thus be extended to all of D1(0). Indeed, a classi-
cal result of Laurent Schwartz states that the only distributions supported
on {0} are linear combinations of derivatives of the Dirac delta mass. Yet,
none of these (including delta itself) belongs to W−1,2. We shall thus under-
stand (2.33) and (2.39) on D1(0). It is not difficult to verify (cf. Corollary
IX.5 in [DL]) that a divergence-free vector field in L2(D1(0)) is the curl
of an element in W 1,2(D1(0)). We apply this observation to (2.33) and in
(2.39) so as to infer the existence of two functions9 S and ~R in the space
W 1,2(D1(0)) ∩ C∞(D1(0)\{0}), with

{
∇⊥S = ~L · ∇⊥~Φ + ~Hg

~Φ
· ∇~Φ +∇f

∇⊥ ~R = ~L ∧∇⊥~Φ + ~Hg
~Φ
∧∇~Φ +∇~F .

According to Lemma A.1 from the Appendix, the functions S and ~R satisfy
on D1(0) the following equations:

(2.40)

{
−∇S = ∇⊥f + (?g~ng) · (∇⊥ ~R−∇~F ) + q

−∇~R = ∇⊥ ~F+(?g~ng) • (∇⊥ ~R−∇~F )−(?g~ng)(∇⊥S−∇f)+ ~Q,

where

(2.41) |q|+ | ~Q| = eλ
(
|~L|+ | ~Hg

~Φ
|
)
O2

(
|~Φ|τ

)
= O

(
|x|θ0(τ+1)−1

)(
|~L|+ | ~Hg

~Φ
|
)
.

Note that

∣∣∇(|x|θ0(τ+1)−1~L
)∣∣ ≤ |x|θ0τ−1

(
|x|θ0−1|~L|+ |x|θ0 |∇~L|

)
.

As we have already oftentimes seen, the first factor on the right-hand side
lies in L2+η′ , for some η′ > 0, while the second factor on the right-hand
side of the latter belongs to L2. Accordingly, |x|θ0(τ+1)−1~L ∈W 1,1+η0 for
some η0 > 0, from which it follows that |x|θ0(τ+1)−1~L ∈ L2+η for some η > 0.
For the exact same reason, we have |x|θ0(τ+1)−1 ~Hg

~Φ
∈ L2+η for some η > 0.

9S is a scalar while ~R is
∧2

(Rm)-valued.
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Bringing this into (2.41) shows that

(2.42) |q|+ | ~Q| ∈ L2+η.

Differentiating (2.40) throughout yields

(2.43)


−∆S = ∇(?g~ng) · ∇⊥ ~R− div

(
(?g~ng) · ∇~F + q

)
−∆~R = ∇(?g~ng) • ∇⊥ ~R−∇(?g~ng) · ∇⊥S

−div
(
(?g~ng) • ∇~F − (?g~ng)∇f + ~Q

)
.

From (2.32), (2.38), and (2.42), the terms under the divergence forms on
the right-hand side belong to L2+η for some η > 0. On the other hand, we
have seen that ∇S and ∇~R lie in L2. And finally, (2.12) guarantees that
the L2-norm of ∇(?g~ng) may be chosen as small as we please. We are thus
in the position of applying Proposition A.2 from the Appendix to conclude
that there exists p > 2 such that

(2.44) ∇S,∇~R ∈ Lp(D1(0)).

We learn in Lemma A.1 that

−2e2λ ~Hg
~Φ

= (∇S +∇⊥f) · ∇⊥~Φ(2.45)

+ (∇~R+∇⊥ ~F ) • ∇⊥~Φ + e2λ| ~Hg
~Φ
|O2(|~Φ|τ ).

Using the known asymptotic behaviors of ~Φ and of its gradient near the
origin, along with (2.9), the latter reads

−∆~Φ =
[
(∇S +∇⊥f) · ∇⊥~Φ + (∇~R+∇⊥ ~F ) • ∇⊥~Φ

]
×
(
1 + O(|x|θ0τ )

)
+ O

(
|x|θ0(τ+1)−2

)
,

so that

e−λ|∆~Φ| ≤
(
|∇S|+ |∇~R|+ |∇f |+ |∇~F |

)
(2.46)

×
(
1 + O(|x|θ0τ )

)
+ O

(
|x|θ0τ−1

)
,

where we have used Lemma 2.1.
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Owing to (2.32), (2.38), and to (2.44), we see that the right-hand side
of the latter belongs to Lt(D1(0)) for some t > 2, namely

t = p if θ0 ≥ 2 and t < min{p, 2/(1− τ)} if θ0 = 1.

We may thus call upon Proposition A.3 from the Appendix to conclude that
near the origin, the immersion ~Φ displays an asymptotic behavior of the
form:

(∂x1 + i∂x2)~Φ(x) = ~P (x) + |x|θ0−1 ~T (x),

where ~P is a Cm-valued polynomial of degree at most (θ0 − 1), and
|x|−1 ~T (x) ∈ Lt−ε′ for every ε′ > 0. Because e−λ∇~Φ is a bounded function,
we deduce more precisely that ~P (x) = θ0

~B∗xθ0−1, for some constant vector
~B ∈ Cm (we denote its complex conjugate by ~B∗), so that

∇~Φ(x) =

(
<
−=

)(
θ0
~Bxθ0−1

)
+ |x|θ0−1 ~T (x).

Equivalently, switching to the complex notation, there holds

(2.47) ∂z~Φ =
θ0

2
~Bzθ0−1 + |z|θ0−1 ~T (z).

We write ~B = ~BR + i ~BI ∈ R2 ⊗ Rm. The conformality condition on ~Φ shows
easily that | ~B|2g = 0, whence

(2.48) | ~BR|g = | ~BI |g and 〈 ~BR, ~BI〉g = 0.

Yet more precisely, as |∇~Φ|2g = 2e2λ, we see that

| ~BR|g = | ~BI |g =
1

θ0
lim
z→0

eλ(z,z̄)

|z|θ0−1
∈ ]0,∞[.

On the other hand, from π~ng∇~Φ ≡ ~0, we deduce from (2.47) that

(2.49) |z|−1
∣∣π~ng ~B∣∣ . |z|−1|~T |(z) ∈ Lt−ε′ ∀ε′ > 0.

This fact shall be put to good use in the sequel.
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The weight eλ ' |x|θ0−1 satisfies the conditions of Proposition A.3-(ii).
Hence, we deduce from (2.46) that

(2.50) ∇2~Φ = θ0(1− θ0)

(
−< =
= <

)(
~Bzθ0−2

)
+ |x|θ0−1 ~Z,

where ~B is as in (2.47), and ~Z lies in R4 ⊗ Lt−ε′(D1(0),Rm) for every ε′ > 0.
The exponent t > 2 is the same as above. We obtain from (2.50) that

e−λ
∣∣π~ng∇2~Φ

∣∣ . |z|−1|π~ng ~B|+ |π~ng ~Z|.

According to (2.49), the first summand on the right-hand side of the latter
belongs to Lp−η for all η > 0. Moreover, we have seen that π~ng

~Z lies in

Lt−ε
′

for all ε′ > 0. Whence, it follows that e−λπ~ng∇2~Φ is itself an element of
Lt−ε

′
for all ε′ > 0. Per (2.8), this confirms that the regularity of the second

fundamental form has been improved to

(2.51) eλ~Ag~Φ
∈ Lt−ε′(D1(0)), ∀ ε′ > 0.

As we have seen, ∇(?g~ng) inherits the integrability of eλ~Ag~Φ
, so that

(2.52) ∇(?g~ng) ∈ Lt−ε
′
(D1(0)), ∀ ε′ > 0.

Having this information at our disposal, it is not difficult to follow the stream
of our previous argument and to find

(2.53) |x|θ0−1~L ∈ Ls,

where s := t− ε′ > 2. According to (2.11),

(2.54) |x|θ0−1|~u1| ≤ |x|θ0τ−1eλ| ~Hg
~Φ
| ∈ La,

where 1/a < 1/s+ 1/2, since θ0τ > 0. For exactly the same reason, we have

(2.55) |x|θ0−1|∇~v2| ≤ |x|θ0τ−1eλ| ~Hg
~Φ
| ∈ La.

In addition, we have

(2.56) |x|θ0−1|∇~Φ|| ~Hg
~Φ
| ≤

∣∣eλ ~Hg
~Φ

∣∣2 ∈ Ls/2,
and from (2.22),

(2.57) |x|θ0−1
∣∣πTg∇Hg

~Φ

∣∣ ≤ ∣∣eλ ~Hg
~Φ

∣∣2 + |x|θ0τ−1eλ| ~Hg
~Φ
| ∈ Lb,
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where b = min{s/2, a}.
Let us return to the equation defining ~L, namely

(2.58) ∇⊥~L = −∇ ~Hg
~Φ

+ 2πTg∇ ~H
g
~Φ

+ | ~Hg
~Φ
|2∇~Φ + ~u1 −∇~v2 − 2~γ0∇ log |x|.

For notational convenience, let us set

2 ~J := 2πTg∇ ~H
g
~Φ

+ | ~Hg
~Φ
|2∇~Φ + ~u1 −∇~v2,

and note that from (2.54)–(2.57), we have

(2.59) |x|θ0−1 ~J ∈ Lb(D1(0)).

In complex coordinates, we may recast (2.58) in the form

∂z̄
(
i~L+ ~Hg

~Φ
+ 2~γ0 log |z|

)
= ~J on D1(0)\{0}.

Any complex-valued function ~W satisfying

∂z̄ ~W = zθ0−1 ~J on D1(0)

lies in Lc(D1/2(0)), where

1

c
=

1

b
− 1

2
.

Without loss of generality, we are supposing that b < 2. Note that

(2.60) c > s > 2.

It holds

(2.61) ∂z̄

[
zθ0−1

(
i~L+ ~Hg

~Φ
+ 2~γ0 log |z|

)
− ~W

]
= ~0 on D1(0)\{0}.

From (2.53), one sees that the bracketed function in the latter lies in
L2+η(D1(0)) for some η > 0. The equation (2.61) thus extends to all of the
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unit disk, and there exists some holomorphic function ~E such that

zθ0−1
(
i~L+ ~Hg

~Φ
+ 2~γ0 log |z|

)
− ~W = ~E.

Hence, since ~γ0 and ~L are real-valued,

~Hg
~Φ

= <
(
~E + z1−θ0 ~W

)
− 2~γ0 log |z|,

which implies that

|x|θ0−1 ~Hg
~Φ
∈ Lc.

Since c > s, the integrability of ~Hg
~Φ

has been improved. The procedure may
be repeated finitely many times until the numbers a and b become as large
as we please. In particular, ~W lies in C0,1−η for all η > 0, and we can replace
(2.61) with

∂z̄

[
zθ0−1

(
i~L+ ~Hg

~Φ
+ 2~γ0 log |z|

)
− ( ~W − ~W (0))

]
= ~0 on D1(0)\{0},

thereby yielding

~Hg
~Φ

= <
(
~Ez1−θ0 + z1−θ0( ~W − ~W (0))

)
− 2~γ0 log |z|(2.62)

= −2~γ0 log |z|+ <
(
~E0z

1−θ0)+ O
(
|z|2−θ0−η

)
,

for some constant vector ~E0 ∈ Cm (recall that ~E is holomorphic), and for
all η > 0 chosen as small as we please.

We now separate our analysis into two cases.

The case θ0 ≥ 2. In this case (2.62) becomes

(2.63) ~Hg
~Φ

= <
(
~E0z

1−θ0)+ O
(
|z|2−θ0−η

)
, ∀ η > 0.

As

e2λ(z) = |z|2(θ0−1)
(
1 + o(1)

)
,

we find

|z|1−θ0e2λ ~Hg
~Φ
∈ L∞.

On the other hand, the synchronization hypothesis guarantees that θ0τ −
1 > θ0 − 2 ≥ 0. Accordingly, (2.9) gives

(2.64) |z|1−θ0∆~Φ = 2|z|1−θ0e2λ ~Hg
~Φ

+ O(|z|θ0τ−1) ∈ L∞.
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Repeating mutatis mutandis the arguments leading to (2.50), we obtain

|z|1−θ0
∣∣π~ng∇2~Φ

∣∣ ∈ ⋂
p<∞

Lp.

Using the analogue of (1.17) for the metric g, we have also

|z|1−θ0
∣∣π~n0
∇2~Φ

∣∣ ∈ ⋂
p<∞

Lp.

This shows in particular that10 eλ ~Ah0

~Φ
belongs to all Lp spaces for p <∞.

We then invoke Lemma 1.1 to obtain

(2.65) eλ(z) = |z|θ0−1
(
a0 + O(|z|β)

)
,

for some constant a0 > 0 and β < min{θ0τ, 1} = 1, owing to the synchro-
nization hypothesis. Accordingly, (2.64) gives

∆~Φ = 2a0<
(
~E0z̄

θ0−1
)

+ O
(
|z|θ0−η + |z|θ0(τ+1)−2

)
.

Using Lemma A.2 yields now the local asymptotic expansion (valid for all
ε′ > 0):

~Φ(z) = <
(
~Bzθ0 + ~B1z

θ0+1 + ~B2|z|2θ0z1−θ0
)

(2.66)

+ O2

(
|z|θ0(τ+1)−ε′ + |z|θ0+2−ε′),

for some constant vectors ~B1 and ~B2 in Cm. Naturally, the constant vector
~B ∈ Cm remains as in (2.47).

The case θ0 = 1. In this case (2.62) becomes

(2.67) ~Hg
~Φ

= −2~γ0 log |z|+ <
(
~E0

)
+ O

(
|z|1−η

)
, ∀ η > 0.

Now, (2.9) gives

(2.68) ∆~Φ−O(|z|τ−1) ∈ BMO,

so that ∆~Φ lies in La for all a < 2/(1− τ). Repeating mutatis mutandis the
arguments leading to (2.50), we obtain∣∣π~ng∇2~Φ

∣∣ ∈ ⋂
a<2/(1−τ)

La.

10Recall that h0 denotes the Euclidean metric on Rm.
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Using the analogue of (1.17) for the metric g, we have also∣∣π~n0
∇2~Φ

∣∣ ∈ ⋂
a<2/(1−τ)

La.

This shows in particular that eλ ~Ah0

~Φ
belongs to all La spaces for a < 2/(1−

τ). We then invoke Lemma 1.1 to obtain

eλ(z) = a0 + O(|z|β),

for some constant a0 > 0 and β < min{τ, τ/(1− τ)} = τ . Accordingly, (2.68)
gives

∆~Φ =

{
O(|z|τ−1), if τ < 1

−2a0~γ0 log |z|+ O(1), if τ = 1.

Using Lemma A.2 yields now the local asymptotic expansion (valid for all
ε′ > 0):

~Φ(z) = <( ~Bz) + O2(|z|τ+1−ε′),

where the constant vector ~B ∈ Cm is as in (2.47).
Comparing this to (2.66), we see that (2.66) holds as well for θ0 = 1,

with some leading terms are absorbed in the dominating remainder.
We make one important remark. From (2.67), we see that since ~Hg

~Φ
is a

normal vector,

~0 = −2 log |z|πTg~γ0 + O(1).

In particular, we necessarily have

(2.69) πTg(0)~γ0 = ~0.

2.1.3. Willmore embeddings in asymptotically Schwarzschild
spaces and the proof of Theorem 1.6. In this section, we will consider
an ambient metric of Schwarzschild decay, namely

(2.70) gαβ(y) =
(
1 + c|y|

)
δαβ + O2(|y|1+κ), |y| � 1,

for some κ ∈ (0, 1] and some constant c. For an embedding in asymptotically
Schwarzschild space, we have θ0 = 1 = τ . When θ0 = 1, we know that eλ(x)

satisfies (2.65). In addition, the Christoffel symbols of a Schwarzschild metric
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of the type (2.70) are easily computed. Compiled into formula (2.8), it is not
difficult to verify that this information yields

∆~Φ = 2e2λ ~Hg
~Φ

+ O(|x|κ), |x| � 1.

We have seen in the previous section that the mean curvature vector satisfies
the local expansion (2.67). Hence, for all ε′ > 0,

∆~Φ = −2~γ0a0 log |x|+ ~E1 + O(|x|κ + |x|1−ε′), |x| � 1,

where we have set ~E1 := a0<( ~E0), and a0 is as in (2.67).
If κ ∈ (0, 1), we can always arrange for |x|κ to dominate |x|1−ε′ . Then

∆~Φ = −2~γ0a0 log |x|+ ~E1 + O(|x|κ), |x| � 1.

We may now call upon Lemma A.2 from the Appendix to obtain the local
expansion:

(2.71) ~Φ(x) = <
(
~Bx+ ~B1x

2
)

+ C~γ0|x|2
(

log |x|2 − C1

)
+ O2

(
|x|2+κ

)
,

for some constant vectors ~B1 ∈ Cm and some real-valued constants C, C1.
Naturally, the constant vector ~B ∈ Cm remains as in (2.47).

On the other hand, if κ = 1, |x|1−ε′ dominates |x|κ ≡ |x|. In this case,
Lemma A.2 yields

~Φ(x) = <
(
~Bx+ ~B1x

2
)

(2.72)

+ C~γ0|x|2
(

log |x|2 − C1

)
+ O2

(
|x|3−ε′

)
, ∀ ε′ > 0,

where the constants ~B, ~B1, C, and C1 are as in (2.71).

2.1.4. Minimal embeddings in asymptotically Schwarzschild
spaces and the proof of Corollary 1.2. In this section, we will suppose
that our immersion ~Φ is obtained from inverting an embedded minimal sur-
face. Clearly, ~Φ is Willmore (away from the singularity at the origin of the
unit disk) and it is conformal with respect to the ambient asymptotically
Schwarzschild metric of the type (2.70). Thus all which has been established
in section 2.1.3 remains valid. We will first suppose that κ ∈ (0, 1) in (2.70).
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From (2.71), we know that ~Φ satisfies locally around z = 0:

~Φ(z, z̄) = <
(
~Bz + ~B1z

2
)

+ C~γ0|z|2
(

log |z|2 − C1

)
+ O2

(
|z|κ+2

)
.

Thus the original immersion ~ξ = |~Φ|−2~Φ satisfies in particular

~ξ(z, z̄) = b−2<
(
~Bz̄−1 + ~B1z̄

−1z
)

(2.73)

+ b−2C~γ0

(
log |z|2 − C1

)
+ O2(|z|κ),

where we have used (2.48) to find that |~Φ|2 ' |~Φ|2g ' b2|z|2, with b2 :=

|<( ~B)|2g + |=( ~B)|2g.
We are assuming that ~Hh

~ξ
= ~0 away from z = 0, where, as in Section 1.2,

h denotes the ambient metric on Rm prior to the inversion. Using a for-
mula akin to (2.9) with h in place of g shows that ∆~ξ = O(1). Note that
∆<(z/z̄) ' |z|−2 � |z|κ−2. From this it follows that ~B1 in the expansion
(2.73) must be ~0. This yields a local expansion of the form

(2.74) ~ξ(z, z̄) = <
(
~az̄−1

)
+ ~a2 + b−2C~γ0 log |z|2 + O2(|z|κ),

with ~a := b−2< ~B. It is easy to verify that ~a inherits from (2.48) the proper-
ties:

|~aR|h = |~aI |h, 〈~aR,~aI〉h = 0, and π~nh(0)~a = ~0.

Note that we have again used that the metric h defined in (1.1) is equivalent
to the metric g.

Because near the origin, ~a is a tangent vector, while, owing to (2.69), ~γ0

is normal vector, it is not difficult to see that (2.74) can be recast as a graph
over R2 \DR(0):

(r, ϕ) 7−→
(
r cosϕ, r sinϕ,~a0 + ~c0 log r + O2(r−κ)

)
,

in the range ϕ ∈ [0, 2π) and r > R, for some R chosen large enough, and for
some Rm-valued constant vectors ~a0 and ~c0.

Finally, when κ = 1, an identical reasoning with (2.72) in place of (2.71)
gives the graphical representation

(r, ϕ) 7−→
(
r cosϕ, r sinϕ,~a0 + ~c0 log r + O2(r−κ+ε′)

)
, ∀ ε′ > 0.
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Appendix A.

A.1. Notational conventions

We append an arrow to all the elements belonging to Rm. To simplify
the notation, by ~Φ ∈ X(D1(0)) is meant ~Φ ∈ X(D1(0),Rm) whenever X
is a function space. Similarly, we write ∇~Φ ∈ X(D1(0)) for ∇~Φ ∈ R2 ⊗
X(D1(0),Rm).

We let differential operators act on elements of Rm componentwise.
Thus, for example, ∇~Φ is the element of R2 ⊗ Rm with Rm-valued com-
ponents (∂x1

~Φ, ∂x2
~Φ). If S is a scalar and ~R an element of Rm, then we

let

~R · ∇~Φ :=
(
~R · ∂x1

~Φ, ~R · ∂x2
~Φ
)

∇⊥S · ∇~Φ := ∂x1
S∂x2

~Φ− ∂x2
S∂x1

~Φ

∇⊥ ~R · ∇~Φ := ∂x1
~R · ∂x2

~Φ− ∂x2
~R · ∂x1

~Φ

∇⊥ ~R ∧∇~Φ := ∂x1
~R ∧ ∂x2

~Φ− ∂x2
~R ∧ ∂x1

~Φ.

Analogous quantities are defined according to the same logic.
Two operations between multivectors are useful. The interior multipli-

cation maps a pair comprising a q-vector γ and a p-vector β to a (q − p)-
vector. It is defined via

〈γ β, α〉 = 〈γ, β ∧ α〉 for each (q − p)-vector α.

Let α be a k-vector. The first-order contraction operation • is defined in-
ductively through

α • β = α β when β is a 1-vector,

and

α • (β ∧ γ) = (α • β) ∧ γ + (−1)pq(α • γ) ∧ β,

when β and γ are respectively a p-vector and a q-vector.

A.2. Miscellaneous facts

A.2.1. The Willmore system. We establish in this section a few general
identities. We let ~Φ be a (smooth) conformal immersion of the unit-disk into
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(Rm, g) with ~Φ(0) = ~0. We suppose the metric g satisfies

(A.1) gαβ(y) = δαβ + O2

(
|y|τ
)
, |y| � 1,

for some τ > 0. As ~Φ is conformal, the induced metric satisfies

g̃ij :=
〈
∂xi~Φ, ∂xj ~Φ

〉
g

= e2λδij .

We will also need the metric g̃0 induced by pulling back via ~Φ the Euclidean
metric of Rm on the unit-disk. According to (A.1), one checks that

(g̃0)ij = e2λ
(
δij + O2(|~Φ|τ )

)
and |g̃0| = e4λ

(
1 + O2(|~Φ|τ )

)
.

For notational convenience, we set ~ej := e−λ∂xj ~Φ. Since ~Φ is conformal,
{~e1, ~e2} forms an orthonormal basis of the tangent space for the metric g.
Let ~ng := ?g(~e1 ∧ ~e2). If ~V is a 1-vector, we find

(?g~ng) · (~V ∧ ∂xj ~Φ) = eλ(~e1 ∧ ~e2) · (~V ∧ ~ej)
= e−λ

[
(~e1 · ~V )(g̃0)2j − (~e2 · ~V )(g̃0)1j

]
= eλ

[
(~e1 · ~V )δ2j − (~e2 · ~V )δ1j

]
+ O2

(
eλ|~Φ|τ |~V |

)
= −~V · ∂xj′ ~Φ + eλ|~V |O2(|~Φ|τ ),

where

(∂x1′ , ∂x2′ ) := (∂x2 ,−∂x1).

Hence,

(A.2)

{
(?g~ng) · (~V ∧∇~Φ) = ~V · ∇⊥~Φ + eλ|~V |O2(|~Φ|τ )

(?g~ng) · (~V ∧∇⊥~Φ) = −~V · ∇~Φ + eλ|~V |O2(|~Φ|τ ).

We choose next an orthonormal basis {~nα}m−2
α=1 of the normal space

such that {~e1, ~e2, ~n1, . . . , ~nm−2} is a positive oriented orthonormal basis of
(Rm, g).

Recalling the definition of the interior multiplication operator given
in Section A.1 (understood here for the Euclidean metric in Rm) , it is not
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hard to obtain

(?g~ng) • (~ej ∧ ~ek) = e−2λ
[
(g̃0)2k~e1 ∧ ~ej − (g̃0)2j~e1 ∧ ~ek(A.3)

− (g̃0)1k~e2 ∧ ~ej + (g̃0)1j~e2 ∧ ~ek
]

= O2

(
|~Φ|τ

)
,

and

(?g~ng) • (~nα ∧ ~ej) = e−2λ
[
(g̃0)1j~nα ∧ ~e2 − (g̃0)2j~nα ∧ ~e1

]
(A.4)

+ (~nα · ~e2)~e1 ∧ ~ej − (~nα · ~e1)~e2 ∧ ~ej
= δ1j~nα ∧ ~e2 − δ2j~nα ∧ ~e1 + eλ|~V |O2(|~Φ|τ ).

From this one easily deduces for every 1-vector ~V , one has

(A.5)

{
(?g~ng) •

(
~V ∧∇~Φ

)
= π~ng

~V ∧∇⊥~Φ + eλ|~V |O2(|~Φ|τ )

(?g~ng) •
(
~V ∧∇⊥~Φ

)
= −π~ng ~V ∧∇~Φ + eλ|~V |O2(|~Φ|τ ).

There holds furthermore

(A.6) (~V ∧ ~ej) • ~ei = (~ei · ~V )~ej − (g̃0)ij ~V .

Hence:

(A.7)

{(
~V ∧∇⊥~Φ

)
• ∇⊥~Φ = e2λ

(
πT0

~V − 2~V
)

+ e2λ|~V |O2(|~Φ|τ )(
~V ∧∇~Φ

)
• ∇⊥~Φ ≡ −

(
~V · ∇~Φ

)
· ∇⊥~Φ.

As usual, πT0
~V denotes the tangential part of the vector ~V with respect to

the Euclidean metric on Rm.
We are now sufficiently geared to prove

Lemma A.1. Let ~Φ be a smooth conformal immersion of the unit-disk
into (Rm, g), with g as above, and let ~L and ~U be two 1-vectors. Suppose
that π~ng

~U = ~U (i.e. ~U is a normal vector). We define A ∈ R2 ⊗
∧0(Rm) and

~B ∈ R2 ⊗
∧2(Rm) via {

A = ~L · ∇~Φ− ~U · ∇⊥~Φ
~B = ~L ∧∇~Φ− ~U ∧∇⊥~Φ.
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Then the following identities hold:

(A.8)

{
A = −(?g~ng) · ~B⊥ + eλ

(
|~L|+ |~U |

)
O2(|~Φ|τ )

~B = −(?g~ng) • ~B⊥ + (?g~ng)A
⊥ + eλ

(
|~L|+ |~U |

)
O2(|~Φ|τ ),

where ?g~ng := (∂x1
~Φ ∧ ∂x2

~Φ)/|∂x1
~Φ ∧ ∂x2

~Φ|g.
Moreover, we have

(A.9) A · ∇⊥~Φ + ~B • ∇⊥~Φ = −2e2λ~U + eλ|~U |O2(|~Φ|τ ).

Proof. The identities (A.2) give immediately the required

(?g~ng) · ~B⊥ = −~L · ∇~Φ + ~U · ∇⊥~Φ = −A+ O2

(
eλ|~Φ|1−

1

θ0
+τ

(|~L|+ |~U |)
)
.

Analogously, using the fact that ~U is a normal vector, the identities (A.5)
give

(?g~ng) • ~B⊥ = −π~ng~L ∧∇~Φ + π~ng
~U ∧∇⊥~Φ + eλ

(
|~L|+ |~U |

)
O2(|~Φ|τ )

= − ~B + πTg~L ∧∇~Φ + eλ
(
|~L|+ |~U |

)
O2(|~Φ|τ )

= − ~B +
[〈
~L,∇⊥~Φ

〉
g

+
〈
~U,∇~Φ

〉
g

]
(?g~ng)

+ eλ
(
|~L|+ |~U |

)
O2(|~Φ|τ )

= − ~B + (?g~ng)A
⊥ + eλ

(
|~L|+ |~U |

)
O2(|~Φ|τ ),

which is the second equality in (A.8).
In order to prove (A.9), we will use (A.7). Namely,

~B • ∇⊥~Φ = −
(
~L · ∇~Φ

)
· ∇⊥~Φ + e2λ

(
πT0

~U − 2~U
)

+ e2λ|~U |O2(|~Φ|τ )

= −A · ∇⊥~Φ− (~U · ∇⊥~Φ) · ∇⊥~Φ + e2λ
(
πT0

~U − 2~U
)

+ e2λ|~U |O2(|~Φ|τ )

= −A · ∇⊥~Φ− 2e2λ~U + e2λ|~U |O2(|~Φ|τ ),

where we have used that

πT0
~U = e−2λ

(
(~U · ∂x1

~Φ)∂x1
~Φ + (~U · ∂x2

~Φ)∂x2
~Φ
)

= (~U · ∇⊥~Φ) · ∇⊥~Φ.

This concludes the proof of the announced statement. �
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A.3. Nonlinear and weighted elliptic results

In [BR] and in [Ber1], analogous versions of the first two of the following
three results are proved. The versions stated here are slightly different than
those appearing in the aforementioned references. Only very minor modifica-
tions are needed; details are left to the reader. Proposition A.3 is similar to
a result given in [BR]. The version given here is however somewhat different,
and we have thus included a proof.

Proposition A.1. Let u ∈ C2(D1(0) \ {0}) and V ∈ C1(D1(0) \ {0}) sat-
isfy the equation

div
(
∇u(x) + V (x, u)

)
= 0 in D1(0) \ {0}.

Assume that for some integer a ≥ 1, and some p ∈ (1,∞) there holds

|x|aV, |x|a−1u ∈ Lp(D1(0)).

Then we have

|x|a∇u ∈ Lp(D1(0)).

Proposition A.2. Let u ∈W 1,2(D1(0)) ∩ C1(D1(0) \ {0}) satisfy the equa-
tion

−∆u = ∇b · ∇⊥u+ div(w) in D1(0),

where w ∈ L2+η(D1(0)), for some η > 0. Moreover, suppose

‖∇b‖L2(D1(0)) < ε0,

for some ε0 chosen to be “small enough”. Then

∇u ∈ L2+η(D1(0)).

Proposition A.3. Let u ∈ C2(D1(0) \ {0}) solve

∆u(x) = µ(x)f(x) in D1(0),

where f ∈ Lp(D1(0)) for some p > 2. The weight µ satisfies

|µ(x)| ' |x|a for some a ∈ N.

Then
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(i) there holds11

(A.10) ∇u(x) = P (x) + |x|aT (x),

where P (x) is a complex-valued polynomial of degree at most a, and
|x|−1T (x) ∈ Lp−ε′ for every ε′ > 0.

(ii) furthermore, there holds

∇2u(x) = ∇P (x) + |x|aZ(x),

where P is as in (i), and

Z ∈ Lp−ε′(D1(0),C2) ∀ ε′ > 0.

Proof. Using Green’s formula for the Laplacian, an exact expression for the
solution u may be found and used to obtain

∇u(x) =
1

2π

∫
∂D1(0)

[
x− y
|x− y|2

∂~νu(y)− u(y)∂~ν
x− y
|x− y|2

]
dσ(y)(A.11)

− 1

2π

∫
D1(0)

x− y
|x− y|2

µ(y)f(y)dy

=: J0(x) + J1(x), ∀ x ∈ D1(0),

where ~ν is the outer normal unit-vector to the boundary of D1(0). Without
loss of generality, and to avoid notational clutter, because u is twice differ-
entiable away from the origin, we shall henceforth assume that |x| < 1/2.

We will estimate separately J0 and J1, and open the discussion by noting
that when |y| > |x|, we have the expansion

x− y
|x− y|2

= −
∑
m≥0

Pm(x, y) with Pm(x, y) := xmy−(m+1).

11x is the complex conjugate of x. We parametrize D1(0) by x = x1 + ix2, and
then x := x1 − ix2. In this notation, ∇u in (A.10) is understood as ∂x1u+ i∂x2u.
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Hence, we deduce the identity

J0(x) = − 1

2π

∑
m≥0

∫
∂B1(0)

[
Pm(x, y)∂~νu(y)− u(y)∂~νP

m(x, y)
]
dS(y)

= − 1

2π

∑
m≥0

xm
∫ 2π

0

[
(m+ 1)u(eiϕ)− (∂~νu)(eiϕ)

]
ei(m+1)ϕdϕ

=
∑
m≥0

Cmx
m,(A.12)

where Cm are (complex-valued) constants depending only on the C1-norm
of u along ∂D1(0). As u is continuously differentiable on the boundary of
the unit disk by hypothesis, and |x| < 1, it is clear that |J0(x)| is bounded
above by some constant C for all x ∈ D1(0). Since |Cm| grows sublinearly
in m, we can surely find two constants γ and δ such that

|Cm| < γδm ∀ m ≥ 0.

Hence, when |x| ≤ R < δ−1, there holds∣∣∣∣∣∣
∑

m≥a+1

Cmx
m

∣∣∣∣∣∣ ≤ γδa+1|x|a+1
∑
m≥0

(δR)m . |x|a+1.

And because J0 is bounded, when R < |x| < 1, we find some large enough
constant K = K(C, a, γ, δ) such that∣∣∣∣∣∣

∑
m≥a+1

Cmx
m

∣∣∣∣∣∣ ≤ |J0(x)|+
∑

0≤m≤a
Cm|x|m ≤ C + (a+ 1)γδa

≤ Kδa+1 ≤ K
(
R−1δ

)a+1|x|a+1 . |x|a+1.

We may now return to (A.12) and write

(A.13) J0(x) = P0(x) + |x|aT0(x),

where P0 is a polynomial of degree a, and the remainder T0 is controlled
by some constant depending on the C1-norm of u on ∂D1(0). Moreover,
T0(x) = O(|x|) near the origin.
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We next estimate the integral J1. To do so, we proceed as above and
write

(A.14) J1(x) = I1(x) +

∞∑
m=a+1

Im2 (x)−
a∑

m=0

Im1 (x) +

a∑
m=0

Im1 (x) + Im2 (x),

where we have put

I1(x) :=
1

2π

∫
D1(0)∩D2|x|(0)

x− y
|x− y|2

µ(y)f(y)dy,

Im1 (x) :=
1

2π

∫
D1(0)∩D2|x|(0)

Pm(x, y)µ(y)f(y)dy,

Im2 (x) :=
1

2π

∫
D1(0)\D2|x|(0)

Pm(x, y)µ(y)f(y)dy.

We first observe that the last sum in (A.14) may be written

P1(x) :=
∑

0≤m≤a
Im1 (x) + Im2 (x) =

∑
0≤m≤a

∫
D1(0)

Pm(x, y)µ(y)f(y)dy

=
∑

0≤m≤a
Amx

m,

where

Am := −
∫
D1(0)

y−(m+1)µ(y)f(y)dy.

From the fact that f ∈ Lp(D1(0)) for p > 2, and the hypothesis |µ(y)| ' |y|a,
it follows easily that |Am| <∞ for m ≤ a, and thus that P1 is a polynomial
of degree at most a.

We have next to handle the other summands appearing in (A.14), be-
ginning with I1. We find

|I1(x)| . |x|a
∫
D2|x|(0)

|f(y)|
|x− y|

dy . |x|a
∫
D3|x|(x)

|f(y)|
|x− y|

dy(A.15)

. |x|a+1Mf(x),

where we have used the fact that D2|x|(0) ⊂ D3|x|(x), and a classical estimate
bounding convolution with the Riesz kernel by the maximal function Mf
(cf. Proposition 2.8.2 in [Zie]).
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Next, let q ∈ [1, 2) be the conjugate exponent of p. We immediately
deduce for 0 ≤ m ≤ a that

|Im1 (x)| . |x|m
∫
D2|x|(0)

|y|−1−m+a|f(y)|dy(A.16)

. |x|a
∥∥|y|−1

∥∥
Lq(D2|x|(0))

‖f‖Lp(D1(0)) . |x|
a+1− 2

p .

We next estimate Im2 . As m ≥ a+ 1, we note that for any ε > 0, there holds

a+ 1−m− ε− 2

p
< 0.

With again q being the conjugate exponent of p, we find thus

|Im2 (x)| . |x|m
∫
D1(0)\D2|x|(0)

|y|a−1−m|f(y)|dy(A.17)

= |x|m
∫
D1(0)\D2|x|(0)

|y|a+1−m−ε− 2

p |y|ε−
2

q |f(y)|dy

≤ 2a+1−m−ε− 2

p |x|a+1− 2

p
−ε
∥∥∥|y|ε− 2

q

∥∥∥
Lq(D1(0))

‖f‖Lp(D1(0))

. 2a+1−m−ε− 2

p |x|a+1− 2

p
−ε.

Combining altogether in (A.14) our findings (A.15)–(A.17), we obtain that

(A.18) J1(x) = P1(x) + |x|aT1(x),

where P1 is a polynomial of degree at most a, and the remainder T1 satisfies

(A.19) |x|−1|T1(x)| .Mf(x) + |x|−
2

p
−ε, ∀ ε > 0,

which shows that |x|−1T1 lies in Lp−ε
′

for all ε′ > 0.
Altogether, (A.13) and (A.18) put into (A.11) show that there holds

(A.20) ∇u(x) = P (x) + |x|aT (x),

where P := P0 + P1 is a polynomial of degree at most a, and the remainder
T := T0 + T1 satisfies as well that |x|−1T ∈ Lp−ε′ for all ε′ > 0, since T0 =
O(|x|). The announced statement (i) ensues immediately.



i
i

“1-Bernard” — 2020/3/12 — 11:48 — page 52 — #52 i
i

i
i

i
i

52 Y. Bernard and T. Rivière

We prove next statement (ii). Comparing (A.3) to (A.20), we see that

|x|aZ(x) = ∇
(
|x|aT0(x)

)
+∇I1(x) +

∑
m≥a+1

∇Im2 (x)−
∑

0≤m≤a
∇Im1 (x).

By definition,

|x|aT0(x) =
∑

m≥a+1

Cmx
m,

with the constants Cm depending only on the C1-norm of u along ∂D1(0)
and growing sublinearly in m. Using similar arguments to those leading to
(A.13), it is clear that

(A.21) |x|−a∇
(
|x|aT0(x)

)
∈ L∞(D1(0)).

Controlling the gradients of Im1 and Im2 is done mutatis mutandis the esti-
mates (A.16) and (A.17). For the sake of brevity, we only present in details
the case of Im1 . Namely,

∇Im1 (x) =
1

2π

∫
D1(0)∩D2|x|(0)

∇xPm(x, y)µ(y)f(y)dy

+
1

2π

x

|x|
⊗
∫
∂D2|x|(0)

Pm(x, y)µ(y)f(y)dy.

After some elementary computations, and using the hypothesis |µ(y)| ' |y|a,
we reach

|∇Im1 (x)| . m|x|a−2

∫
D1(0)∩D2|x|(0)

|f(y)|dy + |x|a−1

∫
∂D2|x|(0)

|f(y)|dy

. m|x|a−
2

p ‖f‖Lp(D1(0)) + |x|a−1

∫
∂D2|x|(0)

|f(y)|dy,

so that immediately∥∥|x|−a∇Im1 (x)
∥∥
Lp−ε(D1(0))

<∞, ∀ ε > 0.

Proceeding analogously for ∇Im2 , we reach that for any ε > 0 there holds∑
m≥a+1

∥∥|x|−a∇Im2 (x)
∥∥
Lp−ε(D1(0))

(A.22)

+
∑

0≤m≤a

∥∥|x|−a∇Im1 (x)
∥∥
Lp−ε(D1(0))

<∞.
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Hence, there remains only to estimate ∇I1. For notational convenience, we
write

∇I1(x) =
1

2π
∇
∫
D1(0)∩D2|x|(0)

x− y
|x− y|2

µ(y)f(y)dy

=:
1

2π

(
L(x) +K(x)

)
,

with

K(x) = χD1/2(0)(x)
x

|x|
⊗
∫
∂D2|x|(0)

x− y
|x− y|2

µ(y)f(y)dy,

and the convolution

L(x) =
(
Ω ∗ f(y)µ(y)χD1(0)∩D2|x|(0)(y)

)
(x),

where Ω is the (2× 2)-matrix made of the Calderon-Zygmund kernels:

Ω(z) :=
|z|2I2 − 2z ⊗ z

|z|4
.

The boundary integral K is easily estimated:

|x|−a|K(x)| . 1

|x|

∫
∂D2|x|(0)

|f(y)|dy,

thereby yielding

(A.23)
∥∥|x|−aK(x)

∥∥
Lp(D1(0))

. ‖f‖Lp(D1(0)).

To estimate L, we proceed as follows.

|x|−aL(x) = |x|−a
∫
D1(0)∩D2|x|(0)

Ω(x− y)f(y)µ(y)dy(A.24)

.
∫
D1(0)∩D2|x|(0)

Ω(x− y)f(y)|y|−aµ(y)dy

Standard Calderon-Zygmund estimates and the fact that |y|−aµ is bounded
yields ∥∥|x|−aL(x)

∥∥
Lp(D1(0))

. ‖f‖Lp(D1(0)).

Hence ∥∥|x|−a∇I1(x)
∥∥
Lp(D1(0))

. ‖f‖Lp(D1(0)).

The latter along with (A.22) and (A.21) shows that Z lies in Lp−ε for all
ε > 0. �
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Lemma A.2. Let u ∈ C2(D1(0) \ {0}) solve

∆u(x) = f(x) in D1(0),

where f(x) = O(|x|r) for some r > −1.
Let b be the greatest integer strictly smaller than r + 1. Then there holds

∇u(x) = P (x) + O(|x|r+1−ε), ∀ ε > 0,

where P (x) is a complex-valued polynomial of degree at most b. If r /∈ N, we
can choose ε = 0.

Proof. The proof is nearly identical to that of Proposition A.3 with weight
µ(x) satisfying |µ|(x) ' 1. We will use the same notation here. We only need
to check that I1(x), Im1 (x) for 0 ≤ m ≤ b, and Im2 (x) for m > b+ 1, are all
of order |x|r+1−ε. This is done as follows.

|I1(x)| .
∫
D2|x|(0)

|f(y)|
|x− y|

dy . |x|r
∫
D3|x|(x)

1

|x− y|
dy . |x|r+1.

For 0 ≤ m ≤ b < r + 1 we see that

|Im1 (x)| . |x|m
∫
D2|x|(0)

|y|r−1−mdy . |x|r+1.

We next estimate Im2 for m ≥ b+ 1. If r ∈ N, then b = r, so m > r + 1− ε
for all ε > 0. If r /∈ N, then b > r, and thus m > r + 1. We then have

|Im2 (x)| . |x|m
∫
D1(0)\D2|x|(0)

|y|r−1−mdy

' |x|m
∫
D1(0)\D2|x|(0)

|y|r+1−m−ε|y|−2+εdy

. 2−m|x|r+1−ε.

Repeating mutatis mutandis in the proof of Proposition A.3 concludes the
argument. �
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