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Area minimizing discs in locally

non-compact metric spaces

Chang-Yu Guo and Stefan Wenger

We solve the classical problem of Plateau in every metric space
which is 1-complemented in an ultra-completion of itself. This in-
cludes all proper metric spaces as well as many locally non-compact
metric spaces, in particular, all dual Banach spaces, some non-dual
Banach spaces such as L1, all Hadamard spaces, and many more.
Our results generalize corresponding results of Lytchak and the
second author from the setting of proper metric spaces to that of
locally non-compact ones. We furthermore solve the Dirichlet prob-
lem in the same class of spaces. The main new ingredient in our
proofs is a suitable generalization of the Rellich-Kondrachov com-
pactness theorem, from which we deduce a result about ultra-limits
of sequences of Sobolev maps.

1. Introduction and statement of main results

The classical problem of Plateau is concerned with the existence of sur-
faces of disc-type with minimal area and prescribed Jordan boundary in
Euclidean space. This problem has a long and rich history for which we re-
fer for example to [7]. The first rigorous solution for arbitrary Jordan curves
in Euclidean space was given independently by Douglas [8] and Radó [25].
This solution was extended to a large class of Riemannian manifolds by
Morrey [22]. Recently, Lytchak and the second author solved the classical
problem of Plateau in the setting of arbitrary proper metric spaces in [17].
Recall that a metric space is proper if all its closed bounded subsets are
compact. Before the paper [17] only a few results beyond the setting con-
sidered by Morrey existed, see [23], [21], [24]. The existence and regularity
results proved in [17] have had applications to problems in several fields,
see [18], [19], [20]. The purpose of the present note is to solve the classical
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90 C.-Y. Guo and S. Wenger

Plateau problem as well as the Dirichlet problem in a class of metric spaces
which includes many that are not locally compact.

For a bounded domain Ω ⊂ Rn with n ≥ 2, a complete metric space
X, and p > 1 we denote by W 1,p(Ω, X) the space of Sobolev maps from
Ω to X in the sense of Reshetnyak [26]. The Reshetnyak energy of u ∈
W 1,p(Ω, X) is denoted Ep+(u). If Ω ⊂ Rn is a bounded Lipschitz domain then
u ∈W 1,p(Ω, X) has a trace, written as tr(u), which belongs to Lp(∂Ω, X).
Let D be the open unit disc in R2. The parametrized Hausdorff area of
u ∈W 1,2(D,X) is denoted by Area(u). In [17] the authors introduced a
notion of Q-quasiconformality for maps u ∈W 1,2(D,X). This is similar to
but different from the notion of quasiconformal maps used in geometric
function theory. We refer to Section 2 for the definitions related to Sobolev
maps mentioned above and for references.

We turn to our main results and first introduce the class of spaces for
which we can solve the classical Plateau problem. We refer to Section 2
for the notion of a non-principal ultrafilter ω on N and the definition of
the ultra-limit limω am of a bounded sequence (am) of real numbers. Let
(X, d) be a metric space and ω a non-principal ultrafilter on N. Denote by
Xω the set of equivalence classes [(xm)] of sequences (xm) in X satisfy-
ing supm d(x1, xm) <∞, where sequences (xm) and (x′m) are identified if
limω d(xm, x

′
m) = 0. The metric space obtained by equipping Xω with the

distance dω([(xm)], [(x′m)]) = limω d(xm, x
′
m) is called the ultra-completion

or ultra-product of X with respect to ω. Clearly, X isometrically embeds
into Xω via the map ι : X ↪→ Xω which assigns to x the equivalence class
[(x)] of the constant sequence (x).

Definition 1.1. A metric space X is said to be 1-complemented in some
ultra-completion of X if there exists a non-principal ultrafilter ω on N for
which there is a 1-Lipschitz retraction from Xω to X.

Our first main result can now be stated as follows. Given a Jordan
curve Γ ⊂ X we denote by Λ(Γ, X) the possibly empty family of maps v ∈
W 1,2(D,X) whose trace tr(v) has a continuous representative which is a
weakly monotone parametrization of Γ.

Theorem 1.2. Let X be a complete metric space and Γ a Jordan curve in
X such that Λ(Γ, X) 6= ∅. If X is 1-complemented in some ultra-completion
of X then there exists u ∈ Λ(Γ, X) such that

Area(u) = inf{Area(v) : v ∈ Λ(Γ, X)}
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and u is
√

2-quasiconformal.

The class of spaces which are 1-complemented in some ultra-completion
includes all proper metric spaces, all dual Banach spaces, some non-dual
Banach spaces such as L1, furthermore all Hadamard spaces and injective
metric spaces, see Proposition 2.1. Recall that a Hadamard space is a com-
plete metric space which is CAT(0), that is, has non-positive curvature in
the sense of Alexandrov. Our theorem thus applies to all these spaces and,
in particular, for example to all Lp spaces. It generalizes [17, Theorems 1.1
and 10.2] and [23]. Exactly as in [17], the quasiconformality constant

√
2 is

optimal but can be improved to 1 for metric spaces satisfying a certain prop-
erty (ET) which, roughly speaking, excludes non-Euclidean normed spaces
as weak tangents.

We record the following special case of Theorem 1.2.

Corollary 1.3. Let X be a Hadamard space or a dual Banach space and
Γ ⊂ X a rectifiable Jordan curve. Then there exists u ∈ Λ(Γ, X) such that

Area(u) = inf{Area(v) : v ∈ Λ(Γ, X)}

and u is
√

2-quasiconformal.

Since Hadamard spaces and Banach spaces admit a quadratic isoperi-
metric inequality in the sense of [17], the regularity results in [17] imply
that any u as in the corollary has a locally Hölder (resp. Lipschitz in the
case that X is a Hadamard space) continuous representative which extends
continuously to the boundary S1.

We can solve the Dirichlet problem in the same class of metric spaces:

Theorem 1.4. Let X be a complete metric space, Ω ⊂ Rn a bounded Lip-
schitz domain, and w ∈W 1,p(Ω, X) for some p > 1. If X is 1-complemented
in some ultra-completion of X then there exists u ∈W 1,p(Ω, X) with tr(u) =
tr(w) and such that

Ep+(u) = inf
{
Ep+(v) : v ∈W 1,p(Ω, X) and tr(v) = tr(w)

}
.

The theorem furthermore holds with the Reshetnyak energy Ep+(u) re-
placed by the Korevaar-Schoen Dirichlet energy Ep(u) defined in [14]. The
theorem generalizes for example [16, Theorem 2.3] and [14, Theorem 2.2].
For regularity results for solutions of Dirichlet’s problem in the metric space
setting we refer for example to [14] and [16] and the references therein.
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The main new ingredient in the proofs of our results above is the follow-
ing generalization of the Rellich-Kondrachov compactness theorem from the
setting of proper metric spaces to that of arbitrary metric spaces. Given a
complete metric space (X, d), a sequence (um) ⊂W 1,p(Ω, X) will be called
bounded if

sup
m∈N

[∫
Ω
d(x0, um(z))p dz + Ep+(um)

]
<∞

for some and thus every x0 ∈ X. For p > 1 and n ∈ N we define the Sobolev
conjugate of p by p∗ = np

n−p if p < n and p∗ =∞ otherwise.

Theorem 1.5. Let X be a complete metric space, Ω ⊂ Rn a bounded Lip-
schitz domain, and (um) ⊂W 1,p(Ω, X) a bounded sequence for some p > 1.
Then, after possibly passing to a subsequence, there exist a complete metric
space Z, isometric embeddings ϕm : X ↪→ Z and v ∈W 1,p(Ω, Z) such that
ϕm ◦ um converges to v in Lq(Ω, Z) for every q < p∗.

A more general statement, which applies to sequences of metric spaces,
will be given in Section 3. Convergence in Lq(Ω, Z) means that∫

Ω
d(ϕm ◦ um(z), v(z))q dz → 0

as m→∞. The proof of the theorem is similar to that for proper metric
spaces but, in addition, uses a variant of Gromov’s compactness theorem for
sequences of metric spaces. Since the limit map v can be viewed as a map
to the ultra-completion Xω for any ω, see Lemma 2.2, we will obtain the
following result on ultra-limits of (sub)sequences of Sobolev maps.

Theorem 1.6. Let X be a complete metric space and Xω an ultra-completion.
Let Ω ⊂ Rn be a bounded Lipschitz domain and (um) ⊂W 1,p(Ω, X) a bounded
sequence for some p > 1. Then, after possibly passing to a subsequence, the
map φ(z) := [(um(z))] belongs to W 1,p(Ω, Xω) and satisfies

Ep+(φ) ≤ lim inf
m→∞

Ep+(um).

Moreover, if tr(um) converges to some map ρ ∈ Lp(∂Ω, X) almost every-
where on ∂Ω then tr(φ) = ι ◦ ρ. Finally, if p ≥ n then

Volµ(φ) ≤ lim inf
m→∞

Volµ(um)

for any definition of volume µ (in the sense of convex geometry) inducing
quasi-convex n-volume densities.
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We refer to Section 2 and [17] for the definition of the parametrized
µ-volume Volµ(u) of a map u ∈W 1,n(Ω, X) and for the notion of defini-
tion of volume inducing quasi-convex n-volume densities. Here, we sim-
ply mention that the Hausdorff measure provides a definition of volume
which induces quasi-convex 2-volume densities by [6]. Moreover, in this
case, the parametrized µ-volume of a map u ∈W 1,2(D,X) coincides with
the parametrized Hausdorff area Area(u) used in Theorem 1.2 and Corol-
lary 1.3. Theorem 1.2 and its corollary actually hold with the parametrized
Hausdorff area replaced by the parametrized µ-volume induced by any def-
inition of volume µ which induces quasi-convex 2-volume densities.

We finally mention that sometimes it is possible to solve Plateau’s prob-
lem even if a space is not 1-complemented in an ultra-completion of itself.
Indeed, the Banach space c0 of sequences of real numbers converging to 0,
equipped with the sup-norm, is not 1-complemented in any ultra-completion
of c0. Nevertheless, the Plateau problem in c0 has a solution for every Jordan
curve Γ ⊂ c0 for which Λ(Γ, c0) 6= ∅, in particular whenever Γ is rectifiable,
see Proposition 5.2. We do not know whether there exists a Banach space
X and a rectifiable Jordan curve in X which does not bound an area mini-
mizer. In contrast, it is not difficult to construct a complete metric space for
which the Plateau problem is not solvable for some rectifiable Jordan curve
and which, in addition, admits a quadratic isoperimetric inequality in the
sense of [17]. See Example 5.3 below.

The paper is structured as follows. In Section 2 we recall the necessary
definitions concerning ultra-completions of metric spaces and Sobolev maps
from a Euclidean domain to a complete metric space. In Section 3 we prove
Theorem 3.1 which implies Theorem 1.5. Section 4 is devoted to the proof
of Theorem 1.6. In Sections 5 and 6 we combine Theorem 1.6 with the
arguments in [16] and [17] to prove Theorems 1.2 and 1.4. In Section 5 we
furthermore obtain an analog of Theorem 1.2 with area replaced by energy.
We also provide Proposition 5.2 and Example 5.3 to which we alluded above.

Acknowledgments. We are indebted to the referee for useful comments
and questions which led to the statement of Theorem 1.6.
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2. Preliminaries

2.1. Basic notation

The Euclidean norm of a vector v ∈ Rn is denoted by |v| and the open unit
disc in R2 by D = {v ∈ R2 : |v| < 1}. We write D for the closure of D and
S1 for its boundary.

Let X be a metric space. A Jordan curve in X is a subset of X homeo-
morphic to S1. A curve of finite length is called rectifiable. Let Γ ⊂ X be a
Jordan curve. A map γ : S1 → Γ is called a weakly monotone parametriza-
tion of Γ if γ is a uniform limit of homeomorphisms γi : S

1 → Γ. For m ≥ 0
the m-dimensional Hausdorff measure on X is denoted by Hm. The nor-
malizing constant is chosen in such a way that Hm coincides with the m-
dimensional Lebesgue measure on Euclidean Rm. The Lebesgue measure of
a set A ⊂ Rm is denoted by |A|.

2.2. Ultra-completions of metric spaces

We briefly recall the relevant definitions concerning ultra-completions and
ultra-limits of metric spaces. We refer for example to [5] for details.

A non-principal ultrafilter on N is a finitely additive probability measure
ω on N such that every subset of N is measurable and such that ω(A) equals
0 or 1 for all A ⊂ N and ω(A) = 0 whenever A is finite. Given a compact
Hausdorff topological space (Z, τ) and a sequence (zm) ⊂ Z there exists a
unique point z∞ ∈ Z such that ω({m ∈ N : zm ∈ U}) = 1 for every U ∈ τ
containing z∞. We denote the point z∞ by limω zm.

Let (X, d) be a metric space and ω a non-principal ultrafilter on N.
A sequence (xm) ⊂ X is called bounded if supm d(x1, xm) <∞. Define an
equivalence relation ∼ on bounded sequences in X by considering (xm) and
(x′m) equivalent if limω d(xm, x

′
m) = 0. Denote by [(xm)] the equivalence class

of (xm). The ultra-completion Xω of X with respect to ω is the metric space
given by the set

Xω := {[(xm)] : (xm) bounded sequence in X} ,

equipped with the metric

dω([(xm)], [(x′m)]) := limω d(xm, x
′
m).
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Ultra-completions are sometimes called ultra-products in the literature. The
ultra-completion Xω of X is the ultra-limit of the constant sequence (X,x0)
with respect to ω for some fixed x0 ∈ X.

The ultra-completion Xω of X is a complete metric space, even if X
itself is not complete. Notice that X isometrically embeds into Xω via the
map ι : X ↪→ Xω given by ι(x) := [(x)].

We now show that the classes of metric spaces mentioned after Theo-
rem 1.2 satisfy Definition 1.1.

Proposition 2.1. The class of metric spaces X which are 1-complemented
in every ultra-completion of X includes:

(i) Proper metric spaces.

(ii) Hadamard spaces.

(iii) Injective metric spaces.

(iv) Dual Banach spaces.

(v) Banach spaces which are 1-complemented in some dual Banach space.

A metric space X is said to be 1-complemented in some metric space Y
if X isometrically embeds into Y and if there exists a 1-Lipschitz retraction
from Y to X. This explains the terminology used in (v). Particular examples
of spaces satisfying (v) are given by L-embedded Banach spaces, see [10],
which includes L1-spaces. A metric space X is called injective if X is 1-
complemented in every metric space into which X embeds isometrically. We
refer for example to [15] for properties of injective metric spaces.

Proof. Let X be a metric space and ω a non-principal ultrafilter on N. If X
is proper then the map ι is surjective. In particular, X is 1-complemented
in Xω, which proves (i). If X is a Hadamard space then so is Xω and the
orthogonal projection from Xω to X is 1-Lipschitz since X is a closed convex
subset of Xω, see [5]. This proves (ii). If X is an injective metric space then X
is 1-complemented in Xω by the definition of injectivity. This yields (iii). Let
now X be a dual Banach space. Closed balls of finite radius in X are weak∗-
compact by the Banach-Alaoglu theorem and the norm on X is weak∗-lower
semi-continuous. Thus, the map P : Xω → X given by P ([(xn)]) := limω xn
is well-defined and 1-Lipschitz. This proves (iv). The same argument works
for (v). �
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We end this subsection with the following easy observation which will be
used in the proof of Theorem 1.6. It shows that the limit map v appearing
in Theorem 1.5 can be viewed as a map to an ultra-completion of X.

Lemma 2.2. Let A be a set, X a metric space, and Xω an ultra-completion
of X. Let x0 ∈ X and let fm : A→ X be maps, m ∈ N. Suppose there exist
a metric space Z, isometric embeddings ϕm : X ↪→ Z, and a map g : A→ Z
such that (ϕm(x0)) is a bounded sequence in Z and ϕm ◦ fm converges to g
pointwise on A. Then the map ψ : g(A)→ Xω given by ψ(g(a)) := [(fm(a))]
for a ∈ A is well-defined and an isometric embedding.

Proof. We denote the distance on X and Z by d and dZ , respectively. Fix
z0 ∈ Z and notice that supm dZ(z0, ϕm(x0)) <∞. For a ∈ A we have

d(x0, fm(a)) = dZ(ϕm(x0), ϕm(fm(a)))

≤ dZ(z0, ϕm(x0)) + dZ(z0, ϕm(fm(a)))

for all m. Since the right-hand side in the above inequality is bounded in m
it follows that (fm(a)) is a bounded sequence in X. Let a, a′ ∈ A. Then

d(fm(a), fm(a′)) = dZ(ϕm(fm(a)), ϕm(fm(a′)))→ dZ(g(a), g(a′))

as m→∞, which implies that ψ is well-defined and an isometric embedding.
�

2.3. Metric space valued Sobolev maps

We briefly review the main definitions concerning Sobolev maps from a Eu-
clidean domain to a metric space which will be used in the present paper.
We refer for example to [17] for details. There exist several equivalent def-
initions of Sobolev maps from Euclidean domains with values in a metric
space, see e.g. [2], [14], [26], [11], [3]. Here, we recall the definition from [26]
using compositions with real-valued Lipschitz functions.

Let (X, d) be a complete metric space and p > 1 and let Ω ⊂ Rn be a
bounded domain. We denote by Lp(Ω, X) the set of measurable and essen-
tially separably valued maps u : Ω→ X such that for some and thus every
x ∈ X the function ux(z) := d(x, u(z)) belongs to Lp(Ω), the classical space
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of p-integrable functions on Ω. A sequence (um) ⊂ Lp(Ω, X) is said to con-
verge in Lp(Ω, X) to a map u ∈ Lp(Ω, X) if∫

Ω
d(um(z), u(z))p dz → 0

as m→∞. A map u ∈ Lp(Ω, X) belongs to the Sobolev space W 1,p(Ω, X)
if there exists g ∈ Lp(Ω) such that for every x ∈ X the function ux belongs
to the classical Sobolev space W 1,p(Ω) and has weak gradient bounded by
|∇ux| ≤ g almost everywhere. The Reshetnyak p-energy of u ∈W 1,p(Ω, X)
is defined by

Ep+(u) := inf
{
‖g‖pLp(Ω)

∣∣ g as above
}
.

There exist other natural definitions of energy of a Sobolev map, for example
the well-known Korevaar-Schoen Dirichlet energy Ep(u) defined in [14].

Let Ω ⊂ Rn be a bounded Lipschitz domain. The trace of a Sobolev
map u ∈W 1,p(Ω, X) is defined as follows. Let J = (−1, 1) and I = (−1, 0).
Given x ∈ ∂Ω there exists an open neighborhood U ⊂ Rn of x, an open
set V ⊂ Rn−1, and a biLipschitz homeomorphism ϕ : V × J → U of x such
that ϕ(V × I) = U ∩ Ω and ϕ(V × {0}) = U ∩ ∂Ω. For Hn−1-almost every
v ∈ V the map t 7→ u ◦ ϕ(v, t) is in W 1,p(I,X) and thus has an absolutely
continuous representative, again denoted by u ◦ ϕ(v, ·). For Hn−1-almost
every point z ∈ U ∩ ∂Ω the trace of u at z is defined by

tr(u)(z) := lim
t→0−

u ◦ ϕ(v, t),

where v ∈ V is such that ϕ(v, 0) = z. By [14, Lemma 1.12.1] the defini-
tion of tr(u) is independent of the choice of ϕ. Since ∂Ω can be covered
by a finite number of biLipschitz maps it follows that tr(u) is well-defined
Hn−1-almost everywhere on ∂Ω. Furthermore, tr(u) is in Lp(∂Ω, X) by [14,
Theorem 1.12.2], the definition of Lp(∂Ω, X) being analogous to that of
Lp(Ω, X).

As was shown in [12] and [17], every Sobolev map u ∈W 1,p(Ω, X) has an
approximate metric derivative at almost every point z ∈ Ω in the following
sense. There exists a unique seminorm on Rn, denoted ap mduz, such that

ap lim
z′→z

d(u(z′), u(z))− ap mduz(z
′ − z)

|z′ − z|
= 0,

where ap lim denotes the approximate limit, see [9]. If u is Lipschitz then
the approximate limit can be replaced by an honest limit.
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Recall from [1] that a definition of volume (in the sense of convex ge-
ometry) is a function µ that assigns to every n-dimensional normed space
V a norm µV on ΛnV in such a way that µV is induced by the Lebesgue
measure if V is Euclidean and such that for every linear 1-Lipschitz map
T : V →W between n-dimensional normed spaces V and W the induced
map T∗ : ΛnV → ΛnW is also 1-Lipschitz. Well-known examples of defini-
tions of volume are the Busemann definition, the Holmes-Thompson defi-
nition, and the Benson definition. The Busemann definition is exactly the
definition of volume which gives rise to the Hausdorff n-measure on V . The
Benson definition is sometimes called the Gromov mass∗ measure.

Definition 2.3. The parametrized µ-volume of a map u ∈W 1,n(Ω, X) is
defined by

Volµ(u) :=

∫
Ω

Jµ(ap mduz) dz,

where the µ-Jacobian Jµ(s) of a seminorm s on Rn is given by

Jµ(s) :=

{
µ(Rn,s)(e1 ∧ · · · ∧ en) s is a norm

0 otherwise

and e1, . . . , en denote the standard basis vectors in Rn.

The µ-volume and Reshetnyak energy of u ∈W 1,n(Ω, X) are related by

Volµ(u) ≤ En+(u)

for any definition of volume µ, see [17, Lemma 7.2]. A definition of volume
µ is said to induce quasi-convex n-volume densities if for any finite dimen-
sional normed space Y and any linear map L : Rn → Y we have Volµ(L|B) ≤
Volµ(ψ|B) for every smooth immersion ψ : B → Y with ψ|∂B = L|∂B, where
B is the closed unit ball in Rn. The Busemann definition of volume induces
quasi-convex 2-volume densities by the recent result [6]. The Benson defini-
tion induces quasi-convex n-volume densities for every n ≥ 1, see [1].

If n = 2 and µ is the Busemann definition of volume we will denote
Volµ(u) by Area(u) and call it the (parametrized) Hausdorff area of u. It fol-
lows from the area formula [13], [12] that if u ∈W 1,2(D,X) satisfies Lusin’s
property (N) then

Area(u) =

∫
X

#{z : u(z) = x} dH2(x).
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We finally need the following notion of quasiconformality introduced in
[17].

Definition 2.4. A map u ∈W 1,2(D,X) is called Q-quasiconformal if for
almost every z ∈ D we have ap mduz(v) ≤ Q · ap mduz(w) for all v, w ∈ S1.

If u is Q-quasiconformal then E2
+(u) ≤ Q2 ·Area(u), see [17, Lem. 7.2].

3. Generalized Rellich-Kondrachov theorem

In this section, we prove the following theorem which generalizes Theo-
rem 1.5.

Theorem 3.1. Let Ω ⊂ Rn be a bounded Lipschitz domain. For every m ∈
N, let (Xm, dm) be a complete metric space, Km ⊂ Xm compact, and um ∈
W 1,p(Ω, Xm). Suppose that (Km, dm) is a uniformly compact sequence and

(1) sup
m∈N

[∫
Ω
dm(xm, um(z))p dz + Ep+(um)

]
<∞

for some and thus every xm ∈ Km. Then, after possibly passing to a sub-
sequence, there exist a complete metric space Z, isometric embeddings ϕm :
Xm ↪→ Z, a compact subset K ⊂ Z and v ∈W 1,p(Ω, Z) such that ϕm(Km) ⊂
K for all m ∈ N and ϕm ◦ um converges to v in Lq(Ω, Z) for every q < p∗.

Recall that a sequence of compact metric spaces (Bm, dm) is called uni-
formly compact if supm diamBm <∞ and if for every ε > 0 there exists
N ∈ N such that every Bm can be covered by at most N balls of radius ε.

The proof of the theorem is similar to that of [3, Theorem 5.4.3] but
uses, in addition, the following variant of Gromov’s compactness theorem
for sequences of metric spaces established in [28, Proposition 5.2].

Proposition 3.2. Let (Xm, dm) be a sequence of metric spaces and, for
each m ∈ N, subsets

B1
m ⊂ B2

m ⊂ B3
m ⊂ · · · ⊂ Xm.

If for every k ∈ N the sequence (Bk
m, dm) is uniformly compact then, after

possibly passing to a subsequence, there exist a complete metric space Z,
isometric embeddings ϕm : Xm ↪→ Z and compact subsets Y 1 ⊂ Y 2 ⊂ · · · ⊂
Z such that ϕm(Bk

m) ⊂ Y k for all m ∈ N and k ∈ N.
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We turn to the proof of Theorem 3.1 and fix m ∈ N. Since Xm embeds
isometrically into an injective metric space we may assume that Xm itself is
injective. Indeed, every metric space X isometrically embeds into the Banach
space `∞(X) of bounded functions on X with the supremum norm and
`∞(X) is injective. Now, there exists a non-negative function hm ∈ Lp(Ω)
such that ‖hm‖pLp(Ω) ≤ C · E

p
+(um) for some constant C only depending on

Ω and p and such that

dm(um(z), um(z′)) ≤ |z − z′| · (hm(z) + hm(z′))

for all z, z′ ∈ Ω, see e.g. [17, Proposition 3.2] and its proof. For k ∈ N set

Akm := {z ∈ Ω : hm(z) ≤ k}

and notice that the restriction of um to Akm is 2k-Lipschitz.

Lemma 3.3. There exist k0 ∈ N and λ > 0 such that um(Akm) ⊂ B(Km, λk)
and Akm 6= ∅ for all m ∈ N and k ≥ k0.

Here, B(Km, λk) denotes the set of all x ∈ Xm for which there exists
y ∈ Km with dm(x, y) < λk.

Proof. For each m ∈ N, fix xm ∈ Km and define

Ckm := {z ∈ Ω : dm(xm, um(z)) ≤ k}.

By Chebyshev’s inequality and (1) there exists M > 0 such that

(2) |Ω \Akm| ≤ k−p
∫

Ω
hpm(z) dz ≤M · k−p

and |Ω \ Ckm| ≤M · k−p for all m and k. Thus, there exists k0 ∈ N such that
Akm ∩ Ckm 6= ∅ for all m ∈ N and all k ≥ k0. Fix z0 ∈ Akm ∩ Ckm. Then for
every z ∈ Akm we have

dm(xm, um(z)) ≤ dm(xm, um(z0)) + dm(um(z0), um(z)) ≤ k + 2k diam(Ω),

so the lemma follows. �

Let m ∈ N and k ≥ k0. Since Xm is injective there exists a 2k-Lipschitz
map ukm : Ω→ Xm which agrees with um on Akm. We define for each m ∈ N
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an increasing sequence of subsets Bk0
m ⊂ Bk0+1

m ⊂ · · · ⊂ Xm by

Bk
m := Km ∪ uk0

m (Ω) ∪ · · · ∪ ukm(Ω).

Since ujm is 2j-Lipschitz on the compact set Ω, Lemma 3.3 implies that for
fixed k ≥ k0 the sequence of metric spaces (Bk

m, dm) is uniformly compact.
Thus, by Proposition 3.2 there exists, after possibly passing to a subse-
quence, a complete metric space (Z, dZ), isometric embeddings ϕm : Xm ↪→
Z, and compact subsets Y k0 ⊂ Y k0+1 ⊂ · · · ⊂ Z such that ϕm(Bk

m) ⊂ Y k for
all m and k ≥ k0. In particular, for every m ∈ N the set ϕm(Km) is contained
in the compact set K := Y k0 . Moreover, the maps vm = ϕm ◦ um belong to
W 1,p(Ω, Z) and satisfy

(3) sup
m∈N

[∫
Ω
dZ(z0, vm(z))p dz + Ep+(vm)

]
<∞

for some and thus every z0 ∈ Z.

Lemma 3.4. There exists a subsequence (vmj
) which converges in L1(Ω, Z)

to some v ∈ L1(Ω, Z).

Proof. For given k ≥ k0, the map vkm := ϕm ◦ ukm is 2k-Lipschitz and has
image in the compact set Y k for every m ∈ N. Thus, by the Arzelà-Ascoli
theorem and by a diagonal sequence argument, there exist integers 1 ≤ m1 <
m2 < . . . such that, for every k ≥ k0, the sequence (vkmj

) converges uniformly
on Ω as j →∞. Lemma 3.5 below shows that there exists M > 0 such that∫

Ω
dZ(vmj

(z), vml
(z)) dz ≤ 2M · k1−p +

∫
Ω
dZ(vkmj

(z), vkml
(z)) dz

for all j, l ∈ N and every k ≥ k0. Hence, the integral on the left-hand side
converges to 0 as j, l→∞. This proves that (vmj

) is a Cauchy sequence in
L1(Ω, Z) and hence that vmj

converges in L1(Ω, Z) to some v ∈ L1(Ω, Z).
�

The following lemma was used in the proof above.

Lemma 3.5. There exists M > 0 such that

(4)

∫
Ω
dZ(vm(z), vkm(z)) dz ≤M · k1−p

for all m ∈ N and every k ≥ k0.
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Proof. Let z0 ∈ Z. By Lemma 3.3, the definition of vkm, and since ϕm(Km) ⊂
K, there exists M ′ > 0 such that dZ(z0, v

k
m(z)) ≤M ′ · k for every z ∈ Ω and

all m ∈ N and k ≥ k0. This together with Hölder’s inequality and (2) yields∫
Ω
dZ(vm(z), vkm(z)) dz =

∫
Ω\Ak

m

dZ(vm(z), vkm(z)) dz

≤M ′ · k ·
∣∣∣Ω \Akm∣∣∣+

∫
Ω\Ak

m

dZ(z0, vm(z)) dz

≤M ′′ · k1−p +
∣∣∣Ω \Akm∣∣∣1− 1

p ·
(∫

Ω
dZ(z0, vm(z))p dz

) 1

p

≤M ′′′ · k1−p

for some constants M ′′ and M ′′′ which do not depend on m and k. �

Lemma 3.6. For every q < p∗ the maps vmj
and v belong to Lq(Ω, Z) and

the sequence (vmj
) converges to v in Lq(Ω, Z).

Proof. Fix z0 ∈ Z and let q < q̄ < p∗. By (3) and the classical Sobolev em-
bedding theorem, the real-valued functions z 7→ dZ(z0, vmj

(z)) belong to
Lq̄(Ω) and form a bounded sequence in Lq̄(Ω). Since a subsequence of
(vmj

) converges to v almost everywhere it follows with Fatou’s lemma that
v ∈ Lq̄(Ω, Z) and hence

L := sup
j∈N

[∫
Ω
dZ(vmj

(z), v(z))q̄ dz

]
<∞.

Let ε > 0. Then the set F jε := {z ∈ Ω : dZ(vmj
(z), v(z)) > ε} satisfies |F jε | →

0 as j →∞ because, by Chebyshev’s inequality,

|F jε | ≤ ε−1 ·
∫

Ω
dZ(vmj

(z), v(z)) dz

for every j ∈ N and because vmj
converges to v in L1(Ω, Z) by Lemma 3.4.

By Hölder’s inequality,∫
Ω
dZ(vmj

(z), v(z))q dz ≤ εq · |Ω|+
∫
F j

ε

dZ(vmj
(z), v(z))q dz

≤ εq · |Ω|+ L
q

q̄ · |F jε |
1− q

q̄

and hence ∫
Ω
dZ(vmj

(z), v(z))q dz → 0
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as j →∞. This shows that vmj
converges to v in Lq(Ω, Z), completing the

proof. �

Lemma 3.6 implies that vmj
converges to v in Lp(Ω, Z). Since Ep+(vmj

)
is uniformly bounded in j it thus follows from [14, Theorem 1.6.1] that
v ∈W 1,p(Ω, Z). This concludes the proof of Theorem 3.1.

Theorem 1.5 is a direct consequence of Theorem 3.1. The proof of the
latter moreover shows the following:

Remark 3.7. The isometric embeddings ϕm : X ↪→ Z in Theorem 1.5 can
be chosen with the following additional property. Given compact sets
C1 ⊂ C2 ⊂ · · · ⊂ X there exist compact sets Y 1 ⊂ Y 2 ⊂ · · · ⊂ Z such that
ϕm(Ck) ⊂ Y k for all m and k.

Indeed, in the proof of Theorem 3.1 one simply defines the subsets Bk
m

by

Bk
m := Ck ∪ uk0

m (Ω) ∪ · · · ∪ ukm(Ω)

for k ≥ k0 and sets Y k := Y k0 for k ≤ k0. The rest of the proof remains
unchanged.

4. Ultra-limits of subsequences of Sobolev maps

In this section we prove Theorem 1.6. For this let X, Xω, Ω, and (um) ⊂
W 1,p(Ω, X) be as in the statement of the theorem. Let µ be a definition of
volume inducing quasi-convex n-volume densities. After possibly passing to
a subsequence, we may assume that

Ep+(um)→ lim inf
k→∞

Ep+(uk)

as m→∞ and, if p ≥ n then also Volµ(um)→ lim infk→∞Volµ(uk).
We apply Theorem 3.1 and fix x0 ∈ X. After possibly passing to a sub-

sequence, there thus exist a complete metric space (Z, dZ), a compact sub-
set K ⊂ Z, and isometric embeddings ϕm : X ↪→ Z such that ϕm(x0) ∈ K
for all m and such that vm := ϕm ◦ um converges in Lp(Ω, Z) to some v ∈
W 1,p(Ω, Z). After possibly passing to a further subsequence, we may assume
that vm converges to v almost everywhere on Ω. Let N ⊂ Ω be a subset of
Lebesgue measure zero such that vm(z) converges to v(z) for all z ∈ Ω \N .
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Define a subset B ⊂ Z by

B := {v(z) : z ∈ Ω \N}.

Then the map ψ : B → Xω given by ψ(v(z)) = [(um(z))] whenever z ∈ Ω \
N is well-defined and an isometric embedding by Lemma 2.2. Since Xω is
complete, the map ψ extends to an isometric map on B, which we denote
by ψ again. After redefining v on a set of measure zero, we may assume that
v has image in B and so v is an element of W 1,p(Ω, B). The map

φ(z) := ψ(v(z)) = [(um(z))]

then belongs to W 1,p(Ω, Xω) and, by the lower semi-continuity of the Reshet-
nyak energy [17, Corollaries 5.7], furthermore satisfies

(5) Ep+(φ) = Ep+(v) ≤ lim inf
m→∞

Ep+(vm) = lim inf
m→∞

Ep+(um).

In case p ≥ n, the lower semi-continuity of the µ-volume [17, Corollaries 5.8]
implies that

(6) Volµ(φ) = Volµ(v) ≤ lim inf
m→∞

Volµ(vm) = lim inf
m→∞

Volµ(um).

This proves the first and third part of the theorem.
We now suppose that, in addition, the sequence of traces tr(um) con-

verges to some map ρ ∈ Lp(∂Ω, X) almost everywhere on ∂Ω. Since ρ is
measurable and essentially separably valued it follows from Lusin’s theo-
rem that there exist compact sets A1 ⊂ A2 ⊂ · · · ⊂ ∂Ω such that the re-
striction ρ|Ak

is continuous for every k ∈ N and Hn−1(∂Ω \Ak)→ 0. Thus,
the sets Ck := ρ(Ak) are compact and satisfy C1 ⊂ C2 ⊂ · · · ⊂ X. Now,
Theorem 3.1 and Remark 3.7 show that, after possibly passing to a sub-
sequence, there exist a complete metric space (Z, dZ), compact subsets
Y 1 ⊂ Y 2 ⊂ · · · ⊂ Z, isometric embeddings ϕm : X ↪→ Z and v ∈W 1,p(Ω, Z)
such that ϕm(Ck) ⊂ Y k for all m and k and vm := ϕm ◦ um converges in
Lp(Ω, Z) to v as m→∞.

Set C :=
⋃∞
k=1Ck. After passing to a further subsequence we may assume

that vm converges to v almost everywhere on Ω and that ϕm|C converges
pointwise to an isometric embedding ϕ : C ↪→ Z, the convergence being uni-
form on each Ck. Let N ⊂ Ω be a set of Lebesgue measure zero such that
vm(z) converges to v(z) for all z ∈ Ω \N .
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Define a subset of Z by

B := {v(z) : z ∈ Ω \N} ∪ ϕ(C).

The map ψ : B → Xω given by ψ(v(z)) = [(um(z))] when z ∈ Ω \N and by
ψ(ϕ(x)) = ι(x) = [(x)] when x ∈ C, is well-defined and an isometric embed-
ding by Lemma 2.2. Since Xω is complete there exists a unique isometric
extension of ψ to B, which we denote again by ψ. After possibly redefining
the map v on N , we may assume that v has image in B and hence v is an
element of W 1,p(Ω, B). The map

φ(z) := ψ(v(z)) = [(um(z))]

then belongs to W 1,p(Ω, Xω) and satisfies (5) and, if p ≥ n, then also (6).
Moreover, we have that tr(vm) = ϕm ◦ tr(um) converges to ϕ ◦ ρ almost ev-
erywhere on ∂Ω and a subsequence of tr(vm) converges to tr(v) almost ev-
erywhere on ∂Ω by [14, Theorem 1.12.2]. It thus follows that tr(v) = ϕ ◦ ρ
and hence

tr(φ) = ψ ◦ tr(v) = ψ ◦ ϕ ◦ ρ = ι ◦ ρ,
completing the proof of the second part of the theorem.

5. Area and energy minimizers with prescribed
Jordan boundary

In this section we prove Theorem 1.2 as well as an analog for the energy,
see Theorem 5.4 below. The proofs of these theorems are almost the same
as in the case of proper metric spaces, see [17, Theorems 7.1 and 7.6], but
they make essential use of Theorem 1.6 instead of the Rellich-Kondrachov
compactness theorem for proper metric spaces.

Let X and Γ be as in the statement of Theorem 1.2.

Lemma 5.1. For every v ∈ Λ(Γ, X) there exists u ∈ Λ(Γ, X) which is
√

2-
quasiconformal and satisfies Area(u) ≤ Area(v).

Proof. Let v∈Λ(Γ, X) and define Λv := {w ∈ Λ(Γ, X) : Area(w)≤Area(v)},
which is not empty. Let (vm) ⊂ Λv be an energy minimizing sequence in Λv,
thus

E2
+(vm)→ L := inf

{
E2

+(w) : w ∈ Λv
}

as m→∞. Fix distinct points p1, p2, p3 ∈ S1 and distinct points p̄1, p̄2, p̄3 ∈
Γ. After possibly precomposing each vm with a conformal diffeomorphism of
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D we may assume that every vm satisfies the 3-point condition tr(vm)(pi) =
p̄i for i = 1, 2, 3. By [17, Proposition 7.4], the family {tr(vm) : m ∈ N} is equi-
continuous. Thus, after possibly passing to a subsequence we may assume,
by the Arzelà-Ascoli theorem, that tr(vm) converges uniformly to a weakly
monotone parametrization γ of Γ. Fix x0 ∈ Γ. By [17, Lemma 4.11] we have

sup
m∈N

[∫
D
d(x0, vm(z))2 dz

]
<∞

and hence (vm) is a bounded sequence.
Let Xω be an ultra-completion of X such that X admits a 1-Lipschitz

retraction P : Xω → X. We now apply Theorem 1.6. Thus, after possibly
passing to a further subsequence, the map w(z) := [(vm(z))] belongs to
W 1,2(D,Xω) and satisfies tr(w) = ι ◦ γ as well as

E2
+(w) ≤ lim

m→∞
E2

+(vm) = L

and

Area(w) ≤ lim inf
m→∞

Area(vm) ≤ Area(v).

Since P is 1-Lipschitz the map u := P ◦ w belongs to W 1,2(D,X) and sat-
isfies

tr(u) = P ◦ ι ◦ γ = γ

as well as E2
+(u) ≤ L and Area(u) ≤ Area(v). It follows that u ∈ Λv and con-

sequently E2
+(u) = L. Finally, since for every biLipschitz homeomorphism

% : D → D we have u ◦ % ∈ Λv and thus E2
+(u) = L ≤ E2

+(u ◦ %) we see from
[17, Theorem 6.1] that u is

√
2-quasiconformal. �

Proof of Theorem 1.2. Let (vm) ⊂ Λ(Γ, X) be an area minimizing sequence,
that is, Area(vm)→ L as m→∞, where

L := inf{Area(v) : v ∈ Λ(Γ, X)}.

By Lemma 5.1, there exists for each m some
√

2-quasiconformal map um ∈
Λ(Γ, X) with Area(um) ≤ Area(vm). In particular, (um) is still an area min-
imizing sequence in Λ(Γ, X) and moreover satisfies E2

+(um) ≤ 2 ·Area(um)
because um is

√
2-quasiconformal. Thus, the sequence (um) has uniformly

bounded energy. Arguing exactly as in the proof of Lemma 5.1 we obtain
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the existence of u ∈ Λ(Γ, X) such that

Area(u) ≤ lim
m→∞

Area(um) = L

and hence u is an area minimizer in Λ(Γ, X). By Lemma 5.1, we may as-
sume that u is moreover

√
2-quasiconformal. This completes the proof of the

theorem. �

Exactly as the corresponding result in [17], Theorem 1.2 above holds with
the parametrized Hausdorff area Area(u) replaced by the parametrized area
induced by a definition of volume inducing quasi-convex 2-volume densities.

The following result shows that sometimes the Plateau problem can
be solved even if a space is not 1-complemented in an ultra-completion.
Compare with [27, Remark 4.5].

Proposition 5.2. The Banach space c0 of sequences of real numbers con-
verging to zero, equipped with the sup-norm, is not 1-complemented in an
ultra-completion of itself. Nevertheless, the Plateau problem can be solved in
c0 for every Jordan curve Γ ⊂ c0 which satisfies Λ(Γ, c0) 6= ∅.

Proof. Let ω be a non-principal ultrafilter on N. The Banach space `∞

of bounded sequences of real numbers, equipped with the sup-norm, iso-
metrically embeds into the ultra-completion (c0)ω of c0 via the map x 7→
[(ϕm(x))], where the maps ϕm : `∞ → c0 are given by

ϕm(x) := (x1, . . . , xm, 0, 0, . . . )

for x = (x1, x2, . . . ) ∈ `∞. Since there is no 1-Lipschitz retraction of `∞ onto
c0, see for example [4, Example 1.5], it follows that c0 is not 1-complemented
in (c0)ω.

Let now Γ ⊂ c0 be a Jordan curve such that Λ(Γ, c0) 6= ∅. Since Γ is
compact there exists a 1-Lipschitz retraction P : c0 → K onto some com-
pact set K ⊂ c0 containing Γ. Notice that Λ(Γ,K) 6= ∅ and hence, by [17,
Theorem 1.1], there exists u ∈ Λ(Γ,K) which is

√
2-quasiconformal and sat-

isfies

Area(u) = inf {Area(v) : v ∈ Λ(Γ,K)} .
Since P is 1-Lipschitz it follows that u, as an element of Λ(Γ, c0), is also an
area minimizer in c0, thus

Area(u) = inf {Area(v) : v ∈ Λ(Γ, c0)} .

This concludes the proof. �



i
i

“3-Wenger” — 2020/3/12 — 11:38 — page 108 — #20 i
i

i
i

i
i

108 C.-Y. Guo and S. Wenger

We leave the verification of details in the next example to the interested
reader.

Example 5.3. Let X be the complete metric space obtained by gluing the
metric spaces

Xn :=
(
S1 × [0, 1/n]

)
∪
(
S2

+ × {1/n}
)

for n = 1, 2, . . . , along their common boundary S := S1 × {0}, where S2
+

denotes the closed upper hemisphere of the standard unit sphere in R3.
Here, every Xn is equipped with the natural length metric. Since the 1-
neighborhood of S in X retracts Lipschitzly onto S it is not difficult to see
that X admits a quadratic isoperimetric inequality in the sense of [17]. We
claim that the Plateau problem in X cannot be solved for the Jordan curve
Γ := S even though Λ(Γ, X) 6= ∅. We argue by contradiction and suppose
there exists u ∈ Λ(Γ, X) with minimal area and which is

√
2-quasiconformal.

We clearly have

Area(u) ≤ inf
n∈N
H2(Xn) = H2(S2

+).

Since X admits a quadratic isoperimetric inequality it follows from [17] that
u is continuous on D and has Lusin’s property (N). For topological reasons
the compact image u(D) has to contain one of the subsets Xn and hence,
by the area formula,

H2(S2
+) < H2(Xn) ≤ Area(u) ≤ H2(S2

+),

which is impossible. This proves the claim.

The arguments used in the proof of Theorem 1.2 yield the following
result which generalizes [17, Theorem 7.6] from the setting of proper metric
spaces to spaces which are 1-complemented in some ultra-completion.

Theorem 5.4. Let X be a complete metric space and Γ a Jordan curve in
X such that Λ(Γ, X) 6= ∅. If X is 1-complemented in some ultra-completion
of X then there exists u ∈ Λ(Γ, X) such that

E2
+(u) = inf

{
E2

+(v) : v ∈ Λ(Γ, X)
}
.

Every such u is
√

2-quasiconformal.

The theorem furthermore holds with E2
+ replaced by the Korevaar-

Schoen Dirichlet energy E2 from [14] and the constant
√

2 replaced by
2
√

2 +
√

6. This follows as above but uses [17, Theorem 6.8] instead of [17,
Theorem 6.1].
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6. Dirichlet’s problem

In this section we provide the proof of Theorem 1.4, which is similar to that
of Theorem 1.2.

Let (X, d) be a complete metric space and Ω ⊂ Rn a bounded Lips-
chitz domain with n ≥ 2. Let w ∈W 1,p(Ω, X) for some p > 1 and let (um) ⊂
W 1,p(Ω, X) be an Ep+-energy minimizing sequence subject to the condition
tr(um) = tr(w).

Lemma 6.1. We have

sup
m∈N

[∫
Ω
d(x0, um(z))p dz

]
<∞

for some and thus every x0 ∈ X.

Proof. By [14, Theorem 1.12.2 and Corollary 1.6.3] the function

hm(z) := d(w(z), um(z))

is in W 1,p
0 (Ω) and satisfies supm ‖∇hm‖Lp(Ω) <∞. Thus, by the Poincaré

inequality, the sequence (hm) is bounded in Lp(Ω). Since w ∈ Lp(Ω, X) the
lemma follows. �

Proof of Theorem 1.4. Let X, Ω, w and (um) be as above. By Lemma 6.1
the sequence (um) satisfies

sup
m∈N

[∫
Ω
d(x0, um(z))p dz + Ep+(um)

]
<∞

for some and thus every x0 ∈ X and hence (um) is a bounded sequence. Let
Xω be an ultra-completion of X such that X admits a 1-Lipschitz retraction
P : Xω → X. After possibly passing to a subsequence, we may assume by
Theorem 1.6 that the map v(z) := [(um(z))] belongs to W 1,p(Ω, Xω) and
satisfies tr(v) = ι ◦ tr(w) as well as

Ep+(v) ≤ lim
m→∞

Ep+(um).

Since P is 1-Lipschitz the map u := P ◦ v belongs to W 1,p(Ω, X) and satisfies
tr(u) = tr(w) and Ep+(u) ≤ limm→∞E

p
+(um). This completes the proof. �

As already mentioned in the introduction, Theorem 1.4 holds with the
Reshetnyak energy replaced by the Korevaar-Schoen Dirichlet energy Ep
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introduced in [14]. For this, notice that Ep+ and Ep are comparable and Ep

is also lower semi-continuous, see [14] and [17].
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