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We generalize the ancient solutions of the Ricci flow on certain
principal SO(3) bundles over compact quaternionic Kähler man-
ifolds constructed by Bakas, Kong, and Ni to certain RP3 fibre
bundles over a product of two compact quaternionic Kähler mani-
folds. The ancient solutions are of Type I, κ-noncollapsed, and have
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1. Introduction

Ancient solutions for the Ricci flow arise naturally when one blows up the
finite time singularities of Ricci flow solutions on closed manifolds. The work
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in [BKN12] and [DHS12] shows that ancient solutions are interesting objects
in geometric analysis.

In [LW16] we generalized the examples in [BKN12, §5] of ancient solu-
tions on principal circle bundles over Fano Kähler-Einstein manifolds to the
situation of principal torus bundles over a finite product of Fano Kähler-
Einstein manifolds. In this paper we shall generalize in a similar fashion
the ancient solutions given by Theorem 6.2 in [BKN12] on certain principal
SO(3) bundles over compact quaternionic Kähler manifolds (abbreviated as
QK manifolds in the sequel).

To describe our results, let us choose QK manifolds (M4ni
i , gi), i = 1, . . . ,

m, with m ≥ 2. Recall that for each such space there is an associated prin-
cipal SO(3) bundle Pi over Mi whose associated R3 bundle is the analog of
the anti-canonical bundle for the Kähler-Einstein case. Taking the product
of these principal bundles we can form an associated SO(3)×···×SO(3)

∆SO(3) fibre

bundle P̄ over the product M1 × · · · ×Mm (see §2.1 for further details). By
[Wa92], there exist connection type Einstein metrics on P̄ . As in [BKN12],
we exploit the fact that the Ricci flow preserves this family of connection
type metrics, and so the search for ancient solutions of connection type on
P̄ is reduced to the search for special flow lines for a reduced system of
ordinary differential equations (ODEs in short).

In this paper we will construct continuous families of κ-noncollapsed
type I ancient solutions when m = 2 and for a special class of bundles when
m ≥ 3. Below we give a description of the m = 2 case, and refer the reader
to Theorem 5.6 for our results in the m ≥ 3 case. Note that SO(3)×SO(3)

∆SO(3)

is diffeomorphic to RP3, and so the ancient solutions exist on RP3 fibre
bundles.

Main Theorem. There are (i) a continuous 1-parameter family of ancient
solutions and (ii) two distinct ancient solutions of the Ricci flow on the RP3

fibre bundle P̄ over an arbitrary product M1 ×M2 of QK manifolds with
positive scalar curvature. These solutions are of type I when time t→ −∞
and are κ-noncollapsed at all scales for some κ > 0. Their rescaled backwards
limits are Einstein metrics. Furthermore, the solutions in both (i) and (ii)
have positive Ricci curvature for all t.

Technically, the difference between our work and that in [BKN12] is
that the ODE system in [BKN12] is two-dimensional, has a first integral,
and hence is integrable. For our system, there is no longer an obvious first
integral, and the two Einstein metrics on the bundle P̄ are only established
implicitly. To get ancient solutions whose rescaled backwards limits are these
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Einstein metrics, by the Hartman-Grobman Theorem, it suffices for us to
show the existence of unstable directions of the linearization of our system
about these Einstein metrics. Thus one needs to achieve this using appropri-
ate estimates for their location since they are not given explicitly. Further-
more, for some of these ancient solutions, we will consider their singularity
formulation in finite time, which requires us to find suitable bounded sets
and differential inequalities and use them to show that the solutions stay
in these sets. The geometric properties of the solutions are then established
from various estimates derived from the ODEs.

Compared to the work in [LW16], the analysis here is more delicate
because the bundle P̄ admits two Einstein metrics. One of the Einstein
metrics takes the place of the origin in the system considered in [LW16],
which is a source for the flows in both works. The origin is then an additional
stationary solution for the system in this paper. The fact that the origin is
a sink translates into the property that nearby forward Ricci flow collapses
to the base in the Gromov-Hausdoff topology. As a result we do not get
collapsed ancient solutions anymore (see Theorem 3.6 for details). This can
perhaps be regarded as an indication through the Ricci flow that bundles
with non-abelian structural groups are more rigid than those with abelian
structural groups.

The ancient solutions in §5 include continuous families which exist on
even dimensional non-Kählerian manifolds. The only examples of this type in
the literature that we are aware of are a 2-parameter family of left-invariant
solutions found in [La13] on each of the compact connected simple Lie groups
except Sp(n).

As in [LW16], we also obtain without additional work the existence of
pseudo-Riemannian ancient and immortal solutions if we replace some or all
of the QK factors of positive scalar curvature by ones with negative scalar
curvature (see Remark 3.2).

The following is an outline of the rest of this paper. In §2 we derive the
ODE for the Ricci flow and establish properties about the linearization of
the ODE at Einstein metrics (Proposition 2.6). In §3 we prove the existence
of ancient solutions on the RP3 fibre bundles over a product of two QK man-
ifolds (Theorem 3.1), and discuss their metric behavior as time t→ −∞ and
their κ-noncollapsed property (Theorem 3.5 and 3.8, and Corollary 3.9). In
§4 we prove a general result (Theorem 4.2) which enables us to use the metric
tensor limits of the previous section to conclude (without any computations)
that the corresponding ancient solutions are of Type I as time approaches
−∞. We also show that the ancient solutions for the m = 2 case have pos-
itive Ricci curvature when time is close to −∞ (Theorem 4.4). In §5 we
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prove the existence of ancient solutions on a special subfamily of fibre bun-
dles over a product of an arbitrary number of QK manifolds (Theorem 5.6)
and discuss their properties.

Acknowledgement. The authors thank the referee for detailed sugges-
tions which helped to improve the paper.

2. Ricci flow on fibre bundles over products of two QK
manifolds and its linearization at Einstein metrics

In this section we derive a system of ODEs which is equivalent to the Ricci
flow equation for a family of connection type metrics on certain

SO(3)× · · · × SO(3))

∆ SO(3)

fibre bundles over a product of m arbitrary QK manifolds. We then specialize
to the m = 2 case, and determine the stationary solutions of the ODE system
and establish properties of the linearization of the ODE system at these
solutions which we will need in the later sections.

2.1. Some facts about QK manifolds

We first mention some standard facts about QK manifolds, referring the
reader to [Be87] and [Sa89] for details. Let (M4n, g), n ≥ 2, be a QK mani-
fold, i.e., its holonomy group is contained in the subgroup Sp(n) · Sp(1) of
SO(4n). (Sp(n) · Sp(1) denotes more precisely the group (Sp(n)× Sp(1))/
∆Z2, where ∆Z2 denotes the diagonally embedded central subgroup.) We
further assume that its holonomy group does not lie in Sp(n). Then it must
be de Rham irreducible and Einstein with nonzero scalar curvature. A QK
manifold with positive or negative scalar curvature will be called a positive
or negative QK manifold, respectively. When n = 1, it is customary to regard
self-dual Einstein manifolds as the 4-dimensional analogs of QK manifolds.
Those with positive scalar curvature are then known to be isometric to S4

or CP2 by a celebrated theorem of N. Hitchin [Hi81]. We shall include the
n = 1 case in all of our discussions below.

To fix notation for this paper, let Rcg = Λg and let P̂ denote the princi-
pal Sp(n) · Sp(1) holonomy bundle associated to the tangent bundle of M .
The Levi-Civita connection of g induces a connection on P̂ , which upon
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projection induces a connection on the principal

((Sp(n)× Sp(1))/∆Z2)/Sp(n) ' SO(3)

bundle P + P̂ /Sp(n) over M . This connection is in fact Yang-Mills, and has
parallel curvature form [MS88, Thm 1]. It is the analogue of the connection
induced by the Levi-Civita connection of a Kähler-Einstein manifold on
the associated circle bundle of its anti-canonical line bundle. The SO(3)
bundle P is in general not spin, i.e., it does not in general admit a lift to an
SU(2) bundle. Indeed, when M is compact, it is spin precisely when M is a
quaternionic projective space [Be87, 14.89].

Let (M4ni
i , gi), i = 1, . . . ,m, be arbitrary QK manifolds with Rcgi =

Λi gi. (Note that there is actually no need to assume that Λi > 0 at this
stage.) Let Pi →Mi be the principal SO(3) bundle described above that is
associated to (Mi, gi). Let ∆ SO(3) be the diagonal subgroup of the product
group SO(3)× · · · × SO(3). We define an

SO(3)× · · · × SO(3)

∆ SO(3)

fibre bundle P̄ of dimension (
∑m

i=1 4ni) + 3(m− 1) over M̄ +M1 × · · · ×
Mm by

P̄ + (P1 × · · · × Pm)×SO(3)×···×SO(3)

(
SO(3)× · · · × SO(3)

∆ SO(3)

)
→ M̄.

By the above discussion, each Pi has a Yang-Mills connection whose curva-
ture form is parallel. The product of these connections gives a connection
on the SO(3)× · · · × SO(3) principal bundle P1 × · · · × Pm.

Using this connection on P1 × · · · × Pm and choosing vectors ~a = (a1, . . . ,
am) and ~b = (b1, . . . , bm) with all positive components, we can construct a
family of Riemannian metrics ḡ

~a,~b
on P̄ uniquely determined by ~a and ~b

satisfying the following conditions:

(B1) (P̄ , ḡ
~a,~b

)→ (M̄, g~b) is a Riemannian submersion with totally geodesic

fibers, where g~b +
∑m

i=1 biπ
∗
i gi and πi : M̄ →Mi is the natural projection

map.

(B2) The restriction of ḡ
~a,~b

to any fiber in P̄ is the normal homogeneous

metric on SO(3)×···×SO(3)
∆ SO(3) induced from the bi-invariant metric a1Bso(3) ⊕

· · · ⊕ amBso(3) on SO(3)× · · · × SO(3) where Bso(3)(U, V ) = − tr(UV ) for
U, V ∈ so(3), the Lie algebra of SO(3).
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Note that the isotropy representation of the fibre consists of m− 1 copies
of the adjoint representation of SO(3), so the space of invariant metrics on
SO(3)×···×SO(3)

∆ SO(3) is given by

GL+(m− 1)/SO(m− 1) ≡ S2
+(Rm−1)

with dimension m(m−1)
2 . The invariant metrics on SO(3)×···×SO(3)

∆ SO(3) induced

from bi-invariant metrics on SO(3)× · · · × SO(3) as described in condition
(B2) above is an m-dimensional subfamily except in the case m = 2 (see
Remark 2.2).

Remark 2.1. It should be mentioned that there is a conjecture, widely
believed to be true, that a positive QK manifold must be isometric to a
quaternionic symmetric space of compact type, also known as a Wolf space.
In fact the 4- and 8-dimensional cases have been verified in [Hi81] and [PS91],
respectively. A further rigidity result, valid for all dimensions, under the
assumption of a non-vanishing second Betti number was obtained in [LS94].

If the fundamental conjecture about positive QK manifolds is true, then
each Mi will have the form Gi/(Hi · Sp(1)), where Gi is a compact simple
Lie group, and so Pi = Gi/Hi. It follows that P̄ and the corresponding Ricci
flows are homogeneous. Then our analysis partially overlaps with that in
[Bo15] and [BLS16]. These works deal with general properties of homoge-
neous Ricci flows, but do not address directly the existence of ancient so-
lutions, which is related to the second variation at (homogeneous) Einstein
metrics.

The status of the conjecture aside, we believe that the bundle formalism
used in this paper may be more helpful for understanding ancient solu-
tions beyond the homogeneous category. Furthermore, as we shall observe
in Remark 3.2, our analysis also leads to examples of ancient and immortal
solutions of pseudo-Riemannian Ricci flows when some of the QK factors
have negative scalar curvature. Note that there are many inhomogeneous
QK manifolds of negative scalar curvature (see [CDJ17] for recent construc-
tions).

2.2. Ricci flow on bundle P̄ : an ODE system

Recall that in the definition of ḡ
~a,~b

we have made a special choice of the

Yang-Mills connection that is independent of ~a and ~b. We claim that given
any initial metric ḡ

~a0,~b0
the corresponding solution of the backwards Ricci

flow is of the form ḡ
~a(τ),~b(τ)

for some functions ~a(τ) and ~b(τ), where τ ∈ R.
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Below we combine the proof of this claim with the derivation of the equations
that ~a(τ) and ~b(τ) should satisfy in order for ḡ

~a(τ),~b(τ)
to be a solution of the

backwards Ricci flow. In the argument below we will use the computations
in [Wa92], particularly equations (2.1) and (2.2) there.

Since the backwards Ricci flow equation is a tensor equation, to see
the claim it suffices to verify the following statement. Given any vectors ~a0

and ~b0, we can find functions ~a(τ) and ~b(τ) with ~a(0) = ~a0 and ~b(0) = ~b0,
such that Riemannian metrics ḡ(τ) + ḡ

~a(τ),~b(τ)
satisfy the resulting equations

obtained from evaluating ∂
∂τ ḡ(τ) = 2 Rcḡ(τ) on the pairs of vector fields W1

and W2 on P̄ which are either horizontal or vertical with respect to the fixed
Yang-Mills connection. In Part 1 and 2 below we only discuss the equation
for (W1,W2) when either ∂

∂τ ḡ(τ)(W1,W2) 6= 0 or Rcḡ(τ)(W1,W2) 6= 0.

Part 1 The pure tangential directions along the base. Let {X(i)
k }

4ni
k=1

be an orthonormal frame in compact QK manifold (M4ni
i , gi) and let

{X̃(i)
k }

4ni
k=1 be its horizontal lift to P̄ defined by the fixed Yang-Mills con-

nection.
Using [Wa92, (2.1)], we have

dḡ

dτ
(X̃

(i)
k , X̃

(i)
k ) =

dbi
dτ
,

Rcḡ(X̃
(i)
k , X̃

(i)
k ) = Λi −

3Λ2
i

(ni + 2)2
· ai
bi

(
1− ai

â

)
, i = 1, . . . ,m,(2.1)

where 1 ≤ k ≤ 4ni is arbitrary but fixed and â +
∑m

j=1 aj . It follows imme-
diately that the part of the backwards Ricci flow equation involving the base
directions is given by the equations

(2.2)
dbi
dτ

= 2Λi −
6Λ2

i

(ni + 2)2
· ai
bi

(
1− ai

â

)
, i = 1, . . . ,m.

Part 2 The pure fibre directions. Let U be an element of Lie alge-
bra so(3). For i > j we define Ũji = (0, . . . , 0,−aiU, 0, . . . , 0, ajU, 0, . . . , 0) in
which −aiU is at the j-th entry and ajU is at the i-th entry. For i < j we de-
fine Ũji = (0, . . . , 0, ajU, 0, . . . , 0,−aiU, 0, . . . , 0) in which ajU is at the i-th
entry and −aiU is at the j-th entry. Then

Ũji ∈ m~a +

{
(U1, . . . , Um) ∈ so(3)× · · · × so(3),

m∑
i=1

aiUi = 0

}
,
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where m~a is the orthogonal complement of diagonal ∆so(3) in so(3)× · · · ×
so(3) with respect to the bi-invariant metric ⊕mi=1aiBso(3). We divide the
following discussion into two parts: m ≥ 3 and m = 2.

When m ≥ 3, using [Wa92, (2.2)] we have that for distinct indices i, j, k

dḡ

dτ
(Ũki, Ũkj) =

dak
dτ

aiajB(U,U),(2.3)

Rcḡ(Ũki, Ũkj) =

(
1

4
+
ak
2â

+
2nkΛ

2
k

(nk + 2)2
·
a2
k

b2k

)
aiajB(U,U).(2.4)

From the backwards Ricci flow equation dḡ
dτ (Ũki, Ũkj) = 2 Rcḡ(Ũki, Ũkj) we

have

(2.5)
dak
dτ

=
1

2
+
ak
â

+
4nkΛ

2
k

(nk + 2)2
·
a2
k

b2k
.

It follows that â satisfies the equation

(2.6)
dâ

dτ
=
m

2
+ 1 +

m∑
k=1

4nkq
2
k ·
a2
k

b2k
,

where qk +
Λk
nk+2 .

Whenm = 2, the complement m~a equals {Ũ + (−a2U, a1U) : U ∈ so(3)}.
By a computation similar to that in the m ≥ 3 case we get the following for-
mulas

dḡ

dτ
(Ũ , Ũ) =

(
a2

2

da1

dτ
+ a2

1

da2

dτ

)
B(U,U),

Rcḡ(Ũ , Ũ) =

(
1

4
+

a1

2(a1 + a2)
+ 2n1q

2
1 ·
a2

1

b21

)
a2

2B(U,U)(2.7)

+

(
1

4
+

a2

2(a1 + a2)
+ 2n2q

2
2 ·
a2

2

b22

)
a2

1B(U,U).

Let ψ + a1a2

a1+a2
. It follows from the backwards Ricci flow equation dḡ

dτ (Ũ , Ũ) =

2 Rcḡ(Ũ , Ũ) and the relation dψ
dτ = ψ2

a2
1a

2
2
(a2

2
da1

dτ + a2
1
da2

dτ ) that

(2.8)
dψ

dτ
=

1

2
+ 4n1q

2
1 ·
ψ2

b21
+ 4n2q

2
2 ·
ψ2

b22
.

On the other hand, if we set a1 = a2 = 2ψ > 0 in the expressions of
dḡ
dτ (Ũ , Ũ) and Rcḡ(Ũ , Ũ) above, then the fibre part of the backwards Ricci
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flow equation becomes (2.8). There is no loss of generality to make this
choice since the fibres are the irreducible symmetric space RP3 when m = 2,
and there is only one effective parameter for the space of invariant metrics.

Part 3 The mixed directions. Since the connection used to define
the metrics ḡ(τ) is Yang-Mills, for any tangential vector X̃

(i)
k and any fi-

bre direction vector Ũjl we have Rcḡ(X̃
(i)
k , Ũjl) = 0 ([Be87, 9.36]). Since

ḡ(τ)(X̃
(i)
k , Ũjl) = 0 for all τ , the equation dḡ

dτ (X̃
(i)
k , Ũjl) = 2 Rcḡ(X̃

(i)
k , Ũjl)

holds for all ḡ(τ).

From the discussion in Part 1, Part 2, and Part 3, we conclude that
as long as functions ~a(τ) and ~b(τ) solve equation (2.2) and equation (2.5)
for m ≥ 3 or (2.8) for m = 2, metrics ḡ(τ) = ḡ

~a(τ),~b(τ)
is a solution of the

backwards Ricci flow. Hence the claim at the beginning of this subsection is
proved.

Remark 2.2. In order to identify the effective parameters for the fibre
metrics, one has to break the symmetry. Notice that the complement m~a to
the diagonal subalgebra ∆so(3) we chose depended on the biinvariant metric
chosen. When m = 2, it is natural to fix the complement to be the anti-
diagonal m + {(U,−U) : U ∈ so(3)}, which is the orthogonal complement
when using Bso(3) ⊕Bso(3) as the background metric. One checks easily
that a1Bso(3) ⊕ a2Bso(3) and a′1Bso(3) ⊕ a′2Bso(3) induce the same metric
on m if and only if a1 + a2 = a′1 + a′2.

Alternatively, we can also include so(3) into the first summand of so(3)⊕
so(3) and project the image onto subspace m~a using a1Bso(3) ⊕ a2Bso(3).

Then unit vector U in (so(3), Bso(3)) is mapped to −1
a1+a2

(−a2U, a1U), whose
length squared equals to the parameter ψ = a1a2/(a1 + a2). This is what we
used before in deriving our equations.

2.3. Properties of Einstein metrics on P̄ when m = 2

Note that when m = 2, P̄ is an RP3 ≈ SO(3)×SO(3)
∆ SO(3) fibre bundle over M1 ×

M2. Let ḡ(τ) = ḡ
~a(τ),~b(τ)

be a solution of the backwards Ricci flow on P̄ given

in §2.2. It follows from (2.8) and (2.2) that ψ(τ) = a1a2

a1+a2
, b1(τ) and b2(τ)

satisfy the following system:

dψ

dτ
=

1

2
+ 4n1q

2
1 ·
ψ2

b21
+ 4n2q

2
2 ·
ψ2

b22
,(2.9a)

dbi
dτ

= 2(ni + 2)qi − 6q2
i ·

ψ

bi
, i = 1, 2,(2.9b)
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where qi = Λi
ni+2 . By the discussion in Remark 2.2, these equations represent

the backwards Ricci flow on P̄ for the family of metrics in which a1(τ) =
a2(τ) = 2ψ(τ).

Remark 2.3.

(i) The difference between the above equations and equations (3.2a) and
(3.2b) in [LW16] for circle bundles is the term 1

2 in (2.9a). This term
reflects that fact that the fibers RP3 now have constant positive cur-
vature.

(ii) The difference between the above equations and equations (7.2) and
(7.3) in [BKN12] is that the base manifold M̄ is reducible with two
de Rham factors. Note that only the product of two Einstein mani-
folds with the same Einstein constants is Einstein. So the hypotheses
in Proposition 7.1 in [BKN12] are seldom satisfied in the present situ-
ation.

To analyse the above system, as in [LW16, §3.1], we define new dependent
variables Yi +

ψ
bi
, i = 1, 2, and a new independent variable

(2.10) u = u(τ) +
∫ τ

0

dζ

ψ(ζ)
.

Using (2.9a) and (2.9b) we compute that

dYi
du

= ψ
dYi
dτ

= Yi
dψ

dτ
− Y 2

i

dbi
dτ

= Yi

(
1

2
− 2(ni + 2)qiYi + 6q2

i Y
2
i + 4n1q

2
1Y

2
1 + 4n2q

2
2Y

2
2

)
.

Let Y denote the vector (Y1, Y2) and let

E(Y ) +
1

2
+ 4n1q

2
1Y

2
1 + 4n2q

2
2Y

2
2 ,

Fi(Y ) + 2(ni + 2)qiYi − 6q2
i Y

2
i − E(Y ), i = 1, 2.

Equations (2.9a) and (2.9b) become

1

ψ

dψ

du
= E(Y ),(2.11a)

dYi
du

= −YiFi(Y ), i = 1, 2.(2.11b)



i
i

“5-Lu” — 2020/3/11 — 0:23 — page 151 — #11 i
i

i
i

i
i

Ancient solutions on bundles 151

Given a solution Y (u) of (2.11b), ψ(u) is determined by (2.11a) up
to a multiplicative constant. By the relation dτ = ψ(τ(u))du, τ is recov-
ered up to the same multiplicative constant since in (2.10) we arranged for
u = 0 to correspond to τ = 0. Then bi(u) can be found from ψ

Yi
, and we get

(ψ(τ), b1(τ), b2(τ)) and the corresponding backwards flow solution ḡ(τ). No-
tice that a multiplicative constant actually amounts to a parabolic rescaling
of ḡ(τ). Hence different integration constants do not lead to new solutions
of the backwards Ricci flow. We have thus proved that each solution Y (u)
gives rise to a single solution ḡ(τ) of the backwards Ricci flow. Therefore we
will focus on the solutions of (2.11b) from now on.

As a preliminary step we have the following lemma about the stationary
solutions, two of which correspond to Einstein metrics on P̄ . For the rest of
this section we will assume that n1 ≤ n2 (by interchanging M1 and M2 if
necessary).

Lemma 2.4. The zeros of vector field (−Y1F1(Y ),−Y2F2(Y )) are

(i) the origin,

(ii) the points v1 =
(

1
(4n1+6)q1

, 0
)
, ṽ1 =

(
1

2q1
, 0
)
, v2 =

(
0, 1

(4n2+6)q2

)
, ṽ2 =(

0, 1
2q2

)
,

(iii) the Einstein points ξ = (ξ1, ξ2) and η = (η1, η2). We further have 0 <
η1 < ξ1 and 0 < η2 < ξ2.

Proof. (i) If both Y1 and Y2 are zero, we get the origin.

(ii) This occurs when exactly one of Y1 or Y2 is zero. If Y2 = 0, then
F1(Y1, 0) = 0. We observe that equation

F1(Y ) = −(4n1 + 6)q2
1Y

2
1 + 2(n1 + 2)q1Y1 − 4n2q

2
2Y

2
2 −

1

2
= 0

represents an ellipse in Y -space with center at
(

n1+2
(4n1+6)q1

, 0
)

. The ellipse

intersects the Y1-axis at v1 =
(

1
(4n1+6)q1

, 0
)

and ṽ1 =
(

1
2q1
, 0
)

, i.e., solutions

of the equation F1(Y1, 0) = 0. So for points lying in the ellipse we have
1

(4n1+6)q1
≤ Y1 ≤ 1

2q1
and |Y2| ≤ n1+1

2q2
√
n2(4n1+6)

.

Likewise, if Y1 = 0, then F2(0, Y2) = 0. F2(Y ) = 0 is an ellipse with

center at
(

0, n2+2
(4n2+6)q2

)
and whose intersection with the Y2-axis occurs at
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v2 =
(

0, 1
(4n2+6)q2

)
and ṽ2 =

(
0, 1

2q2

)
. So for points lying in the ellipse we

have 1
(4n2+6)q2

≤ Y2 ≤ 1
2q2

and |Y1| ≤ n2+1

2q1
√
n1(4n2+6)

.

(iii) If both Y1 and Y2 are non-zero, we get F1(Y ) = F2(Y ) = 0. Now we
consider the relation between the solutions of equations F1(Y ) = F2(Y ) = 0
and the Einstein metrics on P̄ of the form ḡ

~a,~b
. We have

(2.12) 2(n1 + 2)q1Y1 − 6q2
1Y

2
1 = E(Y ) = 2(n2 + 2)q2Y2 − 6q2

2Y
2

2 .

Set E(Y ) + 2Λψ for some Λ > 0. Hence for i = 1, 2,

(2.13)
1

4
+

2n1Λ2
1

(n1 + 2)2
Y 2

1 +
2n2Λ2

2

(n2 + 2)2
Y 2

2 = Λψ = ΛiYi −
3Λ2

i

(ni + 2)2
Y 2
i .

So ψ and bi satisfy the equations for an Einstein metric ([Wa92, (2.3)]) and

we have Λ = Λi
bi
− 3Λ2

i

(ni+2)2 ·
ψ
b2i

. It is known from [Wa92, p.313] that there

are exactly two solutions Y = ξ = (ξ1, ξ2) and Y = η = (η1, η2) of the above
equations which represent Einstein metrics on P̄ .

To deduce the inequalities in (iii), let

y0 + y0(Y ) +
1

2E(Y )
, yi + yi(Y ) + 4(ni + 2)qiy0(Y )Yi, i = 1, 2.

Then the equations F1(Y ) = F2(Y ) = 0 together with the definition of E(Y )
give rise to an equivalent system of equations for the variables y0, y1, y2,

3(y0 − 1) + 2n1(y1 − 1) + 2n2(y2 − 1) = 0,(2.14a)

y0 =
3

4(ni + 2)2
· y2

i

yi − 1
, i = 1, 2.(2.14b)

Actually (2.14b) follows from (2.12) and (2.14a) follows from (2.13) and
(2.14b). Since we assume n1 ≤ n2, the two Einstein solutions of the system
satisfy ([Wa92, p.313])

y0 ∈
[

3

(n1 + 2)2
, 1

)
, 1 < y2 ≤ y1 ≤ 2.

Hence by solving the quadratic equation (2.14b) for yi we get

(2.15) yi = yi(y0) =
2(ni + 2)2y0

3

(
1−

√
1− 3

y0
· 1

(ni + 2)2

)
,
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in which we took the negative sign in the quadratic formula because of

yi ≤ 2. Hence we can define a function φ of y0 ∈
[

3
(n1+2)2 , 1

)
(2.16) φ(y0) + 3(y0 − 1) + 2n1(y1(y0)− 1) + 2n2(y2(y0)− 1).

Note that φ is actually a convex function (see [Wa92, p.313]) which accounts
for the existence of the two Einstein points ξ and η.

Let (y01, y11, y21) (corresponding to ξ) and (y02, y12, y22) (corresponding
to η) be the two solutions of (2.14a) and (2.14b) with y01 < y02. Then

ξ1 =
y11

4Λ1y01
=

(n1 + 2)2

6Λ1

(
1−

√
1− 3

y01
· 1

(n1 + 2)2

)

>
(n1 + 2)2

6Λ1

(
1−

√
1− 3

y02
· 1

(n1 + 2)2

)
= η1.(2.17)

Similarly we have η2 < ξ2. This proves (iii) and hence the lemma. �

Next we give some estimates of η which will be used later to study its
linear stability as a solution of (2.11b).

Lemma 2.5. The Einstein point η = (η1, η2) satisfies the following proper-
ties:

(i) When n2 ≥ n1 ≥ 2 and (n1, n2) 6= (2, 2), (2, 3), we have qiηi <
0.4661
ni+2

for i = 1, 2.

(ii) When n1 = 1 and n2 ≥ 2 we have q1η1 < 0.1608 and q2η2 <
0.4661
n2+2 .

(iii) When (n1, n2) = (2, 2) we have q1η1 < 0.0912 and q2η2 < 0.0912.

(iv) When (n1, n2) = (2, 3) we have q1η1 < 0.1204 and q2η2 < 0.0928.

(v) When (n1, n2) = (1, 1) we have q1η1 < 0.1303 and q2η2 < 0.1303.

Proof. We will divide the proof into five cases. In each case we find an
appropriate y∗0 such that φ(y∗0) < 0. Since y02 is the larger of the two solutions
of φ(y) = 0, it follows that y02 > y∗0. Hence yi2(y02) < yi2(y∗0) for i = 1, 2 by
(2.15) and the desired estimates will follow.

If we choose y∗0 = 6+
√

2
12 , then for all ni ≥ 1, i = 1, 2,

(2.18)
3

y∗0
· 1

(ni + 2)2
< 2(
√

2− 1).
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Note that

(2.19) 1− 1

2
α− 1

4
α2 <

√
1− α for α ∈ (0, 2(

√
2− 1)).

Applying this inequality to (2.15) with α = 3
y∗0
· 1

(ni+2)2 we can estimate φ(y∗0)
as follows:

φ(y∗0) < 3(y∗0 − 1) +
3

y∗0

(
n1

(n1 + 2)2
+

n2

(n2 + 2)2

)
(2.20)

= 3(6−
√

2) ·
(
− 1

12
+

6

17
·
(

n1

(n1 + 2)2
+

n2

(n2 + 2)2

))
≤ 0

for n2 ≥ n1 ≥ 2 and n2 ≥ 4, or (n1, n2) = (1, n2) for any n2 ≥ 2. By (2.15)
and a direct computation we also have φ(y∗0) < 0 for (n1, n2) = (3, 3). Hence
for these (n1, n2) the corresponding

(2.21) y02 > y∗0 =
6 +
√

2

12
.

There are now five cases to consider.

(i) n2 ≥ n1 ≥ 2 and (n1, n2) 6= (2, 2), (2, 3): By the definition of ηi, (2.15),

(2.21), and (2.19) we get for y∗0 = 6+
√

2
12

qiηi =
ni + 2

6

(
1−

√
1− 3

y02
· 1

(ni + 2)2

)

<
ni + 2

6

(
1−

√
1− 3

y∗0
· 1

(ni + 2)2

)
(2.22)

<
1

ni + 2
·
(

1

4y∗0
+

3

8(y∗0)2(ni + 2)2

)
<

0.4661

ni + 2
.

Note that (2.22) holds whenever y02 > y∗0.
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(ii) n1 = 1 and n2 ≥ 2: By the definition of ηi, (2.21) and (2.22) we have

for y∗0 = 6+
√

2
12

q1η1 <
1

2

(
1−

√
1− 1

3y∗0

)
< 0.1608, and

q2η2 <
0.4661

ni + 2
.

(iii) (n1, n2) = (2, 2): Taking y∗0 = 3+
√

2
6 , we use (2.15) to compute that

y1(y∗0) = y2(y∗0) < 1.0732.

Hence we get φ(y∗0) < 0 and y02 > y∗0 = 3+
√

2
6 . We then apply (2.22) to esti-

mate

qiηi <
2

3

(
1−

√
1− 1

y∗0
· 3

16

)
< 0.0912, i = 1, 2.

(iv) (n1, n2) = (2, 3): We take y∗0 = 10+
√

2
20 . Then for this y∗0 both (2.18)

and (2.20) hold for (n1, n2) = (2, 3), hence y02 > y∗0 = 10+
√

2
20 . By (2.22) we

have

q1η1 <
2

3

(
1−

√
1− 1

y∗0
· 3

16

)
< 0.1204,

q2η2 <
5

6

(
1−

√
1− 1

y∗0
· 3

25

)
< 0.0928.

(v) (n1, n2) = (1, 1): We take y∗0 = 3+
√

2
6 . Then y1(y∗0) = y2(y∗0) < 1.1498

and φ(y∗0) < −0.1936 < 0. Hence y02 > y∗0 = 3+
√

2
6 and

qiηi <
1

2

(
1−

√
1− 1

3y∗0

)
< 0.1303.

This completes the proof of the lemma. �
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2.4. Linearization of ODEs (2.11b)

We can now consider the linear stability of the vector field

(−Y1F1(Y ),−Y2F2(Y ))

at each of its zeros given in Lemma 2.4.

Proposition 2.6. For the vector field (−Y1F1(Y ),−Y2F2(Y ))

(i) (0, 0) is a source;

(ii) v1 is a hyperbolic point with stable eigen-direction (1, 0) and unstable
eigen-direction (0, 1);

(iii) v2 is a hyperbolic point with unstable eigen-direction (1, 0) and stable
eigen-direction (0, 1);

(iv) ṽ1 is a source;

(v) ṽ2 is a source;

(vi) η is a sink; and

(vii) ξ is a hyperbolic point.

Proof. The Jacobian of the vector field (−Y1F1(Y ),−Y2F2(Y )) is given by

(2.23) LY +
(

h1(Y ) 8n2q
2
2Y1Y2

8n1q
2
1Y1Y2 h2(Y )

)
,

where

h1(Y ) + −4(n1 + 2)q1Y1 + 3(4n1 + 6)q2
1Y

2
1 + 4n2q

2
2Y

2
2 +

1

2
,

h2(Y ) + −4(n2 + 2)q2Y2 + 3(4n2 + 6)q2
2Y

2
2 + 4n1q

2
1Y

2
1 +

1

2
.

(i) At Y = (0, 0) we have

(2.24) L(0,0) =

(
1
2 0
0 1

2

)
.

Hence (0, 0) is a source.
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(ii) At Y = v1 we have

Lv1 =

(
− n1+1

2n1+3 0

0 n1

(2n1+3)2 + 1
2

)
.

Hence v1 is a hyperbolic point. It is clear that (1, 0) is the stable eigen-
direction and (0, 1) is the unstable eigen-direction.

(iii) This follows from its symmetry to case (ii).

(iv) At Y = ṽ1 we have

Lṽ1 =

(
n1 + 1 0

0 n1 + 1
2

)
.

Hence ṽ1 is a source.

(v) This follows from its symmetry to case (iv).

(vi) At Y = η, using F1(η) = F2(η) = 0, we have

h1(η) = (8n1 + 6)q2
1η

2
1 − E(η), h2(η) = (8n2 + 6)q2

2η
2
2 − E(η),

and Lη = −E(η)I + βη where for χ = (χ1, χ2)

(2.25) βχ +

(
(8n1 + 6)q2

1χ
2
1 8n2q

2
2χ1χ2

8n1q
2
1χ1χ2 (8n2 + 6)q2

2χ
2
2

)
.

We need to analyze the eigenvalues of βη.

Suppose χ1 > 0 and χ2 > 0. Using the diagonal matrix [χ1, χ2], we com-
pute that

αχ + [χ−1
1 , χ−1

2 ] · βχ · [χ1, χ2](2.26)

=

(
(8n1 + 6)q2

1χ
2
1 8n2q

2
2χ

2
2

8n1q
2
1χ

2
1 (8n2 + 6)q2

2χ
2
2

)
.

Note that since detαχ > 0, we may assume that ρ1(χ) ≥ ρ2(χ) > 0 are the
two eigenvalues of αχ. Then the eigenvalues of Lχ are given by −E(χ) +
ρi(χ).

A simple calculation of the eigenvalues of αη using the Einstein condition
gives

(2.27) − E(η) + ρ1(η) = 3q2
1η

2
1 + 3q2

2η
2
2 −

1

2
+
√
A(η),
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where

A(χ) + (4n1 + 3)2q4
1χ

4
1 + (4n2 + 3)2q4

2χ
4
2

+ (32n1n2 − 24n1 − 24n2 − 18)q2
1q

2
2χ

2
1χ

2
2.

It is easy to see that

A(η) <
(
(4n1 + 3)q2

1η
2
1 + (4n2 + 3)q2

2η
2
2

)2
.

So for all n2 ≥ n1 ≥ 1

(2.28) − E(η) + ρ1(η) < (4n1 + 6)q2
1η

2
1 + (4n2 + 6)q2

2η
2
2 −

1

2
.

Hence by Lemma 2.5(i) we have

−E(η) + ρ1(η) < (4n1 + 6)

(
0.4661

n1 + 2

)2

+ (4n2 + 6)

(
0.4661

n2 + 2

)2

− 1

2
< 0

when n2 ≥ n1 ≥ 2 and (n1, n2) 6= (2, 2), (2, 3). By Lemma 2.5(ii) we have for
n1 = 1 and n2 ≥ 2

−E(η) + ρ1(η) < 10 · (0.1608)2 + (4n2 + 6) ·
(

0.4661

n2 + 2

)2

− 1

2
< 0.

When (n1, n2) = (2, 2), by Lemma 2.5(iii) we have

−E(η) + ρ1(η) < 14 · (0.0912)2 + 14 · (0.0912)2 − 1

2
< 0.

When (n1, n2) = (2, 3), by Lemma 2.5(iv) we have

−E(η) + ρ1(η) < 14 · (0.1204)2 + 18 · (0.0928)2 − 1

2
< 0.

When (n1, n2) = (1, 1), by Lemma 2.5(v) we have

−E(η) + ρ1(η) < 10 · (0.1303)2 + 10 · (0.1303)2 − 1

2
< 0.

We have therefore proved that −E(η) + ρ1(η) < 0 for all (n1, n2). Hence η
is a sink.

(vii) Similar to case (vi) we have Lξ = −E(ξ)I + βξ where βξ is ob-
tained from (2.25) by setting χ = ξ. For the corresponding matrix αξ defined
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by (2.26) with eigenvalues ρ1(ξ) ≥ ρ2(ξ) > 0, we obtain −E(ξ) + ρ1(ξ) ≥
−E(ξ) + ρ2(ξ) for the two eigenvalues of Lξ.

To see that −E(ξ) + ρ2(ξ) < 0, it is easy to check that for all n1, n2,
q1ξ1, q2ξ2,

A(ξ) > (3q2
1ξ

2
1 + 3q2

2ξ
2
2)2,

from which it follows that

−E(ξ) + ρ2(ξ) = 3q2
1ξ

2
1 + 3q2

2ξ
2
2 −

1

2
−
√
A(ξ) < 0.

Note that in the line above we took the negative square root in front of√
A(ξ) since ρ2(ξ) is by choice the smaller eigenvalue.

We will give an indirect proof that −E(ξ) + ρ1(ξ) > 0 when we establish
the second claim of Proposition 3.3(ii). Hence ξ is a hyperbolic point. In view
of this the proof of Proposition 2.6 is complete. �

3. Ancient solutions on RP3 fibre bundles

In this section we first prove the existence of ancient solutions on the RP3

fibre bundles P̄ over a product of two QK manifolds. Then we turn to study
the asymptotic behaviors of the metric tensors.

3.1. Existence of ancient solutions on RP3 fibre bundles

We shall consider two regions in R2: a convex region

Ω1 + {Y : F1(Y ) ≥ 0 and F2(Y ) ≥ 0},

and a (non-convex) region

Ω2 + bounded component of

{Y : Y1 ≥ 0, Y2 ≥ 0, F1(Y ) ≤ 0, and F2(Y ) ≤ 0}.

Theorem 3.1. Suppose m = 2 and the QK manifolds (M4ni
i , gi) have pos-

itive scalar curvature, i.e., Λi > 0 for i = 1, 2. Then the ODE system (2.9a)
and (2.9b) has the following types of long-time solutions (ψ(τ), b1(τ), b2(τ))
with 0 ≤ τ < +∞ corresponding to the solutions Y (u) of (2.11b) :
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Figure 1: Phase diagram for Theorem 3.1.

(i) There is a continuous 1-parameter family of solutions Y (u) with

lim
u→∞

Y (u) = η

and a corresponding continuous 1-parameter family of ancient solu-
tions ḡ(τ) of the Ricci flow on P̄ . Furthermore, as special cases,

(ia) if the initial data Y (0) = ( ψ(0)
b1(0) ,

ψ(0)
b2(0)) ∈ Ω1, then the solution Y (u)

stays in Ω1 and limu→∞ Y (u) = η;

(ib) if the initial data Y (0) = ( ψ(0)
b1(0) ,

ψ(0)
b2(0)) ∈ Ω2, then the solution Y (u)

stays in Ω2 limu→∞ Y (u) = η.

(ii) There are two distinct solutions Y (u) with limu→∞ Y (u) = ξ and cor-
respondingly two distinct ancient solutions ḡ(τ) on P̄ .

Proof. (i) By Proposition 2.6(vi) the local stable manifold at η has dimension
2, so the existence of a continuous 1-parameter family of ancient solutions
Y (u) follows from the Hartman-Grobman Theorem.

From (2.11a) we can conclude that ψ(u) exists for all u ∈ [0,∞) and
that ψ(u)−1 is bounded from above. Hence from (2.10) we get τ(u)→∞



i
i

“5-Lu” — 2020/3/11 — 0:23 — page 161 — #21 i
i

i
i

i
i

Ancient solutions on bundles 161

when u→∞. In view of the discussion after (2.11b), we get a continuous 1-
parameter family of ancient solutions (ψ(τ), b1(τ), b2(τ)). This in turn gives
a continuous 1-parameter family of ancient solutions ḡ(τ) (modulo time
translation and parabolic scaling).

(ia) Consider a solution Y (u) with Y (0) ∈ Ω1 \ {ξ, η}. If at some time
u0 ≥ 0 we have Y (u0) ∈ ∂Ω1 \ {ξ, η}, then either F1(Y (u0)) = 0 or
F2(Y (u0)) = 0. In the first case, computing at Y (u0), we obtain

∇F1 = (2(n1 + 2)q1 − 2(4n1 + 6)q2
1Y1,−8n2q

2
2Y2),

so that

∇F1 · (0,−Y2F2(Y )) = 8n2q
2
2Y

2
2 F2(Y ) > 0,

where the last inequality follows from the assumption that Y (u0) 6= ξ or
η. Similarly, if F2(Y (u0)) = 0, we have ∇F2 · (−Y1F1(Y ), 0) > 0. Hence the
solution Y (u) stays in Ω1 for all u. The property limu→∞ Y (u) = η will be
proved in Theorem 3.3 below.

(ib) The vector field −(Y1F1(Y ), Y2F2(Y )) has 4 zeros {0, η, v1, v2} in
Ω2. Take a solution Y (u) of (2.11b) with Y (0) ∈ Ω2 \ {0, η, v1, v2}. If there
is a time u0 at which the solution Y (u) hits the boundary where F1(Y ) = 0,
then computing at Y (u0) as above one gets

∇F1 · (0,−Y2F2(Y )) = 8n2q
2
2Y

2
2 F2(Y ) ≤ 0,

with equality iff we are at the fixed points η or v1. If the solution Y (u) hits
the boundary where F2(Y ) = 0 at time u0, we have at Y (u0)

∇F2 · (−Y1F1(Y ), 0) = 8n1q
2
1Y

2
1 F1(Y ) ≤ 0,

with equality iff we are at the fixed points η or v2.
If the solution Y (u) hits the part of the boundary where Y2 = 0 at time

u0, then we have F1(Y (u0)) ≤ 0 and F2(Y (u0)) < 0, so that

(0, 1) · (−Y1F1(Y ),−Y2F2(Y )) = 0.

Finally, if the solution Y (u) hits the boundary where Y1 = 0 at time u0, then
we have F1(Y (u0)) < 0 and F2(Y (u0)) ≤ 0. Hence

(1, 0) · (−Y1F1(Y ),−Y2F2(Y )) = 0.

Combining the above analysis we conclude that Y (u) remains in Ω2 for all
u ≥ 0. The property limu→∞ Y (u) = η will be proved in Theorem 3.4 below.
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(ii) The existence of two distinct solutions Y (u) follows from the
Hartman-Grobman Theorem since the local stable manifold at ξ has dimen-
sion 1. By analogous arguments to those for case (i) we obtain the existence
of two ancient solutions ḡ(τ). This proves case (ii) and hence also completes
the proof of the Theorem. �

Remark 3.2. We may also consider the cases where Λ1 < 0, Y1 < 0 and/or
Λ2 < 0, Y2 < 0. These cases correspond to pseudo-Riemannian Ricci flows.
Notice that in (2.9b), if qi < 0 and bi < 0, we can multiply the equation by
−1 and obtain the equation for |qi| and |bi|. Therefore, we can deduce the
existence of ancient solutions from that of the positive case.

Another way to get a pseudo-Riemannian flow is to assume that the signs
of τ and ψ in equations (2.9a) and (2.9b) are both negative. By changing
the sign of τ and ψ and replacing qi by |qi| we obtain the equation for |τ |,
|ψ| and |qi|. Again we can deduce from the existence of ancient solutions for
the positive case that there are immortal solutions of pseudo-Riemannian
metrics on P̄ which are negative definite on the fibres and positive definite
on the base.

Note that there are many non-symmetric homogeneous negative QK
manifolds, see e.g. [Co96]. As well, C. Lebrun showed that the moduli space
of complete QK structures on R4n is infinite-dimensional [Le91]. Finally, we
mention the recent thesis of M. Dyckmanns [Dy15] and paper [CDJ17] in
which they constructed complete negative QK manifolds that are not locally
homogeneous.

3.2. Limiting behavior of the ancient solutions

Next we consider the longtime behavior of the solutions in Theorem 3.1.
The arguments are analogous to those for the torus bundles in [LW16, §3.5],
but because the fibres now have positive curvature, some of the conclusions
are different.

Theorem 3.3. Let Y (u) be one of the ancient solutions in Theorem 3.1(ia)
with initial value Y (0) ∈ Ω1 \ {ξ}. Then

(i) the forward limit limu→∞ Y (u) = η, and

(ii) there is exactly one solution whose backwards limit limu→−∞ Y (u) = ξ.

Proof. We use the notations in the proof of Proposition 2.6.
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(i) Let ωY be the the ω-limit set of the flow line Y (u). Since

d

du
E(Y (u)) = −8n1q

2
1Y

2
1 F1(Y )− 8n2q

2
2Y

2
2 F2(Y ) ≤ 0,

with equality if and only if F1(Y ) = F2(Y ) = 0, it follows that ωY = {η} or
{ξ}. Below we rule out the possibility that ωY = {ξ}.

We claim that for any Y (0) ∈ Ω1 \ {ξ} there is an i0 such that Yi0(0) <

ξi0 . Assuming this claim, we compute that
dYi0
du (u) = −Yi0(u)Fi0(u) ≤ 0 and

so limu→∞ Yi0(u) < ξi0 . Hence ωY = {η} must hold.
We next prove the above claim by considering two cases. We rewrite the

equations F1(Y ) = F2(Y ) = 0 in the (q1Y1, q2Y2)-plane as loci of ellipses:(
q1Y1 − n1+2

4n1+6

)2

(
n1+1
4n1+6

)2 +
(q2Y2)2

(n1+1)2

(4n1+6)·4n2

= 1,(3.1a)

(q1Y1)2

(n2+1)2

(4n2+6)·4n1

+

(
q2Y2 − n2+2

4n2+6

)2

(
n2+1
4n2+6

)2 = 1.(3.1b)

(ia) n2 ≥ n1 ≥ 1 and (n1, n2) 6= (1, 1). From (3.1a) we conclude that

(3.2) q2ξ2 ≤

√
(n1 + 1)2

(4n1 + 6) · 4n2
.

From (3.1b) we get

(3.3) q2ξ2 =
n2 + 2±

√
(n2 + 1)2 − (4n2 + 6) · 4n1q2

1ξ
2
1

4n2 + 6
.

Since for n2 ≥ n1 ≥ 1 and (n1, n2) 6= (1, 1) one can check that

n2 + 2

4n2 + 6
>

√
(n1 + 1)2

(4n1 + 6) · 4n2
,

it follows from (3.2) that we need to take negative sign in (3.3), and the
square root in the equation cannot be zero. We have proven that (q1ξ1, q2ξ2)
lies in the lower-right quarter of the ellipse in the (q1Y1, q2Y2)-plane defined
by F2(Y ) = 0 and cannot be the right vertex of the ellipse. This implies that
every point (Y1, Y2) ∈ Ω1 \ {ξ} satisfies Y1 < ξ1.
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(ib) n2 = n1 = 1. Then by (3.1a) and (3.1b) we know that the set

{(q1Y1, q2Y2) : (Y1, Y2) ∈ Ω1}

is a convex set in (q1Y1, q2Y2)-plane and is symmetric with respect to the
diagonal. This implies that every point (Y1, Y2) ∈ Ω1 \ {ξ} satisfies either
Y1 < ξ1 or Y2 < ξ2, otherwise ξ will be an interior point of Ω1, which is not
true. Now the claim is proved.

(ii) Let

ai + 2(ni + 2)qi − (4ni + 6) · 2q2
i ξi,

bi + 8niq
2
i ξi, i = 1, 2.

We claim the following estimate

(3.4)
b1

a1 + b1
+

b2
a2 + b2

> 1.

To verify the claim, note that ∇F1(ξ)=(a1,−b2) and ∇F2(ξ)=(−b1, a2).
From (ia) and (ib) above, there is a vector (−δ1,−δ2) with δi > 0, i = 1, 2,
lying in the interior of the tangent cone TξΩ1, i.e., there is a solution (λ1, λ2)
with λi > 0, i = 1, 2, to the following equations,

a1λ1 − b1λ2 = −δ1,(3.5a)

−b2λ1 + a2λ2 = −δ2,(3.5b)

λ1 + λ2 = 1.(3.5c)

Note that it follows from qiξi <
1
2 that

ai + bi = 2qi ((ni + 2)− 6qiξi) > 0, i = 1, 2.

We compute using (3.5a), (3.5b) and (3.5c) that

b1
a1 + b1

+
b2

a2 + b2
=
λ1(a1 + b1) + δ1

a1 + b1
+
λ2(a2 + b2) + δ2

a2 + b2

= 1 +
δ1

a1 + b1
+

δ2

a2 + b2
,

which gives the claim (3.4).
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Next we claim that the eigenvalue −E(ξ) + ρ1(ξ) of Lξ, defined in
Proposition 2.6(vii), is positive. To see this, we compute

0 <
b1

a1 + b1
+

b2
a2 + b2

− 1

=
8n1q

2
1ξ

2
1

E(ξ)− 6q2
1ξ

2
1

+
8n2q

2
2ξ

2
2

E(ξ)− 6q2
2ξ

2
2

− 1

=
G(ξ, E(ξ))

(E(ξ)− 6q2
1ξ

2
1) · (E(ξ)− 6q2

2ξ
2
2)
,

where for Ẽ ∈ R

G(ξ, Ẽ) +− Ẽ2 +
(
(8n1 + 6)q2

1ξ
2
1 + (8n2 + 6)q2

2ξ
2
2

)
Ẽ

− (48n1 + 48n2 + 36)q2
1q

2
2ξ

2
1ξ

2
2 .

It is easy to check that E(ξ)− 6q2
i ξ

2
i > 0, i = 1, 2. Hence we conclude that

G(ξ, E(ξ)) > 0.
Since ρ1(ξ) is an eigenvalue of the matrix αξ defined by (2.26), ρ1(ξ)

satisfies G(ξ, ρ1(ξ)) = 0. Hence

0 <G(ξ, E(ξ))−G(ξ, ρ1(ξ))

= (−E(ξ) + ρ1(ξ)) ·
(
E(ξ) + ρ1(ξ)− (8n1 + 6)q2

1ξ
2
1 − (8n2 + 6)q2

2ξ
2
2

)
.(3.6)

Note that E(ξ)− 6q2
1ξ

2
1 > 0, and that by applying the Perron-Frobenius the-

ory to the matrix αξ we have ρ1(ξ) ≥ 8n1q
2
1ξ

2
1 + (8n2 + 6)q2

2ξ
2
2 (see p.76 of

[Ga59] for example). Hence the second factor in (3.6) is positive and so
−E(ξ) + ρ1(ξ) > 0.

Now we can finish the proof of (ii) by using the Hartman-Grobman
Theorem since the local unstable manifold at ξ has dimension 1. �

When the solution Y (u) starts in Ω2, its longtime behavior is given by

Theorem 3.4. Let Y (u) be one of the ancient solutions in Theorem 3.1(ib)
with initial value Y (0) ∈ Ω2 \ (0v1 ∪ 0v2 ∪ {η}) where 0vi denotes the line
segment joining 0 and vi. Then

(i) the forward limit limu→∞ Y (u) = η.

(ii) There is exactly one solution whose backwards limit limu→−∞ Y (u) =
v1. We denote the corresponding flow line by γ1.

(iii) There is exactly one solution whose backwards limit limu→−∞ Y (u) =
v2. We denote the corresponding flow line by γ2.
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(iv) Let Ω∗2 ⊂ Ω2 be the closed region bounded by 0v1, 0v2, γ1 and γ2 ∪ {η}.
For each Y (0) in the interior of Ω∗2 the solution Y (u) has backwards
limit limu→−∞ Y (u) = 0.

Proof. We use the notations in the proof of Proposition 2.6.

(i) Let ωY be the ω-limit set of the flow line Y (u). Then

d

du
E(Y (u)) = −8n1q

2
1Y

2
1 F1(Y )− 8n2q

2
2Y

2
2 F2(Y ) ≥ 0

with equality if and only if Y1F1(Y ) = Y2F2(Y ) = 0. As ωY is flow-invariant
and connected, it follows that ωY = {0}, {v1}, {v2}, or {η}. Below we rule
out the possibilities that ωY = {0}, {v1}, or {v2}.

From (ia) and(ib) in the proof of Theorem 3.3 we conclude that
(q1η1, q2η2) lies in the right-lower quarter of the ellipse in (q1Y1, q2Y2)-plane
defined by F2(Y ) = 0 and cannot be the right vertex of the ellipse. Likewise,
the point lies in the upper-left quarter of the ellipse F1(Y ) = 0. These facts
imply that that Yi(0) < ηi for any Y (0) ∈ Ω2 \ {η}. But

dYi
du

(u) = −Yi(u)Fi(u) ≥ 0,

and the inequality is strict for at least one i by the assumption on Y (0).
This implies that ωY = {η}.

(ii) and (iii) Both follow from the Hartman-Grobman Theorem as in the
proof of Theorem 3.3(ii).

(iv) Since the boundary of Ω∗2 consist of flow lines, by the uniqueness of
solutions of ODEs, Y (u) must stay in Ω∗2. From dYi

du (u) > 0 proved in (i), the
backward limit must be one of 0, v1, and v2. The last two limits are ruled
out by the uniqueness in (ii) and (iii). �

3.3. Asymptotic behavior of metric tensors of the ancient
solutions

We begin with the following.

Theorem 3.5. Let (ψ(τ), b1(τ), b2(τ)) be one of the ancient solutions of
the ODE system (2.9a) and (2.9b) given in Theorem 3.1(i). Then we have
the following estimates and asymptotics.
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(i) The domain for τ contains [0,∞). For any ε > 0 small there is a τε > 0
such that for any τ > τε and for i = 1, 2,

(E(η)− ε)(τ − τε) ≤ ψ(τ)− ψ(τε) ≤ (E(η) + ε) (τ − τε),(3.7)

−ε(τ − τε) ≤ bi(τ)− bi(τε)−
(
2(ni + 2)qi − 6q2

i ηi
)

(τ − τε)(3.8)

≤ ε(τ − τε).

Furthermore, we have

lim
τ→∞

ψ(τ)

bi(τ)
= ηi, lim

τ→∞

ψ(τ)

τ
= E(η),

and so the rescaled metrics 1
τ ḡ(τ) converge in the Gromov-Hausdorff

topology to a multiple of the Einstein metric corresponding to η as τ
approaches ∞.

(ii) For the solution in Theorem 3.3(ii) there is a finite T1 > 0 such that
when u→ −∞ the corresponding τ → −T+

1 . We have

lim
τ→−T+

1

ψ(τ) = 0, lim
τ→−T+

1

bi(τ) = 0,

lim
τ→−T+

1

ψ(τ)

bi(τ)
= ξi, lim

τ→−T+
1

ψ(τ)

T1 + τ
= E(ξ).

It follows that geometrically, as τ → −T+
1 , the RP3 fibre bundle P̄ ,

equipped with the metric ḡ(τ), collapses to a point. Furthermore, the
rescaled metrics 1

T1+τ ḡ(τ) converges to a multiple of the Einstein met-

ric corresponding to ξ as τ → −T+
1 .

Proof. (i) We first note that the range of τ(u) (as determined by (2.10)) con-
tains [0,∞) for any of the solutions Y (u) under consideration. The inequali-
ties in (3.7) follow from dψ

dτ = E(Y ) and limu→∞ Y (u) = η and those in (3.8)
follow from (2.9b) and limu→∞ Y (u) = η. Note that 2(ni + 2)qi − 6q2

i ηi > 0,
since we have qiηi <

1
2 from the proof of Lemma 2.4(ii). The values of the

limits follow from the convergence of Y (u) and (2.9a).

(ii) The proof is similar to that of [LW16, Theorem 3.1.3(ii)]. We
first show that limu→−∞ τ(u) = −T1 for some finite positive T1. Since
limu→−∞ Y (u) = ξ, we have

dψ

dτ
>

1

2
+ n1q

2
1ξ

2
1 + n2q

2
2ξ

2
2
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for τ corresponding to u ∈ (−∞, u∗]. Here u∗ is a sufficiently negative num-
ber. Integrating this inequality over the τ -interval corresponding to [u, u∗]
gives

0 < τ(u∗)− τ(u) < ψ(u∗)

(
1

2
+ n1q

2
1ξ

2
1 + n2q

2
2ξ

2
2

)−1

.

This implies the existence of finite T1 > 0.
Next one shows that limτ→−T+

1
ψ(τ) = 0. The limit certainly exists as

ψ(τ) is positive and increasing in τ . If the limit is positive, we immediately
get a contradiction to limτ→−T+

1
u(τ) =∞ upon integrating du

dτ = 1
ψ . We

omit the remaining details as they are straight-forward. �

When the solution Y (u) starts from Ω2 the asymptotic behavior of the
metric tensor is given by the next theorem.

Theorem 3.6. Let (ψ(τ), b1(τ), b2(τ)) be a solution of the ODE system
(2.9a) and (2.9b).

(i) If it corresponds to the solution in Theorem 3.4(ii) then there is a finite
T2 > 0 such that when u→ −∞ the corresponding τ → −T+

2 . We in
addition have

lim
τ→−T+

2

ψ(τ) = 0, lim
τ→−T+

2

b1(τ) = 0, lim
τ→−T+

2

b2(τ) > 0,

lim
τ→−T+

2

ψ(τ)

b1(τ)
=

1

(4n1 + 6)q1
, lim

τ→−T+
2

ψ(τ)

b2(τ)
= 0, lim

τ→−T+
2

ψ(τ)

T2 + τ
= E(v1).

Geometrically, as τ → −T+
2 , the RP3 fibre bundle P̄ , equipped with

the metric ḡ(τ), collapses along the fibres and the first factor to some
QK metric on the second factor M2. The rescaled metrics 1

T2+τ ḡ(τ)

converge, as τ → −T+
2 , to product P1 × R4n2 in the Gromov-Hausdorff

topology, where P1 is equipped with a multiple of the “squashed” Ein-
stein metric (see the remark below) and R4n2 is equipped with the Eu-
clidean metric.

(ii) If it corresponds to the solution in Theorem 3.4(iii) then there is a
finite T3 > 0 such that when u→ −∞ the corresponding τ → −T+

3 .
We further have

lim
τ→−T+

3

ψ(τ) = 0, lim
τ→−T+

3

b1(τ) > 0, lim
τ→−T+

3

b2(τ) = 0,

lim
τ→−T+

3

ψ(τ)

b1(τ)
= 0, lim

τ→−T+
3

ψ(τ)

b2(τ)
=

1

(4n2 + 6)q2
, lim

τ→−T+
3

ψ(τ)

T3 + τ
= E(v2).
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Geometrically, as τ → −T+
3 , the bundle P̄ , equipped with the metric

ḡ(τ), collapses along the fibres and the second factor to some QK met-
ric on the first factor M1. The rescaled metrics 1

T3+τ ḡ(τ) converge,

as τ → −T+
3 , to product R4n1 × P2 in the Gromov-Hausdorff topology,

where R4n1 is equipped with the Euclidean metric and P2 is equipped
with a multiple of the “squashed” Einstein metric.

(iii) If it corresponds to a solution in Theorem 3.4(iv) then there is a finite
T4 > 0 such that when u→ −∞ the corresponding τ → −T+

4 . We also
have

lim
τ→−T+

4

ψ(τ) = 0, lim
τ→−T+

4

bi(τ) > 0,

lim
τ→−T+

4

ψ(τ)

bi(τ)
= 0, lim

τ→−T+
4

ψ(τ)

T4 + τ
=

1

2
.

Geometrically, as τ → −T+
4 , the bundle P̄ , equipped with the metric

ḡ(τ), collapses along the fibres to the product metric

lim
τ→−T+

4

b1(τ) · g1 + lim
τ→−T+

4

b2(τ) · g2

on M1 ×M2. By choosing different initial data the ratio
lim

τ→−T+
4
b2(τ)

lim
τ→−T+

4
b1(τ)

can be any positive number. The rescaled metrics 1
T4+τ ḡ(τ) converge,

as τ → −T+
4 , to product RP3 × R4(n1+n2) in the Gromov-Hausdorff

topology, where RP3 is equipped with the metric with constant sectional
curvature 1/4 and R4(n1+n2) is equipped with the Euclidean metric.

Proof. (i) The proof is similar to that of Theorem 3.5(ii) except for the
assertion that limτ→−T+

2
b2(τ) > 0. To prove this, we first give an estimate

of T2. Using again (2.11a) and the monotonicity of E(Y (u)), we have E(0) ≤
E(Y (u)) = d lnψ

du ≤ E(η). Integrating this inequality over the interval [u, 0]
we get

ψ(0) eE(η)u ≤ ψ(τ(u)) =
dτ

du
≤ ψ(0) eE(0)u,

which in particular gives limu→−∞ ψ(τ(u)) = 0. Integrating again, we get
for u < 0

ψ(0)

E(η)

(
1− eE(η)u

)
≤ −τ(u) ≤ ψ(0)

E(0)

(
1− eE(0)u

)
.
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Hence by letting u→ −∞ we get

(3.9)
ψ(0)

E(η)
≤ T2 ≤

ψ(0)

E(0)
= 2ψ(0).

By integrating (2.9b) we get that b2(τ) ≥ b2(0) + 2q2(n2 + 2)τ for τ < 0.
By using (3.9) we have

lim
τ→−T+

2

b2(τ) ≥ b2(0)− 4q2(n2 + 2)ψ(0) = b2(0)(1− 4q2(n2 + 2)Y2(0)) > 0.

To get the last inequality, we may need to shift the initial time so that
q2Y2(0) < (4(n2 + 2))−1, which is always possible. The remaining limits fol-
low from the above and L’Hopital’s rule.

(ii) Since the proof is similar to that of (i) above, we omit it.

(iii) Except for the last limit
lim

τ→−T+
4
b2(τ)

lim
τ→−T+

4
b1(τ) , the rest of the proof is similar

to that of (i) above and so we omit it. To deduce the limit, we use (2.24)
together with Sternberg’s Theorem ([St57, Theorem 4]) on the Ck-conjugacy
of solutions near a fixed point of a nonlinear ODE system satisfying non-
resonance conditions to solutions of its linearization. It follows that there is
a diffeomorphism W from a neighborhood of the origin in (Y1, Y2)-space to
some neighborhood of 0 ∈ R2 such that the flow lines Y (u) satisfy

Y (u) = (W−1 ◦ (k1e
u/2, k2e

u/2) ◦ W )(Y (0))

where u is sufficiently close to −∞. Taking the u-derivative of this equation
and letting u tend to −∞ we see that the tangent map W−1

∗ maps directions
at 0 with slope k2/k1 to directions at 0 in Y -plane. In particular, as 0v1

and 0v2 are themselves flow lines, it follows that there are flow lines Y (u)
emanating from 0 which lie in between 0v1 and 0v2 with any positive limiting
slope. �

Remark 3.7. Here we clarify the term “squashed” Einstein metric for
readers not familiar with Einstein metrics on the principal SO(3) bundle P
over a compact QK manifold. We will use the notation in §2.1. It is well-
known (see [Be87, Proposition 14.85]) that P admits two Einstein metrics
of connection type. Indeed, they can be found by solving the quadratic
equation resulting from (2.13) by dropping the terms with index 2. The two
solutions are then given by Y1 = 1

2q1
and Y1 = 1

(4n1+6)q1
. The latter is what

we refer to as the “squashed” Einstein metric. The terminology comes from
the case when the QK manifold is quaternionic projective space HPn and



i
i

“5-Lu” — 2020/3/11 — 0:23 — page 171 — #31 i
i

i
i

i
i

Ancient solutions on bundles 171

P is S4n+3. The “squashed” Einstein metric is the Jensen metric, obtained
from the constant curvature metric by uniformly shrinking the Hopf fibres. It
is of interest to physicists since the dimension of the space of Killing spinors
is 1. There are also pseudo-Riemannian analogues of these Einstein metrics
(see [Be87, Remark 14.86b]), which appear as limits in our construction of
pseudo-Riemannian flows.

Theorem 3.8. Let (ψ(τ), b1(τ), b2(τ)) be one of the ancient solutions of
the ODE system (2.9a) and (2.9b) in Theorem 3.1(ii). Then the domain for
τ contains [0,∞) and for any small ε > 0 there is a τε > 0 such that for
τ ≥ τε and for i = 1, 2,

(E(ξ)− ε)(τ − τε) ≤ ψ(τ)− ψ(τε) ≤ (E(ξ) + ε)(τ − τε),(3.10)

(2ni + 1) qi(τ − τε) ≤ bi(τ)− bi(τε) ≤ 2(ni + 2) qi(τ − τε).(3.11)

Furthermore, we have

lim
τ→∞

ψ(τ)

bi(τ)
= ξi, lim

τ→∞

ψ(τ)

τ
= E(ξ),

and so the rescaled metrics 1
τ ḡ(τ) converge in the Gromov-Hausdorff topology

to a multiple of the Einstein metric corresponding to ξ as τ approaches ∞.

Proof. Inequalities (3.10) follows from dψ
dτ = E(Y ) and limu→∞ Y (u) = ξ.

Since qiξi <
1
2 , we may choose τε so that by using (2.9b) we have (2ni +

1)qi ≤ dbi
dτ ≤ 2(ni + 2)qi for τ ≥ τε. Then the inequality (3.11) follows. The

remaining convergences follow easily. �

With the asymptotics given in Theorems 3.5, 3.6 and 3.8, one easily
deduces the following

Corollary 3.9. (i) Each of the ancient solutions ḡ(τ), τ ∈ [0,∞), in The-
orem 3.1, is κ-noncollapsed at all scales for some κ > 0.
(ii) Each of the solutions ḡ(τ) on τ ∈ (−Ti, 0], 1 ≤ i ≤ 4 in Theorems 3.5(ii)
and 3.6(i)–(iii), is κ-noncollapsed at all scales for some κ > 0.

4. C0 Cheeger-Gromov convergence implies C∞

Cheeger-Gromov convergence and Type I
solutions of the Ricci flow

Although we can compute the curvature tensor of the ancient solutions we
found in Theorem 3.1 as we did for the torus bundle case in [LW16] and
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conclude that these solutions are of type I, in this section we will instead
prove the solutions are of type I by an indirect method. This relies on a
result relating C0 and C∞ convergence of Ricci flow solutions under suitable
hypotheses. We believe that this result may of be independent interest and
have other applications.

Recall the following definition of convergence in pointed Ck Cheeger-
Gromov topology, 0 ≤ k ≤ ∞.

Definition 4.1. Let I be a fixed interval. A sequence {(Mn
k , gk(t), pk)} ,

t ∈ I, of complete pointed solutions of the Ricci flow converges in the
Ck (pointed) Cheeger-Gromov topology to a complete pointed solution
(Mn
∞, g∞(t), p∞) , t ∈ I, of the Ricci flow if there exist

(i) an exhaustion {Uk}k∈N of M∞ by open sets with p∞ ∈ Uk for each k,
and

(ii) a sequence of diffeomorphisms Φk : Uk→Φk (Uk)⊂Mk with Φk (p∞) =

pk such that
(
Uk,Φ

∗
k

(
gk (t)|Φk(Uk)

))
converges in the Ck topology to

(M∞, g∞ (t)) uniformly on any compact subset in M∞ × I.

We have the following strengthening of C0 Cheeger-Gromov convergence
of the Ricci flow.

Theorem 4.2. Let {(Mn
k , gk(t), pk)}, t ∈ [0, 1], be a sequence of complete

pointed solutions of the Ricci flow with bounded curvature for each k. We
assume that

(a) the scalar curvature Rgk(x, t) ≥ −R∗ on Mk × [0, 1] for some constant
R∗ > 0,

(b) the sequence {(Mk, gk(t), pk)}, t ∈ [0, 1], converges in the C0 Cheeger-
Gromov topology to complete pointed solution (Mn

∞, g∞(t), p∞), t ∈
[0, 1], of the Ricci flow.

Then the sequence {(Mk, gk(t), pk)}, t ∈ (0, 1], subconverges to

(M∞, g∞(t), p∞), t ∈ (0, 1],

in C∞ Cheeger-Gromov topology.

Proof. Fix α = 1 and let δ and ε0 < 1 be the two positive constants in Perel-
man’s pseudolocality theorem ([Pe02, Theorem 10.1]). We claim that for any

compact subset K ⊂M∞ there is a r∗ ∈ (0,min{1/2, R−1/2
∗ }) such that for
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any x∗ ∈ K and any t ∈ [0, 1] the ball Bg∞(t)(x∗, 2r∗) is δ/2-almost isoperi-
metrically Euclidean in the sense

(4.1) (Areag∞(t)(∂Ω))n ≥
(

1− δ

2

)
cn(Volg∞(t)(Ω))n−1

for any regular domain Ω ⊂ Bg∞(t)(x∗, 2r∗), where cn = nnωn is the Eu-
clidean isoperimetric constant.
Proof of the claim. Because every Riemannian metric is infinitesimally a Eu-
clidean metric and the isoperimetric property is stable for nearly equivalent
metrics, given any (x̃, t̃) ∈M∞ × [0, 1] there are r̃ > 0 and η̃ > 0 sufficiently
small such that

(4.2) (Areag∞(t)(∂Ω))n ≥
(

1− δ

2

)
cn(Volg∞(t)(Ω))n−1

for any regular domain Ω ⊂ Bg∞(t)(x̃, 4r̃) and any t ∈ It̃,η̃. We define interval

It̃,η̃ +


(max{t̃− η̃, 0},min{t̃+ η̃, 1}) if t̃− η̃ > 0 and t̃+ η̃ < 1

[0,min{t̃+ η̃, 1}) if t̃− η̃ ≤ 0 and t̃+ η̃ < 1

(max{t̃− η̃, 0}, 1] if t̃− η̃ > 0 and t̃+ η̃ ≥ 1

[0, 1] if t̃− η̃ ≤ 0 and t̃+ η̃ ≥ 1

.

Note that

{∪t∈It̃,η̃Bg∞(t)(x̃, 2r̃)× {t}, (x̃, t̃) ∈M∞ × [0, 1]}

is an open cover of M∞ × [0, 1]. Hence for any compact subset K ⊂M∞, we
can extract a finite subcovering

{∪t∈It̃i,η̃iBg∞(t)(x̃i, 2r̃i)× {t}, i = 1, 2, . . . , iK}

of K × [0, 1]. We choose r∗ to be any positive number less than both
mini=1,2,...,iK r̃i and 1/2.

Now we verify the conclusion of the claim. Given any (x∗, t∗) ∈ K × [0, 1]
there is an i such that (x∗, t∗) ∈ ∪t∈It̃i,η̃iBg∞(t)(x̃i, 2r̃i)× {t}. Then given
any regular domain Ω ⊂ Bg∞(t∗)(x∗, 2r∗) we have Ω ⊂ Bg∞(t∗)(x̃i, 4r̃i) where
t∗ ∈ It̃i,η̃i . Hence by the choice of x̃i, t̃i, r̃i, and η̃i in (4.2) we know that
inequality (4.1) holds for Ω and the claim holds.

Since limit manifold M∞ may be noncompact, below we will use balls
centered at p∞ with larger and larger radius to provide the exhaustion in
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Definition 4.1. Fix any D > 0. By assumption (b) the metrics Φ∗kgk(t) con-
verges in C0 topology to g∞(t) uniformly on ∪t∈[0,1]Bg∞(t)(p∞, D + 2)× {t}.
Using this fact, the claim, and the property that the isoperimetric prop-
erty is stable for nearly equivalent metrics, we conclude that there is an

r∗ ∈ (0,min{1/2, R−1/2
∗ }) which is independent of k and k0 such that for

any k ≥ k0, t ∈ [0, 1], and x0 ∈ Bgk(t)(pk, D) we have

(4.3) (Areagk(t)(∂Ω))n ≥ (1− δ)cn(Volgk(t)(Ω))n−1

for any regular domain Ω ⊂ Bgk(t)(x0, r∗).

By (4.3), r∗ ≤ R−1/2
∗ , and by the assumption (a) we may apply Perel-

man’s pseudolocality theorem to the Ricci flow (Mk, gk(t)|t∈[t∗,t∗+(ε0r∗)2])

with k ≥ k0 and t∗ ∈ [0, 1− (ε0r∗)
2]. We then obtain the interior curvature

estimate

(4.4) |Rmgk |(x, t) ≤
1

t− t∗
+

1

(ε0r∗)2

where dgk(t)(x, x0) < ε0r∗, x0 ∈ Bgk(t)(pk, D), and t ∈ (t∗, t∗ + (ε0r∗)
2].

Given any D > 0 and t̄ > 0, by applying inequality (4.4) for some
t∗ ∈ [max{0, t̄− (ε0r∗)

2}, 1− (ε0r∗)
2] we get the uniform curvature bound

(4.5) |Rmgk |(x, t) ≤
1

t̄
+

2

(ε0r∗)2

for k ≥ k0, x ∈ Bgk(t)(pk, D), and t ∈ [t̄, 1].

Next we are going to prove that the sequence of injectivity radii
injgk(1/2)(pk) have an uniform lower bound independent of k. By the as-
sumption (b) we know that

lim
k→∞

Volgk(1/2)(Bgk(1/2)(pk, 1)) = Volg∞(1/2)(Bg∞(1/2)(p∞, 1)).

By (4.5) there is a constant K0 such that the curvature |Rmgk |(x, 1/2) ≤ K0

for any x ∈ Bgk(1/2)(pk, 1) and k ≥ k0. Hence by a local version of a theorem
of Cheeger, Gromov, and Taylor (see, for example, [CZ06, Thm 4.2.2]1) there
is a constant ι0 > 0 independent of k such that injgk(1/2)(pk) ≥ ι0.

With the curvature bound (4.5) and the injectivity radius lower bound,
we can now apply Hamilton’s local compactness theorem ([Ha93, Theo-
rem 16.1]) to sequence {(Mk, gk(t), pk)}, t ∈ (0, 1], with base time t = 1/2 to

1Note that Theorem 4.2.2 still applies if the assumption that M is complete is
replaced by the assumption that ball B(x0, 4r0) is precompact in M .
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conclude its subconvergence to (M̃n
∞, g̃∞(t), p̃∞), t ∈ (0, 1], in C∞ Cheeger-

Gromov topology. By the uniqueness of the C0 Cheeger-Gromov limit we
know that (M̃∞, g̃∞(t), p̃∞) is isometric to (M∞, g∞(t), p∞) for each t ∈
(0, 1]. �

The following corollary shows that the ancient solutions we constructed
in this article are of type I as time approaches to −∞.

Corollary 4.3. Let ḡ(τ) + ḡ
~a(τ),~b(τ)

, τ ∈ [0,∞), be an ancient solution of

the backwards Ricci flow on the compact fibre bundles P̄ as defined in §2.2.
Assume that limits limτ→∞

ai(τ)
τ + âi 6= 0 and limτ→∞

bi(τ)
τ + b̂i 6= 0 for i =

1, . . . ,m. Then the solution ḡ(τ) is of type I when τ →∞.

Proof. It suffices to show that for any τk →∞ there is a constant C in-
dependent of k such that supp∈P̄ τk|Rmḡ(τk)(p)| ≤ C for some subsequence

of τk. Note that (P̄ , ḡ
~̂a,
~̂
b
) is a compact Riemannian manifold where ~̂a =

(â1, . . . , âm) and
~̂
b = (b̂1, . . . , b̂m).

Define the sequence of Ricci flow solutions gk(t) = (τk)
−1ḡ(3

2τk − τkt),
t ∈ [0, 1]. By a well-known result of B.L. Chen the ancient solution ḡ(τ) has
nonnegative scalar curvature, hence scalar curvatures Rgk(t) ≥ 0 for all k and
t. Since

lim
k→∞

ai(
3
2τk − τkt)
τk

=

(
3

2
− t
)
âi, lim

k→∞

bi(
3
2τk − τkt)
τk

=

(
3

2
− t
)
b̂i,

the sequence of solutions {gk(t)} satisfies the assumptions of Theorem 4.2
and it follows that gk(

1
2) = (τk)

−1ḡ(τk) subconverges in C∞ Cheeger-Gromov
topology to the compact Riemannian manifold (P̄ , ḡ

~̂a,
~̂
b
). Since

τk|Rmḡ(τk) |(p) = |Rmgk( 1

2
) |(p)

for any p ∈M , we have the subconvergence of supp∈P̄ τk|Rmḡ(τk) |(p) to
supp∈P̄ |Rmḡ~̂a,~̂b

|(p). Hence the subsequence of {τk|Rmḡ(τk) |(p)} is bounded.
�

Theorem 4.4. The ancient solutions ḡ
~a(τ),~b(τ)

of the Ricci flow on P̄ with
m = 2 in Theorem 3.1 are of Type I when τ →∞. The Ricci curvature of
these solutions are positive for all τ .

Proof. The first assertion follows from Corollary 4.3 directly.
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For the second assertion, the formulas (2.1) and (2.7) imply that the
Ricci tensors are positive provided that Yi <

ni+2
3qi

for i = 1, 2. Since qiηi <

qiξi <
1
2 , we conclude that any solution Y (u) in Theorem 3.1 satisfies the

condition above when u is large enough.
Let ũ = −u, then dYi

dũ = YiFi(Y ). Define convex set

Ω3 +

{
(Y1, Y2), 0 < Yi <

ni + 2

3qi
for i = 1, 2

}
.

Since Fi(Y ) < 0 when Yi = ni+2
3qi

, the the directional field (Y1F1(Y ), Y2F2(Y ))

points into Ω3 at the part of boundary ∂Ω3 where either Y1 = n1+2
3q1

or

Y2 = n2+2
3q2

. Hence any solution Y (u) in Theorem 3.1 stays in Ω3 as ũ→∞.
This proves the second assertion. �

5. Examples of ancient solutions with m ≥ 3

In this section we shall consider a special case of the Riemannian fibre bun-
dles (P̄ , ḡ

~a,~b
) in §2 with m ≥ 3 in order to exhibit continuous families of

non-collapsed ancient solutions on even-dimensional non-Kähler manifolds.
For the special case we assume that the QK manifolds (M4ni

i , gi) are posi-
tive and have the same dimension, i.e., n1 = · · · = nm + d. For convenience
we shall assume that the constants Λi = ni + 2 = d+ 2 for all i, so that the
constants qi = 1.

5.1. Properties of Einstein metrics on P̄ with m ≥ 3

Recall that for a solution ḡ
~a(τ),~b(τ)

= ḡ(τ) of the backwards Ricci flow equa-

tions (2.5) and (2.2) we had set â +
∑m

k=1 ak. We now let Xk +
ak
â and Yk +

â
bk

, so that we have the constraint
∑m

k=1Xk = 1 for the variables Xk. Let

E(X,Y ) + m
2 + 1 +

∑m
k=1 4dX2

kY
2
k , so that by (2.6) we have dâ

dτ = E(X,Y ).
Analogous to the m = 2 case we define a new independent variable u by
u =

∫ τ
0

1
â(ζ)dζ. Then it follows from (2.5) and (2.2) that

dXk

du
=

1

2
+Xk + 4dX2

kY
2
k −XkE(X,Y ),(5.1a)

dYk
du

= −Yk
(
2(d+ 2)Yk − 6Xk(1−Xk)Y

2
k − E(X,Y )

)
.(5.1b)

It is easy to check that condition
∑m

k=1Xk = 1 is preserved by (5.1a). Since
the metrics we shall construct must satisfy this constraint, we will only con-
sider solutions of the above system which satisfy

∑m
k=1Xk = 1 as well as
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the positivity conditions Xk > 0 and Yk > 0. Given a solution of (5.1a) and
(5.1b) we can find â(u) from d ln â

du = E(X,Y ) first, picking up an integra-
tion constant in the process. Then we find τ(u) from dτ

du = â(u), and finally
recover ak(τ) and bk(τ) from Xk and Yk. Hence we get solutions of the back-
wards Ricci flow depending on the integration constant. Note that the net
effect of the integration constant is a parabolic rescaling of the solutions of
the backwards Ricci flow. Hence given a solution of (5.1a) and (5.1b) we get
only one solution ḡ(τ) of the backwards Ricci flow (modulo time translation
and parabolic rescaling).

One can easily determine all the fixed points of the ODE system (5.1a)
and (5.1b). Here we will examine those fixed points with all Yk 6= 0. This
leads to the equations

1

2
+Xk + 4dX2

kY
2
k −XkE(X,Y ) = 0,(5.2a)

2(d+ 2)Yk − 6Xk(1−Xk)Y
2
k − E(X,Y ) = 0.(5.2b)

Let E(X,Y ) + 2Λâ. Then after some simple calculation we obtain

1

4
+
ak
2â

+ 2d
a2
k

b2k
= Λak, d+ 2− 3

(
1− ak

â

) ak
bk

= Λbk.

By the Ricci curvature formulas in §2.2, these are exactly the Einstein con-
dition for the metric determined by ak, bk. Hence we have proved the first
part of the following

Lemma 5.1. (i) The zeros of the vector field given by (5.1a) and (5.1b)
with Yk 6= 0 for each k correspond to Einstein metrics g± on the bundle P̄ .

(ii) Corresponding to these Einstein metrics we have Xk = 1
m and Yk =

m√
d
β± where

β± =
(d+2)

(
1±
√

1−2(1+2m−1)d(d+2)−2−3(1−m−1)(1+2m−1)(d+2)−2

)
2
√
d(2+3(1−m−1)d−1)

.

Note that β± are the solutions of quadratic equation(
2 +

3(m− 1)

md

)
β2 − d+ 2√

d
β +

m+ 2

4m
= 0.

Proof. (ii) Since E(X,Y ) = m
2 + 1 + 4m(β±)2, the (X,Y )’s in (ii) satisfy

(5.2a) and (5.2b). It is a simple check that the discriminant of the quadratic
equation is positive. �
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Remark 5.2. We shall refer to the above zeros as the Einstein points
(X±E , Y

±
E ), where the ± signs correspond to those occurring in β±. Note also

that in [Wa92] only one Einstein metric was found when m ≥ 3.

The following estimates are needed for the discussion of eigenvalues be-
low.

Lemma 5.3. β± has the following lower and upper bounds:
√
d(d+ 2)

2(2d+ 3)
< β+ <

√
d(d+ 2)

2(d+ 1)
,(5.3)

√
d

4(d+ 2)
< β− <

5
√
d

6(d+ 2)
.(5.4)

Proof. For the lower bound of β+ we compute

β+ >
d+ 2

2
√
d(2 + 3(1−m−1)d−1)

>
d+ 2

2
√
d(2 + 3d−1)

.

For the upper bound of β+ we compute

β+ <
2(d+ 2)

2
√
d (2 + 3(1−m−1)d−1)

≤ 2(d+ 2)

2
√
d (2 + 2d−1)

,

where we used m ≥ 3 to get the last inequality. This proves (5.3).
For the lower bound of β− we compute using

√
1− α ≤ 1− 1

2α for α ∈
[0, 1]

β− >
(d+ 2)

(
(1 + 2m−1)d(d+ 2)−2 + 3

2(1−m−1)(1 + 2m−1)(d+ 2)−2
)

2
√
d(2 + 3(1−m−1)d−1)

>
(d+ 2)−1

(
(1 + 2m−1)d+ 3

2

)
2
√
d(2 + 3(1−m−1)d−1)

>

√
d

4(d+ 2)
,

where we have used m ≥ 3 to get the last inequality. For the upper bound
of β− we compute using

√
1− α ≥ 1− α for α ∈ [0, 1]

β− <
(d+ 2)−1

(
2(1 + 2m−1)d+ 3(1−m−1)(1 + 2m−1)

)
2
√
d(2 + 3(1−m−1)d−1)

=
(d+ 2)−1

2
√
d
· (1 + 2m−1)d.(5.5)
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The lemma is proved. �

Let Im×m be the identity matrix and let J be the m×m matrix all of
whose entries are 1. Define L± to be the linearization of the vector field from
system (5.1a) and (5.1b) at the Einstein points (X±E , Y

±
E ). By a straightfor-

ward computation we have

L± =

(
c±11I − 8(β±)2J c±12I − 8

√
d

m2 β±J

c±21I + 8m2
√
d

(β±)3J c±22I + 8(β±)2J

)
2m×2m

,(5.6)

where

c±11 = 4(2m− 1)(β±)2 − m

2
, c±12 =

8
√
d

m
β± > 0,

c±21 =
6m2(m− 2)

(
√
d)3

(β±)3 > 0, c±22 =
12(m− 1)

d
(β±)2 − 2(d+ 2)m√

d
β±.

Note that by the equation for β± we can rewrite

c±22 =

(
6(m− 1)

d
− 4m

)
(β±)2 − m+ 2

2
.

We define two matrices

C± +

(
c±11 c±12

c±21 c±22

)
.

Lemma 5.4. The eigenvalues of C± are real and distinct. If we denote by
λ±1 and λ±2 the two eigenvalues of C± in ascending order, then

(i) λ+
1 < 0 and λ+

2 > 0, and

(ii) λ−1 < λ−2 < 0.

Proof. The simplest way to deduce the first statement is to observe that
C± can be written as the sum of a positive matrix and the scalar matrix
−2(d+2)√

d
mβ±I2×2. The conclusion then follows from the Perron-Frobenius

theorem for positive matrices.
(i) It suffices to prove that c+

11 > 0 and c+
22 < 0 which then imply that

the determinant detC+ < 0. We consider two subcases.
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Subcase (i1) d ≥ 2. Using (5.3) we have

c+
11 > 4(2m− 1)

d(d+ 2)2

4(2d+ 4)2
− m

2
=

1

4
(2md− d− 2m) > 0,

c+
22 <

2(d+ 2)β+

√
d

(
3(m− 1)

d+ 1
−m

)
< 0.

Subcase (i2) d = 1. By Lemma 5.1 we have β+ = 3m+
√

4m2−7m+6
2(5m−3) . Hence

5m− 2

2(5m− 3)
< β+ <

5m− 1

2(5m− 3)
.

Using these inequalities we can check that c+
11 > 0 and c+

22 < 0 when d = 1.

(ii) First we prove trace trC− < 0 by considering two subcases.
Subcase (ii1) d ≥ 2. We compute using (5.4)

trC− =

(
6(m− 1)

d
+ 4m− 4

)
(β−)2 − (m+ 1)

<

(
6(m− 1)

d
+ 4m− 4

)
· 25d

36(d+ 2)2
− (m+ 1).

The last expression as a function of d ∈ [2,∞) achieves its maximum when
d = 2, and the maximum value is negative. This proves trC− < 0 for d ≥ 2.
Subcase (ii2) d = 1. By Lemma 5.1 we have

m+ 1

2(5m− 3)
< β− <

m+ 2

2(5m− 3)
.

From this we can calculate that c−11 = 4(2m− 1)(β−)2 − m
2 < 0 and c−22 =

(2m− 6)(β−)2 − m+2
2 < 0. Hence trC− < 0 when d = 1.

Next we show that detC− > 0 for m ≥ 3 and any d. We compute

detC− =
2mβ−

d

∣∣∣∣∣ 4(2m− 1)(β−)2 − m
2

8
√
d

m β−

3m(m−2)√
d

(β−)2 6(m−1)
m β− − (d+ 2)

√
d

∣∣∣∣∣
=

2mβ−

d

(
24(m− 1 +m−1)(β−)3 − 4

√
d(d+ 2)(2m− 1)(β−)2

−3(m− 1)β− + 1
2

√
d(d+ 2)m

)
=

2mβ−

d

(
−(8(2m− 1)d− 12− 12m−1)(β−)3

−(3(m− 1) + (2m+ 3− 2m−1)d)β− + 1
2

√
d(d+ 2)m

)
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where we have used the quadratic equation of β− to get the last inequality.
We define

Ψ(m, d) + (8(2m− 1)d− 12− 12m−1)(β−)2

+ 3(m− 1) + (2m+ 3− 2m−1)d.

On the other hand when m ≥ 3 and d ≥ 5 we have(
3d2 + 2d− 527

9

)
m > 15d,

which implies(
127

9
m+ (2m+ 3)d

)
· 5
√
d

6(d+ 2)
<

1

2

√
d(d+ 2)m.

By the upper bound of β− we get(
127

9
m+ (2m+ 3)d

)
β− <

1

2

√
d(d+ 2)m.

Combining this with the fact that for d ≥ 2 and m ≥ 3, we have

Ψ(m, d) < 16md · 25d

36(d+ 2)2
+ 3m+ (2m+ 3)d

<
127

9
m+ (2m+ 3)d,

and so we deduce that −Ψ(m, d)β− + 1
2

√
d(d+ 2)m > 0. Hence detC− > 0

when m ≥ 3 and d ≥ 5.
We have also shown that detC− > 0 for m ≥ 3 and d = 1, 2, 3, 4. This is

done by using the specific value for d and analysing the resulting expression
for detC−. The calculations are straightforward but lengthy and not very
illuminating so we omit them.

From trC− < 0 and detC− > 0 we conclude that the eigenvalues of C−

are both negative. �

Note that L± maps linear subspace V1 + {(X,Y ) ∈ R2m,
∑m

k=1Xk =∑m
k=1 Yk = 0} into itself. Using the fact that c±12 − 8

√
d

m β± = 0 it is easy
to check that L± in addition maps the linear subspace V2 + {(X,Y ) ∈
R2m,

∑m
k=1Xk = 0} into itself. This last property also follows from the fact

that the affine hypersurface
∑m

k=1Xk = 1 is preserved by (5.1a). For the
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remainder of this section, we will regard L± as a linear endomorphism of V2

without introducing a separate notation for its restriction to V2.

Lemma 5.5.

(i) The matrices L± are diagonalizable. They have distinct eigenvalues λ±1
and λ±2 and the corresponding eigenvectors form a basis of the linear

subspace V1. L± have a further eigenvalue λ±3 +
2(d+2)m√

d
β± − (m+ 2)

with associated eigenvector lying in V2 but not in V1. Furthermore,
λ+

3 > 0 while λ−3 < 0.

(ii) L+ has m positive eigenvalues and m− 1 negative eigenvalues on V2.

(iii) L− is negative definite on V2.

Proof. (i) Let ~u = (u1, . . . , um)T be any column vector which satisfies∑m
i=1 ui = 0. Then we have

L±
(
σ1~u
σ2~u

)
=

(
(c±11σ1 + c±12σ2)~u
(c±21σ1 + c±22σ2)~u

)
= λ

(
σ1~u
σ2~u

)
provided that the column vector (σ1, σ2)T ∈ R2 is an eigenvector of matrix
C± with eigenvalue λ:

C±
(
σ1

σ2

)
= λ

(
σ1

σ2

)
.

Hence by Lemma 5.4 we obtain distinct eigenvalues λ±1 and λ±2 of L± and
the associated eigenvectors form a basis of the linear subspace V1.

Next, let ~e be the column vector (1, . . . , 1)T . We compute that

L±
(
σ1~e
σ2~e

)
=

(
(c±11σ1 − 8m(β±)2σ1 + c±12σ2 − 8

√
d

m β±σ2)~e

(c±21σ1 + 8m3
√
d

(β±)3σ1 + c±22σ2 + 8m(β±)2σ2)~e

)

= λ

(
σ1~e
σ2~e

)
provided that the column vector (σ1, σ2)T ∈ R2 is an eigenvector with eigen-
value λ of matrix D±:

D±
(
σ1

σ2

)
+

(
c±11 − 8m(β±)2 c±12 − 8

√
d

m β±

c±21 + 8m3
√
d

(β±)3 c±22 + 8m(β±)2

)(
σ1

σ2

)
= λ

(
σ1

σ2

)
.
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Since

D± =

(
−4(β±)2 − m

2 0
6m2(m−2)+8m3d

(
√
d)3

(β±)3 8md+12(m−1)
d (β±)2 − 2(d+2)m√

d
β±

)
,

one sees that the vector (σ1, σ2)T = (0, 1)T is an eigenvector with eigenvalue

λ±3 =
8md+ 12(m− 1)

d
(β±)2 − 2(d+ 2)m√

d
β±(5.7)

=
2(d+ 2)m√

d
β± − (m+ 2).

This gives an eigenvector in the subspace V2 which does not lie in V1.
Note that using (5.3) we get

λ+
3 >

(d+ 2)2

2d+ 3
m− (m+ 2) > 0,

while using (5.7) and (5.5) yields λ−3 < 0.

(ii) and (iii) These follow immediately from (i). �

5.2. Ancient solutions on P̄ with m ≥ 3

Now we can prove the existence of ancient solutions on the special class of
fibre bundles P̄ with m ≥ 3 which were described at the beginning of §5.

Theorem 5.6. Let (M4ni
i , gi), i = 1, . . . ,m, be QK manifolds with Rcgi =

Λigi. Assume m ≥ 3, n1 = · · · = nm = d, and Λi = d+ 2 for all i. Let g+

and g− be the Einstein metrics given in Lemma 5.1.

(i) There is a continuous (m− 2)-parameter family of ancient solutions of
the Ricci flow on fibre bundle P̄ such that limτ→∞

1
τ ḡ(τ) is a multiple

of the Einstein metric g+.

(ii) There is a continuous (2m− 2)-parameter family of ancient solution
of the Ricci flow such that limτ→∞

1
τ ḡ(τ) is a multiple of the Einstein

metric g−.

(iii) All these ancient solutions are κ-noncollapsing, of type I as τ →∞,
and have positive Ricci curvature when τ is large enough.

Proof. (i) We consider solutions (X,Y ) of the ODE system (5.1a) and (5.1b)
in the space {(X,Y ) ∈ R2m :

∑m
k=1Xk = 1}. By Lemma 5.5 the linearized
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operator L+ at the Einstein point (X+
E , Y

+
E ) has a negative eigenvalue of

multiplicity m− 1 in V2. So we may apply the Hartman-Grobman Theorem
to conclude that there is a continuous (m− 2)-parameter family of solutions
(X+(u), Y +(u)) whose limits limu→∞(X+(u), Y +(u)) = (X+

E , Y
+
E ). By the

discussion after equation (5.1b) we get a continuous (m− 2)-parameter fam-
ily of solutions of the backwards Ricci flow (modulo time translation and
parabolic scaling). To see that these solutions are ancient, we prove next
that limu→∞ τ(u)→∞.

If we take a flow line (X+(u), Y +(u)) in the local stable manifold near
(X+

E , Y
+
E ), then

lim
u→∞

(X+(u), Y +(u)) = (X+
E , Y

+
E )

and

lim
u→∞

E(X+(u), Y +(u)) = E(X+
E , Y

+
E ).

Hence given any ε > 0 there is a u0 such that for u ≥ u0 we have

|E(X+(u), Y +(u))− E(X+
E , Y

+
E )| ≤ ε.

We compute by using d
du ln â(u) = E(X+(u), Y +(u)) that

ln â(u)− ln â(u0) ≤ (E(X+
E , Y

+
E ) + ε)(u− u0) for u ≥ u0.

Hence we have

â(u) ≤ â(u0)e(E(X+
E ,Y

+
E )+ε)(u−u0) for u ≥ u0.

This and the relation dτ = â(u)du imply that limu→∞ τ(u)→∞.
From (2.5) and (2.2) we get

dak
dτ

=
1

2
+Xk + 4dX2

kY
2
k →

m+ 2

2m
+ 4(β+)2

dbk
dτ

= 2(d+ 2)− 6Xk(1−Xk)Yk → 2(d+ 2)− 6(m− 1)

m
√
d

β+ > 0

as τ →∞. We have used (5.3) to get the last inequality. This implies that
limτ→∞

ak
τ and limτ→∞

bk
τ exist. (i) is now proved.

(ii) Note that the linearized operator L− at the Einstein point (X−E , Y
−
E ) has

2m− 1 negative eigenvalues in V2 by Lemma 5.5. With this observation, the
rest of the proof is similar to the proof of (i), and so we omit it.
(iii) The κ-noncollapsing and Type I properties follow from the fact that

limτ→∞
ḡ(τ)
τ is a multiple of the nonflat Einstein metrics g± and Corol-

lary 4.3.
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From [Wa92, (2.2)], the restriction of the Ricci tensor of ḡ(τ) to the fibre
directions is positive definite. So by (2.2)) the Ricci tensor is positive definite
if and only if

2(d+ 2)− 6Xk(1−Xk)Yk > 0, for k = 1, . . . ,m.

These inequalities hold when (X(τ), Y (τ)) are close to (X±E , Y
±
E ). �

Remark 5.7.

(i) The dimensions of the bundles considered in this section are of the
form 4md+ 3(m− 1). In particular, for m = 2l + 1 with l ≥ 1, the di-
mension is even. However, the total spaces of the bundles cannot admit
a Kähler structure if none of the QK factors in the base are complex
Grassmannian. To see this, recall that S. Salamon [Be87, 14.83] has
proved that positive QK manifolds are simply connected, and that
the rigidity result of LeBrun and Salamon [LS94] implies that under
our assumption the second Betti number of the base is 0. As well,
the fibres are products of RP3, which is a homology 3-sphere. It then
follows for example from the Serre spectral sequence that the second
Betti number of the total space is trivial. So the metrics in our an-
cient flows do not admit compatible symplectic structures which are
non-cohomologous to zero. The only other ancient solutions of this
type that we know of are the continuous families on compact sim-
ple Lie groups constructed by Lauret [La13] and the isolated solu-
tions on the homogeneous spaces Sp(3)/(Sp(1)× Sp(1)× Sp(1)) and
F4/Spin(8) (see Example 5 in [BKN12]).

(ii) We also obtain the pseudo-Riemannian Ricci flow analogs of the an-
cient solutions in Theorem 5.6 by the same arguments in Remark 3.2.
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