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We prove dynamical stability and instability theorems for compact
Einstein metrics under the Ricci flow. We give a nearly complete
charactarization of dynamical stability and instability in terms of
the conformal Yamabe invariant and the Laplace spectrum. In par-
ticular, we prove dynamical stability of some classes of Einstein
manifolds for which it was previously not known. Additionally,
we show that the complex projective space with the Fubini-Study
metric is surprisingly dynamically unstable.
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1. Introduction

Let Mn, n ≥ 2 be a manifold. A Ricci flow on M is a curve of metrics g(t)
on M satisfying the evolution equation

ġ(t) = −2Ricg(t).(1.1)

The Ricci flow was first introduced by Hamilton in [Ham82]. Since then it
has become an important tool in Riemannian geometry. It was not only an
essential tool in the proof of the famous Poincare conjecture [Per02, Per03]
but also for proving other recent results like the differentiable sphere theorem
[BS09].

The Ricci flow is not a gradient flow in the strict sence, but Perelman
made the remarkable discovery that it can be interpreted as the gradient of
the λ-functional

(1.2) λ(g) = inf
f∈C∞(M)

´

M
e−f dVg=1

ˆ

M
(scalg + |∇f |2g)e

−f dVg

on the space of metrics modulo diffeomorphisms [Per02].
Ricci-flat metrics are the stationary points of the Ricci flow and Einstein

metrics remain unchanged under the Ricci flow up to rescaling. It is now
natural to ask how the Ricci flow behaves as a dynamical system close to
Einstein metrics. A stability result for compact Einstein metrics assuming
positivity of the Einstein operator was proven in [Ye93]. Stability results
for compact Ricci-flat metrics assuming nonnegativity of the Lichnerow-
icz Laplacian and integrability of infinitesimal Einstein deformations were
proven by Sesum and Haslhofer in [Ses06, Has12], generalizing an older re-
sult in [GIK02]. Recently, Haslhofer and Müller [HM14] were able to get rid
of the integrability condition and proved the following: A compact Ricci-flat
manifold is dynamically stable if it is a local maximizer of λ and dynamically
unstable, if this is not the case. Because of monotonicity of λ along the Ricci
flow, the converse implications hold in both cases.

The aim of the present paper is to generalize these results to the Einstein
case and to give geometric stability and instability conditions in terms of
the conformal Yamabe invariant and the Laplace spectrum. Throughout,
any manifold will be compact. The Yamabe invariant of a conformal class is
defined by

Y (M, [g]) = inf
g̃∈[g]

vol(M, g̃)2/n−1

ˆ

M
scalg̃ dVg̃,
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where [g] denotes the conformal class of the metric g. By the solution of the
Yamabe problem, this infimum is always realized by a metric of constant
scalar curvature [Sch84]. Let M be a manifold and M be the set of smooth
metrics on M . We call the map M ∋ g 7→ Y (M, [g]) the Yamabe functional
and the real number

Y (M) = sup
g∈M

Y (M, [g])

the smooth Yamabe invariant of M . A metric g on M is called supreme if
it realizes the conformal Yamabe invariant in its conformal class and the
smooth Yamabe invariant of the manifold.

It is a hard problem to compute the smooth Yamabe invariant of a
given compact manifold and only for a few examples (including the round
sphere), it is explicitly known. An interesting question is whether a compact
manifold admits a supreme metric and whether it is Einstein. For more
details concerning these questions, see e.g. [LeB99].

Any Einstein metric gE is a critical point of the Yamabe functional and
it is a local maximum of the Yamabe functional if and only if gE is a local
maximum of the Einstein-Hilbert action restricted to the set of constant
scalar curvature metrics of volume vol(M, gE). This follows from [BWZ04,
Theorem C]. A sufficient condition for this is that the Einstein operator

∆E = ∇∗∇− 2R̊

is positive on all nonzero transverse traceless tensors, i.e. the symmetric
(0, 2)-tensors satisfying trh = 0 and δh = 0 ([Böh05, p. 279] and [Bes08,
p. 131]). Here, R̊ denotes the natural action of the curvature tensor on
symmetric (0, 2)-tensors. Conversely, if gE is a local maximum of the Yamabe
functional, the Einstein operator is nessecarily nonnegative on transverse
traceless tensors. The Einstein operator and its spectrum were studied in
[Koi78, Koi83, IN05, DWW05, DWW07] and also in a recent paper by the
author [Krö15]. We find the following relation to the λ-functional which will
be proven in Section 5.

Theorem 1.1. A Ricci-flat metric gRF is a local maximizer of λ if and

only if it is a local maximizer of the Yamabe functional, i.e. there are no

metrics of positive scalar curvature close to gE.

Remark 1.2. This condition is automatic if M is spin and if Â(M) ̸= 0
[Hit74, p. 46] because the existence of positive scalar curvature metrics is
excluded.
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Since Einstein metrics are not stationary points of the Ricci flow in the
strict sense form we consider the volume-normalized Ricci flow

ġ(t) = −2Ricg(t) +
2

n

(
 

M
scalg(t) dVg(t)

)
· g(t).(1.3)

This allows us to define appropriate notions of dynamical stability and in-
stability for Einstein metrics.

Definition 1.3. A compact Einstein manifold (M, gE) is called dynam-
ically stable if for any k ≥ 3 and any Ck-neighbourhood U of gE in the
space of metrics, there exists a Ck+2-neighbourhood V ⊂ U such that for
any g0 ∈ V, the normalized Ricci flow starting at g0 exists for all t ≥ 0 and
converges modulo diffeomorphism to an Einstein metric in U as t → ∞.

We call a compact Einstein manifold (M, gE) dynamically unstable if
there exists a nontrivial normalized Ricci flow defined on (−∞, 0] which
converges modulo diffeomorphism to gE as t → −∞.

It is well-known that the round sphere is dynamically stable [Ham82,
Hui85]. From now on, we assume that (Mn, g) ̸= (Sn, gst) and that n ≥ 3.
The round sphere is an exceptional case because it is the only compact
Einstein space which admits conformal Killing vector fields. Now we can
state the main theorems of this paper.

Theorem 1.4 (Dynamical stability). Let (M, gE) be a compact Einstein

manifold with Einstein constant µ. Suppose that (M, gE) is a local maximizer

of the Yamabe functional and that the smallest nonzero eigenvalue of the

Laplacian satisfies λ > 2µ. Then (M, gE) is dynamically stable.

Theorem 1.5 (Dynamical instability). Let (M, gE) be a compact Ein-

stein manifold with Einstein constant µ. Suppose that (M, gE) is a not local

maximizer of the Yamabe functional or the smallest nonzero eigenvalue of

the Laplacian satisfies λ < 2µ. Then (M, gE) is dynamically unstable.

Apart from the case λ = 2µ, this gives a complete description of the Ricci
flow as a dynamical system close to a compact Einstein metric. The converse
implications nearly hold: If an Einstein manifold is dynamically stable, then
it is a local maximizer of the Yamabe functional and the smallest nonzero
eigenvalue of the Laplacian satisfies λ ≥ 2µ. If it is dynamically unstable it
is not a local maximizer of the Yamabe functional or the smallest nonzero
Laplace eigenvalue satisfies λ ≤ 2µ. This follows from Theorem 5.1 resp.
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Theorem 8.3 and the monotonicity of the functionals µ+ and ν− along the
corresponding variants of the Ricci flow.

The Ricci-flat case is already covered by the results in [HM14] and Theo-
rem 1.1, so it remains to consider the cases of positive and negative Einstein
constant. Both cases will be proven separately. We use the functional µ+

in the negative case and ν− in the positive case. Both are analogues of the
λ-functional. The negative case will be treated more extensively. In the pos-
itive case, the strategy is basically the same and so we will skip the details
there.

Observe that the case of nonpositive Einstein constant is easier to han-
dle with because the eigenvalue condition drops there. In fact, all known
compact nonpositive Einstein manifolds satisfy the assumptions of The-
orem 1.4. For certain classes of nonpositive Einstein manifolds we actu-
ally know that these assumptions hold: By [LeB99, Theorem 3.6], any 4-
dimensional Kähler-Einstein manifold with nonpositive scalar curvature re-
alizes the smooth Yamabe invariant of M . Thus, we have

Corollary 1.6. Any compact four-dimensional Kähler-Einstein manifold

with nonpositive scalar curvature is dynamically stable.

In contrast, there are many positive Einstein metrics, which satisfy one
of the conditions of Theorem 1.5. For example, any product of two posi-
tive Einstein metrics does not maximize the Yamabe functional because the
Einstein operator admits negative eigenvalues. On the other hand, there are
some symmetric spaces of compact type (e.g. HPn for n ≥ 3, see [CH15,
Table 2]), which are local maxima of the Yamabe functional and satisfy the
eigenvalue condition of Theorem 1.5.

However, some interesting examples are not covered by the above two
theorems because they are local maxima of the Yamabe functional but the
smallest nonzero eigenvalue of the Laplacian satisfies λ = 2µ. These exam-
ples include the symmetric spaces G2,CP

n, SO(n+2)/(SO(n)×SO(2)), n ≥
5, S(2n)/U(n), n ≥ 5, E6/(SO(10) · SO(2)), E7/(E6 · SO(2)) with their stan-
dard metric, see [CH15, Table 1 and Table 2]. For such manifolds, we prove
dynamical instability under an additional condition.

Theorem 1.7 (Dynamical instability). Let (Mn, gE), n ≥ 3 be a com-

pact Einstein manifold with Einstein constant µ. Suppose that there exists a

function v ∈ C∞(M) statisfying ∆v = 2µv and
´

M v3 dV ̸= 0. Then (M, gE)
is dynamically unstable.
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We construct an eigenfunction on CPn with its standard metric satisfying
this condition and thus, we have

Corollary 1.8. The manifold (CPn, gst), n > 1 is dynamically unstable.

This result is quite unexpected since the complex projective space is
linearly stable. In particular, it raises the question whether the round sphere
is the only positive Einstein metric in four dimensions which is dynamically
stable (c.f. [Cao10, p. 29]).

Acknowledgement. This article is based on a part of the authors’ PhD-
thesis. The author would like to thank Christian Bär, Christian Becker and
Robert Haslhofer for helpful discussions. Moreover, the author thanks the
Max-Planck Institute for Gravitational Physics for financial support.

2. Notation and conventions

We define the Laplace-Beltrami operator acting on functions by ∆ = −tr∇2.
For the Riemann curvature tensor, we use the sign convention such that
RX,Y Z = ∇2

X,Y Z −∇2
Y,XZ. Given a fixed metric, we equip the bundle of

(r, s)-tensor fields (and any subbundle) with the natural scalar product in-
duced by the metric. By SpM , we denote the bundle of symmetric (0, p)-
tensors. The divergence δ : Γ(SpM) → Γ(Sp−1M) and its formal adjoint
δ∗ : Γ(Sp−1M) → Γ(SpM) are given by

δT (X1, . . . , Xp−1) =−

n∑

i=1

∇eiT (ei, X1, . . . , Xp−1),

δ∗T (X1, . . . , Xp) =
1

p

p−1∑

i=0

∇X1+i
T (X2+i, . . . , Xp+i),

where the sums 1 + i, . . . , p+ i are taken modulo p. For ω ∈ Ω1(M), we have
δ∗ω = Lω♯g where ω♯ is the sharp of ω. Thus, δ∗(Ω1(M)) is the tangent space
of the manifold g ·Diff(M) = {φ∗g|φ ∈ Diff(M)}. The Einstein operator ∆E

and the Lichnerowicz Laplacian ∆L, both acting on Γ(S2M), are defined by

∆Eh = ∇∗∇h− 2R̊h,

∆Lh = ∇∗∇h+Ric ◦ h+ h ◦ Ric− 2R̊h.

Here, R̊h(X,Y ) =
∑n

i=1 h(Rei,XY, ei) and ◦ denotes the composition of sym-
metric (0, 2)-tensors, considered as endomorphisms on TM .
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3. The expander entropy

When considering the Ricci flow close to negative Einstein manifolds we may
restrict to the case where the Einstein constant is equal to −1. Such metrics
are stationary points of the flow

ġ(t) = −2(Ricg(t) + g(t)).(3.1)

This flow is homothetically equivalent to the standard Ricci flow. In fact,

g̃(t) = e−2tg

(
1

2
(e2t − 1)

)

is a solution of (3.1) starting at g0 if and only if g(t) is a solution of (1.1)
starting at g0. Let (M, g) be a Riemannian manifold and f ∈ C∞(M). Define

W+(g, f) =

ˆ

M

[
1

2
(|∇f |2 + scal)− f

]
e−f dV.

This is a simpler variant of the expander entropy W+(g, f, σ) introduced in
[FIN05].

Lemma 3.1. The first variation of W+ at a tuple (g, f) equals

W ′
+(h, v) =

ˆ

M

[
−

1

2

〈
Ric +∇2f −

(
−∆f −

1

2
|∇f |2 +

1

2
scal− f

)
g, h

〉

−

(
−∆f −

1

2
|∇f |2 +

1

2
scal− f + 1

)
v

]
e−f dV.

Proof. Let gt = g + th and ft = f + tv. We have

d

dt
|t=0W+(gt, ft) =

ˆ

M

[
1

2
(|∇ft|

2
gt + scalgt)− ft

]′
e−f dV

+

ˆ

M

[
1

2
(|∇f |2 + scal)− f

](
−v +

1

2
trh

)
e−f dV.



✐

✐

“5-Kroncke” — 2020/4/19 — 23:41 — page 358 — #8
✐

✐

✐

✐

✐

✐

358 Klaus Kröncke

By the variational formula of the scalar curvature (see Lemma A.1),

ˆ

M

[
1

2
(|∇ft|

2
gt + scalgt)− ft

]′
e−f dV

=

ˆ

M

(
−
1

2
⟨h,∇f ⊗∇f⟩+ ⟨∇f,∇v⟩

)
e−f dV

+

ˆ

M

[
1

2
(∆trh+ δ(δh)− ⟨Ric, h⟩)− v

]
e−f dV.

By integration by parts,

ˆ

M
⟨∇f,∇v⟩e−f dV =

ˆ

M
(∆f + |∇f |2)ve−f dV

and

ˆ

M

1

2
(∆trh+ δ(δh))e−f dV

=

ˆ

M

1

2
[trh∆(e−f ) + ⟨h,∇2(e−f )⟩] dV

=

ˆ

M

1

2
[trh(−∆f − |∇f |2) + ⟨h,−∇2f +∇f ⊗∇f⟩]e−f dV.

Thus,

ˆ

M

[
1

2
(|∇ft|

2
gt + scalgt)− ft

]′
e−f dV

=

ˆ

M

[
−
1

2
⟨h,∇2f +Ric + (∆f + |∇f |2)g⟩+ (∆f + |∇f |2 − 1)v

]
e−f dV.

The second term of above can be written as

ˆ

M

[
1

2
(|∇f |2 + scal)− f

](
−v +

1

2
trh

)
e−f dV

=

ˆ

M

[
1

2

〈[
1

2
(|∇f |2 + scal)− f

]
g, h

〉
−

[
1

2
(|∇f |2 + scal)− f

]
v

]
e−f dV.

By adding up these two terms, we obtain the desired formula. □
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Now we consider the functional

µ+(g) = inf

{
W+(g, f)

∣∣∣∣ f ∈ C∞(M),

ˆ

M
e−f dV = 1

}
.(3.2)

It was shown in [FIN05, Thm 1.7] that given any smooth metric, the infimum
is always uniquely realized by a smooth function. We call the minimizer fg.
The minimizer depends smoothly on the metric. From Lemma 3.1, we can
show that fg satisfies the Euler-Lagrange equation

−∆fg −
1

2
|∇fg|

2 +
1

2
scalg − fg = µ+(g).(3.3)

Remark 3.2. Observe that W+(φ
∗g, φ∗f) = W+(g, f) for any diffeomor-

phism φ and thus, µ+(g) is invariant under diffeomorphisms.

Lemma 3.3 (First variation of µ+). The first variation of µ+(g) is given
by

µ+(g)
′(h) = −

1

2

ˆ

M
⟨Ric + g +∇2fg, h⟩e

−fg dV,(3.4)

where fg realizes µ+(g). As a consequence, µ+ is nondecreasing under the

Ricci flow (3.1).

Proof. The first variational formula follows from Lemma 3.1 and (3.3). By
diffeomorphism invariance,

µ+(g)
′(∇2fg) =

1

2
µ′
+(g)(Lgradfgg) = 0.

Thus, if g(t) is a solution of (3.1),

d

dt
µ+(g(t)) =

ˆ

M
|Ricg(t) + g(t) +∇2fg(t)|

2e−fg(t) dVg(t) ≥ 0.

□

Remark 3.4. We call metrics gradient Ricci solitons if Ricg +∇2f = cg
for some f ∈ C∞(M) and c ∈ R. In the compact case, any such metric is
already Einstein if c ≤ 0 (see [Cao10, Proposition 1.1]). By the first varia-
tional formula of µ+, we conclude that Einstein metrics with constant −1
are precisely the critical points of µ+.

Lemma 3.5. Let (M, gE) be an Einstein manifold with constant −1. Fur-
thermore, let h ∈ δ−1

gE (0). Then
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(i) fgE ≡ log vol(M, gE),

(ii) d
dt |t=0fgE+th = 1

2trgEh,

(iii) d
dt |t=0(RicgE+th + gE + th+∇2

gE+thfgE+th) =
1
2∆Eh,

where ∆E is the Einstein operator.

Proof. By substituting w = e−f/2, we see that wgE = e−fgE/2 is the mini-
mizer of the functional

W̃(w) =

ˆ

M
2|∇w|2 +

1

2
scalw2 + w2 logw2 dV

under the constraint

∥w∥L2 = 1.

By Jensen’s inequality, we have a lower bound

W̃(w) ≥
1

2
inf
p∈M

scal(p)− log(vol(M, gE)),(3.5)

which is realized by the constant function wgE ≡ vol(M, gE)
−1/2 since the

scalar curvature is constant on M . This proves (i). To prove (ii), we differ-
entiate the Euler-Lagrange equation (3.3) in the direction of h. We obtain

0 = (−∆f)′ −
1

2
(|∇f |2)′ +

1

2
scal′ − f ′ = −(∆ + 1)f ′ +

1

2
(∆ + 1)trh.

Here we used that fgE is constant and δh = 0. The second assertion follows.
It remains to show (iii). By straightforward differentiation,

(Ric + g +∇2f)′ =
1

2
∆Lh−

1

2
∇2trh+ h+

1

2
∇2trh =

1

2
∆Eh.

Here we used Lemma A.1, (i) and (ii). □

Proposition 3.6 (Second variation of µ+). The second variation of µ+

at an Einstein metric satisfying RicgE = −gE is given by

µ+(gE)
′′(h) =

{
−1

4

ffl

M ⟨∆Eh, h⟩ dV, if h ∈ δ−1(0),

0, if h ∈ δ∗(Ω1(M)),

where
ffl

denotes the averaging integral, i.e. the integral divided by the volume.



✐

✐

“5-Kroncke” — 2020/4/19 — 23:41 — page 361 — #11
✐

✐

✐

✐

✐

✐

Stability of Einstein metrics under Ricci flow 361

Proof. Recall that the space of symmetric (0, 2)-tensors splits as Γ(S2M) =
δ∗(Ω1(M))⊕ δ−1(0). Since µ+ is a Riemannian functional, the Hessian re-
stricted to δ∗(Ω1(M)) vanishes. Now let h ∈ δ−1(0). By the first variational
formula and Lemma 3.5 (i) and (iii),

µ+(gE)
′′(h) = −

1

4

 

M
⟨∆Eh, h⟩ dV.

Since δ(∆Eh) = δ((∆L + 2)h) = (∆H + 2)(δh) [Lic61, pp. 28-29], ∆E pre-
serves δ−1(0). Here, ∆H is the Hodge-Laplacian acting on one-forms. Thus,
the splitting δ∗(Ω1(M))⊕ δ−1(0) is orthogonal with respect to µ′′

+. □

4. Some technical estimates

In this section, we will establish bounds on µ+, fg and their variations in
terms of certain norms of the variations. These estimates are needed in
proving the main theorems of the next two sections.

Lemma 4.1. Let (M, gE) be an Einstein manifold such that Ric = −gE.
Then there exists a C2,α-neighbourhood U in the space of metrics such that

the minimizers fg are uniformly bounded in C2,α, i.e. there exists a constant

C > 0 such that ∥fg∥C2,α ≤ C for all g ∈ U . Moreover, for each ϵ > 0, we
can choose U so small that ∥∇fg∥C0 ≤ ϵ for all g ∈ U .

Proof. As in the proof of Lemma 3.5 (i), we use the fact that

µ+(g) = inf
w∈C∞(M)

W̃(g, w)(4.1)

= inf

ˆ

M
2|∇w|2 +

1

2
scalw2 + w2 logw2 dV

under the constraint

∥w∥L2 = 1.

There exists a unique minimizer of this functional which we denote by wg.
We have wg = e−fg/2 and wg satisfies the Euler-Lagrange equation

2∆wg +
1

2
scalgwg − 2wg logwg = µ+(g)wg.(4.2)

We will now show that there exists a uniform bound ∥wg∥C2,α ≤ C for all
metrics g in a C2,α-neighbourhood U of gE . For this purpose, we first remark
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that all the Sobolev constants that will appear below are uniformly bounded
on U . Now observe that by (4.1),

2 ∥∇wg∥L2 ≤ µ+(g)− C1vol(M, g)−
1

2
inf
p∈M

scalg(p),

since the function x 7→ x log x has a lower bound. By testing with suitable
functions, one sees that µ+(g) is bounded from above on U . Therefore, the
H1-norm of ωg is bounded and by Sobolev embedding, the same holds for
the L2n/(n−2)-norm. Let p = 2n/(n− 2) and choose some q slightly smaller
than p. By (4.2) and elliptic regularity,

∥wg∥W 2,q ≤ C2(∥wg logwg∥Lq + ∥wg∥Lq).

Since x 7→ x log x grows slower than x 7→ xβ for any β > 1 as x → ∞, we
have the estimate

∥wg logwg∥Lq ≤ C3(vol(M, g)) + ∥wg∥Lp .

This yields an uniform bound ∥wg∥W 2,q ≤ C(q).
By Sobolev embedding, we have uniform bounds on ∥wg∥Lp′ for some

p′ > p and by applying elliptic regularity on (4.2), we have bounds on
∥wg∥W 2,q′ for every q′ < p′. Iterating this procedure, we obtain uniform
bounds ∥wg∥W 2,p ≤ C(p) for each p ∈ (1,∞). By choosing p large enough,
we can bound the C0,α-norm of ωg and by elliptic regularity,

∥wg∥C2,α ≤ C4(∥wg logwg∥C0,α + ∥wg∥C0,α)

≤ C5[(∥wg∥C0,α)
γ + ∥wg∥C0,α) ≤ C6

Next, we show that the C2,α-norms of fg are uniformly bounded. First,
we claim that we may choose a smaller neighbourhood V ⊂ U such that
for g ∈ V, the functions wg are bounded away from zero (recall that any
wg = e−fg/2 is positive). Suppose this is not the case. Then there exists
a sequence gi → gE in C2,α such that minpwgi(p) → 0 for i → ∞. Since
∥wgi∥C2,α ≤ C for all i, there exists a subsequence, again denoted by wgi

such that wgi → w∞ in C2,α′

for some α′ < α. Obviously, the right hand
side of (4.1) converges. Since µ+ is bounded from below by (3.5) and from
above, a suitable choice of the subsequence ensures that also the left hand
side of (4.1) converges. Therefore, w∞ equals the minimizer of W̃(gE , w), so
w∞ = wgE = vol(M, gE)

−1/2. In particular, minpwgi(p) → vol(M, gE)
−1/2 ̸=
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0 which contradicts the assumption. Now we have

∥fg∥C2,α = ∥−2 log(wg)∥C2,α ≤ C(log inf wg, 1/(inf wg)) ∥wg∥C2,α ≤ C7.

It remains to prove that for each ϵ > 0, we may choose U so small that
∥∇fg∥C0 < ϵ. We again use a subsequence argument. Suppose this is not
possible. Then there exists a sequence of metrics gi → g in C2,α and some
ϵ0 > 0 such that for the corresponding fgi , the estimate ∥∇fgi∥C0 ≥ ϵ0 holds
for all i. Because of the bound ∥fg∥C2,α ≤ C, we may choose a subsequence,
again denoted by fi converging to some f∞ in C2,α′

for α′ < α. By the same
arguments as above, f∞ = fgE ≡ − log(vol(M)). In particular, ∥∇fgi∥C0 →
0, a contradiction. □

Lemma 4.2. Let (M, gE) be an Einstein manifold such that RicgE = −gE.
Then there exists a C2,α-neighbourhood U of gE in the space of metrics and

a constant C > 0 such that for all g ∈ U , we have

∥∥∥∥
d

dt

∣∣∣∣
t=0

fg+th

∥∥∥∥
C2,α

≤ C ∥h∥C2,α ,

∥∥∥∥
d

dt

∣∣∣∣
t=0

fg+th

∥∥∥∥
Hi

≤ C ∥h∥Hi , i = 1, 2.

Proof. Recall that fg satisfies the Euler-Lagrange equation

−∆f −
1

2
|∇f |2 +

1

2
scal− f = µ+(g).

Differentiating this equation in the direction of h yields

−∆̇f −∆ḟ +
1

2
h(gradf, gradf)− ⟨∇f,∇ḟ⟩+

1

2
˙scal− ḟ = µ̇+(g).

By Lemma A.2 and Lemma A.1 the variational formulas for the Laplacian
and the scalar curvature are

∆̇f = ⟨h,∇2f⟩ − ⟨δh+
1

2
∇trh,∇f⟩,

˙scal = ∆(trh) + δ(δh)− ⟨Ric, h⟩.

Because ∆ + 1 is invertible, we can apply elliptic regularity and we obtain
∥∥∥ḟ

∥∥∥
C2,α

≤ C1

∥∥∥(∆ + 1)ḟ
∥∥∥
C0,α

≤ C1 ∥∇f∥C0

∥∥∥∇ḟ
∥∥∥
C0,α

+ C1

∥∥∥∥−∆̇f +
1

2
h(∇f,∇f) +

1

2
˙scal− µ̇+(g)

∥∥∥∥
C0,α

.
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By Lemma 4.1, we may choose U so small that ∥∇f∥C0 < ϵ for some small
ϵ < min

{
C−1
1 , 1

}
. Then we have

(1− ϵ)
∥∥∥ḟ

∥∥∥
C2,α

≤ C1

∥∥∥∥−∆̇f +
1

2
h(∇f,∇f) +

1

2
˙scal− µ̇+(g)

∥∥∥∥
C0,α

≤ (C2 ∥fg∥C2,α + C3) ∥h∥C2,α .

The last inequality follows from the variational formulas of the Laplacian,
the scalar curvature and µ+. By the uniform bound on ∥fg∥C2,α , the first
estimate of the lemma follows. The estimate of the H i-norm is shown simi-
larly. □

Proposition 4.3 (Estimate of the second variation of µ+). Let (M, gE)
be an Einstein manifold with constant −1. Then there exists a C2,α-

neighbourhood U of gE and a constant C > 0 such that

∣∣∣∣∣
d2

dsdt

∣∣∣∣
s,t=0

µ+(g + th+ sk)

∣∣∣∣∣ ≤ C ∥h∥H1 ∥k∥H1

for all g ∈ U .

Proof. By the formula of the first variation,

d2

dsdt

∣∣∣∣
s,t=0

µ+(g + th+ sk)

= −
d

ds

∣∣∣∣
s=0

1

2

ˆ

M
⟨Ricgs + gs −∇2fgs , h⟩gse

−fgs dVgs

= (1) + (2) + (3),

and we estimate these three terms separately. The first term comes from
differentiating the scalar product:

|(1)| =

∣∣∣∣
ˆ

M
⟨Ricg + g −∇2fg, k ◦ h⟩ge

−fg dVg

∣∣∣∣ ≤ C1 ∥h∥H1 ∥k∥H1 .

This estimate holds since the functions fg are uniformly bounded in a small
C2,α-neighbourhood of gE . The second term comes from differentiating the
gradient:
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|(2)| =

∣∣∣∣∣
1

2

ˆ

M

〈
d

ds

∣∣∣∣
s=0

(Ricgs + gs −∇2fgs), h

〉

g

e−fg dVg

∣∣∣∣∣

=

∣∣∣∣∣
1

2

ˆ

M

〈
1

2
∆Lk−δ∗(δk)−

1

2
∇2trk+k−(∇2)′fg−∇2f ′

g, e
−fgh

〉

g

dVg

∣∣∣∣∣
≤ C2 ∥k∥H1 ∥h∥H1 .

The inequality follows from integration by parts, Lemma A.2, Lemma 4.2
and from the uniform bound on the fg. The third term appears when we
differentiate the weighted volume measure:

|(3)| =

∣∣∣∣
1

2

ˆ

M
⟨Ricg + g −∇2fg, h⟩g

(
−f ′

g +
1

2
trk

)
e−fg dVg

∣∣∣∣
≤ C3 ∥h∥H1 ∥k∥H1 .

Here we again used Lemma 4.2 in the last step. □

Lemma 4.4. Let (M, gE) be an Einstein manifold with constant −1. Then
there exists a C2,α- neighbourhood U of gE and a constant C > 0 such that

∥∥∥∥∥
d2

dtds

∣∣∣∣
t,s=0

fg+sk+th

∥∥∥∥∥
Hi

≤ C ∥h∥C2,α ∥k∥Hi , i = 1, 2.

Proof. In the proof, we denote t-derivatives by dot and s-derivatives by
prime. Differentiating (3.3) twice yields

−∆ḟ ′ − ∆̇f ′ −∆′ḟ − ∆̇′f + h(gradf, gradf ′) + k(gradf, gradḟ)

− ⟨∇f,∇ḟ ′⟩ − ⟨∇ḟ ,∇f ′⟩+
1

2
˙scal

′
− ḟ ′ = µ̇′

+.

By elliptic regularity,we have

∥∥∥ḟ ′
∥∥∥
Hi

≤ C1

∥∥∥(∆ + 1)ḟ ′
∥∥∥
Hi−2

≤ C1 ∥∇f∥C0

∥∥∥∇ḟ ′
∥∥∥
L2

+ C1 ∥(A)∥Hi−2 ,(4.3)

where

(A) = −∆̇f ′ −∆′ḟ − ∆̇′f + h(gradf, gradf ′) + k(gradf, gradḟ)

− ⟨∇ḟ ,∇f ′⟩+
1

2
˙scal

′
− µ̇′

+.
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By the first variation of the Laplacian and the scalar curvature and the
estimates we already developed for ḟ and f ′ in Lemma 4.2, we have

∥∥∥−∆̇f ′ −∆′ḟ + h(gradf, gradf ′) + k(gradf, gradḟ)− ⟨∇ḟ ,∇f ′⟩
∥∥∥
L2

≤ C3 ∥h∥C2,α ∥k∥H1 .

Now we consider the occurent second variational formulas of the Laplacian
and the scalar curvature. By Lemma A.3, they can be schematically written
as

∆̇′f = ∇k ∗ h ∗ ∇f + k ∗ ∇h ∗ ∇f,

˙scal
′
= ∇2k ∗ h+ k ∗ ∇2h+∇k ∗ ∇h+R ∗ k ∗ h.

Here, ∗ is Hamilton’s notation for a combination of tensor products with con-
tractions. Now, Lemma 4.3, integration by parts and the Hölder inequality
yield

∥∥∥∥−∆̇′f +
1

2
˙scal

′
− µ̇′

+

∥∥∥∥
Hi−2

≤ C2 ∥h∥C2,α ∥k∥Hi .

We obtain

∥(A)∥Hi−2 ≤ C4 ∥h∥C2,α ∥k∥Hi .

Since ∥∇f∥C0 can be assumed to be arbitrarily small, we bring this term to
the left hand side of (4.3) and obtain the result. □

Proposition 4.5 (Estimates of the third variation of µ+). Let (M, gE)
be an Einstein manifold with constant −1. Then there exists a C2,α-

neighbourhood U of gE and a constant C > 0 such that

∣∣∣∣
d3

dt3

∣∣∣∣
t=0

µ+(g + th)

∣∣∣∣ ≤ C ∥h∥2H1 ∥h∥C2,α

for all g ∈ U .

Proof. We have, by the first variational formula,
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d3

dt3

∣∣∣∣
t=0

µ+(g + th) = −
1

2

d2

dt2

∣∣∣∣
t=0

ˆ

M
⟨Ric + g +∇2fg, h⟩e

−f dV

= −
1

2

ˆ

M
⟨(Ric + g +∇2fg)

′′, h⟩e−f dV

− 3

ˆ

M
⟨Ric + g +∇2fg, h ◦ h ◦ h⟩e−f dV

−
1

2

ˆ

M
⟨Ric + g +∇2fg, h⟩(e

−f dV )′′

+ 2

ˆ

M
⟨(Ric + g +∇2fg)

′, h ◦ h⟩e−f dV

−

ˆ

M
⟨(Ric + g +∇2fg)

′, h⟩(e−f dV )′

+ 2

ˆ

M
⟨Ric + g +∇2fg, h ◦ h⟩(e−f dV )′.

Let us deal with the first term which contains the second derivative of the
gradient of µ+. We have the schematic expressios

(Ric + g)′′ = ∇2h ∗ h+∇h ∗ ∇h+R ∗ h ∗ h,

(∇2fg)
′′ = (∇2)′′fg + 2(∇2)′f ′

g +∇2f ′′
g ,

= ∇f ∗ ∇h ∗ h+∇f ′ ∗ ∇h+∇2f ′′
g ,

see Lemma A.2 and Lemma A.3. From these expressions we obtain, by ap-
plying Lemma 4.2, Lemma 4.4 and the Hölder inequality,

∣∣∣∣
ˆ

M
⟨(Ric + g +∇2fg)

′′, h⟩e−f dV

∣∣∣∣ ≤ C ∥h∥2H1 ∥h∥C2,α .

The estimates of the other terms are straightforward from the variational
formulas in the appendix, Lemma 4.2 and Lemma 4.4. □

5. Local maximum of λ and the expander entropy

Here we give characterizations of local maximality of λ and µ+. We prove
Theorem 1.1 using the theory developed for the Yamabe problem. For µ+,
we use Koiso’s local decomposition theorem of the space of metrics [Koi79]
and the observation that the µ+-functional can be explicitly evaluated on
metrics of constant scalar curvature.
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Proof of Theorem 1.1. Suppose that gRF is not a local maximum of the
Yamabe invariant. Then there exists a metric g close to gRF such that
Y (M, [g]) > 0 and by the solution of the Yamabe problem [Sch84], it ad-
mits a positive scalar curvature metric g̃ realizing Y (M, [g]) which is also
close to gRF by [Koi79, Theorem 2.5]. Then by definition, λ(g̃) > 0, i.e. gRF

is not a local maximizer of λ.
Conversely, suppose that gRF is a local maximum of the Yamabe func-

tional, i.e. the Yamabe invariant of any conformal class close to [gRF ] is
nonpositive. By the solution of the Yamabe problem, the sign of the small-
est eigenvalue of the Yamabe operator ∆Y = 4n−1

n−2∆+ scal determines the
sign of the Yamabe invariant. Thus, the smallest eigenvalue of ∆Y is non-
positive on any metric close to gRF . Since λ is the smallest eigenvalue of the
operator 4∆ + scal we nessecarily have λ ≤ 0 for these metrics. □

Theorem 5.1. Let (M, gE) be a compact Einstein manifold with constant

−1. Then gE is a maximum of the µ+-functional in a C2,α-neighbourhood

if and only if g is a local maximum of the Yamabe functional in a C2,α-

neighbourhood. In this case, any metric sufficiently close to gE with µ+(g) =
µ+(gE) is Einstein with constant −1.

Proof. Let c = vol(M, gE) and write

C = {g ∈ M|scalg is constant} ,

Cc = {g ∈ M|scalg is constant and vol(M, g) = c} .

Since
scalgE
n−1 /∈ spec+(∆gE), [Koi79, Theorem 2.5] asserts that the map

Φ: C∞(M)× Cc → M,

(v, g) 7→ v · g,

is a local ILH-diffeomorphism around (1, gE). Recall also that by [BWZ04,
Theorem C], any metric g ∈ C sufficiently close to gE is a Yamabe metric.

By the proof of Lemma 3.5 (i), the minimizer fḡ realizing µ+(ḡ) is con-
stant if ḡ ∈ C and by the constraint in the definition, it equals log(vol(M, ḡ)).
Thus, µ+(ḡ) =

1
2scalḡ − log(vol(M, ḡ)). If gE is not a local maximum of the

Yamabe functional, there exist metrics gi ∈ Cc, gi → gE in C2,α which have
the same volume but larger scalar curvature than gE . Thus, also µ+(gi) >
µ+(gE) which causes the contradiction.

If gE is a local maximum of the Yamabe functional, it is a local maximum
of µ+ restricted to Cc. Any other metric ḡ ∈ Cc satisfying µ+(ḡ) = µ+(gE) is
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also a local maximum of the Yamabe functional. In particular, ḡ is a critical
point of the total scalar curvature restricted to Cc and the scalar curvature
is equal to −n. By Proposition [Bes08, Proposition 4.47], ḡ is an Einstein
manifold with constant −1. For α · ḡ, where α > 0 and ḡ ∈ Cc sufficiently
close to gE , we have

µ+(α · ḡ) =
1

2α
scalḡ −

n

2
log(α)− log(vol(M, ḡ))

≤ −
n

2
− log(vol(M, gE)) = µ+(gE),

which shows that gE is also a local maximum of µ+ restricted to C and
equality occurs if and only if α = 1 and µ+(ḡ) = µ+(gE).

It remains to investigate the variation of µ+ in the direction of volume-
preserving conformal deformations. Let h = v · ḡ, where ḡ ∈ C and v ∈
C∞(M) with

´

M v dVḡ = 0. Then

d

dt

∣∣∣∣
t=0

µ+(ḡ + th) = −
1

2

ˆ

M
⟨Ricḡ + ḡ, h⟩e−fḡ dV

= −
1

2

 

M
(scalḡ + n)v dV = 0,

since fḡ is constant. The second variation equals

d2

dt2

∣∣∣∣
t=0

µ+(ḡ + th) = −
1

2

 

M

〈
d

dt

∣∣∣∣
t=0

(Ricḡ+th + ḡ + th+∇2fḡ+th), h

〉

ḡ

dVḡ

+

 

M
⟨Ricḡ + ḡ, h ◦ h⟩ḡ dVḡ

−
1

2

 

M
⟨Ricḡ + ḡ, h⟩

(
−f ′ +

1

2
trh

)
dVḡ.

By the first variation of the Ricci tensor,

−
1

2

 

M
⟨Ric′ + h, h⟩ dVḡ = −

n− 1

2

 

M
|∇v|2 dVḡ −

n

2

 

M
v2 dVḡ.

By differentiating Euler-Lagrange equation (3.3), we have

(∆ + 1)f ′ =
1

2
((n− 1)∆v − scalḡv).(5.1)



✐

✐

“5-Kroncke” — 2020/4/19 — 23:41 — page 370 — #20
✐

✐

✐

✐

✐

✐

370 Klaus Kröncke

Thus,

−
1

2

ˆ

M

〈
d

dt

∣∣∣∣
t=0

∇2fḡ+th, h

〉
e−fḡ dV =

1

4

 

M
[(n− 1)∆v

− scalḡv]v dV −
1

2

 

M
f ′ · v dV.

Adding up, we obtain

−
1

2

ˆ

M

〈
d

dt

∣∣∣∣
t=0

(Ricḡ+th + ḡ + th+∇2fḡ+th), h

〉

ḡ

e−fḡ dVḡ

= −
1

4

 

M
|∇v|2 dVḡ −

1

2

(
n+

scalḡ
2

)
 

M
v2 dV −

1

2

 

M
f ′ · v dV

≤ −C1 ∥v∥
2
H1 ,

and this estimate is uniform in a small C2,α-neighbourhood of gE . Here we
have used that by (5.1), the L2-scalar product of f ′ and v is positive. Given
any ϵ > 0, the remaining terms of the second variation can be estimated by

ˆ

M
⟨Ricḡ + ḡ, h ◦ h⟩ḡe

−fḡ dVḡ = (scalḡ + n)

 

M
v2 dV ≤ ϵ ∥v∥2L2

and

−
1

2

ˆ

M
⟨Ricḡ + ḡ, h⟩

(
−f ′

ḡ +
1

2
trh

)
e−fḡ dVḡ

= −
scalḡ + n

2

 

M
v
(
−f ′

ḡ +
n

2
v
)

dV ≤ ϵ ∥v∥2L2 ,

provided that the neighbourhood is small enough. In the last inequality, we
used ∥f ′∥L2 ≤ C2 ∥v∥L2 which holds because of (5.1) and elliptic regularity.
Thus, we have a uniform estimate

d2

dt2

∣∣∣∣
t=0

µ+(ḡ + tvḡ) ≤ −C3 ∥v∥
2
H1 .

Let now g be an arbitrary metric in a small C2,α-neighbourhood of gE . By
the above, it can be written as g = ṽ · g̃, where (ṽ, g̃) ∈ C∞(M)× CgE is
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close to (1, gE). By substituting

v =
ṽ −

ffl

ṽ dVg̃
ffl

ṽ dVg̃
, ḡ =

(
 

ṽ dVg̃

)
g̃,

we can write g = (1 + v)ḡ, where ḡ ∈ C is close to gE and v ∈ C∞(M) with
´

M v dVḡ = 0 is close to 0. Thus by Taylor expansion and Proposition 4.5,

µ+(g) = µ+(ḡ) +
1

2

d2

dt2

∣∣∣∣
t=0

µ+(ḡ + tvḡ)

+

ˆ 1

0

(
1

2
− t+

1

2
t2
)

d3

dt3
µ+(ḡ + tvḡ)dt

≤ µ+(gE)− C4 ∥v∥
2
H1 + C5 ∥v∥C2,α ∥v∥

2
H1 .

Now if we choose the C2,α-neighbourhood small enough, µ+(g) ≤ µ+(gE)
and equality holds if and only if v ≡ 0 and µ+(g) = µ+(gE). As discussed
earlier in the proof, this implies that g is Einstein with constant −1. □

6. A Lojasiewicz-Simon inequality

For proving a gradient inequality for µ+, we need to know that µ+ is analytic.
To show this, we use the implicit function theorem for Banach manifolds in
the analytic category mentioned in [Koi83, Section 13]. Such arguments were
also used in [SW13, Lemma 2.2] which is a result similar to the below lemma.

Lemma 6.1. There exists a C2,α-neighbourhood U of gE such that the map

g 7→ µ+(g) is analytic on U .

Proof. Let H(g, f) = −∆gf − 1
2 |∇f |2 + 1

2scalg − f and consider the map

L : MC2,α

× C2,α(M) → C0,α
gE (M)× R,

(g, f) 7→

(
H(g, f)−

 

M
H(g, f) dVgE ,

ˆ

M
e−f dVg − 1

)
.

Here, MC2,α

, is the set of C2,α-metrics and Ck,α
gE (M) = {f ∈ Ck,α(M) |

´

M f dVgE = 0}. This is an analytic map between Banach manifolds. Ob-
serve that L(g, f) = (0, 0) if and only if we have H(f, g) = const and
´

M e−f dVg = 1. The differential of L at (gE , fgE) restricted to its second
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argument is equal to

dLgE ,fgE
(0, v) =

(
−(∆gE + 1)v +

 

M
v dV,−

 

M
v dV

)
.

The map dLgE ,fgE
|C2,α(M) : C

2,α(M) → C0,α
gE (M)× R is a linear isomorphism

because it acts as −(∆gE + 1) on C2,α
gE and as −id on constant functions. By

the implicit function theorem for Banach manifolds, there exists a neighbour-
hood U ⊂ MC2,α

and an analytic map P : U → C2,α(M) such that we have
L(g, P (g)) = (0, 0). Moreover, there exists a neighbourhood V ⊂ C2,α(M) of
fgE such that if L(g, f) = 0 for some g ∈ U , f ∈ V, we have f = P (g).

Next, we show that fg = P (g) for all g ∈ U (or possibly on a smaller
neighbourhood). Suppose this is not the case. Then there exists a sequence
gi which converges to g in C2,α and such that fi ̸= P (gi) for all i. By the
proof of Lemma 4.1, ∥fgi∥C2,α is bounded and for every α′ < α, there is a
subsequence, again denoted by fgi converging to fgE in C2,α′

. We obviously
have L(gi, fgi) = (0, 0) and for sufficiently large i we have, by the implicit
function theorem, fgi = P (gi). This causes the contradiction.

We immediately get that µ+(g) = H(g, P (g)) is analytic on U since H
and P are analytic. □

Theorem 6.2 (Lojasiewicz-Simon inequality for µ+). Let (M, gE) be
an Einstein manifold with constant −1. Then there exists a C2,α-neighbour-

hood U of gE in the space of metrics and constants σ ∈ [1/2, 1), C > 0 such

that

|µ+(g)− µ+(gE)|
σ ≤ C

∥∥Ricg + g +∇2fg
∥∥
L2(6.1)

for all g ∈ U .

Proof. The proof is an application of a general Lojasiewicz-Simon inequality
which was proven in [CM14]. Here the analyticity of µ+ is crucial.

Since both sides are diffeomorphism invariant, it suffices to show the
inequality on a slice to the action of the diffeomorphism group. Let

SgE = U ∩
{
gE + h

∣∣ h ∈ δ−1
gE (0)

}
,

and let µ̃+ be the µ+-functional restricted to SgE . Obviously, µ̃+ is analytic
since µ+ is. The L2-gradient of µ+ is given by ∇µ+(g) = −1

2(Ricg + g +
∇2fg)e

−fg . It vanishes at gE . On the neighbourhood U , we have the uniform
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estimate

∥∇µ+(g1)−∇µ+(g2)∥L2 ≤ C1 ∥g1 − g2∥H2 ,(6.2)

which holds by Taylor expansion and Lemma 4.2. The L2-gradient of µ̃+

is given by the projection of ∇µ+ to δ−1
gE (0). Therefore, (6.2) also holds for

∇µ̃+. The linearization of µ̃+ at gE is (up to a constant factor) given by the
Einstein operator, see Lemma 3.5 (iii). By ellipticity,

∆E : (δ−1
gE (0))C

2,α

→ (δ−1
gE (0))C

0,α

is Fredholm. It also satisfies the estimate ∥∆Eh∥L2 ≤ C2 ∥h∥H2 .
By [CM14, Theorem 7.3], there exists a constant σ ∈ [1/2, 1) such that

|µ+(g)− µ+(gE)|
σ ≤ ∥∇µ̃+(g)∥L2 for any g ∈ SgE . Since

∥∇µ̃+(g)∥L2 ≤ ∥∇µ+(g)∥L2 ≤ C3

∥∥Ricg + h+∇2fg
∥∥
L2 ,

(6.1) holds for all g ∈ SgE . By the slice theorem ([Ebi70, Theorem 7.1]), any
metric in U is isometric to some metric in SgE . Thus by diffeomorphism
invariance, (6.1) holds for all g ∈ U . □

7. Dynamical stability and instability

With the characterization of the maximality of µ+ and the Lojasiewicz-
Simon inequality, we are nearly ready to prove the dynamical stability and
instablity theorems in the case of negative scalar curvature. In this section,
a Ricci flow is always of the form (3.1). Two preparing lemmas are left:

Lemma 7.1 (Estimates for t ≤ 1). Let (M, gE) be an Einstein manifold

with constant −1 and let k ≥ 2. Then for all ϵ > 0 there exists a δ > 0 such

that if ∥g0 − gE∥Ck+2
gE

< δ, the Ricci flow starting at g0 exists on [0, 1] and
satisfies

∥g(t)− gE∥Ck
gE

< ϵ

for all t ∈ [0, 1].

Proof. This follows from the evolution inequalites of the Riemann and the
Ricci tensor under the Ricci flow (3.1) and the maximum principle for scalars
exactly as in [Has12, Lemma 5.1]. □
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Lemma 7.2. Let g(t), t ∈ [0, T ] be a solution of the Ricci flow and suppose

that

sup
p∈M

|Rg(t)|g(t) ≤ T−1 ∀t ∈ [0, T ].

Then for each k ≥ 1, there exists a constant C(k) such that

sup
p∈M

|∇kRg(t)|g(t) ≤ C(k) · T−1t−k/2 ∀t ∈ (0, T ].

Proof. This is a well known result for the standard Ricci flow [Ham95, The-
orem 7.1]. The proof also works for the flow (3.1), because the evolution
inequality of the Riemann tensor needed in the proof is also satisfied under
the flow (3.1). □

Theorem 7.3 (Dynamical stability). Let (M, gE) be an Einstein man-

ifold with constant −1. Let k ≥ 3. If gE is a local maximizer of the Yamabe

functional, then for every Ck-neighbourhood U of gE, there exists a Ck+2-

neighbourhood V such that the following holds:

For any metric g0 ∈ V there exists a 1-parameter family of diffeomor-

phisms φt such that for the Ricci flow g(t) solving (3.1) which starts at g0,
the modified flow φ∗

t g(t) stays in U for all time and converges to an Ein-

stein metric g∞ with constant −1 in U as t → ∞. The convergence is of

polynomial rate, i.e. there exist constants C,α > 0 such that

∥φ∗
t g(t)− g∞∥Ck ≤ C(t+ 1)−α.

Proof. We write Bk
ϵ for the ϵ-ball around gE with respect to the Ck

gE -norm.

Without loss of generality, we may assume that U = Bk
ϵ and ϵ > 0 is so small

that Theorems 5.1 and 6.2 hold on U .
By Lemma 7.1, we can choose a small neighbourhood V such that the

Ricci flow starting at any metric g ∈ V stays in Bk
ϵ/4 up to time 1. Let

T ≥ 1 be the maximal time such that for any Ricci flow g(t) starting in
V, there exists a family of diffeomorphisms φt such that the modified flow
φ∗
t g(t) stays in U . By definition of T and diffeomorphism invariance, we have

uniform curvature bounds

sup
p∈M

|Rg(t)|g(t) ≤ C1 ∀t ∈ [0, T ).
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By Lemma 7.2, we have

sup
p∈M

|∇lRg(t)|g(t) ≤ C(l), ∀t ∈ [1, T ).(7.1)

Because fg(t) satisfies the equation −∆fg −
1
2 |∇fg|

2 + 1
2scalg − fg = µ+(g),

we also have

sup
p∈M

|∇lfg(t)|g(t) ≤ C̃(l), ∀t ∈ [1, T ).(7.2)

Note that all these estimates are diffeomorphism invariant.
We now construct a modified Ricci flow as follows: Let φt ∈ Diff(M),

t ≥ 1 be the family of diffeomorphisms generated by X(t) = −gradg(t)fg(t)
and define

g̃(t) =

{
g(t), t ∈ [0, 1],

φ∗
t g(t), t ≥ 1.

(7.3)

The modified flow satisfies (3.1) for t ∈ [0, 1] while for t ≥ 1, we have

d

dt
g̃(t) = −2(Ricg̃(t) + g̃(t) +∇2fg̃(t)).

Let T ′ ∈ [0, T ] be the maximal time such that the modified Ricci flow, start-
ing at any metric g0 ∈ V, stays in U up to time T ′. Then

∥∥g̃(T ′)− gE
∥∥
Ck

gE

≤ ∥g̃(1)− gE∥Ck
gE

+

ˆ T ′

1

∥∥ ˙̃g(t)
∥∥
Ck

gE

dt

≤
ϵ

4
+ 2

ˆ T ′

1

∥∥ ˙̃g(t)
∥∥
Ck

g̃(t)

dt,

provided that U is small enough. By the interpolation inequality for tensors
(see [Ham82, Corollary 12.7]), (7.1) and (7.2), we have

∥∥ ˙̃g(t)
∥∥
Ck

g̃(t)

≤ C2

∥∥ ˙̃g(t)
∥∥1−η

L2
g̃(t)

for η as small as we want. In particular, we can assume that θ := 1− σ(1 +
η) > 0, where σ is the exponent appearing in Theorem 6.2. By the first
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variation of µ+,

d

dt
µ+(g̃(t)) ≥ C3

∥∥ ˙̃g(t)
∥∥1+η

L2
g̃(t)

∥∥ ˙̃g(t)
∥∥1−η

L2
g̃(t)

.

By Theorem 5.1 and Theorem 6.2 again,

−
d

dt
|µ+(g̃(t))− µ+(gE)|

θ

= θ|µ+(g̃(t))− µ+(gE)|
θ−1 d

dt
µ+(g̃(t))

≥ C4|µ+(g̃(t))− µ+(gE)|
−σ(1+η)

∥∥ ˙̃g(t)
∥∥1+η

L2
g̃(t)

∥∥ ˙̃g(t)
∥∥1−η

L2
g̃(t)

≥ C5

∥∥ ˙̃g(t)
∥∥
Ck

g̃(t)

.

Hence by integration,

ˆ T ′

1

∥∥ ˙̃g(t)
∥∥
Ck

g̃(t)

dt ≤
1

C5
|µ+(g̃(1))− µ+(gE)|

θ

≤
1

C5
|µ+(g̃(0))− µ+(gE)|

θ ≤
ϵ

8
,

provided that V is small enough. This shows that ∥g̃(T ′)− gE∥Ck
gE

≤ ϵ/2 < ϵ,

so T ′ cannot be finite. Thus, T = ∞ and g̃(t) converges to some limit metric
g∞ ∈ U as t → ∞. By the Lojasiewicz-Simon inequality, we have

d

dt
|µ+(g̃(t))− µ+(gE)|

1−2σ ≥ C6,

which implies

|µ+(g̃(t))− µ+(gE)| ≤ C7(t+ 1)−
1

2σ−1 .

Here, we may assume that σ > 1
2 because the Lojasiewicz-Simon inequality

also holds after enlarging the exponent. Therefore, µ+(g∞) = µ+(gE), so g∞
is an Einstein metric with constant −1. The convergence is of polynomial
rate since for t1 < t2,

∥g̃(t1)− g̃(t2)∥Ck ≤ C8|µ+(g̃(t1))− µ+(gE)|
θ ≤ C9(t1 + 1)−

θ

2σ−1 ,

and the assertion follows from t2 → ∞. □
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Theorem 7.4 (Dynamical instability). Let (M, gE) be an Einstein man-

ifold with constant −1 which is not a local maximizer of the Yamabe func-

tional. Then there exists a nontrivial ancient Ricci flow g(t) solving (3.1),
defined on (−∞, 0], and a 1-parameter family of diffeomorphisms φt, t ∈
(−∞, 0] such that φ∗

t g(t) → gE as t → −∞.

Proof. Since (M, gE) is not a local maximum of the Yamabe functional, it
cannot be a local maximum of µ+. Let gi → gE in Ck and suppose that
we have µ+(gi) > µ+(gE) for all i. Let g̃i(t) be the modified flow defined in
(7.3), starting at gi. Then by Lemma 7.1, ḡi = gi(1) converges to gE in Ck−2

and by monotonicity, µ+(ḡi) > µ+(gE) as well. Let ϵ > 0 be so small that
Theorem 6.2 holds on Bk−2

2ϵ . Theorem 6.2 yields the differential inequality

d

dt
(µ+(g̃i(t))− µ+(gE))

1−2σ ≤ −C1,

from which we obtain

µ+(g̃i(t)) ≥ [(µ+(g̃i(1))− µ+(gE))
1−2σ − C1(t− 1)]−

1

2σ−1 + µ+(gE)

as long as g̃i(t) stays in Bk−2
2ϵ . Thus, there exists a ti such that

∥g̃i(ti)− gE∥Ck−2 = ϵ,

and ti → ∞. If {ti} was bounded, g̃i(ti) → gE in Ck−2. By interpolation,

∥∥Ricg̃i(t) +∇2fg̃i(t) + g̃i(t)
∥∥
Ck−2 ≤ C2

∥∥Ricg̃i(t) +∇2fg̃i(t) + g̃i(t)
∥∥1−η

L2

for η > 0 as small as we want. We may assume that θ = 1− σ(1 + η) > 0.
By Theorem 6.2 , we have the differential inequality

d

dt
(µ+(g̃i(t))− µ+(gE))

θ ≥ C3

∥∥Ricg̃i(t) + g̃i(t)
∥∥1−η

L2 ,

if µ+(g̃i(t)) > µ+(gE). Thus,

ϵ = ∥g̃i(ti)− gE∥Ck−2 ≤ ∥ḡi − gE∥Ck−2 + C4(µ+(g̃i(ti))− µ+(gE))
θ.(7.4)

Now put g̃si (t) := g̃i(t+ ti), t ∈ [Ti, 0], where Ti = 1− ti → −∞. We have

∥g̃si (t)− gE∥Ck−2 ≤ ϵ ∀t ∈ [Ti, 0],

g̃si (Ti) → gE in Ck−2.
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Because the embedding Ck−2(M) ⊂ Ck−3(M) is compact, we can choose a
subsequence of the g̃si , converging in Ck−3

loc (M × (−∞, 0]) to an ancient flow
g̃(t), t ∈ (−∞, 0], satisfying the differential equation

˙̃g(t) = −2(Ricg̃(t) + g̃(t) +∇2fg̃(t)).

Let φt, t ∈ (−∞, 0] be the diffeomorphisms generated by X(t) = gradg̃(t)fg̃
where φ0 = id. Then g(t) = φ∗

t g̃(t) is a solution of (3.1). From taking the
limit i → ∞ in (7.4), we obtain ϵ ≤ C4(µ+(g(0))− µ+(gE))

β/2 and therefore,
the Ricci flow is nontrivial. For Ti ≤ t, we have, by the Lojasiewicz-Simon
inequality,

∥g̃si (Ti)− g̃si (t)∥Ck−3 ≤ C4(µ+(g̃i(t+ ti))− µ+(gE))
θ

≤ C4[−C1t+ (µ+(g̃i(ti))− µ+(gE))
1−2σ]−

θ

2σ−1

≤ [−C5t+ C6]
− θ

2σ−1 .

Thus,

∥gE − g̃(t)∥Ck−3 ≤ ∥gE − g̃si (Ti)∥Ck−3

+ [−C5t+ C6]
− θ

2σ−1 + ∥g̃si (t)− g̃(t)∥Ck−3 .

It follows that ∥gE − g̃(t)∥Ck−3 → 0 as t → −∞. Therefore, (φ−1
t )∗g(t) → gE

in Ck−3 as t → −∞. □

Remark 7.5. Dynamical stability and instability under the volume-
normalized Ricci flow follow from these theorems by projecting the flows
above to the space of metrics of fixed volume and by a suitable rescaling
of the time parameter. In this way, we obtain the results as stated in the
introduction.

8. Einstein metrics with positive scalar curvature

In this section, we state analoguous stability/instability results for Einstein
metrics with positive scalar curvature. Since the methods are very similar, we
skip the details and we just explain the key steps and the main differences.
For details, we refer the reader to [Krö13, Chapter 6]. We define the Ricci
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shrinker entropy which was first introduced by G. Perelman in [Per02]. Let

W−(g, f, τ) =
1

(4πτ)n/2

ˆ

M
[τ(|∇f |2g + scalg) + f − n]e−f dV.

For τ > 0, let

µ−(g, τ) = inf

{
W−(g, f, τ)

∣∣∣∣ f ∈ C∞(M),
1

(4πτ)n/2

ˆ

M
e−f dVg = 1

}
.

For any τ > 0, the infimum is realized by a smooth function. We define the
shrinker entropy as

ν−(g) = inf {µ−(g, τ) | τ > 0} .

Observe that ν− is scale and diffeomorphism invariant. If λ(g) > 0, then
ν−(g) is finite and realized by some τg > 0 (see [CCG+07, Corollary 6.34]).
In this case, a pair (fg, τg) realizing ν−(g) satisfies the equations

τ(2∆f + |∇f |2 − scal)− f + n+ ν− = 0,(8.1)

1

(4πτ)n/2

ˆ

M
fe−f dV =

n

2
+ ν−,(8.2)

see e.g. [CZ12, p. 5]. The first variation of ν− is

ν−(g)
′(h) = −

1

(4πτg)n/2

ˆ

M

〈
τg(Ric +∇2fg)−

1

2
g, h

〉
e−fg dVg,(8.3)

where (fg, τg) realizes ν−(g). Because of diffeomorphism invariance, ν− is
nondecreasing under the τ -flow

ġ(t) = −2Ricg(t) +
1

τg(t)
g(t).(8.4)

Remark 8.1. The critical metrics of ν− are precisely the shrinking gradient
Ricci solitons. These are the metrics satisfying Ric +∇2f = cg for some
f ∈ C∞(M) and c > 0. This includes all positive Einstein metrics. If gE is a
positive Einstein metric with Einstein constant µ, the pair (fgE , τgE) satisfies

τgE =
1

2µ
, fgE = log(vol(M, gE))−

n

2
(log(2π)− log(µ)).(8.5)
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Proposition 8.2 (Second variation of ν−). The second variation of ν−
on a postive Einstein metric (M, gE) with constant µ is given by

ν−(gE)
′′(h) =

{
− 1

4µ

ffl

M ⟨∆Eh, h⟩ dV, if δh = 0 and
´

M trh dV = 0,

0, if h ∈ R · gE ⊕ δ∗(Ω1(M)).

Proof. This is a simpler expression of the second variational formula in
[CHI04, Theorem 2.1]. By scale and diffeomorphism invariance, ν−(gE)

′′ van-
ishes on the subspace R · gE ⊕ δ∗(Ω1(M)). If δh = 0 and

´

M trh dV = 0, the
formula follows from the one in [CHI04]. Since ∆E = ∆L − 2µ, tr(∆Lh) =
∆(trh) and δ(∆Lh) = ∆H(δh) [Lic61, pp. 28-29], ∆E preserves the above
subspace. Here, ∆H is the Hodge-Laplacian acting on one-forms. Thus, the
splitting of above is orthogonal with respect to ν−(gE)

′′. Observe also that
these two subspaces span the whole space Γ(S2M). □

Now, one has to check that on a small neighbourhood U of an Einstein
metric, fg and τg are unique. Moreover, if U is small enough, ν−(g), fg and τg
depend analytically on the metric. These facts follows from the the implicit
function theorem for Banach manifolds and a bootstrap argument using
elliptic regularity and the Euler-Lagrange equations (8.1) and (8.2). Similar
arguments were used in Lemma 4.1 and Lemma 6.1.

Furthermore, one has to prove bounds for ν−(g), fg, τg and their deriva-
tives as in Section 4. These follow essentially from differentiating (8.1) and
(8.2) and using elliptic regularity. Having developed these technical tools,
one is able to prove

Theorem 8.3. Let (M, gE) be a positive Einstein manifold with constant

µ and let λ be the smallest nonzero eigenvalue of the Laplacian If gE is a

local maximum of ν−, it is a local maximum of the Yamabe functional and we

have λ ≥ 2µ. Conversely, if gE is a local maximum of the Yamabe functional

and λ > 2µ, then gE is a local maximum of ν−. In this case, any other local

maximum is also an Einstein metric.

Sketch of proof. We use the same notation as in the proof of Theorem 5.1.
Let ḡ be a metric of constant scalar curvature. Then ν−(ḡ) is explicitly given
by

ν−(ḡ) = log(vol(M, ḡ)) +
n

2
log(scalḡ) +

n

2
(1− log(2πn)).

This follows from (8.1) and (8.2) and the analytic dependence of fg and τg on
g. Recall that gE is a local maximum of the Yamabe functional if and only if
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it is a local maximum of the scalar curvature on Cc. Therefore, gE is a local
maximum of the Yamabe functional if and only if it is a local maximum
of ν− in Cc (where c = vol(M, gE)). By scale invariance, it is also a local
maximum of ν− in C in this case. Let now ḡ ∈ C and v ∈ C∞(M) such that
´

M v dVḡ = 0. Then by the first variational formula, d
dt |t=0ν−((1 + tv)ḡ) = 0.

A long but straightforward calculation shows that

d2

dt2

∣∣∣∣
t=0

ν−((1 + tv)ḡ) = −

 

M
Lv · v dV,(8.6)

where L is the linear operator given by

L =
n+ 1

4

( n

scal
∆− 1

)−1 ( n

scal
∆− 2

)(
n

scal
∆−

n

n− 1

)
.

This formula shows how the eigenvalue condition comes into play. Now the
first assertion is clear, since λ > scal

n−1 for any Einstein metric except the
standard sphere [Oba62, Theorem 1 and Theorem 2]. The second assertion
follows from the local decomposition of the space of metrics and Taylor
expansion as in the proof of Theorem 5.1. □

Corollary 8.4. Let (M, gE) be a compact positive Einstein manifold with

constant µ. If gE is a local maximum of the Yamabe invariant and λ > 2µ,
any shrinking gradient Ricci soliton in a sufficiently small neighbourhood of

gE is nessecarily Einstein.

Proof. This follows from Theorem 8.3 and the fact that shrinking gradient
Ricci solitons are precisely the critical points of ν−. □

The proof of the following theorem is analoguous to the proof of Theorem 6.2.

Theorem 8.5 (Lojasiewicz-Simon inequality). Let (M, gE) be a posi-

tive Einstein manifold. Then there exists a C2,α-neighbourhood U of gE and

constants σ ∈ [1/2, 1), C > 0 such that

|ν−(g)− ν−(gE)|
σ ≤ C

∥∥∥∥τ(Ricg +∇2fg)−
1

2
g

∥∥∥∥
L2

(8.7)

for all g ∈ U .

Now we have the tools to prove the stability/instability results for pos-
itively curved Einstein metrics. The proofs are the same as in the negative
case.
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Theorem 8.6 (Dynamical stability). Let (M, gE) be a compact positive

Einstein manifold with constant µ and let k ≥ 3. Suppose that gE is a local

maximizer of the Yamabe functional and the smallest nonzero eigenvalue of

the Laplacian is larger than 2µ. Then for every Ck-neighbourhood U of gE,
there exists a Ck+2-neighbourhood V such that the following holds:

For any metric g0 ∈ V, there exists a 1-parameter family of diffeomor-

phisms φt and a positive function v such that for the τ -flow g(t) starting

at g0, the modified flow φ∗
t g(t) stays in U for all time and converges to an

Einstein metric g∞ in U as t → ∞. The convergence is of polynomial rate,

i.e. there exist constants C,α > 0 such that

∥φ∗
t g(t)− g∞∥Ck ≤ C(t+ 1)−α.

Theorem 8.7 (Dynamical instability). Let (M, gE) be a positive Ein-

stein manifold that is not a local maximizer of ν−. Then there exists a non-

trivial ancient τ -flow g(t), t ∈ (−∞, 0] and a 1-parameter family of diffeo-

morphisms φt, t ∈ (−∞, 0] such that φ∗
t g(t) → gE as t → ∞.

Remark 8.8. One gets stronger convergence statements if one replaces
the assumption of local maximality of the Yamabe functional in the Theo-
rems 7.3 and 8.6 by the assumption that the Einstein operator ∆E is non-
negative and all infinitesimal Einstein deformations are integrable, i.e. all
elements in the kernel of ∆E can be integrated to curves of Einstein met-
rics. In this case, the flow will converge exponentially and we do not have to
pull back the flow by diffeomorphisms. For details, see [Krö13, Section 5.4
and 6.4].

9. Dynamical instability of the complex projective space

In order to prove Theorem 1.7, we show that the Einstein metric cannot
be a local maximum of ν−. Since the second variation of ν− at gE may be
nonpositive, we have to compute a third variation of it.

Proposition 9.1. Let (M, gE) be a positive Einstein manifold with constant

µ and suppose we have a function v ∈ C∞(M) such that ∆v = 2µ · v. Then
the third variation of ν− in the direction of v · gE is given by

d3

dt3

∣∣∣∣
t=0

ν−(gE + tv · gE) = (n− 2)

 

M
v3 dV.
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Proof. Put u = e−f

(4πτ)n/2 . By the first variation, the negative of the L2(u dV )-

gradient of ν− is given by ∇ν− = τ(Ric +∇2f)− g
2 , so

d

dt

∣∣∣∣
t=0

ν−(gE + th) = −

ˆ

M
⟨∇ν−, h⟩u dV.

Since (M, gE) is a critical point of ν−, we clearly have ∇ν− = 0. Since v is
a nonconstant eigenfunction,

´

M v dV = 0. Thus by [CZ12, Lemma 2.4], τ ′

vanishes. Recall from (8.5) that τgE = 1
2µ and fgE is constant. Therefore, by

the first variation of the Ricci tensor,

∇ν ′− = τ ′µgE +
1

2µ
(Ric′ +∇2(f ′))−

g′

2

=
1

2µ

(
1

2
∆L(v · gE)− δ∗δ(v · gE)−

1

2
∇2tr(v · gE) +∇2(f ′)

)
−

v · gE
2

=
1

2µ

((
1−

n

2

)
∇2v +∇2(f ′)

)
.

To compute f ′, we consider the Euler-Lagrange equation

τ(2∆f + |∇f |2 − scal)− f + n+ ν− = 0.(9.1)

By differentiating once and using τ ′ = 0 and ν ′− = 0,

1

2µ
(2∆f ′ − scal′)− f ′ = 0,

and by the first variation of the scalar curvature,

(
1

µ
∆− 1

)
f ′ =

1

2µ
scal′ =

1

2µ
((n− 1)∆v − nµv).

By a well-known eigenvalue estimate for the Laplacian ([Oba62, Theorem 1]),
1
µ∆− 1 is invertible. By using the eigenvalue equation, we therefore obtain

f ′ =
(n
2
− 1

)
v.(9.2)

Thus,

∇ν ′− = 0,(9.3)
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and therefore, the third variation equals

d3

dt3

∣∣∣∣
t=0

ν−(gE + tv · gE) = −

ˆ

M
⟨∇ν ′′−, v · gE⟩u dV.

Since τgE = 1
2µ and τ ′ = 0,

∇ν ′′− = τ ′′µ · gE +
1

2µ
(Ric +∇2f)′′.

The function u is constant since f is constant. Thus, the τ ′′-term drops out
after integration. We are left with

d3

dt3

∣∣∣∣
t=0

ν−(gE + tv · gE) = −
1

2µ

ˆ

M
⟨(Ric +∇2f)′′, v · gE⟩u dV.(9.4)

We first compute Ric′′. Let gt = (1 + tv)gE and vt =
v

1+tv . Then g′t = vt · gt
and d

dt |t=0vt = −v2. By the first variation of the Ricci tensor,

d

dt
Ricgt =

1

2
[(∆vt)gt − (n− 2)∇2vt],

and the second variation at gE is equal to

d2

dt2

∣∣∣∣
t=0

RicgE+tv·gE =
d

dt

∣∣∣∣
t=0

1

2
[(∆vt)gt − (n− 2)∇2vt]

=
1

2
[(∆′v +∆(v′) + ∆v · v)gE − (n− 2)(∇2)′v − (n− 2)∇2(v′)]

=
1

2
[(⟨v · gE ,∇

2v⟩ − ⟨δ(v · gE) +
1

2
∇tr(v · gE),∇v⟩)gE

+ (−∆v · v + 2|∇v|2)gE − (n− 2)

(
1

2
|∇v|2gE −∇v ⊗∇v

)

+ (n− 2)(2∇2v · v + 2∇v ⊗∇v)]

= −
(n
2
− 2

)
|∇v|2gE − 2µv2gE + 3

(n
2
− 1

)
∇v ⊗∇v + (n− 2)∇2v · v,

where we used the first variational formulas of the Laplacian and the Hessian
in Lemma A.2. Let us now compute the (∇2f)′′-term. Since fgE is constant,

d2

dt2

∣∣∣∣
t=0

∇2fgE+tv·gE = ∇2(f ′′) + 2(∇2)′f ′

= ∇2(f ′′)−∇v ⊗∇f ′ −∇f ′ ⊗∇v + ⟨∇f ′,∇v⟩gE .
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We already know that f ′ = (n2 − 1)v by (9.2). To compute f ′′, we differen-
tiate (9.1) twice. By (9.3), ν ′′− = 0. Since also τ ′ = 0 as remarked above, we
obtain

0 = −τ ′′scal + τ(2∆f + |∇f |2 − scal)′′ − f ′′(9.5)

= −τ ′′nµ+
1

µ
∆f ′′ +

2

µ
∆′f ′ +

1

µ
|∇(f ′)|2 −

1

2µ
scal′′ − f ′′.

Because ∆v = 2µv,

∆′f ′ = ⟨v · g,∇2f ′⟩ −

〈
δ(v · g) +

1

2
∇tr(v · g),∇f ′

〉
(9.6)

(9.2)
=

(n
2
− 1

) [
−2µv2 −

(n
2
− 1

)
|∇v|2

]
.

Next, we compute scal′′. As above, let gt = (1 + tv)gE and vt =
v

1+tv . Then
by the first variation of the scalar curvature,

d

dt
scalgt = (n− 1)∆vt − scalgtvt.

The second variation of the scalar curvature at gE is equal to

d2

dt2

∣∣∣∣
t=0

scalgE+tv·gE =
d

dt

∣∣∣∣
t=0

[(n− 1)∆vt − scalgtvt]

= (n− 1)[∆′v +∆(v′)]− nµ · v′ − scal′v

= (n− 1)

[
⟨v · gE ,∇

2v⟩ − ⟨δ(v · gE) +
1

2
∇tr(v · gE),∇v⟩ −∆(v2)

]

+ nµ · v2 − [∆tr(v · gE) + δδ(v · gE)− ⟨Ric, v · gE⟩]v

= −(n− 1)
(n
2
− 3

)
|∇v|2 + 2µ(4− 3n) · v2.

By (9.2), |∇(f ′)|2 = (n2 − 1)2|∇v|2. Thus, we can rewrite (9.5) as

(
1

µ
∆− 1

)
f ′′ = τ ′′nµ−

1

µ

(
2∆′f ′ + |∇(f ′)|2 −

1

2
scal′′

)

(9.6)
= τ ′′nµ−

1

µ

[
− 2(n− 2)µv2 − 2

(n
2
− 1

)2
|∇v|2 +

(n
2
− 1

)2
|∇v|2

+
n− 1

2

(n
2
− 3

)
|∇v|2 + (3n− 4)µv2

]

= τ ′′nµ−
1

µ

[
nµv2 +

(
−
3

4
n+

1

2

)
|∇v|2

]
=: (A).
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Since 1
µ∆− 1 is invertible, we can rewrite the above as

f ′′ =

(
1

µ
∆− 1

)−1

(A).

By integrating,

−
1

2µ

ˆ

M
⟨(∇2f)′′, v · gE⟩u dV = −

1

2µ

 

M
⟨(∇2f)′′, v · gE⟩ dV

= −
1

2µ

 

M
⟨∇2(f ′′)−∇v ⊗∇f ′ −∇f ′ ⊗∇v + ⟨∇f ′,∇v⟩gE , v · gE⟩ dV

9.2
= −

1

2µ

 

M

〈
∇2(f ′′)− (n− 2)∇v ⊗∇v +

(n
2
− 1

)
|∇v|2gE , v · gE

〉
dV

= −
1

2µ

 

M

[
−∆(f ′′)v +

1

2
(n− 2)2|∇v|2v

]
dV

= −
1

2µ

 

M

[
−(A)

(
1

µ
∆− 1

)−1

∆v +
1

2
(n− 2)2|∇v|2v

]
dV

= −
1

2µ

 

M

[
−2µ(A)v +

1

2
(n− 2)2|∇v|2v

]
dV.

Now we insert the definition of (A). Since the term containing τ ′′ drops out
after integration, we are left with

−
1

2µ

ˆ

M
⟨(∇2f)′′, v · gE⟩u dV

= −
1

2µ

 

M

[
(2nµv3 +

1

2
(n2 − 7n+ 6)|∇v|2v

]
dV.

By the second variation of the Ricci tensor computed above,

−
1

2µ

ˆ

M
⟨Ric′′, v · gE⟩u dV = −

1

2µ

 

M
⟨Ric′′, v · gE⟩ dV

= −
1

2µ

 

M

[
− n

(n
2
− 2

)
|∇v|2v

− 2µnv3 + 3
(n
2
− 1

)
|∇v|2v − (n− 2)∆v · v2

]
dV

= −
1

2µ

 

M

[(
−
n2

2
+

7n

2
− 3

)
|∇v|2v − 4(n− 1)µv3

]
dV.



✐

✐

“5-Kroncke” — 2020/4/19 — 23:41 — page 387 — #37
✐

✐

✐

✐

✐

✐

Stability of Einstein metrics under Ricci flow 387

Adding up these two terms, we obtain

d3

dt3

∣∣∣∣
t=0

ν−(g + tv · g)
(9.4)
= −

1

2µ

 

M
(4− 2n)µv3 dV.

and therefore, we finally have

d3

dt3

∣∣∣∣
t=0

ν−(g + tv · g) = (n− 2)

 

M
v3 dV,

which finishes the proof. □

Corollary 9.2. Let (Mn, gE), n ≥ 3 be a positive Einstein manifold with

constant µ. Suppose there exists a function v ∈ C∞(M) such that ∆v = 2µv
and

´

M v3 dV ̸= 0. Then gE is not a local maximum of ν−.

Proof. Let φ(t) = ν−(gE + tv · gE). By the proof of the proposition above,
φ′(0) = 0, φ′′(0) = 0 and φ′′′(0) ̸= 0. Depending on the sign of the third
variation, φ(t) > φ(0) either for t ∈ (−ϵ, 0) or t ∈ (0, ϵ). This proves the as-
sertion. □

Theorem 1.7 now follows from Corollary 9.2 and Theorem 8.7.

Proof of Corollary 1.8. Let µ be the Einstein constant. We prove the exis-
tence of a function v ∈ C∞(CPn) satisfying ∆v = 2µv and

´

CPn v
3 dV ̸= 0.

First, we rewiev the construction of eigenfunctions on CPn as explained in
[BGM71, Section III C]. Consider Cn+1 = R2n+2 with coordinates (x1, . . . ,
xn+1, y1, . . . , yn+1) and let zj = xj + iyj , z̄j = xj − iyj be the complex coor-
dinates. Defining ∂zj =

1
2(∂xj

− i∂yj
) and ∂z̄j =

1
2(∂xj

− i∂yj
), we can rewrite

the Laplace operator on Cn+1 as

∆ = −4

n+1∑

j=1

∂zj ◦ ∂z̄j .

Let Pk,k be the space of complex polynomials on Cn+1 which are homoge-
neous of degree k in z and z̄ and let Hk,k the subspace of harmonic polyno-
mials in Pk,k. We have

Pk,k = Hk,k ⊕ r2Pk−1,k−1.

Elements in Pk,k are S1-invariant and thus, they descend to functions on the
quotient CPn = S2n+1/S1. The eigenfunctions to the k-th eigenvalue of the
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Laplacian on CPn (where 0 is meant to be the 0-th eigenvalue) are precisely
the restrictions of functions in Hk,k. Since 2µ is the first nonzero eigenvalue,
its eigenfunctions are restrictions of functions in H1,1.

Let h1(z, z̄) = z1z̄2 + z2z̄1, h2(z, z̄) = z2z̄3 + z3z̄2, h3(z, z̄) = z3z̄1 + z1z̄3
and let v be the eigenfunction which is the restriction of h = h1 + h2 + h3 ∈
H1,1. Note that h is real-valued and so is v. Then v3 is the restriction of

h3 ∈ P3,3 = H3,3 ⊕ r2H2,2 ⊕ r4H1,1 ⊕ r6H0,0.(9.7)

We show that
´

S2n+1 h
3 dV ̸= 0. At first,

h3 =

3∑

j=1

h3j + 3
∑

j ̸=l

hj · h
2
l + 6h1 · h2 · h3.

Note that
´

S2n+1 h
3
1 dV = 0 because h1 is antisymmetric with respect to the

isometry (z1, z̄1) 7→ (−z1,−z̄1). For the same reason,
´

S2n+1 h1 · h
2
2 dV = 0.

Similarly, we show that all other terms of this form vanish after integration
so it remains to deal with the last term of above. We have

h1 · h2 · h3(z, z̄) = 2|z1|
2|z2|

2|z3|
2 +

∑

σ∈S3

|zσ(1)|
2z2σ(2)z̄

2
σ(3).

Consider |z1|
2z22 z̄

2
3 . This polynomial is antisymmetric with respect to the

isometry (z2, z̄2) 7→ (i · z2, i · z̄2) and therefore,

ˆ

S2n+1

|z1|
2z22 z̄

2
3 dV = 0.

Similarly, we deal with the other summands. In summary, we have

ˆ

S2n+1

h3 dV = 6

ˆ

S2n+1

h1 · h2 · h3 dV = 12

ˆ

S2n+1

|z1|
2|z2|

2|z3|
2 dV > 0,

since the integrand on the right hand side is nonnegative and not identi-
cally zero. We decompose h3 =

∑3
j=0 hj , where hj ∈ r6−2jHj,j . Since the

restrictions of the hj to S2n+1 are eigenfunctions to the 2k-th eigenvalue of
the Laplacian on S2n+1 (see [BGM71, Section III C]), we have that h0 ̸= 0
because the integral is nonvanishing. This decomposition induces a decom-
position of v3 =

∑3
i=0 vi where vi is an eigenfunction of the i-th eigenvalue

of ∆CPn and v0 ̸= 0. Therefore,
´

CPn v
3 dV ̸= 0. The assertion follows from

Theorem 1.7. □
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Appendix A. Variational formulas

Here we prove some variational formulas needed throughout the text.

Lemma A.1. Let (M, g) be Riemannian manifold and denote the first vari-

ation of the Levi-Civita connection in the direction of h by G. Then G is a

(1, 2) tensor field, given by

g(G(X,Y ), Z) =
1

2
(∇Xh(Y, Z) +∇Y h(X,Z)−∇Zh(X,Y )).

The first variation of the Riemann tensor, the Ricci tensor and the scalar

curvature are given by

d

dt

∣∣∣∣
t=0

Rg+th(X,Y, Z,W ) =
1

2
(∇2

X,Zh(Y,W ) +∇2
Y,Wh(X,Z)−∇2

Y,Zh(X,W )

−∇2
X,Wh(Y, Z) + h(RX,Y Z,W )− h(Z,RX,Y W )),

d

dt

∣∣∣∣
t=0

Ricg+th(X,Y ) =
1

2
∆Lh(X,Y )− δ∗(δh)(X,Y )−

1

2
∇2

X,Y trh,

d

dt

∣∣∣∣
t=0

scalg+th = ∆g(trgh) + δg(δgh)− ⟨Ricg, h⟩g.

Furthermore, the first variation of the volume element is given by

d

dt

∣∣∣∣
t=0

dVg+th =
1

2
trgh · dVg.

Proof. See [Bes08, Theorem 1.174] and [Bes08, Proposition 1.186]. □

Lemma A.2. The first variation of the Hessian and the Laplacian are

given by

d

dt

∣∣∣∣
t=0

g+th∇2
X,Y f = −

1

2
[∇Xh(Y, gradf) +∇Y h(X, gradf)−∇gradfh(X,Y )],

d

dt

∣∣∣∣
t=0

∆g+thf = ⟨h,∇2f⟩ −

〈
δh+

1

2
∇trh,∇f

〉
.

Proof. We use local coordinates. Let f be a smooth function. Then the first
variation of the Hessian is

d

dt

∣∣∣∣
t=0

(∇2
ijf) =

d

dt

∣∣∣∣
t=0

(∂2
ij − Γk

ij∂kf) = −
1

2
gkl(∇ihjl +∇jhil −∇lhij)∂kf
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by the first variation of the Levi-Civita connection. The first variation of the
Laplacian is

d

dt

∣∣∣∣
t=0

(∆f) = −
d

dt

∣∣∣∣
t=0

(gij∇2
ijf) = hij∇2

ijf − gkl(δhl +
1

2
∇ltrh)∂kf.

□

Lemma A.3. The second variations of the Hessian, the Laplacian, the

Ricci tensor and the scalar curvature have the schematic expressions

d

ds

d

dt

∣∣∣∣
s,t=0

∇2
g+sk+thf = k ∗ ∇h ∗ ∇f +∇k ∗ h ∗ ∇f,

d

ds

d

dt

∣∣∣∣
s,t=0

∆g+sk+thf = k ∗ ∇h ∗ ∇f +∇k ∗ h ∗ ∇f,

d

ds

d

dt

∣∣∣∣
s,t=0

Ricg+sk+th = k ∗ ∇2h+∇2k ∗ h+∇k ∗ ∇h+R ∗ k ∗ h,

d

ds

d

dt

∣∣∣∣
s,t=0

scalg+sk+th = k ∗ ∇2h+∇2k ∗ h+∇k ∗ ∇h+R ∗ k ∗ h.

Here, ∗ is Hamilton’s notation for a combination of tensor products with

contractions.

Proof. By the first variation of the Christoffel symbols it is not hard to see
that the first two covariant derivatives of a (0, 2)-tensor h can be written as

d

dt

∣∣∣∣
t=0

∇g+tkh = k ∗ ∇h+∇k ∗ h,(A.1)

d

dt

∣∣∣∣
t=0

∇2
g+tkh = k ∗ ∇2h+∇2k ∗ h+∇k ∗ ∇h.(A.2)

The first variation of the Hessian is of the schematic form ∇h ∗ ∇f and
therefore,

d

ds

d

dt

∣∣∣∣
s,t=0

∇2
g+sk+thf =

d

ds

∣∣∣∣
s=0

(∇h ∗ ∇f)

= k ∗ ∇h ∗ ∇f +

(
d

ds

∣∣∣∣
s=0

∇h

)
∗ ∇f

= k ∗ ∇h ∗ ∇f +∇k ∗ h ∗ ∇f.

The expression for the second variation of the Laplacian is shown similarly.
By Lemma A.1, the first variational formulas for the Riemann curvature
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tensor and the Ricci tensor are of the form

d

dt

∣∣∣∣
t=0

R = (∇2 ∗ h) + (R ∗ h),(A.3)

d

dt

∣∣∣∣
t=0

Ric = (∇2 ∗ h) + (R ∗ h).(A.4)

The second variational expression of the Ricci tensor now follows from dif-
ferentiating (A.4) in the direction of k and using (A.1) and (A.3). The last
expression for the scalar curvature is shown similarly. □
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[Oba62] Morio Obata, Certain conditions for a Riemannian manifold

to be isometric with a sphere, J. Math. Soc. Japan 14 (1962),
333–340.

[Per02] Grisha Perelman, The entropy formula for the Ricci flow and its

geometric applications, arXiv:math/0211159, (2002).

[Per03] Grisha Perelman, Ricci flow with surgery on three-manifolds,
arXiv:math/0303109, (2003).

[Sch84] Richard M. Schoen, Conformal deformation of a Riemannian

metric to constant scalar curvature, J. Differ. Geom. 20 (1984),
479–495.

[Ses06] Natasa Sesum, Linear and dynamical stability of Ricci-flat met-

rics, Duke Math. J. 133 (2006), no. 1, 1–26.

[SW13] Song Sun and Yuanqi Wang, On the Kähler-Ricci flow near a

Kähler-Einstein metric, J. Reine Angew. Math. (2013).

[Ye93] Rugang Ye, Ricci flow, Einstein metrics and space forms, Trans.
Am. Math. Soc. 338 (1993), no. 2, 871–896.

Universität Hamburg, Fachbereich Mathematik

Bundesstraße 55, 20146 Hamburg, Germany

E-mail address: klaus.kroencke@uni-hamburg.de

Received January 14, 2016

Accepted November 15, 2017


	Introduction
	Notation and conventions
	The expander entropy
	Some technical estimates
	Local maximum of  and the expander entropy
	A Lojasiewicz-Simon inequality
	Dynamical stability and instability
	Einstein metrics with positive scalar curvature
	Dynamical instability of the complex projective space
	Appendix Variational formulas
	References

