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In this article we discuss our ongoing program to extend the scope
of certain, well-developed microlocal methods for the asymptotic
solution of Schrödinger’s equation (for suitable ‘nonlinear oscil-
latory’ quantum mechanical systems) to the treatment of several
physically significant, interacting quantum field theories. Our main
focus is on applying these ‘Euclidean-signature semi-classical’ meth-
ods to self-interacting (real) scalar fields of renormalizable type
in 2, 3 and 4 spacetime dimensions and to Yang-Mills fields in 3
and 4 spacetime dimensions. A central argument in favor of our
program is that the asymptotic methods for Schrödinger opera-
tors developed in the microlocal literature are far superior, for the
quantum mechanical systems to which they naturally apply, to the
conventional WKBmethods of the physics literature and that these
methods can be modified, by techniques drawn from the calculus of
variations and the analysis of elliptic boundary value problems, to
apply to certain (bosonic) quantum field theories. Unlike conven-
tional (Rayleigh/ Schrödinger) perturbation theory these methods
avoid the artificial decomposition of an interacting system into an
approximating ‘unperturbed’ system and its perturbation and in-
stead keep the nonlinearities (and, if present, gauge invariances) of
an interacting system intact at every level of the analysis.

1 Introduction 980

2 Microlocal semi-classical methods for quantum

mechanical systems 985

3 Modified semi-classical methods for bosonic fields 998

Acknowledgements 1050

References 1051

979



✐

✐

“6-Marini” — 2020/9/30 — 18:07 — page 980 — #2
✐

✐

✐

✐

✐

✐

980 A. Marini, R. Maitra, and V. Moncrief

1. Introduction

Perturbation theory, in its various guises, is one of the cornerstone calcula-
tional techniques of modern quantum field theory. Its application to quan-
tum electrodynamics, through its Feynman diagrammatic and path integral
incarnations among other approaches, was one of the principal success sto-
ries of twentieth century physics and gave rise to numerous, spectacularly
confirmed experimental predictions. The quantitative success of this partic-
ular application of perturbation methods hinged, in large measure, on the
feasibility of decomposing the relevant quantum system (of coupled Dirac
and Maxwell fields) into a relativistically invariant and explicitly solvable
‘unperturbed’ system (the corresponding free fields) and a complementary,
nonlinear interaction that could realistically be treated as a ‘small’ pertur-
bation thereto.

When one turns however to the quantization of non-abelian gauge sys-
tems (i.e., to Yang-Mills fields either in isolation or coupled to other quan-
tized objects), some of the advantages of the perturbative approach become
seriously compromised. First of all, in order to have an explicitly solvable
unperturbed system with which to initiate the analysis, one must dramati-
cally modify the Yang-Mills system itself by discarding the very interaction
terms that distinguish it from (several copies of) the Maxwell field. In doing
so one necessarily disturbs the non-abelian character of the corresponding
gauge group, ‘truncating’ this essential element to the abelian gauge group
of the approximating, Maxwell system. Naturally the aim of the associated
perturbation theory, at least in part, is to restore these essential features.
But it can only realistically hope to accomplish this through formal, asymp-
totic expansions in the corresponding Yang-Mills ‘coupling constant’. Ele-
gant techniques for doing this are at the forefront of modern research in
quantum field theory of which, for example, the discovery of asymptotic
freedom represented a crucial advance.

The Feynman path integral approach to field quantization is not intrin-
sically perturbative in nature (though it is often used in practice to derive
elegant, relativistically invariant, perturbative expansions) and can, in its
most mathematically coherent, Euclidean-signature formulation be used as
a basis for rigorous attacks on quantization problems. Making mathematical
sense of the needed (Euclidean-signature) functional integration measures in
sufficient generality to handle Yang-Mills theories is however a daunting task,
especially in the most physically interesting case of 4 spacetime dimensions
wherein even more elementary, interacting quantized fields have continued to
defy rigorous construction. Even in ordinary quantum mechanics there are
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known examples, which gave Feynman himself pause, of explicitly solvable
quantum systems that forcefully resisted solution by purely path integral
methods alone. Sometimes a direct, ‘old-fashioned’ attack on Schrödinger’s
equation is still the most effective approach.

Of course the expression of such misgivings about the intrinsic limita-
tions of perturbation theory and even path integral methods must have a
hollow ring to it to experts in the field who must continually deal with the
inherent difficulties of quantizing interacting systems — all the more so when
this expression is coming from outsiders to this field who may have no con-
crete alternative to put forward. The present authors however have in fact
developed an alternative approximation method for solving the Schrödinger
equations that arise in certain interacting quantum field theories and are
confident that their method will shed some non-perturbative light on the
nature of the associated quantum states. In particular our method does not
require that one artificially decompose an interacting quantum system into
‘free’ and ‘interacting’ components and thus, in the case of gauge theories,
does not require that one, equally artificially, truncate the corresponding
gauge group to the abelian gauge group of an associated ‘free’, approximat-
ing system. While we do not expect our approach to have the calculational
power of conventional perturbation theory we do anticipate that it will allow
an attack on some fundamental questions that more conventional techniques
seem inadequate to handle.

To explain this approach let us backtrack slightly and mention that mi-
crolocal analysts have long since developed elegant, semi-classical approx-
imation methods for the analysis of certain ‘nonlinear oscillatory’ purely
quantum mechanical systems that are vastly superior to the textbook
Wentzel, Kramers, Brillouin (or WKB) methods of the physics literature.
The latter, which date back to the early days of quantum mechanics (though
with precursors that are much older still), posit a formal expansion in
Planck’s constant of which the leading order term is precisely a solution
of the classical Hamilton-Jacobi equation for the system being quantized.
But for Schrödinger operators of the conventional kinetic+potential type
this amounts, among other things, to beginning with a complex oscillatory
ansatz for a ground state wave function that is known, a priori, to be effec-
tively real and monotonically decreasing in a suitable sense. That one arrives
at the classical Hamilton-Jacobi equation at first approximation was an im-
portant step in the early days for convincing one that the then new quantum
mechanics incorporated classical mechanics in an appropriate (formal) ‘cor-
respondence principle’ limit. However important this step was conceptually,
mathematically it was catastrophic.
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First of all the Hamilton-Jacobi equation, even for the simplest, nontriv-
ial, classical systems virtually never has global smooth solutions, not least of
all because of the presence of caustics in the associated families of gradient-
flow solution curves on the corresponding configuration manifolds. Even for
the more or less tractable one dimensional systems (or those reducible to
such through a separation of variables) one is obligated to effect a matching
of solutions across the boundary between ‘classically allowed’ and ‘classi-
cally forbidden’ regions in the associated configuration space. It is hardly
surprising that, even for such basic problems as the harmonic oscillator one
only gets rather crude approximations to its actual, explicitly known wave
functions. The lesser known Einstein, Brillouin, Keller (or EBK) approxima-
tion method does in fact have the capability of treating higher dimensional,
interacting quantum systems but only those that are completely integrable
at the classical level. Maslov and others have developed ingenious ways of
handling caustics when they occur but their methods are aimed at treat-
ing the finite time propagation of high frequency ‘wave packets’ instead of
solving the fundamental eigenvalue problems that form the core of quantum
mechanics.

In contrast to the above, microlocal analysts proposed a much more nat-
ural ansatz for the ground state wave function of a (nonlinear oscillatory)
quantum system than that of conventional WKB theory and have shown
that the leading order approximation in their approach is determined by
a certain (nonlinear) ‘eikonal’ equation which can, for many such systems,
be proven to have a global smooth solution. Higher order corrections to this
leading order term can then be computed through the systematic integration
of a sequence of linear, ‘transport’ equations along the flow defined by the
previously determined solution to the eikonal problem. Excited state wave
functions and their corresponding eigenvalues and higher order corrections
thereto can in turn be computed from an equally systematic, somewhat
similar-in-spirit transport equations analysis. The eikonal equation alluded
to above is nothing more than an ‘imaginary time’ (or, in field theoretic
language, ‘Euclidean signature’) variant of the classical Hamilton-Jacobi
equation for the system actually under study. While one may lose a cer-
tain ‘physical intuition’ in dealing with this equation instead of the original,
‘real time’ Hamilton-Jacobi one, the mathematical gain is enormous.

In the very special case of harmonic oscillators, for example, this ap-
proach reproduces, exactly, all of the correct eigenfunctions and eigenvalues
for this fundamental problem and for anharmonic oscillatory systems pro-
vides, at the very least, provably asymptotic expansions for the solutions
thereto. Most importantly, by avoiding the conventional decomposition into
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an explicitly solvable ‘unperturbed’ system and its perturbation this mi-
crolocal approach secures, even at leading order, a much more accurate ap-
proximation to the actual wave functions of the interacting system than that
provided by standard (Rayleigh/Schrödinger) perturbation theory. On the
other hand, for reasons that we shall clarify below, its methods for tech-
nically carrying out this elegant analysis seem to be essentially limited to
finite dimensional, ordinary quantum mechanical systems and, in their cur-
rent form, not to allow for an extension to quantum field theories.

The authors, however, not being initially aware of these pre-existing
microlocal results, embarked some years ago upon a program to develop
semi-classical approximation methods that would in fact be applicable to
certain interesting classes of interacting quantum field theories. In our ap-
proach the leading order term is a solution to the Hamilton-Jacobi equation
for the Euclidean-signature variant of the field equations that one is quan-
tizing. This is an enormously more favorable setting than what would be
provided by the corresponding Lorentzian-signature Hamilton-Jacobi equa-
tion of conventional WKB theory and lends itself to resolution via standard
methods drawn from the calculus of variations. For the special cases of mas-
sive, polynomially interacting scalar fields of renormalizable type in 2, 3 and
4 spacetime dimensions, for example, we have been able to prove the ex-
istence of globally, Fréchet smooth ‘fundamental solutions’ to the relevant
Euclidean-signature Hamilton-Jacobi equations and to substantially char-
acterize their asymptotic behaviors. These solutions provide the bases for
the computation, via linear transport equations, of their higher order ‘loop’
corrections as well as that for the systematic computation of correspond-
ing excited states. These latter steps require a detailed regularization and
renormalization procedure that has not yet been carried out in the present
context but, being all essentially linear in character, seem analytically less
problematic than the ones we have already completed. For the special case
of non-interacting (or ‘free’) scalar fields our calculations truncate at finite
order reproducing the functional representations of the conventional Fock-
space exact solutions for these fundamental problems. The current status of
this program is reviewed below in Section 3.1.

To illustrate in some detail the general features of our Euclidean-signature
semi-classical program, including its approach to the handling of higher or-
der loop corrections and excited state computations we recall, in Section 2,
its ‘fallback’ application to ‘nonlinear oscillatory’ problems in ordinary quan-
tum mechanics and emphasize how our approach thereto differs from that of
the microlocal literature — the key distinction that allows us to contemplate
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its application to quantum field theories. We also discuss therein some spe-
cific applications of our version of this microlocal, semi-classical program to
certain quantum anharmonic oscillators, comparing the results with those
derivable from ordinary (Rayleigh/Schrödinger) perturbation theory. A par-
ticularly interesting case is that of the quartic oscillator for which we found
strong evidence that the asymptotic expansion generated for the (logarithm
of its) ground state wave function may itself be Borel summable to what is
conjecturally the exact solution of this paradigmatic model problem. We also
briefly discuss the applicability of our methods to the problems of solving
the so-called Wheeler-DeWitt equation for Bianchi IX models of (minisu-
perspace) quantum cosmology and to the Schrödinger operators arising in
supersymmetric quantum mechanics. The latter represents our first excur-
sion into the issue of whether the methods under study can be generalized
to include fermionic degrees of freedom.

The ultimately most ambitious application of our program so far how-
ever, is to the case of quantized Yang-Mills fields in (the renormalizable
instances of) 3 and 4 spacetime dimensions. In Section 3.2 we discuss the
current status of this project. In particular we present the essential features
of a proof that, in a suitable function space setting, the Euclidean signa-
ture Yang-Mills action functional, defined over the Euclidean ‘half-space’
R− × R3, admits an absolute minimizing connection, weakly satisfying the
Yang-Mills Dirichlet problem, for ‘arbitrary’ boundary data specified on the
hypersurface {0} × R3. This extremized action, regarded as a functional of
the boundary data (essentially a ‘spatial’ connection on R3), provides us
with the leading order approximation to (the logarithm of) our proposed
ground state wave functional. We also give a preliminary discussion of the
differentiability of the action functional so defined and present a sketch of
how we hope to extend this argument to a full Fréchet smoothness result.
A potential application of our anticipated results to the mass gap problem
for quantum Yang-Mills theory is sketched in Section 3.3.

We also include, in Section 3.4, a brief discussion of how our Euclidean
signature semi-classical program might be applied to the problem of quan-
tum gravity via the (currently purely formal) functional Wheeler-DeWitt
equation in a non-symmetric, field theoretic setting. A key open question
is whether one can develop and analyze a genuine elliptic boundary value
problem for this highly nonlinear system and, if so, how the gravitational
positive action theorem can be successfully applied thereto.
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2. Microlocal semi-classical methods for quantum

mechanical systems

Elegant ‘microlocal analysis’ methods have long since been developed for
the study of Schrödinger operators of the form

(2.1) Ĥ =
−ℏ2

2m
∆g + V

in the special cases for which the configuration manifoldM ≈ Rn, the metric
g is flat and for which the potential energy function V :M → R is of a
suitable ‘non-linear oscillatory’ type [1–4]. These methods1 begin with an
ansatz for the ground state wave function of the form

(2.2)
(0)

Ψℏ(x) = Nℏ e
−Sℏ(x)/ℏ

and proceed to derive asymptotic expansions for the logarithm, Sℏ : Rn → R,
expressed formally as a power series in Planck’s reduced constant (ℏ :=
h/2π),

Sℏ(x) ≃ S(0)(x) + ℏS(1)(x) +
ℏ2

2!
S(2)(x)(2.3)

+ · · ·+ ℏn

n!
S(n)(x) + · · · ,

together with the associated ground state energy eigenvalue
(0)

Eℏ expressed
as

(2.4)
(0)

Eℏ ≃ ℏ

(

(0)

E (0) + ℏ

(0)

E (1) +
ℏ2

2!

(0)

E (2) + · · ·+ ℏn

n!

(0)

E (n) + · · ·
)

.

Nℏ is a corresponding (for us inessential) normalization constant which one
could always evaluate at any (finite) level of the calculation.

When the above ansätze are substituted into the time-independent
Schrödinger equation and the latter is required to hold order-by-order in
powers of ℏ, the leading order term in the expansion (2.3) is found to satisfy

1For reasons to be clarified below we here follow a recent reformulation of the
traditional microlocal approach developed by the authors in [1].
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an inverted-potential-vanishing-energy ‘Hamilton-Jacobi’ equation given by

(2.5)

n
∑

i,j=1

1

2m
gijS(0),iS(0),j − V = 0.

For a large class of (non-linear oscillatory) potential energy functions and
when g is flat (with g =

∑n
i=1 dx

i ⊗ dxi) this equation can be proven to have
a globally-defined, smooth, positive ‘fundamental solution’ that is unique up
to a (trivial) additive constant. In particular this is true whenever

1) V is smooth, non-negative and has a unique global minimum attained
at the origin of Rn where V vanishes,

2) V can be expressed as

(2.6) V (x1, . . . , xn) =
1

2

n
∑

i=1

m ω2
i (x

i)2 +A(x1, . . . , xn)

where each of the ‘frequencies’ ωi > 0 for i ∈ {1, . . . , n} and wherein
the smooth function A : Rn → R satisfies

(2.7) A(0, . . . , 0) =
∂A(0, . . . , 0)

∂xi
=
∂2A(0, . . . , 0)

∂xi∂xj
= 0 ∀ i, j ∈ {1, . . . , n}

and the coercivity condition

(2.8) A(x1, . . . , xn) ≥ −1

2
m

n
∑

i=1

λ2i (x
i)2 ∀ (x1, . . . , xn) ∈ R

n

and for some constants {λi} such that λ2i < ω2
i ∀ i ∈ {1, . . . , n}, and

3) V satisfies the convexity condition

n
∑

i,j=1

∂2V (x1, . . . , xn)

∂xi∂xj
ξiξj ≥ 0

∀ (x1, . . . , xn) ∈ R
n and all (ξ1, . . . , ξn) ∈ R

n.

(2.9)

Since only the sufficiency of these conditions was actually established in [1]
it is quite conceivable that a satisfactory fundamental solution to Eq. (2.5)
exists under weaker hypotheses on the potential energy.
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Our approach to proving the existence of a global, smooth fundamental
solution to the (inverted-potential-vanishing-energy) Hamilton-Jacobi equa-
tion

(2.10)
1

2m
∇S(0) · ∇S(0) − V = 0

is quite different from that developed previously in the microlocal literature
but has the advantage of being applicable to certain field theoretic problems
whereas it seems the latter does not.2

To establish the existence of S(0) we began by proving that the (inverted
potential) action functional

Iip[γ] :=
∫ 0

−∞

{

1

2
m

n
∑

i=1

[

(ẋi(t))2 + ω2
i (x

i(t))2
]

(2.11)

+A (xi(t), . . . , xn(t))

}

dt,

defined on an appropriate Sobolev space of curves γ : (−∞, 0] → Rn, has a
unique minimizer, γx, for any choice of boundary data

(2.12) x = (x1, . . . , xn) = lim
t↗0

γx(t) ∈ R
n

and that this minimizer always obeys

(2.13) lim
t↘−∞

γx(t) = (0, . . . , 0).

We then showed that every such minimizing curve is smooth and satisfies
the (inverted potential) Euler-Lagrange equation

(2.14) m
d2

dt2
γi
x
(t) =

∂V

∂xi
(γx(t))

with vanishing (inverted potential) energy

Eip(γx(t), γ̇x(t)) :=
1

2
m

n
∑

i=1

(γ̇i
x
(t))2 − V (γx(t))(2.15)

= 0 ∀ t ∈ (−∞, 0] := I.

2The reasons for this apparent limitation are clarified in the discussion to follow.
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Setting S(0)(x) := Iip[γx] for each x ∈ Rn we proceeded to prove, using
the (Banach space) implicit function theorem, that the S(0) : R

n → R, so-
defined, satisfies the Hamilton-Jacobi equation

(2.16)
1

2m
|∇S(0)|2 − V = 0

globally on Rn and regenerates the minimizers γx as the integral curves of
its gradient (semi-)flow in the sense that

d

dt
γx(t) =

1

m
∇S(0)(γx(t))

∀ t ∈ I := (−∞, 0] and

∀ x ∈ R
n

(2.17)

Actually each such integral curve γx : I → Rn extends to a larger interval,
(−∞, t∗(γx)) with 0 < t∗(γx) ≤ ∞ ∀ x ∈ Rn but since, in general, t∗(γx) <
∞ we only have a semi-flow rather than a complete flow generated by
1
m∇S(0). Purely harmonic oscillations on the other hand (for which
A(x1, . . . , xn) = 0) are an exception, having t∗(γx) = ∞ ∀ x ∈ Rn.

Among the additional properties established for S(0) were the Taylor
expansion formulas

S(0)(x) =
1

2
m

n
∑

i=1

ωi(x
i)2 +O(|x|3),(2.18)

∂jS(0)(x) = mωjx
j +O(|x|2)(2.19)

and

∂j∂kS(0)(x) = mωkδ
k
j +O(|x|),(2.20)

where here (exceptionally) no sum on the repeated index is to be taken, and
the global lower bound

(2.21) S(0)(x) ≥ S∗
(0) :=

1

2
m

n
∑

i=1

νi(x
i)2

where νi :=
√

ω2
i − λ2i > 0 ∀ i ∈ {1, . . . , n}. Note especially that this last

inequality guarantees that, in particular, e−S(0)/ℏ will always be normalizable
on {Rn, g =

∑n
i=1 dx

i ⊗ dxi}.
The higher order ‘quantum corrections’ to S(0) (i.e., the functions S(k)

for k = 1, 2, . . .) can now be computed through the systematic integration
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of a sequence of (first order, linear) ‘transport equations’, derived from
Schrödinger’s equation, along the integral curves of the gradient (semi-)flow
generated by S(0). The natural demand for global smoothness of these quan-
tum ‘loop corrections’ forces the (heretofore undetermined) energy coeffi-

cients {
(0)

E (0),
(0)

E (1),
(0)

E (2), . . .} all to take on specific, computable values.
Excited states can now be analyzed by substituting the ansatz

(2.22)
(∗)

Ψℏ(x) =
(∗)

ϕℏ(x)e
−Sℏ(x)/ℏ

into the time independent Schrödinger equation and formally expanding the

unknown wave functions
(∗)

ϕℏ and energy eigenvalues
(∗)

Eℏ in powers of ℏ via

(∗)

ϕℏ ≃
(∗)

ϕ(0) + ℏ

(∗)

ϕ(1) +
ℏ2

2!

(∗)

ϕ (2) + · · ·(2.23)

(∗)

Eℏ ≃ ℏ

(∗)

E ℏ ≃ ℏ

(

(∗)

E (0) + ℏ

(∗)

E (1) +
ℏ2

2!

(∗)

E (2) + · · ·
)

(2.24)

while retaining the ‘universal’ factor e−Sℏ(x)/ℏ determined by the ground
state calculations.

From the leading order analysis one finds that these excited state expan-
sions naturally allow themselves to be labelled by an n-tuple m =
(m1,m2, . . . ,mn) of non-negative integer ‘quantum numbers’, mi, so that
the foregoing notation can be refined to

(m)

Ψ ℏ(x) =
(m)

ϕ ℏ(x)e
−Sℏ(x)/ℏ(2.25)

and

(m)

E ℏ = ℏ

(m)

E ℏ(2.26)

with
(m)
φ ℏ and

(m)

E ℏ expanded as before. Using methods that are already
well-known from the microlocal literature [2] but slightly modified to accord

with our setup [1] one can now compute all the coefficients {
(m)

ϕ (k),
(m)

E (k), k =
0, 1, 2 . . .} through the solution of a sequence of linear, first order transport
equations integrated along the semi-flow generated by S(0).

A key feature of this program, when applied to an n-dimensional har-
monic oscillator, is that it regenerates all the well-known, exact results for
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both ground and excited states, correctly capturing not only the eigenvalues
but the exact eigenfunctions as well [1–3]. One finds for example that the
fundamental solution to the relevant (inverted-potential-vanishing-energy)
Hamilton-Jacobi equation, for an n-dimensional oscillator (with mass m and
(strictly positive) oscillation frequencies {ωi}) is given by

(2.27) S(0)(x) =
1

2
m

n
∑

i=1

ωi(x
i)2

and that all higher order corrections to the logarithm of the ground state
wave function vanish identically leaving the familiar gaussian

(2.28)
(0)

Ψℏ(x) =
(0)

Nℏ e
− m

2ℏ

∑n
i=1 ωi(xi)2

where x = (x1, . . . , xn) and
(0)

Nℏ is a normalization constant.
The construction of excited states begins with the observation that the

only globally regular solutions to the corresponding, leading order ‘transport
equation’ are composed of the monomials

(2.29)
(m)

ϕ (0)(x) = (x1)m1(x2)m2 · · · (xn)mn ,

where m = (m1,m2, . . . ,mn) is an n-tuple of non-negative integers with
|m| :=∑n

i=1mi > 0, and proceeds after a finite number of unequivocal steps,
to assemble the exact excited eigenstate prefactor

(m)

ϕ ℏ(x) =
(m)

N ℏHm1

(
√

mω1

ℏ
x1
)

Hm2

(
√

mω2

ℏ
x2
)

(2.30)

· · ·Hmn

(
√

mωn
ℏ

xn
)

whereHk is the Hermite polynomial of order k (and
(m)

N k is the corresponding
normalization constant) [1–3].

While there is nothing especially astonishing about being able to red-
erive such well-known, exact results in a different way, we invite the reader
to compare them with those obtainable via the textbook WKB methods of
the physics literature [5, 6]. Even for purely harmonic oscillators conven-
tional WKB methods yield only rather rough approximations to the wave
functions and are, in any case, practically limited to one-dimensional prob-
lems and to those reducible to such through a separation of variables. The
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lesser known Einstein, Brillouin, Keller (or EBK) extension of the tradi-
tional semi-classical methods does apply to higher (finite-)dimensional sys-
tems but only to those that are completely integrable at the classical level
[7]. In sharp contrast to these well-established approximation methods the
(Euclidean signature3) semi-classical program that we are advocating here
requires neither classical integrability nor (as we shall see) finite dimension-
ality for its implementation.

As was discussed in the concluding section of Ref. [1] our fundamen-
tal solution, S(0)(x), to the (inverted-potential-vanishing-energy) Hamilton-
Jacobi equation for a coupled system of nonlinear oscillators has a natural
geometric interpretation. The graphs, in the associated phase space T ∗Rn,
of its positive and negative gradients correspond precisely to the stable
(W s(p) ⊂ T ∗Rn) and unstable (W u(p) ⊂ T ∗Rn) Lagrangian submanifolds
of the assumed, isolated equilibrium point p ∈ T ∗Rn:

W u(p) =
{

(x,p) : x ∈ R
n,p = ∇S(0)(x)

}

(2.31)

W s(p) =
{

(x,p) : x ∈ R
n,p = −∇S(0)(x)

}

(2.32)

Another result established for the aforementioned nonlinear oscillators
of Ref. [1] is that the first quantum ‘loop correction’, S(1)(x

1, . . . , xn), to
the (‘tree level’) fundamental solution, S(0)(x

1, . . . , xn), also has a natural
geometric interpretation in terms of ‘Sternberg coordinates’ for the gradient
(semi-)flow generated by this fundamental solution. Sternberg coordinates,
by construction, linearize the Hamilton-Jacobi flow equation

m
dxi(t)

dt
=
∂S(0)

∂xi
(x1(t), . . . , xn(t))(2.33)

to the form

dyi(t)

dt
= ωiy

i(t) (no sum on i)(2.34)

through, as was proven in Ref. [1], the application of a global diffeomorphism

µ : Rn → µ(Rn) ⊂ R
n =

{

(y1, . . . , yn)
}

,(2.35)

x 7→ µ(x) =
{

y1(x), . . . , yn(x)
}

(2.36)

that maps Rn to a star-shaped domain K = µ(Rn) ⊂ Rn with µ−1(K) ≈
Rn =

{

(x1, . . . , xn)
}

.

3The significance of this qualifying expression will become clear when we turn to
field theoretic problems.



✐

✐

“6-Marini” — 2020/9/30 — 18:07 — page 992 — #14
✐

✐

✐

✐

✐

✐

992 A. Marini, R. Maitra, and V. Moncrief

Though not strictly needed for the constructions of Ref. [1], Sternberg co-
ordinates have the natural feature of generating a Jacobian determinant for
the Hilbert-space integration measure that exactly cancels the contribution
of the first quantum ‘loop correction’, S(1)(x), to inner product calculations,
taking, for example,

〈

(m)

Ψ ,
(m)

Ψ

〉

:=

∫

Rn

∣

∣

∣

∣

∣

(m)

Ψ (x)

∣

∣

∣

∣

∣

2

dnx(2.37)

=

∫

µ(Rn)

∣

∣

∣

∣

∣

(m)

Ψ ◦ µ−1(y)

∣

∣

∣

∣

∣

2
√

det g∗∗(y) d
ny

to the form
〈

(m)

Ψ ,
(m)

Ψ

〉

=

∫

µ(Rn)

∣

∣

∣

∣

[

(m)
φ e

−S(0)

ℏ
− ℏ

2!
S(2)+···

]

◦ µ−1(y)

∣

∣

∣

∣

2

(2.38)

×
√

det g∗∗(0) d
ny

where, in the last integral, the contribution of S(1) ◦ µ−1(y) to the wave
function

(2.39)
(m)

Ψ ◦ µ−1(y) =
(m)
φ e

−S(0)

ℏ
−S(1)−

ℏ

2!
S(2)··· ◦ µ−1(y)

has precisely cancelled the non-Cartesian measure factor
√

det g∗∗(y), leav-
ing the constant (Euclidean) factor

√

det g∗∗(0) in its place. Roughly speak-
ing therefore, this role of S(1) is to ‘flatten out’ the Sternberg coordinate
volume element, reducing it to ordinary Lebesgue measure (albeit only over
the star-shaped domain µ(Rn)), by exactly cancelling the Jacobian determi-
nant that arises from the coordinate transformation.

For the nonlinear oscillators discussed in Ref. [1], Sternberg coordinates
also have the remarkable property of allowing the leading order transport
equation for excited states to be solved in closed form. Indeed, the regular
solutions to this equation are comprised of the monomials

(2.40)
(m)
φ (0)(y) = (y1)m1(y2)m2 · · · (yn)mn

wherein, precisely as for the harmonic case, the mi are non-negative integers
with |m| :=∑n

i=1mi > 0. On the other hand the higher order corrections,
{

(m)
φ (k)(y); k = 1, 2, . . .

}

, to these excited state prefactors will not in general
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terminate at a finite order as they do for strictly harmonic oscillators but
they are nevertheless systematically computable through the sequential in-
tegration of a set of well-understood linear transport equations [1, 2]. Formal
expansions (in powers of ℏ) for the corresponding (ground and excited state)
energy eigenvalues are uniquely determined by the demand for global regu-
larity of the associated eigenfunction expansions. More precisely one finds,
upon integrating the relevant transport equation at a given order, that the
only potential breakdown of smoothness for the solution would necessarily
occur at the ‘origin’ x = 0 (chosen here to coincide with the global mini-
mum of the potential energy) but that this loss of regularity can always be
uniquely avoided by an appropriate choice of eigenvalue coefficient at the
corresponding order.

A number of explicit calculations of the eigenfunctions and eigenvalues
for a family of 1-dimensional anharmonic oscillators of quartic, sectic, oc-
tic, and dectic types were carried out in Ref. [1] and compared with the
corresponding results from conventional Rayleigh/Schrödinger perturbation
theory. To the orders considered (and, conjecturally, to all orders) our eigen-
value expansions agreed with those of Rayleigh/Schrödinger theory whereas
our wave functions, even at leading order, more accurately captured the
more-rapid-than-gaussian decay known rigorously to hold for the exact so-
lutions to these problems. For the quartic oscillator in particular our results
strongly suggested that both the ground state energy eigenvalue expansion
and its associated wave function expansion are Borel summable to yield
natural candidates for the actual exact ground state solution and its energy.

Remarkably all of the integrals involved in computing the quantum cor-
rections

{

S(1),S(2),S(3), · · ·
}

to S(0) (up to the highest order computed in [1],
namely S(25)) were expressible explicitly in terms of elementary functions for
the quartic and sectic oscillators whereas for the octic and dectic cases some
(but not all) of the quantum corrections required, in addition, hypergeomet-
ric functions for their evaluation. It seems plausible to conjecture that these
patterns persist to all orders in ℏ and thus, for the quartic and sectic4 cases
in particular, lead to formal expansions for Sℏ in terms of elementary func-
tions. The evidence supporting the conjectured Borel summability of this
formal expansion in the quartic case is discussed in detail in Section V.A.
of [1].

For the Lagrangians normally considered in classical mechanics it would
not be feasible to define their corresponding action functionals over (semi-)

4These results were subsequently extended to significantly higher orders by
P. Tang [8].
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infinite domains, as we have done, since the integrals involved, when eval-
uated on solutions to the Euler-Lagrange equations, would almost never
converge. It is only because of the special nature of our problem, with its
inverted potential energy function and associated boundary conditions, that
we could define a convergent action integral for the class of curves of interest
and use this functional to determine corresponding minimizers.

A remarkable feature of our construction, given the hypotheses of con-
vexity and coercivity imposed upon the potential energy V (x), is that it led
to a globally smooth solution to the corresponding Hamilton-Jacobi equa-
tion. Normally the solutions to a Hamilton-Jacobi equation in mechanics
fail to exist globally, even for rather elementary problems, because of the
occurrence of caustics in the associated families of solution curves. For our
problem however caustics were non-existent for the (semi-)flow generated
by the gradient of S(0)(x). The basic reason for this was the inverted po-
tential character of the forces considered which led to the development of
diverging (in the future time direction) solution curves having, in effect, uni-
formly positive Lyapunov exponents that served to prevent the occurrence
of caustics altogether.

By contrast, the more conventional approach (in the physics litera-
ture) to semi-classical methods leads instead to a standard (non-inverted-
potential-non-vanishing-energy) Hamilton-Jacobi equation for which, espe-
cially in higher dimensions, caustics are virtually unavoidable and for which,
even in their absence, a nontrivial matching of solutions across the bound-
ary separating classically allowed and classically forbidden regions must be
performed. While Maslov and others have developed elegant methods for
dealing with these complications [9] their techniques are more appropriate
in the short wavelength limit wherein wave packets of highly excited states
are evolved for finite time intervals. On the other hand our approach is aimed
at the ground and lower excited states though, in principle, it is not limited
thereto.

As we have already mentioned though, our approach is a natural vari-
ation of one that has been extensively developed in the microlocal analysis
literature but it also differs from this innovative work in fundamental ways
that are crucial for our ultimate, intended application to field theoretic prob-
lems. In the microlocal approach [2–4] one begins by analyzing the (classical,
inverted potential) dynamics locally, near an equilibrium, by appealing to
the stable manifold theorem of mechanics [10]. One then shows, by a separate
argument, that, for an equilibrium p (lying in some neighborhood U ⊂ Rn)
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the corresponding stable (W s(p) ⊂ T ∗U) and unstable (W u(p) ⊂ T ∗U) sub-
manifolds of the associated phase space T ∗U are in fact Lagrangian sub-
manifolds that can be characterized as graphs of the (positive and negative)
gradients of a smooth function ϕ : U → R:

W s(p) = {(x,p)|x ∈ U,p = ∇ϕ(x)}(2.41)

W u(p) = {(x,p)|x ∈ U,p = −∇ϕ(x)} .(2.42)

This function is shown to satisfy a certain ‘eikonal’ equation (equivalent to
our inverted-potential-vanishing-energy Hamilton-Jacobi equation restricted
to U ) and ϕ(x) itself is, of course, nothing but the (locally defined) analogue
of our action function S(0)(x). A further argument is then needed to extend
ϕ(x) to a solution globally defined on Rn.

The potential energies, V (x), dealt with in the microlocal literature of-
ten entail multiple local minima, or “wells”, for which our global convexity
and coercivity hypotheses are not appropriate. Much of the detailed analysis
therein involves a careful matching of locally defined approximate solutions
(constructed on suitable neighborhoods of each well) to yield global asymp-
totic approximations to the eigenvalues and eigenfunctions for such prob-
lems. Since, however, we are focused primarily on potential energies having
single wells (corresponding to unique classical “vacuum states”), many of
the technical features of this elegant analysis are not directly relevant to the
issues of interest herein.

For the case of a single well, however, we have essentially unified and
globalized several of the, aforementioned, local arguments, replacing them
with the integrated study of the properties of the (inverted potential) action
functional (2.11). When one turns from finite dimensional problems to field
theoretic ones [11, 12] this change of analytical strategy will be seen to play
an absolutely crucial role. For the typical (relativistic, bosonic) field theories
of interest to us in this context, the Euler-Lagrange equations for the cor-
responding, inverted potential action functionals that now arise are the Eu-
clidean signature, elliptic analogues of the Lorentzian signature, hyperbolic
field equations that one is endeavoring to quantize. While generalizations of
the aforementioned stable manifold theorem do exist for certain types of in-
finite dimensional dynamical systems, the elliptic field equations of interest
to us do not correspond to well-defined dynamical systems at all. In particu-
lar their associated Cauchy initial value problems are never well-posed. This
is the main reason, in our opinion, why the traditional microlocal methods
have not heretofore been applicable to quantum field theories.
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On the other hand the direct method of the calculus of variations is
applicable to the Euclidean signature action functionals of interest to us
here and allows one to generalize the principal arguments discussed above
to a natural infinite dimensional setting.

Before turning to such field theoretic generalizations however, we wish
to draw attention to two particular, purely quantum mechanical extensions
of the methods sketched above. The first of these entails the application
of (a suitably extended version of) the methods in question to so-called
SUSY QM or ‘supersymmetric quantum mechanics’. In SUSY QM a set of
commuting, ‘bosonic’ quantum degrees of freedom {x1, . . . , xn} is introduced
and matched by an equal number of anticommuting, ‘fermionic’ degrees
of freedom {Ψ1, . . . ,Ψn}. In terms of these a pair (in the simplest case
of so-called N = 2 supersymmetry) of self-adjoint supersymmetry ‘charge’
operators {Q1, Q2} is defined through the introduction of a ‘superpotential’
function W (x1, . . . , xn) and the Hamiltonian H for the system expressed
algebraically as a certain anticommutator of these charges. Depending upon
the choice of the superpotential such systems may exhibit either unbroken
or broken supersymmetry and thus provide simplified, finite dimensional
models for corresponding field theoretic systems.

The Schrödinger equation for such a SUSY QM system can be concretely
represented in terms of an ordinary matrix partial differential operator act-
ing upon a multicomponent, ‘spinorial’ wave function. In Ref. [13] we have
begun to investigate the applicability of the ‘microlocal’ methods sketched
above to such equations. Since fermion number is exactly conserved for such
systems the corresponding Schrödinger operator assumes a block-diagonal
form wherein each block corresponds to a fixed number of fermions which,
thanks to the Pauli exclusion principle, varies from 0 to n. The associated
Hilbert space thus includes a completely empty and a fully filled femionic
sector upon each of which the corresponding Schrödinger operator reduces to
an elementary, single component form to which the methods discussed above
are, with only slight modifications, immediately applicable. Indeed, one can
readily apply them to analyze, in depth, both the ground and excited states
for the cases of both unbroken and broken supersymmetry.

The (anti-) commutation relations satisfied by the charge operators
{Q1, Q2} and the Hamiltonian allow one to relate, to some extent, the
eigenstates and eigenvalues corresponding to different fermionic subspaces
of the full Hilbert space by, roughly speaking, using Q† = 1/2(Q1 − iQ2)
and Q = 1/2(Q1 + iQ2) as (fermion number) raising and lowering opera-
tors. However, the nilpotency of these SUSY charges prevents one, when
n > 2, from generating all of the eigenvalues and eigenstates through the
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actions of Q† and Q on the fermion vacuum and fermion-filled eigenspaces.
Thus for such higher dimensional problems one must address directly the so-
lution of nontrivial matrix Schrödinger eigenvalue problems. Since our anal-
ysis of these multicomponent problems is not yet complete we shall only re-
mark here that, in the corresponding, ‘microlocal’ approach to their solution,
the fundamental solution S(0)(x) to the inverted-potential-vanishing-energy
‘Hamilton-Jacobi’ equation (2.5) continues to play a key role but must now
be supplemented with the solution of a sequence of multi-component, lin-
ear transport equations integrated along the (semi-) flow generated by the
fundamental solution S(0).

Though these SUSY QM problems are only rough models for their
field theoretic analogues they represent our first excursion into the realm
of fermionic degrees of freedom wherein, for us at least, the main open ques-
tion is whether our (Euclidean-signature-semi-classical) methods can indeed
be applied to genuine fermionic field theories.

The second quantum mechanical extension of the microlocal semi-
classical methods that we wish to mention is that to a problem in ‘quantum
cosmology’ — namely the problem of solving the relevant Wheeler-DeWitt
equation for spatially homogeneous, Bianchi type IX (or ‘Mixmaster’) uni-
verses. Though the (partial differential) Wheeler-DeWitt equation for this
model problem was first formulated nearly a half century ago, techniques for
its solution that bring to light the discrete, quantized character naturally to
be expected for its solution, have only recently been developed. In particu-
lar the microlocal analytical methods that we have already sketched for the
study of conventional Schrödinger operators can be modified in such a way
as to apply to this equation [14, 15].

That some essential modification of the microlocal methods is needed
for the analysis of this equation is evident from the fact that the Wheeler-
DeWitt equation does not define an eigenvalue problem, in the conventional
sense, at all. For spatially closed universe models, such as those of Mixmas-
ter type, all of the would-be eigenvalues of the Wheeler-DeWitt operator,
whether for ‘ground’ or ‘excited’ quantum states are required to vanish iden-
tically. But a crucial feature of standard microlocal methods, when applied
to conventional Schrödinger eigenvalue problems, exploits the flexibility to
adjust the eigenvalues being generated, order-by-order in an expansion in
Planck’s constant, to ensure the global smoothness of the eigenfunctions,
being constructed in parallel, at the corresponding order. But if, as in the
Wheeler-DeWitt problem, there are no eigenvalues to adjust, wherein lies
the flexibility needed to ensure the required smoothness of the hypothetical
eigenfunctions? And, by the same token, where are the ‘quantum numbers’
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that one would normally expect to have at hand to label the distinct quan-
tum states? Remarkably however, as was shown in detail in Refs. [14, 15],
the scope of microlocal methods can indeed, in spite of this apparent im-
passe, be broadened to provide creditable, aesthetically appealing answers
to the questions raised above.

While it is far from clear whether such methods could ever be further gen-
eralized to apply to the field theoretic Wheeler-DeWitt operator of (formal)
canonical quantum gravity, a sketch of how that might be carried out (in a
Euclidean-signature semi-classical expansion) by appealing to the ‘positive
action theorem’ is given in the concluding section of Ref. [14] and reviewed
in Section 3.4 below. In particular, we draw attention there to several re-
markably attractive features of such an approach and show how it avoids
some of the serious complications that obstructed progress on the, somewhat
similar-in-spirit, Euclidean-path-integral approach to quantum gravity.

3. Modified semi-classical methods for bosonic fields

3.1. An application to polynomial scalar field theories

For technical reasons, the elegant ‘microlocal’ methods developed in the past
for the analysis of conventional Schrödinger eigenvalue problems, have not
heretofore been applicable to quantum field theories. In this section we de-
scribe a ‘Euclidean signature semi-classical’ program to extend the scope of
these analytical techniques to encompass the study of self-interacting (mas-
sive) scalar fields with polynomial renormalizable self-interaction in 1 + 1,
2 + 1 and 3 + 1 dimensions. The basic microlocal approach entails the so-
lution of a single, nonlinear equation of Hamilton-Jacobi type followed by
the integration (for both ground and excited states) of a sequence of lin-
ear ‘transport’ equations along the ‘flow’ generated by the ‘fundamental
solution’. As for the finite-dimensional problems described in the previous
section, the authors’ approach naturally splits into a single nonlinear, but
essentially ‘classical’ problem (the solution of the basic inverted-potential-
vanishing-energy Hamilton-Jacobi equation) and a sequence of linear calcu-
lations of quantum corrections.

In this section, we apply our method to suitable polynomial field theo-
ries and establish existence, uniqueness and global regularity for a globally
defined ‘fundamental solution’ of the Hamilton-Jacobi equation mentioned
above, via an application of the direct method of the calculus of variations,
elliptic theory and a Banach space version of the implicit function theorem.
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In particular, such polynomial field theories include the cases of Φ4 scalar
fields in 4-dimensional Minkowski spacetime, Φp fields with exponents p = 4,
and 6 in 3-dimensional Minkowski space, and with p an arbitrary, positive
even integer greater than 2 in 2-dimensional Minkowski space.

For each case, global existence and smoothness (in a suitable func-
tion space setting) of the relevant Hamilton-Jacobi functional, S(0)[φ] is
proven and it is discussed how our tree approximation for these ground
state wave functionals captures the more-rapid-than-gaussian decay that
should hold for the exact solutions. Since, in our setup, the squared mod-
ulus of the ground state wave functional provides the natural integration
measure for the associated Hilbert space of quantum states, it seems en-
couraging that our approach exhibits this non-Fock-like behavior already
at leading order. By contrast note that, to any finite order, conventional
Rayleigh/Schrödinger theory would generate instead an approximate wave
functional that decays more slowly than the corresponding gaussian. Be-
cause our techniques, even when applied to quantum mechanics problems,
do not simply reproduce the standard results of Rayleigh/Schrödinger per-
turbation theory, we expect that one should be able to generate much more
accurate approximations to the Hilbert space of quantum states for certain
quantized fields.

Although in this section we only deal with the aforementioned funda-
mental solutions, the fields considered are rigorously proven to be non-trivial
in lower dimensions; [16–20]. On the contrary, Φ4 fields in 4 dimensions are
often believed (though still not rigorously proven [21, 22]) to renormalize to
(trivial) free fields. If such a conclusion were proven to be correct, it would
only emerge at the level of the higher order quantum, ‘loop’ corrections, be-
cause the necessity to regularize otherwise ill-defined functional Laplacians
only arises in our approach at the level of the transport equations for these
higher order corrections. The study of the higher order, ‘loop’ corrections,
for both ground and excited states, is work currently in progress.

The formal Schrödinger operator we consider for a scalar field in n+ 1
dimensions, with n = 1, 2, or 3, is

(3.1) Ĥ =

∫

Rn

{

−ℏ2

2

δ2

δφ2(x′)
+

1

2
∇′φ(x′) · ∇′φ(x′) + P(φ(x′))

}

dx′ ,

in which x′ ∈ Rn, ∇′ is the ‘spatial’ gradient on Rn, and the self-interaction
polynomial P(·) ≡∑k

j=2 aj(·)j is assumed to be convex, to possess no linear
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term, to include a ‘mass’ term, a2 > 0, and to be of even degree k, with

(3.2) k ≤ 2d

d− 2
≡ 2n+ 2

n− 1
if n = 2, 3 ,

in which d ≡ n+ 1 is the dimension of the domain. The number 2d/(d− 2)
above is the critical exponent for the elliptic theory applied to the Euclidean
signature action functional

Ies[Φ] ≡
∫

Rn

∫ 0

−∞

{

1/2 (∂tΦ)
2 + 1/2 |∇′Φ|2 + P(Φ)

}

dt dx′(3.3)

≡
∫

R−×Rn

( |∇Φ|2
2

+ P(Φ)

)

dx ,

which is guaranteed to be coercive by the hypotheses imposed upon P.
(These assumptions are satisfied by the ‘massive’ Φ4 theory, for which
P(Φ) = 1/2m2Φ2 + λΦ4 with λ,m2 > 0.)

The functional Laplacian, formally defined as ‘trace of the Hessian’, will
require some ‘regularization’ in order to be well-defined on the (wave) func-
tionals of interest; in fact, although the Hessians of the latter functionals
will be smooth, they need not be of trace class. The needed regulariza-
tion however would not affect the determination of the ‘fundamental solu-
tion’, S(0)[φ(·)], to the Euclidean signature-vanishing-energy variant of the
Hamilton-Jacobi equation,

(3.4)

∫

Rn

(

1

2

δS(0)

δφ(x′)

δS(0)

δφ(x′)
− 1

2
∇′φ(x′) · ∇′φ(x′)− P(φ(x′))

)

dx′ = 0 ,

that arises at lowest order from substituting our ansatz

(3.5)
(0)

Ψℏ[φ(·)] = Nℏ e
−Sℏ[φ(·)]/ℏ

for the ground state wave functional into the Schrödinger equation

(3.6) Ĥ
(0)

Ψℏ =
(0)

Eℏ

(0)

Ψℏ

and demanding that the latter hold order-by-order in powers of ℏ relative
to the formal expansions

Sℏ[φ(·)] ≃ S(0)[φ(·)] + ℏS(1)[φ(·)] +
ℏ2

2!
S(2)[φ(·)](3.7)

+ · · ·+ ℏk

k!
S(k)[φ(·)] + · · ·
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and

(3.8)
(0)

Eℏ ≃ ℏ

(

(0)

E(0) + ℏ
(0)

E(1) +
ℏ2

2!

(0)

E(2) + · · ·+ ℏk

k!

(0)

E(k) + · · ·
)

.

In the formulas above φ(·) denotes a real-valued distribution on Rn, bound-
ary data for a real spacetime scalar field Φ defined on (−∞, 0]× Rn.

As for the finite-dimensional problem described in Section 2, a ‘fun-
damental solution’ to Eq. (3.4) is constructed by proving the existence of
unique minimizers Φφ for the Euclidean signature action functional (3.3) for
arbitrary boundary data φ specified at t = 0, and setting

(3.9) S[φ] ≡ S(0)[φ] = Ies[Φφ] = inf
Φ∈A(φ)

Ies[Φ] .

The minimization procedure is carried out for Φ in the space of distributions

(3.10) A(φ) ≡ {Φ ∈ H1(R
− × R

n) : Φ = φ at {0} × R
n },

for fixed arbitrary

φ ∈ B ≡ {φ = tr φ̃ , with φ̃ ∈ H3/2(R
− × R

n)} ≃ H1({0} × R
n).

The latter isomorphism of spaces holds because the trace maps, tr :
Wk;p(R

− × Rn)→Wk−1/p;p({0} × Rn), are surjective if k>1/p; cf. Theorem
7.58 in [23]. In particular, one may choose an extension φ̃ which is smooth
in the interior; cf. Lemma 5.1 in [11]. 5

Coerciveness, weak lower sequential semicontinuity, and strict convex-
ity of Ies on A(φ) (cf. Theorem 1.1.3 of Ref. [24], and Chapter 3 of [11])
guarantee existence and uniqueness for the absolute minimizer Φφ; [11].
Uniqueness of the absolute minimizer, although not necessary to guarantee

5The above choice of the space of boundary data B, although not the natural
one for a minimization procedure taking place in H1(R

− × R
n), is required for the

Hamilton-Jacobi equation to hold strongly, besides being instrumental to imple-
menting the first step in the regularity theory, and constitutes a non-substantial
restriction. Weakening the requirement on the boundary space B, for example by
imposing the boundary data to be in H1/2({0} × R

n), would not in substance yield
a stronger theorem. In that case in fact, the absolute minimizer for Ies would then
be in H1(R

− × R
n) rather than in H3/2(R

− × R
n), and the Hamilton-Jacobi equa-

tions would not hold strongly. An analogous remark can be made for the case of
the Dirichlet problem for Yang-Mills connections analyzed in the next section.
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that S(0)[φ] be well-defined, is required for ‘everywhere’ differentiability of
S(0) with respect to the boundary data to hold.6

A candidate for the tree approximation to the ground state wave func-
tional for the P(Φ) theory is the functional

(3.11) Ω0(φ) ≡ N e−S(0)[φ]/ℏ ,

in which N is a normalization constant.

The weak Dirichlet problem satisfied by the absolute minimizer.

With regard to existence and regularity for the elliptic theory associated to
the functional Ies via the calculus of variations, in [11] the authors follow the
essential lines of the classical references [25, 26], with some perhaps minor
modifications of those. Here, we highlight the general outline and the main
differences in comparison to the classical literature. We start by providing
fundamental definitions based on the standard theory of the calculus of
variations. Once these well-founded definitions are established and acquired,
one can develop the resulting theory, with no need for repetitive reproduction
of those in each specific context. What perhaps may well be simply a slight
shift in the philosophical approach to boundary value problems, affects the
coherence and elegance of the theory and, in some instances, its content.

With that in mind, we define a weakly differentiable function Φ to be a
weak solution to the Dirichlet Problem

(3.12) (D ′)

{

∆Φ = f on R− × Rn

Φ ∈ A(φ) ,

with f prescribed in H−1(R
− × Rn), the topological dual space of A(0),

and φ prescribed in H1/2({0} × Rn), if and only if
(3.13)

Φ ∈ A(φ) and

∫

R−×Rn

∇Φ · ∇ω dx+

∫

R−×Rn

f ω dx = 0 ∀ω ∈ A∞
c (0) ,

with

(3.14) A∞
c (0) ≡ {ω ∈ C∞

c ((−∞, 0]× R
n) : ω = 0 at {0} × R

n} .

6In the next section we will argue for the case of Yang-Mills connections that non-
uniqueness is an obstruction to everywhere differentiability for the suitable analogue
of S(0); with regard to this, see also the discussion under the title “Smoothness of
the Hamilton-Jacobi functional” further below in the present section.
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In comparison with Ref. [25], notice that here we do not assume the bound-
ary value and its extension to the interior to be C∞, in replacement, we elect
to prescribe φ ∈ H1/2({0} × Rn); further, we assume f ∈ H−1({0} × Rn), in
replacement of the assumption f ∈ L2({0} × Rn).

Because the space A∞
c (0) is dense in A(0) (just as C∞

c (Rn) is dense in
H1(R

n), yielding H1(R
n) ≡ H1;0(R

n)), when (3.13) is satisfied, it applies
also to all ω ∈ A(0).

Definition (3.12) implicitly defines the weak Dirichlet Laplacian on A(φ)
through the identification ∆Φ ≃

∫

R−×Rn −∇Φ · ∇(·) dx (that is, we regard
∆Φ, for each Φ ∈ A(φ), as an element of H−1(R

− × Rn)).

In analogy, we define a weakly differentiable function Φ to be a weak solution
to the nonlinear Dirichlet Problem

(3.15) (D ′′)

{

ΛΦ ≡ −∆Φ+Q(Φ) = 0 on R− × Rn

Φ ∈ A(φ) ,

in which Q is a given nonlinear function of a single variable, such that
Q(Φ) ∈ H−1(R

− × Rn), and with φ prescribed in H1/2({0} × Rn), if and
only if

(3.16) Φ ∈ A(φ), and

∫

R−×Rn

(∇Φ · ∇ω +Q(Φ)ω) dx = 0 ∀ω ∈ A∞
c (0)

In the definition above, Λ ≡ −∆+Q(·) is a nonlinear differential operator
with image in H−1(R

− × Rn), namely,

Λ : A(φ) → H−1(R
− × R

n)

Φ 7→ ΛΦ ≡ −∆Φ+Q(Φ) ≃
∫

R−×Rn

(

∇Φ · ∇(·) +Q(Φ)(·)
)

dx .(3.17)

In the context of the polynomial theory under study, we set Q ≡ P ′. In fact,
the conditions imposed on P described in the current section guarantee that

∥ΛΦ∥H−1(R−×Rn) ≡ sup
ω∈A(0)

|ΛΦ(ω)|
∥ω∥H1(R−×Rn)

(3.18)

≤ C max
{

∥Φ∥H1(R−×Rn), ∥Φ∥k−1
H1(R−×Rn)

}

,

for some constant C independent of Φ, thus ΛΦ is a continuous linear oper-
ator on A(0).
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In wide generality, given a differentiable function of a real variable P, sat-
isfying P ′(Φ) ∈ H−1(R

− × Rn) for all Φ ∈ A(φ), setting Q(Φ) ≡ P ′(Φ) in
(3.15), one can show that if the functional

J [Φ] ≡
∫

R−×Rn

(∇Φ · ∇Φ+ P(Φ)) dx

possesses a stationary point Φ ∈ A(φ), such Φ would also be a weak solu-
tion to the nonlinear Dirichlet problem (3.15), and vice versa (by a density
argument).

In fact, for Φ ∈ A(φ), ω ∈ A(0), one has

DJ [Φ](ω) ≡ lim
λ→0

1

λ

{
∫

R−×Rn

(∇(Φ + λω) · ∇(Φ + λω) + P(Φ + λω)) dx

−
∫

R−×Rn

(∇Φ · ∇Φ+ P(Φ)) dx

}

=

∫

R−×Rn

(

∇Φ · ∇ω + P ′(Φ)ω
)

dx ;(3.19)

thus, Φ ∈ A(φ) is a stationary point of J [Φ] if and only if it satisfies
∫

R−×Rn

(

∇Φ · ∇ω + P ′(Φ)ω
)

dx = 0 ∀ω ∈ A(0), or, by definition, if it satis-
fies the weak Euler-Lagrange equations in (3.15), with Q substituted by P ′.

In the context of the polynomial theory under study, P(·) is a polynomial
satisfying conditions which guarantee the existence of a unique (absolute)
minimizer of J = Ies on A(φ), with prescribed boundary value φ ∈ B, and
such a minimizer is also its unique stationary point, that is, the (unique)
weak solution to the Euler-Lagrange equations contained in (3.15), with Q
substituted by P ′.

Elliptic regularity and global control. Having ascertained that the
unique absolute minimizer of Ies over A(φ), with prescribed φ ∈ B, satisfies
weakly the nonlinear Dirichlet Problem

(3.20)

{

ΛΦ ≡ −∆Φ+ P ′(Φ) = 0 on R− × Rn

Φ ∈ A(φ) ,

one wants to obtain interior regularity of Φ, as well as a certain degree of
boundary regularity and integrability, and a global estimate over the un-
bounded domain R− × Rn (cf. Theorem 3.1 below), by means of bootstrap-
ping and elliptic estimates. All proofs are more elementary in the subcritical
cases, i.e. for which the degree of P is strictly less than the critical expo-
nent, and for polynomials of any degree in 2 dimensions (cf. (3.2)). In fact, in
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subcritical cases, one can exploit the existence theory, freeze the polynomial
term and replace the weak nonlinear Dirichlet problem (3.20) by the linear
Dirichlet problem (3.12) with f ≡ −P ′. In the critical cases instead, because
no improvement would be obtained at the first step of the bootstrapping for
(3.12) with f ≡ −P ′, one needs to implement a special initial step which, by
exploiting the existence theory, replaces system (3.20) by the homogeneous
linear system

(3.21)

{

ΛΦu ≡ −∆u+ g(Φ)u = 0 on R− × Rn

u ∈ A(φ) ,

with prescribed φ ∈ B and g(Φ) ≡ P ′(Φ)/Φ ∈ L
d/2
loc (R

− × Rn). The solution
Φ ∈ H1(R

− × Rn) to (3.20) satisfies by construction the linear Dirichlet-
type problem (3.21), the latter having been derived by freezing the coef-

ficient g(Φ). The estimate g(Φ) ∈ L
d/2
loc (R

− × Rn) comes from the embed-
dings H1(R

− × Rn) ⊂ L2d/(d−2)(R− × Rn), and Lp(Ω) ⊂ Lq(Ω), for p ≥ q,
on bounded domains Ω.

System (3.21) still presents itself as ‘borderline’, thus requires a non-
straightforward technique. Its regularity is accomplished in [11] by applying
a ‘regularity lifting method by means of a contracting operator’ 7. For the
method of contracting operator and more details on its adaptation to the
context at hand, see [11, 28].

At various stages of the proof of regularity, additional difficulties arise,
due to the non-triviality of the boundary data φ prescribed at {0} × Rn, and
to the unboundedness of the domain R− × Rn. In fact, the regularity lifting
method, as described in [28], directly applies only to linear Dirichlet-type
problems with prescribed vanishing boundary data on bounded domains
Ω. Further work is also required because, in the context of the Euclidean-
signature semi-classical program under study, we are interested in establish-
ing global control of the solution over the unbounded domain R− × Rn (and
over the slices {t} × Rn).

Boundary issues are dealt with by reflection of operators and associated
function spaces across the boundary, and introduction of cut-off functions, in

7Regularity of (3.21) could also have been accomplished by an alternate method,
perhaps unknown or scarcely utilized outside the field of geometric analysis, based
on the regularity theory as developed several years earlier by one of the authors in
the context of Yang-Mills connections; cf. [27] and the ‘Acknowledgements’ section
in the present article. This is one of some instances in which techniques developed in
gauge theories anticipate methods later established and formally codified in classical
analysis contexts.
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a suitable way, thus transforming Dirichlet-type problems on boundary-type
neighborhoods like

(3.22) UR ≡ {x = (x0,x′) ∈ (−∞, 0]× R
n : ∥x− a∥ < R} ,

in which a = (0, a1, a2, a3) is a fixed boundary point, and R a positive num-
ber, into Dirichlet-type problems on balls

Ba;R ≡ {x ∈ R
d : ∥x− a∥ < R} ,

with homogeneous boundary data. The doubling technique may involve tech-
nicalities. In our context, because R− × Rn is endowed with a Euclidean
metric, the resulting doubled boundary-type neighborhoods are flat, while
in more general cases, the latter would possess a Lipschitz-bounded metric;
cf. for example, [12, 27].

To implement the procedure, we first extend the boundary value φ ∈ B

to the unique solution φ̂ to

(3.23)

{

∆u = 0 on R− × Rn

u ∈ A(φ) .

Such φ̂ is proven to satisfy the global estimate φ̂ ∈ H3/2(R
− × Rn), besides

the regularity property φ̂ ∈ C∞(R− × Rn), and for boundary data φ specified
in B ∩ C∞({0} × Rn), to satisfy φ̂ ∈ C∞((−∞, 0]× Rn), that is, smoothness
up to and including the boundary; for the technical details, we refer the
reader to Lemma 5.1 in [11].

Due to technicalities pertaining to unbounded domains8, to the purpose
of establishing a global estimate for Φ, we also consider the extension ΦL,

8 These arise due to the additional constraints on the Sobolev exponents re-
quired for Sobolev embeddings to hold on unbounded domains; namely, on un-
bounded domains Ωu having the cone property, in dimension d > hq, the em-
beddings Lq

h(Ωu) ⊂ Lp(Ωu) require the additional hypothesis q ≤ p (besides the
hypotheses h/d+ 1/p− 1/q ≥ 0, p, q ≥ 1, h ≥ 0, required on bounded domains);
cf. Theorems 7.57, 7.58 in [23]. In the proof of Theorem 3.1, we use repeatedly
the embeddings H1(R

− × R
n) ⊂ Lp(R− × R

n) ∀p ∈ [2, 2d/(d− 2)] for d ≥ 3, and
∀p ≥ 2 for d = 2
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unique solution to

(3.24) (L)

{

ΛLu ≡ −∆u+ 2a2u = 0 on R− × Rn

u ∈ A(φ) .

The same results hold for ΦL as obtained for φ̂, thus both those functions
are smooth in the interior and satisfy the best possible global estimate on
R− × Rn; cf. Lemma 5.3 in [11].

After performing the various steps of what presents itself as a some-
what laborious and at times technical procedure, one ultimately obtains the
regularity theorem below (Theorem 5.1 in [11]).

Theorem 3.1. Let Φ be a solution to (3.20) with prescribed boundary value
φ ∈ B, in dimension n+ 1 ≡ d = 2, 3, or 4. Let φ̂ ∈ H1(R

− × Rn) be the
extension of φ satisfying Laplace’s equation ∆φ̂ = 0 on R− × Rn, ΦL be
the extension of φ satisfying the linearized problem (3.24). Then φ̂,ΦL,Φ ∈
H3/2(R

− × Rn) ∩ C∞(R− × Rn). If, in addition, the boundary value φ ∈
C∞({0} × Rn), then Φ ∈ H3/2(R

− × Rn) ∩ C∞ ((−∞, 0]× Rn), that is, Φ is
smooth all the way up to and including the boundary.

Thus, also Φ, unique solution to the non-linear problem (3.20), and
unique minimizer of Ies over the space A(φ), satisfies interior regularity
and the best possible global estimate attainable on R− × Rn.

In order to implement the initial step to interior regularity, with focus
on the critical cases, one shows that αΦ, with α a suitable cut-off function
centered at a point a ∈ R− × Rn, is a solution to

(3.25)

{

ΛΦu ≡ −∆u+ g(Φ)u = f1 on R− × Rn

u ∈ H1;0(Ba;R) ,

with g(Φ) ∈ Ld/2(Ba;R), f1 ≡ −2∇Φ · ∇α− Φ∆α ∈ L2(Ba;R).
Using L2(Ba;R) ⊂ Ld/2(Ba;R) in d = 3, or 4 dimensions, the regularity

lifting theorems, Theorems 3.3.1 and 3.3.2 of Ref. [28] can then be applied
directly, with no adaptations needed, yielding αΦ in Lp(Ba;R) for all p > 1.
Thus, Φ ∈ Lp(Ba;R1

) for all p > 1, for 0 < R1 < R.
Then, bootstrapping on systems such as

(3.26)

{

−∆u = f2 on R− × Rn

u ∈ H1;0(Ba;R1
) ,
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in which f2 ≡ −α2 P ′(Φ) + f1(Φ) ∈ L2(R− × Rn) (using P ′(Φ) ∈ Lp(Ba;R1
)

∀p > 1 and f1(Φ) ∈ L2(R− × Rn)), will yield Φ ∈ C∞(R− × Rn), because the
point a ∈ R− × Rn was arbitrarily chosen.

The initial step to boundary regularity, still with focus on the critical
cases, is not so straightforward. One first observes that the function Φ− φ̂ is
a weak solution to the Dirichlet problem with homogeneous boundary data,

(3.27)

{

ΛΦu ≡ −∆u+ g(Φ)u = −g(Φ)φ̂ on R− × Rn

u ∈ A(0) ,

with g(Φ) ∈ L
d/2
loc (R

− × Rn) in dimension 3 and 4, and φ̂ ∈ H3/2(R
− × Rn) ⊂

Lp(R− × Rn) for all 2 ≤ p ≤ 2d/d− 3 in dimension d > 3, and for all p ≥ 2

in dimension d = 3. By Hölder’s inequality, g(Φ)φ̂ ∈ L
2d/(d+1)
loc (R− × Rn) if

d > 3, whereas for the three-dimensional case g(Φ)φ̂ ∈ Lploc(R
− × R2) ∀p <

3/2. If the boundary value φ is further assumed to be smooth, one has

φ̂ ∈ L∞
loc(R

− × Rn), thus g(Φ)φ̂ ∈ L
d/2
loc (R

− × Rn) in d ≥ 3 dimensions.
System (3.27) reflected across the boundary yields

(3.28) Λ̃Φu ≡ −∆u+ g(Φ)u = ř on R
d ,

in which g(Φ) is the even extension of g(Φ) and ř is the odd extension of
−g(Φ)φ̂. Because even and odd extensions both preserve membership in

Lp, g(Φ) ∈ L
d/2
loc (R

d), and ř ∈ L
2d/(d+1)
loc (Rd) if d > 3, ř ∈ Lp(R3) ∀p < 3/2 if

d = 3.
The function Φ̌, defined as the odd extension of Φ− φ̂, is then a weak

solution in H1(R
d) to Eq. (3.28).

Let then a = (0, a1, a2, a3) be a fixed boundary point, UR a boundary-
type neighborhood as defined in (3.22), Ba;R its double, and α a smooth
cut-off function, compactly supported in Ba;R, with value 1 on Ba;R1

, with
0 < R1 < R. Then,

(3.29) Λ̃Φ(αΦ̌) = αΛ̃Φ(Φ̌) + Lα(Φ̌) = αř + Lα(Φ̌) ≡ h1 ,

in which Lα(Φ̌) ≡ −2∇(Φ̌) · ∇α− (Φ̌)∆α is a lower order linear differential
operator with smooth coefficients determined by the cut-off α, applied to

Φ̌. In d > 3 dimensions then, ř ∈ L
2d/(d+1)
loc (Rd), and Lα1

(Φ̌) ∈ L2(Ba;R) ⊂
L2d/(d+1)(Ba;R). Thus, h1 ∈ L2d/(d+1)(Rd) in d > 3 dimensions (because α is
supported in Ba;R); in particular, in 4 dimensions h1 ∈ L8/5(R4). A similar
analysis yields h1 ∈ Lp(R3) ∀p < 3/2 in d = 3 dimensions. In conclusion,
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α1Φ̌ solves the linear system

(3.30)

{

Λ̃Φu ≡ −∆u+ g(Φ)u = h1 on Rd

u ∈ H1;0(Ba;R) .

with coefficients g(Φ) ∈ L
d/2
loc (R

d), h1 ∈ L2d/(d+1)(Rd) in d = n+ 1 > 3 di-
mensions, h1 ∈ Lp(R3) ∀p < 3/2 in d = n+ 1 = 3 dimensions.

Unfortunately, in dimensions d > 3, the term ř, odd extension across
{0} × Rn of Φ− φ̂, accounts for the lesser regularity of the right hand side
in (3.30), which now no longer satisfies the hypothesis satisfied by its coun-
terpart f1, namely, f1 ∈ L2(Ba;R) ⊂ Ld/2(Ba;R) in dimensions 3 and 4, in
System (3.25), utilized for the proof of interior regularity. The latter hy-
pothesis is explicitly formulated, and required, in Theorem 3.3.2 of Ref. [28].
The need to work with lesser regularity would often arise when studying
boundary regularity for Dirichlet-type problems such as (3.21) in which
non-vanishing boundary data in a border-line case are prescribed, and it
seems worthwhile to extend the regularity lifting theorem to include those
boundary cases. That is the purpose of the following lemma.

Lemma 3.1. Regularity Lifting Theorem. Let u be a solution to the Dirich-
let problem with homogeneous boundary data

(3.31) −∆u = a(x)u+ b(x) , u ∈ H1;0(Ω) ,

on a smooth bounded domain Ω in d > 2 dimensions, a ∈ L
d

2 (Ω) and b ∈
L

2d

d+1 (Ω) if d > 3, b ∈ Lp(Ω) ∀p < 3/2 if d = 3. Then u ∈ L2d/d−3(Ω) in d >
3 dimensions; u ∈ Lp(Ω) ∀p ∈ (1,∞) in 3 dimensions.

The corresponding hypotheses in Theorem 3.3.2 of Ref. [28] are a(x) ∈
L

d

2 (Ω), and b(x) ∈ L
d

2 (Ω), d > 2. Because, in all dimensions d > 3, L
d

2 (Ω) ⊂
L

2d

d+1 (Ω) on bounded domains Ω, our hypotheses on the coefficient b are
weaker in all dimensions d > 2 (and they become comparatively even more
so as the dimension increases); in dimension 3 our hypothesis on a is weaker
as well.

The proof of Lemma 3.1 is based, as that of Theorem 3.3.2 in [28], on
decomposing the domain Ω in the two subdomains

ΩA ≡ {x ∈ Ω : |a(x)| ≥ A} , and ΩB ≡ (ΩA)
c ,
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for A a positive fixed constant. Note that the measure of ΩA satisfies

(3.32) lim
A→∞

m(ΩA) → 0 .

Applying T ≡ (−∆)−1, Eq.(3.31) becomes

u = T (aXAu) + T (aXBu) + T (b) ,

in which XA, XB are the characteristic functions of ΩA, and ΩB. As in Ref.
[28], one can show that, if A is a sufficiently large constant, the operator
T (aXA·) : Lp(Ω) → Lp(Ω) is a contracting operator ∀p ∈ ( d

d−2 ,∞), making
use of the asymptotic behavior (3.32). There are only minor changes, in
comparison with Ref. [28], in the procedure to estimate the term T (aXBu),
yielding

∥T (aXBu)∥p ≤ C∥u∥2;1 <∞ , ∀p ∈
(

d

d− 2
,∞
)

; 3 ≤ d ≤ 6 .

In d > 3 dimensions, our weaker hypothesis b ∈ L
2d

d+1 (Ω) yields the es-

timate T (b) ∈ Lp for p ∈
(

d
d−2 ,

2d
d−3

]

which constitutes a first improvement

in all dimensions d > 3, as L2d/d−3(Ω) ⊂ L2d/d+1(Ω) for d > 3. Such upper
constraint on the Sobolev exponent p is not present in Ref. [28]. Neverthe-
less, despite this limitation, a first improvement is all that is needed in a
variety of cases, analogous to ours, in which the non-homogeneous term b
depends on the solution Φ to a non-linear system related to (3.27), and one
can feed that initial improvement obtained for u into the term b and iterate.
Thus, Lemma 3.1 may be instrumental to a somewhat general extent, if one
wishes to achieve boundary regularity by our doubling technique, that is,
by transforming a Dirichlet-type problem with non-homogeneous boundary
data on a boundary-type neighborhood, into an interior neighborhood with
a (possibly) Lipschitz-bounded metric and homogeneous boundary data. (In
our specific context, recall that b is the sum of the odd extension of −g(Φ)φ̂
with −2∇(Φ̌) · ∇α− (Φ̌)∆α, derived from (3.27) and (3.29).)

Note also that, for applications to boundary value problems, one can
further weaken the requirements on the term b, as long as those are still
sufficient to guarantee a first improvement in the regularity of u; a sensible

hypothesis is b ∈ L
2d/(d−1)
−1 (Ω), on bounded domains Ω; cf. Ref. [29].

Having established Lemma 3.1, a repeated application of doubling tech-
niques, and procedures conceptually similar to those applied so far, yield the
results stated in Theorem 3.1; cf. [11] for technical details, in particular with
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regard to the proof of higher order regularity. In the latter reference, we show
at an early step that Φ̃ ≡ Φ− φ̂ satisfies Φ̃ ∈ C1((−∞, 0]× R2) in 3 dimen-
sions, while Φ̃ ∈ C0((−∞, 0]× R3) in 4 dimensions, for general prescribed
boundary data in φ ∈ B. If the boundary value satisfies φ ∈ C∞({0} × R2),
by differentiating the auxiliary equations satisfied by Φ̃, obtained in [11],
at first with respect to tangential derivatives, then relating those to normal
derivatives, we eventually obtain Φ̃ and Φ in C∞((−∞, 0]× Rd).

To the purpose of establishing global control of Φ over the unbounded do-
main R− × Rn, having already proved, besides interior regularity, the global
estimates φ̂,ΦL ∈ H3/2(R

− × Rn), for φ̂ a solution to System (3.23), and ΦL
a solution to System (3.24), one wishes to prove that the conditions imposed
on the coefficients of the polynomial P are sufficient to yield an analogous
global estimate for the solution Φ to the Dirichlet problem (3.20) in dimen-
sion 2 ≤ d ≡ n+ 1 ≤ 4. On unbounded domains, a mild complication arises
(cf. footnote 8). The coefficients appearing in System (3.27) belong only lo-
cally to certain Sobolev spaces; that is because their various summands fail
to lie in Lp(R− × Rn) for any shared value p. That issue can be easily cir-
cumvented in our case. In fact, replacing −∆ with ΛL, allows one to rewrite
System (3.20) as

(3.33)

{

ΛLΦ+R(Φ) = 0 on R− × Rn

Φ ∈ A(φ) ,

in which the polynomial R no longer contains the lower degree term in P ′.
Replacing φ̂ by ΦL, one derives that Φ− ΦL satisfies

(3.34) ΛLu+ g1(Φ;ΦL)u = r1(Φ;ΦL) ,

in which g1 ∈ Ld/2(R− × Rn), r1 ∈ L2d/d+1(R− × Rn). This leads, by dou-
bling, to the study of regularity for systems

(3.35)

{

ΛLΦ+ a(x) = b(x) on Ωu

u ∈ H1;0(Ωu) ,

with a ∈ Ld/2(Ωu), b ∈ L2d/d+1(Ωu), Ωu ⊂ Rd a smooth unbounded domain.
Notice thatH1;0(R

d) ≡ H1(R
d), and a cutoff function need not be introduced

for the case at hand. To the purpose of establishing global control, the
cases d ≡ n+ 1 = 4, d = 3, and d = 2 are treated separately in [11]. One
ultimately obtains the following
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Lemma 3.2. (Lemma 5.4 in [11]) The unique solutions Φ of the non-linear
Dirichlet problems (3.20) satisfy the global control estimate

Φ ∈ H3/2(R
− × R

n).

The proof relies on an extension to unbounded domains of the regular-
ity lifting method previously shown. Such extension relies on constructing
contracting operators

T1(aXA·) : Hk(Ωu) → Hk+2(Ωu) ;

here, XA is the characteristic function on ΩA, the definition of which, adapted
to the unbounded domain case, is

ΩA ≡ {x ∈ Ω : |a(x)| ≥ A , |x| > A} ,

for A a positive fixed constant, and T1 is the solution operator for

(3.36)

{

ΛLu ≡ −∆u+ 2a2u = f on Ωu

u ∈ H1(Ωu) .

Applying T1 to

ΛL + ḡ1u = ř1 ,

obtained by taking suitable extensions across {0} × Rn of the coefficients in
Eq. (3.34), one obtains that the odd extension, Φ̌1, of Φ− ΦL satisfies

(3.37) u = T1(−g1XAu) + T1(−g1XBu) + T1(ř1) .

One has that T1(−g1XB(Φ̌1)) ∈ H3(R
d), T1(ř1) ∈ L

2d/d+1
2 (Rd) ⊂ H3/2(R

d),
and that

(3.38) T1(−g1XA·) : H3/2(R
d) → H3/2(R

d)

is a contracting operator, yielding the estimate Φ̌1 ∈ H3/2(R
d), thus Φ−

ΦL ∈ H3/2(R
− × Rn), and Φ ∈ H3/2(R

− × Rn), in dimension d ≡ n+ 1 = 4.
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Smoothness of the Hamilton-Jacobi functional S. There are in gen-
eral two obstructions to smoothness of Hamilton-Jacobi functionals G de-
fined, in analogy to the way S has been defined in the present section, as

(3.39) G[φ] ≡ inf
Φ∈A(φ)

G[Φ] ,

in which G is a given action functional, φ are specified boundary data in
a function space B and A(φ) is the function space in which minimization
takes place, all satisfying suitable assumptions, apt to guarantee the well-
posedness of (3.39) and the other main results obtained so far, such as the
existence of a minimizer and ellipticity of the Euler-Lagrange equations it
satisfies. A first obstruction is the non-uniqueness of such a minimizer, a
second one is the existence of non-trivial Jacobi fields along the minimizer.
One such example is the length-squared functional on a Riemannian man-
ifold, for which one end-point is fixed and the other plays the role of the
boundary value φ. In that case the failure of minimizing geodesics between
fixed endpoints to be unique, or the existence of nontrivial Jacobi fields along
such geodesics, yield singularities. Occurrence of these obstructions signals
a non-empty cut locus for the manifold. Such cut loci however are always
lower dimensional subsets of the ambient manifold so that smoothness of
the length-squared functional at least holds almost everywhere. They have
moreover the interesting property of encoding practically the entire nontriv-
ial topology of the ambient manifold and thus play a central geometric role
in its analysis; with regard to materials on Jacobi fields and cut loci, see
for example Chapters 1 and 2 of [30]. An immediate argument explaining a
reason for non-uniqueness being an obstruction to global differentiability of
a Hamilton-Jacobi functional such as G is that the gradient of a solution to
a Hamilton-Jacobi equation should produce the complementary momentum
for the trajectory through a given point in configuration space. Thus, if the
trajectory is not unique, the existence of the gradient at the chosen point
is compromised. In the context of the Yang-Mills theory, discussed in the
next section, the lack of uniqueness for the absolute minimizer for the Eu-
clidean action corresponds to a lack of ‘everywhere’ differentiability of the
analogue to the functional S. In that context, the relevant Riemannian space
will be the moduli space of spatial (i.e., boundary data) connections mod-
ulo gauge transformations with its (weak) Riemannian structure induced
from the Yang-Mills kinetic energy in a well-known way; cf. , for example,
[31] and [32]. In that context, wave functionals exhibit scars localized along
lower dimensional subsets of the (moduli-space) configuration manifold, to
some extent analogous to the scars that arise, in a totally different setting,
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in the study of quantum chaos (see, for example, [6]). In the present section,
we rule out those obstructions for the polynomial theories, thus showing
smoothness of the functional (3.9) as an application of the implicit function
theorem between Banach spaces. More precisely, the approach used in [11]
entails proving Theorem 3.2 below, under the additional strict convexity
assumption on P,

(3.40) P ′′(z) > 0 .

Theorem 3.2. The solution Φφ to the nonlinear Dirichlet problem (3.20)
depends smoothly on the boundary data; more precisely,

(3.41)
B → H1(R

− × Rn)
φ 7→ Φφ

is a smooth map.

Theorem 3.2, combined with smoothness of the functional

Ies : H1(R
− × R

n) → R,

yields smoothness of

S : φ ∈ B 7→ Φφ ∈ A(φ) 7→ Ies[Φφ] ∈ R .

The proof of Theorem 3.2 is essentially an application of the Implicit
Function Theorem to the functional

(3.42)
E :B×A(0) → H−1(R

− × R
n)

(φ, h) → Λ
(

ΦLφ + h
)

,

in which Λ ≡ −∆+ P ′(·), and ΦLφ is the unique solution to the linear bound-
ary value problem (3.24) previously defined. Such functional is smooth be-
cause the map φ ∈ B → ΦLφ ∈ H1(R

− × Rn) is smooth.
For fixed φ0 ∈ B, we define

(3.43) h0 ≡ Φφ0
− ΦLφ0

,
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so as to obtain h0 ∈ A(0) and E(φ0, h0) = Λ(ΦLφ0
+ h0) = Λ(Φφ0

) = 0. We
linearize E(φ, h) at the point (φ0, h0) along the direction of the second vari-
able h, thus deriving the linear operator

(3.44)

D2E0 : Th0
A(0) ≃ A(0) → T0H−1(R

− × R
n) ≃ H−1(R

− × R
n) ,

ξ 7→ lim
λ→0

E(φ0, h0 + λξ)− E(φ0, h0)

λ

= lim
λ→0

Λ(Φφ0
+ λξ)

λ
= −∆ξ + P ′′(Φφ0

) ξ .

Here D2E0(ξ) is to be interpreted as an element of H−1(R
− × Rn) via the

identification

D2E0(ξ) : f ∈ A(0) 7→
∫

R−×Rn

f D2E0(ξ) dx(3.45)

≡
∫

R−×Rn

∇f · ∇ξ dx+

∫

R−×Rn

P ′′(Φφ0
) f ξ dx ,

in coherence with the definitions of weak Laplacian and weak Dirichlet prob-
lem (linear and non-linear) given earlier.

Under the strict convexity and coerciveness conditions imposed on P,
one can show that the linear operator D2E0 is a bicontinuous vector space
isomorphism between A(0) and H−1(R

− × Rn). That is achieved by showing
that the standard inner product in H1(R

− × Rn) and the inner product
induced by P given by

(3.46) ⟨f, g⟩P ≡
∫

R−×Rn

∇f · ∇g dx+

∫

R−×Rn

P ′′(Φφ0
) f g dx

determine equivalent norms, thus induce the same natural topology. Such

equivalence, yields in particular that D2E0(ξ) is a bounded linear operator
on A(0). Note that, for any g ∈ A(0), one has by definition D2E0(ξ)(g) =
⟨ξ, g⟩P , and D2E0 is a one-to-one, self-adjoint operator. The implicit func-
tion theorem between Banach spaces then states that there exist neigh-
borhoods I ⊂ B, J ⊂ A(0) of φ0, h0 respectively, such that ∀φ ∈ I there
exists a unique h(φ) ∈ J for which E(φ, h(φ)) = 0 and that such map, φ ∈
B → h(φ) ∈ A(0), is C∞. Because Φφ = ΦLφ + h(φ), this ultimately yields
smoothness for the functional S.

The Hamilton-Jacobi equations for the absolute minimizer of the

Euclidean signature action functional Ies. For any given distribution
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Φ ∈ A(φ), finiteness of the integral
∫

R−×Rn P(Φ) dt dx′, together with finite-
ness of the Euclidean action, guarantee that the energy functional

(3.47) F [Φ] ≡
∫

R−×Rn

ε(Φ)
(

t,x′
)

dt dx′ ,

having energy density

(3.48) ε(Φ) ≡ 1

2
Φ̇
2 − 1

2
|∇′Φ|2 − P(Φ) ,

be finite. Here and throughout the text,∇′ denotes the gradient with respect
to the spatial variables only, and we identify x0 ≡ t, ∂0Φ ≡ ∂Φ/∂x0 ≡ Φ̇ .

Thus, by Fubini’s theorem, the energy of a distribution Φ ∈ A(φ),

(3.49) e[Φ](t) ≡
∫

Rn

ε(Φ)(t,x′) dx′ ,

is finite for almost all t’s in R− and integrable over R−.
Further, for Φ a minimizer of Ies over the affine space A(φ), a simple

calculation, using the Euler-Lagrange equations satisfied by Φ as well as the
interior regularity proved for such equations in this context, shows that

(3.50) ∂0ε(Φ) = −∇′ · (Φ̇∇′Φ) .

As a result, by interior regularity, if Φ is a minimizer, the Fundamental
Theorem of Calculus applied to the smooth functions of time

t ∈ R
− 7→ ∂0ε(Φ)(t,x

′) ∈ R , with x′ fixed ,

yields

ε(Φ)(t2,x
′)− ε(Φ)(t1,x

′) =

∫ t2

t1

∂0ε(Φ)(t,x
′) dt(3.51)

= −
∫ t2

t1

∇′ · (Φ̇∇′Φ) dt , t1 < t2 < 0 .

If the boundary value φ ∈ B is in addition prescribed to be smooth, ensuring
smoothness of the minimizer Φ all the way up to and including the boundary,
the equalities above hold for all t1 < t2 ≤ 0. Integrating (3.51) over Rn, one
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obtains
(3.52)

e[Φ](t2)− e[Φ](t1) = −
∫

Rn

dx′

∫ t2

t1

∇′ · (Φ̇∇′Φ) dt , for t1 < t2 < 0 ,

as long as the quantities on the left hand side are finite, that is, outside
possibly a subset of R− of zero measure.

A computation, involving approximation of the integral on the right
hand side of (3.52) via integrals over the regions {∥x′∥ = R} × [t1, t2] and
an application of Green’s theorem, yields
(3.53)

e[Φ](t2)− e[Φ](t1) = − lim
R→∞

∫

{∥x′∥=R}×[t1,t2]
Φ̇∇′Φ · x′

∥x′∥ dσ , t1 < t2 < 0 ,

in which dσ is the surface element on the cylinder {∥x′∥ = R} × [t1, t2], and
t1, t2 can be taken arbitrarily outside possibly a set of zero measure. At that
point, one shows that

(3.54) lim
R→∞

∫

{∥x′∥=R}×[t1,t2]
Φ̇∇′Φ · x′

∥x′∥ dσ = 0 , t1 < t2 < 0 ,

yielding

(3.55) e[Φ](t) ≡
∫

Rn

ε(Φ)(t,x′) dx′ = C a.e. t ∈ R
− ,

in which C is a constant, whenever Φ is a minimizer of the action functional
Ies over the space A(φ), with boundary value φ ∈ B; cf. [11] for details.
Such constant C depends on Φ only and, ultimately, by uniqueness of the
minimizer in the case of the polynomial scalar field theory, is uniquely de-
termined by the prescribed boundary value φ ∈ B.

Further, the global control established for the action minimizer Φ, namely
Φ ∈ H3/2(R

− × Rn) (the best possible global estimate for prescribed bound-
ary conditions φ in H1({0} × Rn), ensures

(3.56) e[Φ](t) ≡
∫

Rn

ε(Φ)(t,x′) dx′ = C ∀t ≤ 0 ,

thus energy is preserved along the flow. Equation (3.56) and integrability
of e[Φ](t) (consequence of finiteness of the energy functional F [Φ]) further
yield that the constant C equals zero.

Having shown already that the solution Φφ to (3.20), unique minimizer
of Ies with prescribed boundary value φ ∈ B, depends smoothly on the
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latter, one has, in particular, that the function

v(λ) ≡ Φφ+λψ − Φφ with φ ∈ B, ψ ∈ B ∩ C∞({0} × R
n) fixed ,

is differentiable with respect to λ. One also has the relation v′(0)|{0}×Rn = ψ.
The variational derivative with respect to φ ∈ B, evaluated at ψ, of the

functional S defined in (3.9) is therefore

∫

Rn

δS

δφ
ψ dx′ ≡ lim

λ→0

S[φ+ λψ]− S[φ]

λ
(3.57)

= lim
λ→0

Ies(Φφ+λψ)− Ies(Φφ)
λ

=

∫

R−×Rn

(

∇Φφ · ∇v′(0) + P ′(Φφ) v
′(0)
)

dx

=

∫

R−×Rn

(

−∆Φφ + P ′(Φφ)
)

v′(0) dx

+

∫

{0}×Rn

ψ∇Φφ · (1,0) dx′

+ lim
R→∞

∫

{∥x∥=R}×(−∞,0]
v′(0)∇Φφ · x

∥x∥ dσ

=

∫

{0}×Rn

ψ∇Φφ · (1,0) dx′ =

∫

{0}×Rn

ψ Φ̇φ dx
′ ,

in which dσ denotes the surface element on the cylinder {∥x∥ = R}×(−∞, 0],
and we have used the Euler-Lagrange equations satisfied by Φφ as well as
the vanishing of

lim
R→∞

∫

{∥x∥=R}×(−∞,0]
v′(0)∇Φφ · x

∥x∥ dσ .

Because ψ ∈ B ∩ C∞({0} × Rn) is arbitrarily fixed, (3.57) entails

(3.58)
δS

δφ
= Φ̇φ(0)

Combining the vanishing of the energy at time t = 0,

e[Φ](0) =

∫

{0}×Rn

(

1

2
(Φ̇φ)

2 − 1

2
∇′φ(x′) · ∇′φ(x′)− P(φ(x′))

)

dx′ = 0 ,
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with (3.58), one derives the Hamilton-Jacobi equation
(3.59)
∫

{0}×Rn

(

1

2

δS

δφ(x′)

δS

δφ(x′)
− 1

2
∇′φ(x′) · ∇′φ(x′)− P(φ(x′))

)

dx′ = 0 .

Decay of the approximate ground state wave functional. A ‘virial’

argument. A first straightforward estimate for Ω0, the tree approximation
to the ground state functional (cf. Eq. (3.11)), of the type

(3.60) |Ω0(φ)| ≤ N exp







−∥φ∥2H 1
2
(Rn)

C







,

in which C is a constant independent of φ, can be proven as a consequence of
coerciveness of Ies and of the Trace Theorem, which guarantees an estimate
of ∥φ∥H 1

2
(Rn) in terms of ∥Φφ∥H1(R−×Rn). (This argument does not apply to

the massless Φ4 theory on R− × R3 because Ies is not coercive in that case.)
A heuristic argument for a more refined estimate, yielding a better decay,

is based on a so-called virial argument, which takes into account the presence
of the higher order polynomial term in Ies. A rigorous argument would
require one taking into account the higher order corrections of the ground
state functional, S(1), S(2), . . ., which we are disregarding at the moment.
Such quantum corrections all vanish in the case of (massive) free fields, but
do not vanish for the more general polynomial scalar field theory under
study.

Having made the coerciveness assumption P(Φ) ≥ CΦ2 for some posi-
tive constant C, by defining m0 ≡

√
2C and considering the corresponding

massive free field functional

Sfree(0) [φ] = Ifreees [Φφ]

≡
∫

Rn

∫ 0

−∞

(

1/2 Φ̇2 + 1/2∇′Φφ · ∇′Φφ + 1/2m2
0Φ

2
φ

)

dt dx′ ,

one obtains

S(0)[φ] ≥ Sfree(0) [φ] ∀φ ∈ B .

(For an explicit calculation of Sfree(0) [φ], see [33].) Thus, exp{−S(0)[φ]/ℏ} de-
cays at least as rapidly as some specific Gaussian. Here, we are still working
under the assumption that the ground state quantum corrections to S(0)[φ]
may be legitimately disregarded for the purpose of estimating the decay of
the true ground state functional.
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In [11] we make a conjecture on the behavior of the S(0) functional under

a constant rescaling φ→ φλ = eλφ, in the limit of large φ. To that purpose,
we consider the ratio

(3.61) R =
dS(0)[φλ]/dλ

S(0)[φλ]

∣

∣

∣

∣

λ=0

=

∫

Rn φ(x
′) δS(0)[φ]/δφ(x

′) dx′

S(0)[φ]

and observe that, in the case of the massive free field functionals S(0)[φ]
free

described above, this ratio would simply be given by R = 2 for all φ.
Assuming that lim∥φ∥H1/2(Rn)→∞R(φ), exists, we evaluate

(3.62) lim
t→t∗

R(φt) ,

in which φt is a curve satisfying ∥φt∥H1/2(Rn) → ∞, as t approaches its limit-
ing value t∗. Using the fact that both numerator and denominator of (3.61)
tend to infinity as ∥φ∥H1/2(Rn) → ∞, we appeal to L’Hospital’s rule and dif-
ferentiate with respect to t numerator and denominator in (3.62). To that
purpose, we further use the technique of estimating such limit along ‘solu-
tion curves’ of the ‘gradient semi-flow’ of S(0)[φ]. We compute formal time
derivatives along the flow by applying the functional differential operator

(3.63) L =

∫

Rn

(

δS(0)[φ]

δφ(y′)

)

δ

δφ(y′)
dy′ .

The Hamilton-Jacobi equation

1

2

∫

Rn

(

δS(0)[φ]

δφ(z′)

)(

δS(0)[φ]

δφ(z′)

)

dz′(3.64)

=

∫

Rn

(

1

2
∇′φ(z′) · ∇′φ(z′) + P(φ(z′))

)

dz′ ,

then simplifies the formula for this ratio of ‘time’ derivatives to

(3.65) T = 1 +

∫

Rn

(

∇′φ(y′) · ∇′φ(y′) + 2a2φ
2(y′) + · · ·+ kakφ

k(y′)
)

dy′

∫

Rn (∇′φ(z′) · ∇′φ(z′) + 2a2φ2(z′) + · · ·+ 2akφk(z′)) dz′

Luckily the formula above is independent of S(0)(φ) and only depends upon
the given ‘potential energy’ from the Hamilton-Jacobi equation. This sim-
plification is the main reason for proposing to compute the flow along the
(Hamilton-Jacobi) solution curves instead of along the ‘rescaling curves’
φλ = eλφ. Note also that in the absence of the higher order terms Eq. (3.65)
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immediately reproduces the free field result T → 2 without the need for
taking φ ‘large’. In the general case, Sobolev estimates show that each poly-
nomial term except the top order ones will tend asymptotically to 0 as
∥φ(·)∥H1(Rn) → ∞, leaving the result T → 1 + k/2. This is the ‘intuitively
expected’ result since, from the form of the Hamilton-Jacobi equation satis-
fied by S(0)[φ], we seem to need S(0)[φ] scaling like φ

1+k/2 for large φ in order
to match the behavior of the given potential energy for large arguments.

A difficulty in making the above argument rigorous arises through the
fact that extension of the formal ‘integral curves’ of the ‘gradient semi-
flow’ of the functional S(0)[φ] to positive t’s (for data specified at t = 0),
does not necessarily make sense. Using our regularity results there is a clear
mathematical sense to such ‘curves’ for t < 0 but, to extend them in the
opposite temporal direction seems problematic in general, especially when
the boundary data chosen is as ‘rough’ as possible. However, such rough
data cannot arise at an interior point of such a hypothetically extendible
curve. In fact, the global control and interior regularity, established in [11]
and outlined in the present section for a solution Φφ to the nonlinear Dirich-
let problem (3.20), ensure Φφ ∈ H3/2(R

− × Rn) ∩ C∞(R− × Rn). Thus, φt ∈
H1(R

n) ∩ C∞(Rn) ⊂ B, ∀t < 0, and one could regard the smoothed interior
data at some t < 0 as new ‘initial data’ for a curve that is in fact extendible
(at least back to the original t = 0 starting point) and make presumably
precise sense of the argument for a dense subset of the full space of initial
data.

Final remarks. As described in the previous chapter, our fundamental so-
lution S(0)(x), to the (inverted-potential-vanishing-energy) Hamilton-Jacobi
equation for a coupled system of nonlinear oscillators has a natural geomet-
ric interpretation; cf. the discussion preceding Eqs. (2.31,2.32). Further, the
first quantum ‘loop correction’, S(1)(x) also has a natural geometric inter-
pretation in terms of ‘Sternberg coordinates’ for the gradient (semi-) flow
generated by S(0)(x), because the latter linearize the Hamilton-Jacobi flow
equations (2.33) to the form (2.34)), and generate a Jacobian determinant
for the Hilbert-space integration measure that cancels out the contribution
of the first quantum ‘loop correction’ to inner product calculations (cf. Eqs.
(2.37, 2.38, 2.39)). For purely harmonic oscillators the original (Cartesian)
coordinates are already of Sternberg type, S1(x) accordingly vanishes, and
Hilbert space inner product integrals reduce to Cartesian form. For free
fields, on the other hand, such formal, stand-alone ‘Lebesgue measures’, al-
though, of course, mathematically undefined, when combined with the uni-
versally appearing convergence factors, Nℏ e

−S(0)[φ]/ℏ, arising in all of the
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associated wave functionals, can be interpreted as providing rigorously de-
fined gaussian measures for Fock space.

To compute such higher order ‘loop’ corrections for bosonic field theo-
ries, one will first need to regularize the formal functional Laplacian that
arises in the Schrödinger operator (3.1) and that will reoccur in each of
the transport equations which result from substituting ansatz (3.5) into
the time independent Schrödinger equation (3.6) and expanding formally
in powers of ℏ. Solving these transport equations for the ‘loop corrections’,
{

S(1)[φ],S(2)[φ], . . .
}

, to the ground state wave functional simply amounts
to evaluating sequentially computable, smooth functionals on the Euclidean
action minimizers, Φφ, for arbitrary chosen boundary data, φ.

Solving the transport equations for excited states is somewhat more
involved since these equations entail a lower order term in the unknown but
the technology for handling this, is well understood [1–3]. If, for example, a
Sternberg diffeomorphism could be shown to exist, then the leading order,
excited state transport equation could be solved in closed form (as already
established for nonlinear oscillators).

Otherwise, one could simply fall back on the machinery developed in
Refs. [1–3], which does not assume the existence of Sternberg coordinates,
and solve this and the corresponding higher order excited state equations in
a less direct fashion. In either case it is intriguing to note that the excited
states for interacting field theories would be naturally labeled by sequences
of (integral) ‘particle excitation numbers’ in much the same way that the
Fock-space excited states of a free field are characterized.

One often hears that the fundamental particle interpretation of interact-
ing quantized fields hinges upon their approximation by corresponding free
fields. This is unsatisfactory at best since, of course, an elementary particle
cannot ‘turn off’ its self-interactions in order to conveniently behave, even
asymptotically, like a Fock-space, free field quantum. As we have already
emphasized one of the natural features of this (Euclidean signature-semi-
classical) program is that it maintains the dynamical nonlinearities of an
interacting quantum system intact at every level of the analysis rather than
attempting to reinstate nonlinear effects gradually through a perturbative
expansion.

3.2. An application to Yang-Mills fields

As in the foregoing models, construction of a Euclidean-signature-semi-
classical wave functional for Yang-Mills theory proceeds by showing the
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existence of a solution to the Euclidean signature Dirichlet problem for ini-
tial data prescribed on {0} × R3. The existence proof takes the form of a
localizing and counting argument, based on the collective work of Uhlenbeck
[34, 35], Sedlacek [36], and Marini [27]. In particular, two results of Uhlen-
beck, and their analogues by Marini for the Dirichlet and Neumann problems
for Yang-Mills theory on a manifold with boundary, are crucial: first, that
an Ln/2 bound on the curvature of a connection yields a representative in
Hodge gauge whose Lp1 norm is bounded by the Lp norm of its curvature,
for n

2 ≤ p < n ([34], and [27] in the presence of a boundary), and second,
the removability of singularities for Yang-Mills connections in dimension 4
through application of an appropriate gauge transformation ([35], and [27]
for boundary singularities). The Sobolev bound on the connection in Hodge
gauge allows the use of the direct method in the calculus of variations, invok-
ing weak relative compactness of bounded sets in Sobolev space. Meanwhile,
the Hodge gauge condition itself enables the Yang-Mills equation to be refor-
mulated as an elliptic partial differential equation, making available the use
of powerful regularity results. The removability of singularities advances two
purposes: first the removal of potentially singular points which occur in the
solution because of the localization and counting procedure, and second the
establishment of bounds on the decay of Yang-Mills connections at infinity,
in a suitable global gauge choice.

In [27], smooth solutions to the Dirichlet and Neumann problems for
Euclidean signature Yang-Mills theory are shown to exist on a compact
manifold with smooth boundary. Because our base manifold in the present
program is R− × R3 (Euclidean spacetime), we extend this work to accom-
modate a noncompact base manifold with smooth boundary. The counting
argument in [36] depends on compactness of the base manifold; thus we give
a new proof of the relevant result. Explicitly allowing for a noncompact base
manifold obviates the need to restrict gauge transformations to approach a
consistent value at spatial infinity, as would be necessary if one proceeded by
compactifying spacetime and invoking results in [27]. If gauge transforma-
tions were required to approach a coherent limit at spatial infinity, the space
of physical connections on spacetime would divide into disjoint topological
sectors, and a distinction could be introduced between ‘large’ and ‘small’
gauge transformations as in [37] according to homotopy class. Under the
approach in [37], this distinction gives rise to the ‘vacuum angle’ of quan-
tum Yang-Mills theory, whereby physical states are only invariant up to a
phase under large (i.e. non-null-homotopic) gauge transformations. However
as noted in [37] and [38], a vacuum angle can alternatively be introduced at
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the level of the Lagrangian, leaving this avenue open to our approach if a
vacuum angle is physically indicated.

We present our analysis for the case of Yang-Mills theory in 4 spacetime
dimensions, but we note here that our results allow analogous construction of
a candidate leading-order ground state wave functional in lower dimensions.
Because the quantization of Yang-Mills theory in 3 spacetime dimensions
has been well addressed by the methods of Karabali, Kim, and Nair (see
e.g. [39]), in future work we aim to make contact with this program as a
potentially illuminating comparison.

Similar to the preceding sections, we show the existence of a solution
to the Euclidean signature Yang-Mills Dirichlet problem using the direct
method in the calculus of variations. Hence our first step is to prove lower
semicontinuity of the (Euclidean signature) Yang-Mills action functional
with respect to a suitably defined Sobolev topology of connections on
R− × R3. Next we show that for a minimizing sequence of connections on
R− × R3 having initial data specified within a (local) Sobolev space of con-
nections on the boundary {0} × R3, we can construct an open cover of
R− × R3 (possibly missing a finite collection of points) and a subsequence
of the minimizing sequence for which we can locally transform to Hodge
gauge. Thanks to relative weak compactness of bounded sets in Sobolev
space and lower semicontinuity of the Yang-Mills functional, a further sub-
sequence of the minimizing sequence converges to a minimizer of the Yang-
Mills functional. Demonstrating that this minimizer is a smooth solution to
the Yang-Mills Dirichlet problem is achieved by local arguments which ap-
ply unchanged from results in [27]. Removability of singularities allows the
solution to be extended to the points of R− × R3 possibly missing from our
open cover. The removability of singularities is also differently applied to
achieve decay results for Yang-Mills connections (see Proposition 3.1 below,
and the result it extends, Corollary 4.2 in [35]).

Having established the existence of a solution to the Yang-Mills Dirichlet
problem, we turn to the properties of the leading-order semiclassical state
constructed therefrom. Using the Banach space version of Rademacher’s the-
orem, we show that the natural logarithm of the leading-order semiclassical
wave functional (the functional we denote as S[·]) is Gâteaux differentiable
outside a Gaussian null set on the Sobolev space of connections on {0} × R3.
We discuss the possible application of the Banach space implicit function
theorem to establish Fréchet differentiability of S to all orders.
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Although our leading-order ground state wave functional will be con-
structed on R− × R3, we carry out the minimization of the Euclidean sig-
nature Yang-Mills action more generally over a smooth n-dimensional Rie-
mannian manifold (M,g), not necessarily compact, with smooth boundary
∂M . The Yang-Mills structure group is taken to be a compact semisim-
ple real Lie group G, with Lie algebra g. We denote by P a principal G-
bundle over M . Following [40], associated bundles η having fiber V are
constructed by specifying a representation ρ : G→ AutV and forming the
twisted product9 η = P ×ρ V . In particular, the automorphism bundle of η
is Aut η ≡ P ×ad G, where ad : G→ AutG denotes the action of G on itself
by conjugation. Gauge transformations are given by sections Γ(Aut η). The
adjoint bundle Ad η ≡ P ×Ad g, where Ad denotes the adjoint representa-
tion of G on g, is used to construct g-valued differential k-forms on M as
sections of Ad η ⊗ ΛkM . A connection on an associated bundle η is a first-
order differential operator D : Γ(η) → Γ(η ⊗ T ∗M), which can be expressed
in terms of a base connection D0 as D0 + gA for A ∈ Γ(Ad η ⊗ T ∗M). The
coefficient g represents the Yang-Mills coupling constant. Connections are
gauge transformed through conjugation by elements of Γ(Aut η):

σ∗(D) = σ−1Dσ = D0 + σ−1D0σ + g σ−1
A σ(3.66)

= D0 + g

(

1

g
σ−1D0σ + σ−1

A σ

)

.

The curvature of a connection F (D) ∈ Γ(Ad η ⊗ Λ2M) is defined by

F (v, w) =
1

g

(

[Dv, Dw]−D[v,w]

)

,

and transforms by conjugation under gauge transformations:

σ∗(F ) = σ−1
Fσ.

Locally, we can write

F = dA +
g

2
[A ,A ] .

Central to defining the Euclidean signature Yang-Mills action and ob-
taining its minimizer for given boundary data on M is the construction

9Note that, as in [41], for a topological space X admitting a continuous right
action by a topological group G and a topological space Y admitting a continuous
left action by G, the twisted product X ×G Y is defined as the Cartesian product
X × Y modulo the equivalence relation (x.g, y) ∼ (x, g.y).
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of Sobolev spaces for g-valued differential forms. An L2 inner product on
sections of Ad η ⊗ ΛkM is given by

⟨ϕ, θ⟩ ≡
∫

M
tr (ϕ ∧ ∗θ) ,(3.67)

where for θ = T ⊗ µ ∈ Γ(Ad η ⊗ ΛkM), ∗θ ≡ T † ⊗ ∗µ, with T † the adjoint
in g and ∗µ the Hodge dual with respect to the metric g. A G-invariant
positive-definite inner product results, since in the adjoint representation
of g, trXY † = −trXY , the negative of the Killing form, which thanks to
compactness and semisimplicity of g is negative definite. The Lp norm of a
g-valued differential k-form ϕ can then be defined by

∥ϕ∥p =
(
∫

M
|ϕ|p
)

1

p

=

(
∫

M
[tr (ϕ ∧ ∗ϕ)]p/2

)
1

p

.(3.68)

Accordingly, the Euclidean signature Yang-Mills action is defined as

Ies[A ] =
1

2
∥F∥22 =

1

2

∫

M
tr (F ∧ ∗F )(3.69)

=
1

4

∫

M
gµρgνσ

(

Fµν ,Fρσ

)
√

detg dxM

=
1

4

∫

M
F

I
µνF

µν
I

√

detg dxM ,

where
(

Fµν ,Fρσ

)

≡ trFµνFρσ
†, and the index I runs over a basis of the

Lie algebra g normalized with respect to (·, ·). Summation with respect to
repeated up and down indices is implicit (Einstein summation convention).
Gauge invariance of the action functional follows from G-invariance of the
form inner product. The Yang-Mills Dirichlet problem results from varying
this action with fixed initial data to derive Euler-Lagrange equations:

(D)

{

D∗F = 0 on M

i∗A ∼ A on ∂M .

where ∼ denotes a gauge transformation on ∂M which can be extended to
the interior.

Before elaborating our results, we note that the definition of Sobolev
spaces of sections of a vector bundle over a noncompact base manifold must
be undertaken relative to a choice of base connection. In contrast to the sit-
uation over a compact base manifold, this choice affects not only the values
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of Sobolev norms, but also whether or not a given connection belongs to the
Sobolev space. Relatedly, working over a noncompact manifold introduces a
distinction between local and global Sobolev spaces of sections. Membership
of connections in local Sobolev spaces is independent of the choice of connec-
tion, since the condition is that the section have finite Sobolev norm when
restricted to any compact subset of the manifold. For details on defining
Sobolev spaces of sections of vector bundles, in particular over noncompact
manifolds, see [42].

In proving the existence of a minimizer for the Euclidean signature Yang-
Mills functional Ies[·] given arbitrary boundary data A on {0} × R3, we work
over the local Sobolev space of connections

A2
1;loc(A) ≡

{

D = d+ gA :(3.70)

A ∈ L2
1;loc((−∞, 0]× R

3,Ad η ⊗ T ∗((−∞, 0]× R
3)),

i∗A ∼ A
}

.

Here i∗ is the pullback of the inclusion map i : {0} × R3 −֒→ (−∞, 0]× R3,
so that the condition i∗A ∼ A requires the tangential component of A re-
stricted to the boundary to be gauge equivalent to A on the restriction of
the bundle to the boundary, via a gauge transformation which extends with
suitable regularity to the interior. The boundary value A is from the space
B consisting of L2

1;loc

(

{0} × R3,Ad η ⊗ T ∗({0} × R3)
)

connections on the

boundary extending to R− × R3 with finite Euclidean action. Gauge trans-
formations must be one degree more regular than connections owing to the
form of the transformation (3.66); hence they belong to L2

2;loc.
Having defined the relevant Sobolev space over which to minimize, we

prove that the Yang-Mills functional is lower semicontinuous with respect
to its weak topology:

Theorem 3.3. The Euclidean signature Yang-Mills functional on a 4-
dimensional Riemannian manifold M (with or without boundary) is lower
semicontinuous with respect to the weak topology on L2

1;loc (M,Ad η ⊗ T ∗M);
i.e. any sequence of connections {Ai} such that

Ai ⇀ A∞ in L2
1;loc (M,Ad η ⊗ T ∗M)
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satisfies the inequality

Ies|U [A∞] ≡ 1

2
∥F∞∥2L2(U)(3.71)

≤ lim inf
i→∞

Ies|U [Ai] ≡ lim inf
i→∞

1

2
∥Fi∥2L2(U) ,

for all bounded open sets U ⊂M .

Although the setting is different, our proof is similar in method to Sed-
lacek’s proof of Lemma 3.6 in [36]. Since norms are weakly lower semicontin-
uous, we show that the sequence {Fi} has a subsequence {Fik} weakly con-
vergent in L2(U,Ad η⊗Λ2U) such that lim inf ∥Fik∥L2(U)=lim inf ∥Fi∥L2(U).
Weak convergence of the first term in Fi = dAi +

g
2 [Ai,Ai] is immediate

from our hypotheses, while for the second, weak convergence of a suit-
able subsequence follows by using the Principle of Uniform Boundedness
together with continuity of the embedding L2

1 →֒ L4 and the multiplication
L4 × L4 → L2 to show that

{

∥ [Ai,Ai] ∥L2(U)

}

is bounded.

Existence of a minimizer for Ies for initial data A ∈ B. The con-
struction of the functional S[A] ≡ Ies [AA] hinges upon the existence of a
minimizer AA of Ies for initial data A. Although we could simply define
S[A] as infA ∈A2

1;loc(A)
Ies[A ], failure of the minimizer to exist would be an

obstruction to the continuity of S[A], while nonuniqueness of the minimizer
would be an obstruction to differentiability.

As in [27], we proceed by proving the existence of a cover ofM (possibly
missing finitely many points) on which the choice of Hodge gauge (d∗A =
0 on the interior, d∗τAτ = 0 on the boundary, where τ denotes tangential
components) effectively renders the Yang-Mills equation elliptic. Indeed, the
Hodge gauge allows us to interpret the highest-order term in the Yang-Mills
equation

d∗dA +
g

2
d∗ [A ,A ] + g (∗ [A , ∗F ]) = 0

as the Laplace-de Rham operator ∆ = d∗d+ dd∗, where d∗ = ∗d∗. Owing to
a theorem proved by Uhlenbeck on interior neighborhoods ([35] Thm 2.1)
and by Marini ([27] Thms 3.2 and 3.3) on neighborhoods at the bound-
ary, such a gauge choice is locally possible provided the Ln/2 norm of the
curvature is sufficiently small:

Theorem 3.4. Let the local neighborhood U be a ball in the interior of M
or a half-ball centered at a point on the boundary of M . Let D = d+ gA be
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a connection such that A ∈ Lp1(U) (and for a boundary neighborhood, addi-
tionally i∗A ≡ Aτ |U ∈ Lp1(∂U ∩ ∂M)), where n/2 ≤ p < n. Then there ex-
ists K ≡ K(n)/g > 0 and c ≡ c(n) such that every connection D = d+ gA
satisfying ∥F∥Ln/2(U) < K (and for a boundary neighborhood, additionally

∥Fτ∥Ln/2(∂U∩∂M) < K) is gauge equivalent to a connection d+ gÂ , Â ∈
Lp1(U,Ad η ⊗ T ∗U), satisfying

(i) d∗Â = 0 on U

(ii) For interior neighborhoods, Âν = 0 on ∂U , where ν denotes the normal
component to ∂U

(iii) For neighborhoods at the boundary, d∗τ Âτ = 0 on ∂U ∩ ∂M , and Âν =
0 on ∂U \ ∂M

(iv) ∥Â ∥1,n/2 < c(n)∥F̂∥n/2
(v) ∥Â ∥1,p < c(n)∥F̂∥p

Moreover, the gauge transformation s used to obtain Â = 1
gs

−1ds+ s−1A s

can be taken in L
n/2
2 (U) (s will in fact always have one more degree of

regularity than A ; see Lemma 1.2 in Ref. [35]).

As observed in [27], conformal invariance of the condition ∥F∥n/2 <
K allows us to achieve the simultaneous condition ∥Fτ∥Ln/2(∂U∩∂M) < K
for a half-ball U at the boundary by means of a dilation x̃ = rx, since
∥F∥Ln/2(∂U∩∂M) acquires a factor of r. For the case n = 4 as in the physi-

cal problem, the requisite Ln/2(U) bound on F is the same as a bound on
the Euclidean signature Yang-Mills action restricted to U . Thus to apply
Theorem 3.4, we seek a cover of M by balls on the interior and half-balls
centered at boundary points such that the Yang-Mills action restricted to
each ball U in the cover meets the condition ∥F∥Ln/2(U) < K. We prove a
general result for a sequence of positive L1-bounded functions on Rn (or
indeed an arbitrary Riemannian manifold, with or without boundary) as-
suring the existence of a cover (missing at most a finite collection of points)
for which the L1 norm of the functions restricted to balls in the cover is
less than an arbitrary fixed bound ε. For the case of Yang-Mills theory, the
possibility that our cover may miss finitely many points will be addressed
by removability of singularities, as discussed below.

For simplicity, we state and prove our ‘good cover’ theorem on Rn, but
the modifications for a general Riemannian manifold are obvious.
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Theorem 3.5. Consider a sequence of positive functions {fi}i∈N on Rn

such that

(3.72) Fi ≡
∫

Rn

fi dx ≤ C , ∀i ∈ N ,

for some constant C.
Then for any arbitrarily fixed ϵ > 0, there exists a subsequence of {fi} and
an open cover G made up of balls B ⊂ Rn, covering Rn except at most a
finite number of points P1, P2, . . . , PN and satisfying

(3.73)

∫

B
fi dx < ϵ , ∀i ≥ iB

where the index iB depends on the ball B ∈ G .

For the proof, we construct a countable cover C of Rn as the union of
countable covers of Rn by balls of radius 1

j for each j ∈ N. Fixing an enu-

meration of the balls in the cover, we extract a subsequence {f (1)i } of {fi}
such that for the first ball B1,

{

∫

B1
f
(1)
i dx

}∞

i=1
converges. From this subse-

quence, we extract a further subsequence {f (2)i } so that on the second ball

B2,
{

∫

B2
f
(2)
i dx

}∞

i=1
converges, and so on. We observe that for the diagonal

subsequence {f (i)i }, the sequence
{

∫

Bk
f
(i)
i dx

}∞

i=1
converges on each ball Bk

in C . If the limit of this sequence for some Bk is greater than or equal to the
bound ε, we discard the ball Bk from C . Finally, we show that the resulting

collection G of balls, for each of which the sequence
{

∫

Bk
f
(i)
i dx

}∞

i=1
con-

verges to a value less than ε, covers all but finitely many points of M . To do

so, we use the uniform bound C on the L1 norms of the f
(i)
i to deduce that

the number of pairwise disjoint balls of radius 1
j which have been discarded

for each j ∈ N cannot exceed [C/ε]. For each j ∈ N we then select a maximal
set of pairwise disjoint discarded balls of radius 1

j . By expanding their radii

to 3
j , we ensure that their union S

j contains all the discarded balls of radius
1
j . This fact together with the bound on the number of discarded balls for

each j ∈ N allows us to argue by contradiction that the set of points ∩∞
j=1S

j

missed by the cover is limited by the same bound [C/ε] as the number of
discarded balls of each radius 1

j . (For full details, refer to [12].)
A crucial difference between the above proof and that of the analogous

result in [36] (namely Proposition 3.3) is that in our version the underlying
manifold M need not be compact. In [36], compactness is used in two ways:
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first to guarantee that any cover of M by balls of radius 1
j can be assumed

finite, and second to argue that the centers of balls B on which
∫

B f
(i)
i dx

exceeds εmust be fixed, using the fact that a sequence of centers of such balls
must have a convergent subsequence. Because we first pass to a subsequence
of {fi} on which balls can be consistently labeled as good or bad, we avoid
the need to argue after diagonalizing that bad balls stabilize.

A direct application of Theorem 3.5 to sequences of connections with
uniformly L2-bounded curvature yields

Theorem 3.6. Let {A (j)}j∈J be a sequence of connections in G-bundles
Pj over a smooth Riemannian n-dimensional manifold M with boundary,

with uniformly L2-bounded curvature
(

∫

M |F (j)|2 dx
)1/2

< B ∀ j. For any
ε > 0, there exists a countable collection {Uα} of balls in the interior and
half-balls at the boundary, a collection of indices Jα, a subsequence
{A (j)}j∈J ′ ⊂ {A (j)}j∈J , and at most a finite number of points {x1, . . . ,xk}
∈M such that

⋃

Uα ⊃M \ {x1, . . . ,xk}
∥F (j)∥L2(Uα) < ε ∀j ∈ J ′, j > Jα.

Since an action-minimizing sequence of connections with given boundary
data necessarily satisfies a uniform L2-bound on curvature, Theorem 3.6
ensures the existence of a subsequence and a countable cover ofM (possibly
missing finitely many points) for which the connections in the subsequence
locally satisfy the L2 bounds on curvature prescribed by Theorem 3.4 to
allow transformation to Hodge gauge. Using the bound on Sobolev norms of
connections in local Hodge gauge as given by condition (iv) of Theorem 3.4,
we can diagonalize over the countable cover to obtain a further subsequence
of connections convergent to a weak limit in L2

1 on each neighborhood of
the cover. To justify this localization, we must establish that the collection
of limiting connections on neighborhoods of the cover can be patched into
a global connection which satisfies the Yang-Mills equation and preserves
the correct boundary data. This result appears as Theorem 3.4 in [27] and
applies unchanged to the present problem.

Lower semicontinuity of the Yang-Mills functional (Theorem 3.3) now
implies that the limiting connection A∞ ≡ {Aα} indeed minimizes the Eu-
clidean signature action, which in turn allows a proof by contradiction to es-
tablish that A∞ is a weak solution of the Yang-Mills Dirichlet problem with
the prescribed initial data ([27], Proposition 3.5). These results culminate
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in Theorem 3.6 of [27], reproduced here for completeness (with appropriate
changes for the notation and function spaces of the current problem defined
over a noncompact manifold):

Theorem 3.7. Let {Ai} be a sequence of L2
1;loc connections on fiber bundles

Pi →M with prescribed smooth tangential boundary components (Ai)τ |∂M ≡
A, which also minimizes the Euclidean signature Yang-Mills action, i.e.
Ies [Ai] → infA ∈A2

1;loc(A)
Ies [A ]. Then there exists a collection of neighbor-

hoods {Uα} coveringM except at most a finite number of points {x1, . . . ,xk}
and trivializations σα(i), such that a subsequence can be found that admits a
weak limit in L2

1, on each Uα, called Aα. The collection {Aα} makes a con-
nection A∞ on a bundle over M \ {x1, . . . ,xk}, with transition functions
in L2

2. This connection solves the Yang-Mills Dirichlet problem with bound-
ary data Â, gauge equivalent to A via a smooth gauge transformation. The
connection A∞ satisfies conditions (i) - (iii) of Theorem 3.4.

Regularity of A∞ on a bundle over M \ {x1 . . . ,xk} follows due to ellip-
ticity of the Yang-Mills equation in Hodge gauge. The limiting connection
can be extended to the points {x1, . . . ,xk} by means of the removable sin-
gularity theorems due to Uhlenbeck for interior points (Theorem 4.1 in Ref.
[35]), and to Marini for boundary points (Theorem 4.6 in Ref. [27]), so that
the connection A∞ extends to a smooth connection.

Decay estimates on Yang-Mills connections. Just as existence of a
regular solution to the Yang-Mills Dirichlet problem depends on transform-
ing locally to Hodge gauge, decay properties of Yang-Mills connections in
a suitably chosen global gauge depend on the removability of singularities.
We prove a decay result for Yang-Mills connections which concludes that
any smooth boundary data for a Yang-Mills connection has a gauge rep-
resentative in L2

1({0} × R3). The first part of the proposition is a version
of Uhlenbeck’s Corollary 4.2 in [34] for the base manifold M = R− × R3

while the second part applies the same principle to bound the growth of the
connection 1-form A :

Proposition 3.1. Let D = d+ gA be a Yang-Mills connection in a bun-
dle P over an exterior region V =

{

y ∈ R− × R3 : |y| ≥ N
}

with finite Eu-
clidean action and smooth boundary data A = i∗A on {0} × R3. Then

(a) |F (y)| ≤ C |y|−4 for some constant C (not uniform);

(b) There exists a gauge in which D = d+ gÃ satisfies
∣

∣

∣
Ã (y)

∣

∣

∣
≤ K |y|−2;

(c) A is gauge equivalent to a connection in L2
1({0} × R3).
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Our proof of part (a) proceeds by pulling back a conformal mapping
f : U∗ = {x ∈ R− × R3 : 0 < |x| ≤ 1} → V defined by x 7→ y ≡ Nx/|x|2 to
act on the connection D, so that f∗D is a Yang-Mills connection on U∗ and
the removable singularities theorem for half-balls on the boundary (Theorem
4.6 in [27]) guarantees a gauge transformation σ under which f∗D extends
smoothly to the origin. The transformation law for 2-forms then allows us
to bound |F (y)| as follows:

|F (y)| = |f∗F (x)| |df (x)|−2

≤ max
x∈U

|f∗F (x)| ·
(

N/ |x|2
)−2

= C ′N2 |y|−4

For part (b), we construct the appropriate gauge transformation s as
the composition σ ◦ f−1 of the maps σ and f−1 from part (a). An estimate
analogous to that in part (a) using the transformation law for 1-forms yields
the desired bound on the decay of Ã ≡ A s.

To complete the proof of part (c), we simply compute derivatives of the
transformation law to show componentwise that |∂A s/∂yα| ≤ K ′|y|−2 for
y ∈ V. We then define a simple extension of s to all of R− × R3 by extrap-
olation into R− × R3 \ V of its values on ∂V, so that A s is now a global
gauge representative for A with decay of the connection and its componen-
twise partial derivatives bounded by a constant multiple of |y|−2. Since i∗A
obeys the same decay condition and since the volume element on {0} × R3

has weight |y|2, we have i∗A s ∈ L2
1

(

{0} × R3
)

.
Note that as a corollary, any smooth connection A on {0} × R3 which

serves as boundary data for a Yang-Mills connection approaches pure gauge
at spatial infinity. This follows simply because the decay condition implies
that the curvature of A approaches zero at spatial infinity, and hence A must
approach pure gauge (although it need not approach the same value in all
spatial directions).

Almost-everywhere Gâteaux differentiability of S. To show that the
functional S[·] is Gâteaux differentiable almost everywhere, we employ the
Banach space version of Rademacher’s theorem derived in [43], Theorem 6.
This requires us to view S [·] as a map from an open subset U of a separable
real Banach spaceX to a real Banach space Y satisfying the Radon-Nikodym
property (i.e. every function of bounded variation from [0, 1] to Y must be
differentiable almost everywhere), and to show that as such it is locally
Lipschitz. Thus our first task is to show that with suitable interpretation of
its domain and range, S [·] is locally Lipschitz. The Banach space version of
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Rademacher’s theorem then states that such a locally Lipschitz map T from
U ⊂ X to Y is Gâteaux differentiable outside a Gaussian null subset of U .
A Gaussian null set in a separable Banach space is a Borel subset which has
measure zero under every nondegenerate Gaussian measure (for details of
defining Gaussian measures on Banach spaces, see [43]).

To achieve Banach space structure on the domain B of S [·], we view the
local Sobolev space L2

1;loc({0} × R3,Ad η ⊗ T ∗({0} × R3)) as the union of

all affine Sobolev spaces
˜
A+ L2

1({0} × R3,Ad η ⊗ T ∗({0} × R3)) defined in
terms of a reference connection

˜
A ∈ L2

1;loc({0} × R3,Ad η ⊗ T ∗({0} × R3))
determining the covariant derivative D

˜
A. The global Sobolev space

L2
1({0} × R

3,Ad η ⊗ T ∗({0} × R
3))

consists of sections ω ∈ Γ
(

{0} × R3,Ad η ⊗ T ∗({0} × R3)
)

having finite

Sobolev norm ∥ω∥2,1 ≡
(

∥ω∥22 + ∥D
˜
Aω∥22

)1/2
(see [42]).

Given a fixed reference connection
˜
A on {0} × R3, we interpret S [·] as a

functional defined on the Banach space L2
1({0} × R3,Ad η ⊗ T ∗({0} × R3)),

namely ω 7→ S [
˜
A+ ω]. We prove that thus considered, S [·] is locally Lips-

chitz:

Theorem 3.8. Let
˜
A ∈ L2

1;loc({0} × R3,Ad η ⊗ T ∗({0} × R3)) be a refer-

ence connection such that
˜
F ≡ F

˜
A satisfies

∫

{0}×R3 |
˜
F |2 dx′ <∞, and such

that there exists an extension
˜
A ∈ L2

1;loc(R
− × R3,Ad η ⊗ T ∗(R− × R3)) of

˜
A into R− × R3 with finite Euclidean signature Yang-Mills action. Then
for all sections ω ∈ L2

1({0} × R3,Ad η ⊗ T ∗({0} × R3)), the functional ω 7→
S [

˜
A+ ω] is well defined and locally Lipschitz with respect to the norm ∥ · ∥2,1

on L2
1({0} × R3,Ad η ⊗ T ∗({0} × R3)).

We first verify that S [
˜
A+ ω] is well defined, namely that

˜
A+ ω has

an extension A into R− × R3 with finite Euclidean signature Yang-Mills
action. To construct A , we represent the extension

˜
A of

˜
A into R− × R3 in

a choice of gauge such that i∗
˜
A =

˜
A (as opposed to merely i∗

˜
A ∼

˜
A). We

then define A piecewise over the time component of R− × R3 as a linear
interpolation between

˜
A+ ω and

˜
A, followed by

˜
A :

A =

{

˜
A+ (1 + t)ω, 0 ≥ t ≥ −1

˜
A |t+1, −1 > t > −∞

(define the dt component of A to be 0 for 0 > t ≥ −1). Straightforward
computation of the curvature of A followed by Sobolev estimates confirms
that S [

˜
A+ ω] is well defined.
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To show that ω 7→ S [
˜
A+ ω] is locally Lipschitz on L2

1({0} × R3,Ad η ⊗
T ∗({0} × R3)), we must show that for every ω0 ∈ L2

1({0} × R3,Ad η ⊗
T ∗({0} × R3)), there exists δ > 0 such that for all sections ω1, ω2 satisfy-
ing ∥ωj − ω0∥2,1 < δ, j = 1, 2,

|S[ω1]− S[ω2]| ≤M∥ω1 − ω2∥2,1(3.74)

for some constant M allowed to depend on ω0. Observe that for sections
ω1, ω2 satisfying ∥ωj − ω0∥2,1 < 1

2 , j = 1, 2, we have ∥ω1 − ω2∥2,1 < 1 and
∥ωj∥2,1 < ∥ω0∥2,1 + 1

2 .
Similar to the argument that S is well defined, we define an extension A ′

1

for
˜
A+ ω1 by linearly interpolating to

˜
A+ ω2 and appending its Yang-Mills

minimizer A2 (such a minimizer exists since
˜
A+ ω2 can be extended into

R− × R3 with finite Euclidean signature Yang-Mills action). In the definition
below, we use t12 ≡ ∥ω1 − ω2∥2 < 1:

A
′
1 ≡

{

˜
A+ (1 + t

t12
)ω1 − t

t12
ω2, 0 ≥ t ≥ −t12

A2|t+t12 , −t12 > t > −∞ ,

as before defining the dt component of A ′
1 to be 0 for 0 ≥ t ≥ −t12. We

define an analogous extension A ′
2 for

˜
A+ ω2.

Using the fact that

S[
˜
A+ ω1] ≤ Ies[A ′

1 ] =

∫ 0

−t12

∫

R3

(F ′
1)

2dx′dt+ S[
˜
A+ ω2]

and analogously with the indices 1 and 2 reversed (in fact,
∫ 0
−t12

∫

R3 (F
′
1)

2 dx′dt =
∫ 0
−t12

∫

R3 (F
′
2)

2 dx′dt)), we have the estimate

|S[
˜
A+ ω1]− S[

˜
A+ ω2]| ≤

∫ 0

−t12

∫

R3

(

F
′
1

)2
dx′dt(3.75)

=

∫ 0

−t12

∫

R3

(

F
′
2

)2
dx′dt

As before, a computation of F ′
j allows us to conclude using Sobolev estimates

that
∫ 0
−t12

∫

R3

(

F ′
j

)2
dx′dt ≤ Ct12 = C∥ω1 − ω2∥2 (by choice of t12), where

the constant C depends on ∥ω0∥2,1. This concludes local Lipschitz continuity
of ω 7→ S [

˜
A+ ω], and together with Theorem 6 in [43] yields
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Theorem 3.9. Let
˜
A be a reference connection in L2

1;loc({0} × R3,Ad η ⊗
T ∗({0} × R3)) such that

˜
F ≡ F

˜
A satisfies

∫

{0}×R3

˜
F 2 dx′ <∞ and such that

there exists an extension
˜
A ∈ L2

1;loc(R
− × R3,Ad η ⊗ T ∗(R− × R3)) of

˜
A into

R− × R3 with finite Euclidean signature Yang-Mills action. The functional
ω 7→ S [

˜
A+ ω] on L2

1({0} × R3,Ad η ⊗ T ∗({0} × R3)) is Gâteaux differen-
tiable outside of a Gaussian null set.

For further details, please see [12].

Potential application of the implicit function theorem to smooth-

ness of S. As in the case of polynomial field theories discussed in the pre-
ceding section, one wishes to use the Banach space version of the implicit
function theorem to conclude Fréchet differentiability of S [·] to all orders.
However as discussed in Section 3.1 regarding smoothness of the Hamilton-
Jacobi functional, the gradient of S[·] (where it exists) should be given by the
complementary momentum to the initial data for the minimizing trajectory
on which Ies is evaluated. Thus non-uniqueness of the absolute minimizer
for a given boundary data A would be an obstruction to Gâteaux differ-
entiability of S[·] at A. Results on nonunique minimizers for the Euclidean
signature Yang-Mills action on the unit ball B4 =

{

x ∈ R4 : |x| ≤ 1
}

are
derived in [44]; in particular, these authors observe that, having identified
B4 with the southern hemisphere S− of S4, if one prescribes as boundary
data a connection A which is the pull-back to the equator of an anti-self dual
connection I− on S4, then one can at the same time regard A as boundary
data of I− restricted to S− ≃ B4, and as boundary data of the connection
obtained by restricting I− to the northern hemisphere and reflecting across
the equator. While the former is anti-self dual, the latter is self dual, as
reflection reverses orientation.

The fact that on R− × R3 the functional S [·] is Gâteaux differentiable
outside of a Gaussian null set (Theorem 3.9) suggests the prospect that
an implicit function theorem argument may be applicable almost every-
where (in a suitable sense) on the set of boundary data. Accordingly, we
define a map which evaluates the Euclidean signature Yang-Mills opera-
tor on varying extensions of given boundary data, and we compute its lin-
earization with respect to the variation of the extension. In order to define
the map, denote by B∗ the set of boundary data in (local) Hodge gauge,
B∗ ≡ {A ∈ B : d∗A = 0}. Note that by the existence of a Hodge-gauge
representative for connections with sufficient Ln/2 bounds on curvature [34],
B∗ includes a representative for each set of boundary data in B. Let A L

be the solution to the linearized Yang-Mills Dirichlet problem for boundary
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data A ∈ B∗:

(3.76)























d∗dA L = 0

d∗A L = 0

i∗A L = A

d∗τ
(

A L
)

τ
= 0 ,

where the last equality is satisfied because A ∈ B∗. Arguments from Hodge
theory imply that the solution to (3.76) is unique and that the mapA 7→ A L,
A ∈ B∗ is smooth. Thus we define the smooth map

E : B∗ × A2
1;loc(0) → A2

1;loc(0)
∗

(A, h) 7→ D∗
A L+hFA L+h ,

where A2
1;loc(0)

∗ is the dual of A2
1;loc(0) and D

∗
A L+hFA L+h is interpreted in

a weak sense as ⟨FA L+h, DA L+h · ⟩.
Suppose that (A0, h0) ∈ B∗ × A2

1;loc(0) satisfies E (A0, h0) = 0, indicat-

ing that A L + h0 weakly satisfies the Euclidean signature Yang-Mills equa-
tion. Then we compute the linearization of E at (A0, h0) with respect to the
second variable h as follows:

DhE (A0, h0) : Th0
A2
1;loc(0) → T0

(

A2
1;loc(0)

∗
)

ξ 7→ lim
t→0

E(A0, h0 + tξ)− E(A0, h0)

t

= lim
t→0

D∗
A L

0 +h0+tξ
FA L

0 +h0+tξ

t
= D∗

A0
DA0

ξ + ∗ [ξ, ∗F0] ,

where in the last line we denote A L
0 + h0 by A0 and FA L

0 +h0
by F0.

In order to apply the Banach space implicit function theorem and con-
clude (almost everywhere) smoothness of S [·], we must show that except
for A0 belonging to a set of measure zero in B∗ (with respect to a suitable
measure), the kernel of the map DhE (A0, h0) is trivial (modulo gauge trans-
formations). To this end, we assume that the absolute minimizer of Ies[·] in
A2
1;loc(A0) is unique up to gauge equivalence, removing the obstruction to dif-

ferentiability presented by the existence of inequivalent absolute minimizers.
The set of boundary values for which inequivalent absolute minimizers exist
should be of measure zero, thanks to almost-everywhere Gâteaux differen-
tiability of S[·]. The form of the kernel derived above bears clear similarity
to terms occurring in the full covariant derivative Laplacian, and thus in
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ongoing work we seek to leverage results from elliptic regularity theory for
covariant differential operators to conclude almost-everywhere triviality of
the kernel.

Future work. To complete the application of our program to Yang-Mills
theory we must consider, after resolving the issue of almost-everywhere
Fréchet differentiability of the Hamilton-Jacobi functional S[·], the construc-
tion of higher-order quantum corrections thereto, as modeled in the quantum
mechanical case discussed in Section 2. For field theories such as Yang-Mills
as well as the polynomial field theories considered in Section 3.1, this will
require regularization of the relevant functional Laplacian operator. Indeed,
the higher-order quantum corrections S(k)[·] must satisfy transport equa-
tions analogous to the quantum mechanical versions in Section 2 and [1],
each involving a Laplacian of the next lower order correction S(k−1).

As mentioned in Section 3.3 below, such a process of regularization is
expected to have the favorable side effect of introducing a length scale into
quantum Yang-Mills theory in 4 dimensions. Without a length scale, 4-
dimensional Yang-Mills theory does not admit the construction of a mass
gap from the constants at hand (namely Planck’s constant, the speed of light
and the Yang-Mills coupling constant), seeming to defeat at the outset any
hope of fulfilling this anticipated hallmark of a quantized Yang-Mills theory.
In the following section we discuss in detail our proposal for the application
of bounds involving the ‘Bakry-Emery Ricci tensor’ to this important issue.

3.3. An intended application to the mass gap problem

A fundamental question in quantum gauge theory is whether the Schrödinger
operator for certain non-abelian Yang-Mills fields admits a spectral gap.
Such a gap, if it exists, could represent the energy difference between the
actual vacuum state and that of the lowest energy, excited ‘glueball’ states
and confirm the expectation that massless gluons (the fundamental quanta
of Yang-Mills dynamics) cannot propagate freely as photons do but must
instead exhibit a form of ‘color confinement’. It seems to be well under-
stood that this question lies beyond the scope of conventional perturbation
theory and will require a more global analytical treatment for its ultimate
resolution.

Many years ago I. M. Singer proposed an elegant, geometrical approach
to this fundamental problem based on the fact that the classical, reduced
configuration space for (Lorentzian signature) Yang-Mills dynamics —
namely the ‘orbit space’ of spatial connections modulo gauge transforma-
tions — has a naturally induced, curved Riemannian metric with everywhere
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non-negative sectional curvature [31]. The classical Hamiltonian for the re-
duced dynamics — a real-valued functional defined on the cotangent bundle
of this orbit space — consists of a ‘kinetic’ term induced from the spatial
integral of the square of the vectorial electric component of the full, space-
time Yang-Mills curvature tensor and a ‘potential’ term induced from the
spatial integral of the square of its complementary, vectorial magnetic com-
ponent. The non-vanishing curvature of the Riemannian metric defined by
the kinetic term arises from the implementation of the Gauss-law constraint
during the process of reduction to the quotient, orbit space and was indepen-
dently computed by several investigators [31, 32, 45]. The classical reduced
dynamics is thus that for a system point (namely a gauge equivalence class
of spatial connections) moving on a positively curved, infinite dimensional
manifold under the influence of a (non-negative) potential energy.

Upon canonical quantization the Schrödinger operator for this (pure
Yang-Mills) dynamical system will thus include a kinetic term that, formally
at least, encompasses the (negative10) Laplace-Beltrami operator for an
infinite-dimensional, curved Riemannian manifold — namely the orbit space
alluded to above. Whereas the (covariant) Hessian of sufficiently smooth
(wave) functionals can be rigorously defined in such infinite-dimensional
contexts, its associated trace need not make sense without some suitable
regularization since the Hessian will not, in general, be trace class. Singer,
in particular proposed an elegant zeta-function regularization scheme to de-
fine the needed Laplacian [31].

A classical result in Riemannian geometry due to A. Lichnerowicz [46]
shows that the Laplace operator for a complete, connected (finite-dimen-
sional) Riemannian manifold necessarily exhibits a spectral gap provided
that the Ricci tensor of this manifold is bounded, positively, away from
zero11. Such a result however cannot be expected to extend in any straight-
forward way at least, to the infinite-dimensional manifolds arising in quan-
tum Yang-Mills theory. First of all, as Singer pointed out, their Ricci tensors,
which would result from taking traces of corresponding (rigorously com-
putable) curvature tensors, are not in general well-defined — the curvature
tensors in question not being trace-class — and would require a suitable
regularization for their meaningful formulation. Again Singer proposed a
zeta function regularization scheme as an elegant means of accomplishing

10We here adopt the usual physicists’ sign convention for the definition of a
Laplacian.

11It follows from the Bonnet-Myers theorem that such a manifold is necessarily
compact [47].
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this. Some such regularization, however, is actually a desirable feature of the
quantization procedure, at least in 4 spacetime dimensions, since it allows
the introduction of a length scale into the quantum formalism. In the absence
of such a scale no hypothetical spectral energy gap could even be expressed
in terms of the naturally occurring parameters of the theory (Planck’s con-
stant, the speed of light and the Yang-Mills coupling constant).

Another difficulty with attempting to extend the Lichnerowicz argument
to the infinite-dimensional setting of interest here is that, thanks to the
Bonnet-Myers theorem, one knows that a complete, finite dimensional Rie-
mannian manifolds with positive Ricci curvature bounded away from zero
is necessarily compact [47]. For a connected such manifold the lowest eigen-
value of its associated (negative) Laplacian always vanishes and corresponds
to a globally constant eigenfunction. That such an eigenfunction is never-
theless always normalizable follows from the manifold’s compactness. The
spectral gap referred to in Lichnerowicz’s theorem is thus simply the lowest
non-vanishing eigenvalue of the manifold’s (negative) Laplacian which, in
view of compactness, necessarily has a discrete spectrum.

Generalizations of Lichnerowicz’s theorem have been established under
less stringent conditions on the Ricci tensors provided that the manifolds
under study have finite diameters [48, 49]. L. Andersson has proven that
Riemannian Hilbert manifolds have finite diameters whenever their full sec-
tional curvatures are positively bounded away from zero [50] but this result
does not apply to the orbit space sectional curvatures of interest here since
these latter admit (infinite dimensional) families of 2-planes on which they
actually vanish. In any case the diameters of these Yang-Mills orbit spaces
are known to be infinite [51].

The true, normalizable ground state wave functional must necessarily
reflect the presence of the potential energy term in the Schrödinger opera-
tor. In a recent paper [52] the authors showed how to modify the original
Lichnerowicz argument (in a finite dimensional setting) to allow for the oc-
currence of such a potential energy term and show that a corresponding gap
estimate follows therefrom provided that a suitably defined ‘Bakry-Emery
Ricci tensor’ is bounded positively away from zero. This Bakry-Emery Ricci
tensor differs from the actual Ricci tensor by a term in the (covariant) Hes-
sian of the logarithm of the true ground state wave function. Its positivity
could hold on a flat or even negatively curved space and thus its applicability
is not limited to manifolds of finite diameter.

Furthermore the natural integration measure arising in this (generalized
Lichnerowicz) analysis includes the squared modulus of the ground state
wave function itself so that the total space, even if it has infinite diameter,
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now has finite measure simply by virtue of the normalizability of the vac-
uum state. This should prove to be especially significant for any potential
extensions to infinite dimensional problems wherein formal Lebesgue mea-
sures no longer make sense but for which normalizable vacuum state wave
functionals are nevertheless expected to exist.

Our Euclidean signature semi-classical program, when applied to Yang-
Mills fields, has the significant advantage over conventional, Rayleigh-
Schrödinger perturbation theory of keeping the non-linearities and non-
abelian gauge invariances fully intact at every level of the analysis. Our
expectation is that it should yield an asymptotic expansion for the needed,
fully gauge invariant, logarithm of the ground state wave functional that is
far superior to any attainable by conventional perturbation methods. The
latter, by requiring an expansion in the Yang-Mills coupling constant, dis-
turb both the nonlinear structure and the closely associated (non-abelian)
gauge invariance of the Yang-Mills dynamical system at the outset and at-
tempt to reinstate those vital features only gradually, order-by-order in the
expansion.

Though our main focus in Ref. [52] was on the Yang-Mills system we
proved therein that (non-vanishing) orbit space curvature also arises natu-
rally through the (minimal) coupling of a Maxwell field to a charged scalar
field. In this case curvature arises only for the scalar factor of the (product)
orbit space and not for the Maxwell factor which remains flat. We were thus
led to conjecture that orbit space curvature could even serve as an inde-
pendent source of mass for matter fields themselves provided that they are
(minimally) coupled to (abelian or non-abelian) gauge fields. In the standard
model of elementary particle physics such masses arise exclusively (in view
of the necessity of maintaining gauge invariance) through the interaction of
matter fields with the Higgs field. It is intriguing to speculate whether orbit
space curvature effects could supply an alternative source of such masses.

Variation of the action functional for Yang-Mills fields on Minkowski
space with respect to the (Lorentz frame) time component of the spacetime
connection field yields the so-called Gauss-law constraint equation which,
at each fixed time t, may be viewed as an elliptic equation on R3 for this
time component — a Lie-algebra valued function. If, with suitable boundary
conditions imposed, one solves this constraint and substitutes the solution
back into the action, the resulting reduced kinetic term (a quadratic form
in the ‘velocity’ of the spatial connection) is found to be degenerate along
gauge orbit directions but smooth, gauge invariant and positive definite in
the transversal directions [31, 32, 45]. It thus follows that this kinetic term
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defines a smooth, Riemannian metric on the natural ‘orbit space’ of spa-
tial connections modulo gauge transformations. This orbit space is (at least
almost everywhere) itself a smooth, infinite dimensional manifold and pro-
vides the geometrically natural (reduced) configuration space for (classical)
Yang-Mills dynamics.

A corresponding smooth potential energy function is induced on this
orbit space by the integral over R3 (at fixed t) of the square of the curvature
of the spatial connection field — the ‘magnetic’ component of the curvature
of the full spacetime connection field. A Legendre transformation leads in
turn to the Hamiltonian functional for the classical dynamics which takes
the ‘standard’ form of a sum of (curved space) kinetic and potential energies
defined on the cotangent bundle of the aforementioned orbit space.

The sectional curvature of this reduced configuration space was indepen-
dently computed in [31, 32, 45] and shown to be everywhere non-negative but
almost everywhere non-vanishing whenever the gauge group is non-abelian.
Though Singer discussed the need for a suitable regularization scheme to
make sense of the formally (positively) divergent Ricci tensor of the orbit
space metric, the actual form of such a regulated Ricci tensor seems still to
be unknown. It would be most interesting if a suitably defined Ricci tensor
could be shown to be bounded, positively away from zero on this orbit space,
especially inasmuch as we think it quite unlikely that our proposed Bakry-
Emery ‘enhancement’ of this tensor would nullify its (hypothetical) positiv-
ity properties but perhaps, more likely, complement them12. Furthermore,
as we discussed near the end of Section II of Ref. [52], it is quite plausible
that strict positivity of the Bakry-Emery Ricci tensor, though seemingly
sufficient for the implication of a spectral gap, is not absolutely necessary
for this conclusion to hold.

3.4. Euclidean-Signature Asymptotic Methods and the

Wheeler-DeWitt Equation

Globally hyperbolic spacetimes, {(4)V, (4)g}, are definable over manifolds
with the product structure, (4)V ≈M × R. We shall focus here on the ‘cos-
mological’ case for which the spatial factor M is a compact, connected, ori-
entable 3-manifold without boundary. The Lorentzian metric, (4)g, of such

12This would be true for example if the relevant logarithm were (almost every-
where) convex.
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a spacetime is expressible, relative to a time function x0 = t, in the 3+1-
dimensional form

(4)g = (4)gµν dx
µ ⊗ dxν(3.77)

= −N2dt⊗ dt+ γij(dx
i + Y idt)⊗ (dxj + Y jdt)

wherein, for each fixed t, the Riemannian metric

(3.78) γ = γijdx
i ⊗ dxj

is the first fundamental form induced by (4)g on the corresponding t =
constant, spacelike hypersurface. The unit, future pointing, timelike normal
field to the chosen slicing (defined by the level surfaces of t) is expressible
in terms of the (strictly positive) ‘lapse’ function N and ‘shift vector’ field
Y i ∂

∂xi as

(3.79) (4)n = (4)nα
∂

∂xα
=

1

N

∂

∂t
− Y i

N

∂

∂xi

or, in covariant form, as

(3.80) (4)n = (4)nαdx
α = −N dt.

The canonical spacetime volume element of (4)g, µ(4)g :=
√

− det (4)g, takes
the 3+1-dimensional form

(3.81) µ(4)g = Nµγ

where µγ :=
√
det γ is the volume element of γ.

In view of the compactness of M the Hilbert and ADM action func-
tionals, evaluated on domains of the product form, Ω =M × I, with I =
[t0, t1] ⊂ R, simplify somewhat to

IHilbert :=
c3

16πG

∫

Ω

√

− det (4)g (4)R((4)g) d4x(3.82)

=
c3

16πG

∫

Ω

{

Nµγ
(

KijKij − (trγK)2
)

+Nµγ
(3)R(γ)

}

d4x

+
c3

16πG

∫

M
(−2µγtrγK) d3x

∣

∣

∣

t1

t0

:= IADM +
c3

16πG

∫

M
(−2µγtrγK) d3x

∣

∣

∣

t1

t0
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wherein (4)R((4)g) and (3)R(γ) are the scalar curvatures of (4)g and γ and
where

(3.83) Kij :=
1

2N

(

−γij,t + Yi|j + Yj|i
)

and

(3.84) trγK := γijKij

designate the second fundamental form and mean curvature induced by
(4)g on the constant t slices. In these formulas spatial coordinate indices,
i, j, k, . . . , are raised and lowered with γ and the vertical bar, ‘|’, signifies
covariant differentiation with respect to this metric so that, for example,
Yi|j = ∇j(γ)γiℓY

ℓ. When the variations of (4)g are appropriately restricted,
the boundary term distinguishing IHilbert from IADM makes no contribution
to the field equations and so can be discarded.

Writing

(3.85) IADM :=

∫

Ω
LADMd

4x,

with Lagrangian density

(3.86) LADM :=
c3

16πG

{

Nµγ
(

KijKij − (trγK)2
)

+Nµγ
(3)R(γ)

}

,

one defines the momentum conjugate to γ via the Legendre transformation

(3.87) pij :=
∂LADM

∂γij,t
=

c3

16πG
µγ
(

−Kij + γijtrγK
)

so that p = pij ∂
∂xi ⊗ ∂

∂xj is a symmetric tensor density induced on each t =
constant slice.

In terms of the variables {γij , pij , N, Y i} the ADM action takes the
Hamiltonian form

(3.88) IADM =

∫

Ω

{

pijγij,t −NH⊥(γ, p)− Y iJi(γ, p)
}

d4x

where

(3.89) H⊥(γ, p) :=

(

16πG

c3

)

(

pijpij − 1
2(p

m
m)

2
)

µγ
−
(

c3

16πG

)

µγ
(3)R(γ)
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and

(3.90) Ji(γ, p) := −2 p ji |j .

Variation of IADM with respect to N and Y i leads to the Einstein (‘Hamil-
tonian’ and ‘momentum’) constraint equations

(3.91) H⊥(γ, p) = 0, Ji(γ, p) = 0,

whereas variation with respect to the canonical variables, {γij , pij}, gives rise
to the complementary Einstein evolution equations in Hamiltonian form,

(3.92) γij,t =
δHADM

δpij
, pij,t = −δHADM

δγij

where HADM is the ‘super’ Hamiltonian defined by

(3.93) HADM :=

∫

M

(

NH⊥(γ, p) + Y iJi(γ, p)
)

d3x.

The first of equations (3.92) regenerates (3.83) when the latter is reexpressed
in terms of p via (3.87). Note that, as a linear form in the constraints,
the super Hamiltonian vanishes when evaluated on any solution to the field
equations. There are neither constraints nor evolution equations for the lapse
and shift fields which are only determined upon making, either explicitly or
implicitly, a choice of spacetime coordinate gauge. Bianchi identities function
to ensure that the constraints are preserved by the evolution equations and
thus need only be imposed ‘initially’ on an arbitrary Cauchy hypersurface.
Well-posedness theorems for the corresponding Cauchy problem exist for a
variety of spacetime gauge conditions [53, 54].

A formal ‘canonical’ quantization of this system begins with the substi-
tutions

(3.94) pij −→ ℏ

i

δ

δγij
,

together with a choice of operator ordering, to define quantum analogues
Ĥ⊥(γ,

ℏ

i
δ
δγ ) and Ĵi(γ, ℏi δ

δγ ) of the Hamiltonian and momentum constraints.
These are then to be imposed, à la Dirac, as restrictions upon the allowed
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quantum states, regarded as functionals, Ψ[γ], of the spatial metric, by set-
ting

(3.95) Ĥ⊥

(

γ,
ℏ

i

δ

δγ

)

Ψ[γ] = 0,

and

(3.96) Ĵi
(

γ,
ℏ

i

δ

δγ

)

Ψ[γ] = 0.

The choice of ordering in the definition of the quantum constraints {Ĥ⊥, Ĵi}
is highly restricted by the demand that the commutators of these operators
should ‘close’ in a natural way without generating ‘anomalous’ new con-
straints upon the quantum states.

While a complete solution to this ordering problem does not currently
seem to be known it has long been realized that the operator, Ĵi(γ, ℏi δ

δγ ),
can be consistently defined so that the quantum constraint equation (3.96),
has the natural geometric interpretation of demanding that the wave func-
tional, Ψ[γ], be invariant with respect to the action (by pullback of metrics
on M ) of Diff 0(M), the connected component of the identity of the group,
Diff +(M), of orientation preserving diffeomorphisms of M, on the space,
M(M), of Riemannian metrics on M. In other words the quantized momen-
tum constraint (3.96) implies, precisely, that

(3.97) Ψ[φ∗γ] = Ψ[γ]

∀ φ ∈ Diff 0(M) and ∀ γ ∈ M(M). In terminology due to Wheeler wave
functionals can thus be regarded as passing naturally to the quotient ‘su-
perspace’ of Riemannian 3-geometries [55–57] on M,

(3.98) S(M) :=
M(M)

Diff 0(M)
.

Insofar as a consistent factor ordering for the Hamiltonian constraint
operator, Ĥ⊥(γ,

ℏ

i
δ
δγ ), also exists, one will be motivated to propose the

(Euclidean-signature, semi-classical) ansatz

(3.99)
(0)

Ψℏ[γ] = e−Sℏ[γ]/ℏ

for a ‘ground state’ wave functional
(0)

Ψℏ[γ]. In parallel with our earlier exam-
ples, the functional Sℏ[γ] is assumed to admit a formal expansion in powers
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of ℏ so that one has

(3.100) Sℏ[γ] = S(0)[γ] + ℏS1[γ] +
ℏ2

2!
S(2)[γ] + · · ·+ ℏk

k!
S(k)[γ] + · · · .

Imposing the momentum constraint (3.96) to all orders in ℏ leads to the
conclusion that each of the functionals, {S(k)[γ]; k = 0, 1, 2, . . .}, should be

invariant with respect to the aforementioned action of Diff 0(M) on M(M),
ie, that

(3.101) S(k)[φ
∗γ] = S(k)[γ], k = 0, 1, 2, . . .

∀ φ ∈ Diff 0(M) and ∀ γ ∈ M(M).
Independently of the precise form finally chosen for Ĥ⊥(γ,

ℏ

i
δ
δγ ), the

leading order approximation to the Wheeler-DeWitt equation,

(3.102) Ĥ⊥

(

γ,
ℏ

i

δ

δγ

)

e−S(0)[γ]/ℏ−S(1)[γ]−··· = 0,

for the ground state wave functional will, inevitably reduce to the Euclidean-
signature Hamilton-Jacobi equation

(3.103)

(

16πG

c3

)2
(

γikγjℓ − 1
2γijγkℓ

)

µγ

δS(0)

δγij

δS(0)

δγkℓ
+ µγ

(3)R(γ) = 0.

This equation coincides with that obtained from making the canonical sub-
stitution,

(3.104) pij −→
δS(0)[γ]

δγij
,

in the Euclidean-signature version of the Hamiltonian constraint,
(3.105)

H⊥Eucl := −
(

16πG

c3

)

(

pijpij − 1
2(p

m
m)

2
)

µγ
−
(

c3

16πG

)

µγ
(3)R(γ) = 0,

that, in turn, results from repeating the derivation sketched above for IADM

but now for the Riemannian metric form

(4)g
∣

∣

∣

Eucl
= (4)gµν

∣

∣

∣

Eucl
dxµ ⊗ dxν(3.106)

= N
∣

∣

∣

2

Eucl
dt⊗ dt+ γij(dx

i + Y idt)⊗ (dxj + Y jdt)
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in place of (3.77). The resulting functional IADM Eucl differs from IADM only

in the replacements H⊥(γ, p) −→ H⊥Eucl(γ, p) and N −→ N
∣

∣

∣

Eucl
.

The essential question that now comes to light is thus the following:

Is there a well-defined mathematical method for establishing the
existence of a Diff 0(M)-invariant, fundamental solution to the
Euclidean-signature functional differential Hamilton-Jacobi equa-
tion (3.103)?

In view of the field theoretic examples discussed above one’s first thought
might be to seek to minimize an appropriate Euclidean-signature action
functional subject to suitable boundary and asymptotic conditions. But, as
is well-known from the Euclidean-signature path integral program [58], the
natural functional to use for this purpose is unbounded from below within
any given conformal class — one can make the functional arbitrarily large

and negative by deforming any metric (4)g
∣

∣

∣

Eucl
with a suitable conformal

factor [58, 59].
But the real point of the constructions above was not to minimize ac-

tion functionals but rather to generate certain ‘fundamental sets’ of solutions
to the associated Euler-Lagrange equations upon which the relevant action
functionals could then be evaluated. But the Einstein equations, in vacuum
or even allowing for the coupling to conformally invariant matter sources,
encompass, as a special case, the vanishing of the 4-dimensional scalar curva-

ture, (4)R((4)g
∣

∣

∣

Eucl
). Thus there is no essential loss in generality, and indeed

a partial simplification of the task at hand to be gained, by first restrict-
ing the relevant, Euclidean-signature action functional to the ‘manifold’ of

Riemannian metrics satisfying (in the vacuum case) (4)R((4)g
∣

∣

∣

Eucl
) = 0 and

then seeking to carry out a constrained minimization of this functional.

Setting (4)R((4)g
∣

∣

∣

Eucl
) = 0 freezes out the conformal degree of freedom

that caused such consternation for the Euclidean path integral program
[58, 59], wherein one felt obligated to integrate over all possible Riemannian
metrics having the prescribed boundary behavior, but is perfectly natural
in the present context and opens the door to appealing to the positive ac-
tion theorem which asserts that the relevant functional is indeed positive
when evaluated on arbitrary, asymptotically Euclidean metrics that satisfy
(4)R((4)g

∣

∣

∣

Eucl
) ≥ 0 [60–63].

Another complication of the Euclidean path integral program was the
apparent necessity to invert, by some still obscure means, something in the
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nature of a ‘Wick rotation’ that had presumably been exploited to justify
integrating over Riemannian, as opposed to Lorentzian-signature, metrics.
Without this last step the formal ‘propagator’ being constructed would pre-
sumably be that for the Euclidean-signature variant of the Wheeler-DeWitt
equation and not the actual Lorentzian-signature version that one wishes to
solve. In ordinary quantum mechanics the corresponding, well-understood
step is needed to convert the Feynman-Kac propagator, derivable by rigorous
path-integral methods, back to one for the actual Schrödinger equation.

But in the present setting no such hypothetical ‘Wick rotation’ would
ever have been performed in the first place so there is none to invert.
Our focus throughout is on constructing asymptotic solutions to the origi-
nal, Lorentz-signature Wheeler-DeWitt equation and not to its Euclidean-
signature counterpart. That a Euclidean-signature Einstein-Hamilton-Jacobi
equation emerges in this approach has the very distinct advantage of leading
one to specific problems in Riemannian geometry that may well be resolvable
by established mathematical methods. By contrast, path integral methods,
even for the significantly more accessible gauge theories discussed above,
would seem to require innovative new advances in measure theory for their
rigorous implementation. Even the simpler scalar field theories, when formu-
lated in the most interesting case of four spacetime dimensions, seem still to
defy realization by path integral means. It is conceivable, as was suggested in
the concluding section of [1], that focusing predominantly on path integral
methods to provide a ‘royal road’ to quantization may, inadvertently, render
some problems more difficult to solve rather than actually facilitating their
resolution.

The well-known ‘instanton’ solutions to the Euclidean-signature Yang-
Mills equations present a certain complication for the semi-classical pro-
gram that we are advocating in that they allow one to establish the ex-
istence of non-unique minimizers for the Yang-Mills action functional for
certain special choices of boundary data [12]. This in turn can obstruct the
global smoothness of the corresponding solution to the Euclidean-signature
Hamilton-Jacobi equation. While it is conceivable that the resulting, appar-
ent need to repair the associated ‘scars’ in the semi-classical wave functionals
may have non-perturbative implications for the Yang-Mills energy spectrum
— of potential relevance to the ‘mass-gap’ problem — no such corrections
to the spectrum are expected or desired for the gravitational case. Thus it is
reassuring to note that analogous ‘gravitational instanton’ solutions to the
Euclidean-signature Einstein equations have been proven not to exist [59].

We conclude by noting that other interesting, generally covariant sys-
tems of field equations exist to which our (‘Euclidean-signature semi-
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classical’) quantization methods could also be applied. Classical relativis-
tic ‘membranes’, for example, can be viewed as the evolutions of certain
embedded submanifolds in an ambient spacetime — their field equations
determined by variation of the volume functional of the timelike ‘world-
sheets’ being thereby swept out. The corresponding Hamiltonian configu-
ration space for such a system is comprised of the set of spacelike embed-
dings of a fixed n− 1 dimensional manifold M into the ambient n+ k di-
mensional spacetime, each embedding representing a possible spacelike slice
through some n-dimensional membrane worldsheet. Upon canonical quan-
tization wave functionals are constrained (by the associated, quantized mo-
mentum constraint equation) to be invariant with respect to the induced
action of Diff 0(M) on this configuration space of embeddings. The corre-
sponding quantized Hamiltonian constraint, imposed à la Dirac, provides
the natural analogue of the Wheeler-DeWitt equation for this problem.

A solution to the operator ordering problem for these quantized con-
straints, when the ambient spacetime is Minkowskian, was proposed by one
of us in [64]. For the compact, codimension one case (i.e., whenM is compact
and k = 1) it is not difficult to show that the relevant Euclidean-signature
Hamilton-Jacobi equation has a fundamental solution given by the volume
functional of the maximal, spacelike hypersurface that uniquely spans, à la
Plateau, the arbitrarily chosen embedding [65]. It would be especially in-
teresting to see whether higher-order quantum corrections and excited state
wave functionals can be computed for this system in a way that realizes a
quantum analogue of general covariance.
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