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Monopole Floer homology and the
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We refine some classical estimates in Seiberg-Witten theory, and
discuss an application to the spectral geometry of three-manifolds.
We show that for any Riemannian metric on a rational homol-
ogy three-sphere Y , the first eigenvalue of the Hodge Laplacian
on coexact one-forms is bounded above explicitly in terms of the
Ricci curvature, provided that Y is not an L-space (in the sense
of Floer homology). The latter is a computable purely topological
condition, and holds in a variety of examples. Performing the anal-
ogous refinement in the case of manifolds with b1 > 0, we provide
a gauge-theoretic proof of an inequality of Brock and Dunfield re-
lating the Thurston and L2 norms of hyperbolic three-manifolds,
first proved using minimal surfaces.

We discuss a relation between gauge theory, Floer homology, and spectral
geometry. In particular, we will be interested in the study of the spectrum of
the Hodge Laplacian acting on differential forms on a compact Riemannian
three-manifold.

The study of the interactions between the spectrum of the Laplacian on
functions and the geometry of the underlying space dates back to at least
Weyl [27]. The subject has been popularized again in the ’60s by the famous
papers [13] and [20], and is by now a fairly well understood topic. Much less
is known about the spectrum on forms, except in the case of surfaces in which
(by the Hodge decomposition) it is determined entirely by the spectrum on
functions. In this sense, the first interesting case is that of three-manifolds,
for which the spectrum on forms is determined by the spectrum on functions
and the spectrum on coexact 1-forms. In the present paper, the quantity we
are interested in is the least eigenvalue on coexact 1-forms, which we will
denote by λ∗

1.
A classical upper bound for λ∗

1 (which holds in every dimension) can
be provided in terms of the sectional curvatures, their covariant derivatives
and the injectivity radius [7], while some lower bounds can be exhibited in
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special cases using the Mayer-Vietoris arguments introduced in [19] (see also
[8]).

In this paper, we will focus on dimension three. Given a rational ho-
mology sphere Y , we will provide an upper bound on λ∗

1 purely in terms
of the Ricci curvature, provided an extra topological assumption (which is
gauge-theoretic in nature). In the following, we denote by s̃(p) the sum of
the two least eigenvalues of the Ricci curvature at the point p.

Theorem 1. Let Y be a rational homology sphere of dimension three which
is not an L-space. Then for every Riemannian metric on Y the upper bound

(1) λ∗

1 ≤ −infp∈Y s̃(p)

holds. In particular, a lower bound on the Ricci curvature implies an upper
bound on λ∗

1.

An L-space Y is a rational homology sphere Y for which the reduced
monopole Floer homology HM (Y ) vanishes (see [14]). This condition is a
topological invariant. An alternative definition is the vanishing of the re-
duced Heegaard Floer homology HFred(Y ) [21]: these conditions are equiv-
alent via the isomorphism between the two theories (see [17], [5] and subse-
quent papers). Examples of L-spaces include spherical space forms [14] and
branched double covers of alternating knots [23]. In general, the condition of
being an L-space is quite well understood, and algorithmically computable
[24]. Among rational homology spheres which are not L-spaces (so that the
main result of the paper applies to them) we have the following classes of
examples:

• any integral homology sphere obtained by a surgery on a knot in S3

other than S3 itself and the Poincaré homology sphere [9];

• any rational homology sphere obtained by surgery on a knot K is S3

such that the Alexander polynomial of K has a coefficient different
than ±1 [22]. More generally, there are many restrictions on knots
which admit an L-space surgery (see for example [11]);

• any rational homology sphere that admits a co-orientable taut foliation
[15].

An intriguing conjecture [3] states that in fact an irreducible rational ho-
mology sphere is an L-space if and only if it does not admit a co-orientable
taut foliation, if and only if its fundamental group is not left-orderable. This
has been recently verified for graph manifolds [10].
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In a different direction, we also provide an alternative proof of an in-
teresting result from [4] (which was in turn inspired by [1]). Recall that
the first cohomology H1(Y ;R) of an oriented hyperbolic three-manifold Y
comes with two natural norms: the Thurston norm ∥ · ∥Th [25], and the har-
monic norm with respect to the hyperbolic metric ∥ · ∥L2 . We then have the
following.

Theorem 2 (Theorem 1.3 of [4]). For every oriented closed hyperbolic
three-maniifold Y , the inequality

(2)
π

√

vol(Y )
∥ · ∥Th ≤ ∥ · ∥L2

between norms holds.

The authors also show that the inequality is qualitatively sharp (see
Theorem 1.5 in [4]). Their proof relies on the theory of minimal surfaces in
hyperbolic three-manifolds, and in particular an idea of Uhlenbeck [26]. As
pointed out in [4], an inequality weaker than (2) is a direct consequence of
the main result of [16], which asserts that for a closed oriented irreducible
three-manifold Y , for any class α ∈ H2(Y ;R) the identity

(3) |α| = 4π · suph∥α∥L2(h)/∥sh∥L2(h)

holds. Here | · | denotes the dual Thurston norm, h varies along all Rieman-
nian metrics on Y , and sh is the scalar curvature. Recall that while for a
general manifold the dual Thurston norm can attain the value ∞, in the
case of hyperbolic three-manifolds it is a genuine norm, as it follows from
the fact that hyperbolic three-manifolds are atoroidal. Passing to duals, this
is equivalent to the fact that for a given φ ∈ H1(Y ;R) we have the identity

4π∥φ∥Th = infh∥φ∥L2(h)∥sh∥L2(h).

In our case of interest, by taking h to be the hyperbolic metric, which has
scalar curvature −6, we obtain the bound

2π

3
√

vol(Y )
∥ · ∥Th ≤ ∥ · ∥L2 .

We will provide a gauge-theoretic proof of the sharper inequality (2). Fur-
thermore, while the argument of [4] relies extensively on the assumption on
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sectional curvatures at the basis of Uhlenbeck’s observation, we will see that
our approach only requires a condition on the Ricci curvature.

The proof of both results involves a refinement of some well-known es-
timates for the solutions of the Seiberg-Witten equations. This is inspired
by the estimates in the four-dimensional case involving the self-dual Weyl
curvature discussed in [18]. The key idea in our case is to exploit the classical
Bochner formula connecting the Hodge Laplacian and the Bochner Lapla-
cian on 1-forms in terms of the Ricci curvature.

Proof of Theorem 1. We follow the conventions of [14]. A sufficient condition
for a rational homology sphere Y to be an L-space is the existence of a pair
consisting of a metric and perturbation which is admissible and for which the
Seiberg-Witten equations do not admit irreducible solutions for any spinc

structure. We start by investigating this condition in detail in the case of
the unperturbed equations, and discussed the perturbed case in the end. Fix
a Riemannian metric for which

(4) λ∗

1 + infp∈Y s̃(p) > 0

and a spinc structure s, and consider a solution (B,Ψ) of the equations

1

2
ρ(FBt)− (ΨΨ∗)0 = 0

DBΨ = 0.

Then we have the identity

(5) ∆|Ψ|2 = 2⟨Ψ,∇∗

B∇BΨ⟩ − 2|∇BΨ|2 = −|Ψ|4 −
1

2
s|Ψ|2 − 2|∇BΨ|2,

where we used the Weitzenböck formula

D2
BΨ = ∇∗

B∇BΨ+
1

2
ρ(FBt) ·Ψ+

s

4
Ψ.

We can now multiply (5) by |Ψ|2, integrate over the manifold, and obtain
by Green’s identity

(6)

∫

|Ψ|6 +
1

2
s|Ψ|4 + 2|Ψ|2|∇BΨ|2 = −

∫

|Ψ|2∆|Ψ|2 = −

∫

|d|Ψ|2|2 ≤ 0.

The key idea is to get a better bound on the third term on the left hand
side. To do this, recall that for a 1-form ξ the classical Bochner identity

(d+ d∗)2ξ = ∇∗∇ξ +Ric(ξ, ·)
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holds, see for example [2]. Suppose now that ξ is coclosed. Integrating by
parts, we obtain the inequality

(7)

∫

|∇ξ|2 =

∫

|(d+ d∗)ξ|2 +

∫

−Ric(ξ, ξ) ≥

∫

(λ∗

1 −m)|ξ|2,

where m(p) is the maximum eigenvalue of the Ricci curvature at p. We
consider the variational definition of the first eigenvalue: as b1(Y ) = 0, there
are not non-trivial harmonic 1-forms, so that we have

(8)

∫

|(d+ d∗)ξ|2 ≥ λ∗

1

∫

|ξ|2.

We now apply this last inequality to the 1-form ξ = ρ−1(ΨΨ∗)0, which is
coclosed because its Hodge star is a multiple of the curvature (recall that on
a three-manifold, for any 1-form we have ρ(α) = −ρ(∗α)). For this 1-form,
recalling that we are using the inner product on isu(2) given by tr(a∗b)/2
(which makes the Clifford multiplication ρ an isometry), we have

|∇ξ|2 ≤ |Ψ|2|∇BΨ|2, |ξ|2 =
1

4
|Ψ|4,

hence substituting in (6) we obtain
∫

|Ψ|6 +
1

2
(λ∗

1 + s̃)|Ψ|4 ≤ 0.

Here by definition s̃ = s−m. Now, our assumption (4) implies that Ψ is
identically zero, so that the Seiberg-Witten equations do not have irre-
ducible solutions. Finally, as the quantity λ∗

1 + s̃ is by assumption every-
where strictly positive, the same result holds for a small admissible per-
turbation of the equations (as those constructed in [14]), so that Y is an
L-space. □

Remark. Of course (1) does not hold for spherical space forms, but one
can also construct an example of a Riemannian three-manifold with inf s̃ < 0
for which (1) does not hold. For example, the Hantzsche-Wendt manifold is
the unique rational homology three-sphere admitting a flat metric. We can
choose a perturbation of the metric for which inf s̃ < 0. For perturbation
small enough (in the C∞ sense for example), condition (1) will still be false
(see for example [6]).

Proof of Theorem 2. We follow closely the proof of the main result of [16]
(beware that the conventions for the Seiberg-Witten equations in that paper
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are slightly different than [14]). Recall that the unit ball of the dual Thurston
norm is a polytope P [25]. Combining deep work of Gabai, Thurston, Eliash-
berg and Taubes, it is shown in [16] that this polytope P coincides with the
convex hull of monopole classes (so that in particular it has integral ver-
tices). Let α ∈ H2(Y ;R) be a vertex of P . We know that in the correspond-
ing spinc structure there will be a solution (B,Ψ) to the Seiberg-Witten
equations with Ψ ̸= 0 for any metric, and in particular for the one we are
working with. In particular, inequality (6) holds. The main difference is that
now ∗FBt is not necessarily coexact. Nevertheless, we can use the less refined
inequality

∫

|∇ξ|2 ≥ −

∫

m|ξ|2

and obtain as above
∫

|Ψ|6 +
1

2
s̃|Ψ|4 ≤ 0.

Applying Hölder’s inequality we get

∫

|Ψ|6 ≤

∫

−
1

2
s̃|Ψ|4 ≤

(
∫

|s̃/2|3
)1/3(∫

|Ψ|6
)2/3

so that (as Ψ ̸= 0) we have
∫

|s̃/2|3 ≥

∫

|Ψ|6.

Then Hölder’s inequality together with the Seiberg-Witten equations imply
that

vol(Y )1/3
(
∫

|Ψ|6
)2/3

≥

∫

|Ψ|4 =

∫

|FBt |2,

so that putting the pieces together

(9)
1

4
vol(Y )1/3∥s̃2∥2L3(h) ≥

∫

|FBt |2 ≥ 4π2∥α∥2L2(h)

as FBt represents the class −2πiα. As for a hyperbolic three-manifold s̃ =
−4, we get

∥α∥2L2(h) ≤
vol(Y )

π2
.

As this holds for all classes α which are vertices of the dual Thurston poly-
tope, we get the inequality between the norms

∥ · ∥2L2 ≤
vol(Y )

π2
| · |2.
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Passing to dual norms and taking square roots the result follows. □

We conclude by discussing the extremal cases. In [12] it is shown that a
metric for which the identity (3) is realized is very constrained: among the
other features, the geometry is forced to be R×H, so that in particular Y
is Seifert. This follows from the fact that the curvature FBt is parallel. In
our case, we can instead conclude if a manifold Y admits a metric for which
(9) is an equality, then it must fiber over the circle. Indeed, if we are in the
extremal case, inequality (7) implies that the curvature FBt is harmonic,
so that in particular ∗FBt is a closed form. Having an equality in equation
(6) implies that |Ψ| is a non-zero constant, so that by the Seiberg-Witten
equations ∗FBt is never zero. As ∗FBt is (up to constants) the Poincaré dual
to an integral form, by integrating it we obtain the required fibration to S1.
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