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1. Introduction

Consider a Ricci flow g(t) on a surface M , existing over a time interval
t ∈ (0, T ), i.e. a smooth solution to

(1.1)
∂g

∂t
= −2Ricg(t) = −2Kg,

where K is the Gauss curvature. As t ↑ T , the curvature may blow up; for
example if gS is the spherical metric on S2 with K ≡ 1, then the solution
g(t) = (1− 2t)gS has curvature K = (1− 2t)−1. Similarly, as t ↓ 0, the cur-
vature may also blow up. A first example of this would be if gH is a hyper-
bolic metric and g(t) = 2tgH , in which case the curvature is K = −(2t)−1.
A second example would be the natural Ricci flow smoothing out a conical
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surface, for which the supremum of |K| also blows up like Ct−1, with C
depending on the cone angle (see [7] or Section 4, Chapter 2 of [3]).

Although all of these most obvious examples have curvature blow-up like
(time)−1, Hamilton and Daskalopoulos [4] constructed examples for which
the curvature blows up at time T like (time)−2. For example, if one takes
the spherical metric on the punctured sphere S2\{p} with K ≡ 1, then the
subsequent unique instantaneously complete Ricci flow [5, 14] will exist until
time T = 1, and the supremum of K will blow up like (1− t)−2 (up to some
factor).

Later, in [13], the first author constructed a new class of solutions that
could be seen to have a rate of blow-up as t ↓ 0 that could not be (time)−1.
To understand one example of such a flow, consider the unique complete
hyperbolic conformal metric on B \ {0}, where B ⊂ R

2 is the unit disc,
which has a hyperbolic cusp at the origin. This metric can be written H =
h(dx2 + dy2) where

h(x, y) =
1

r2(log r)2
,

for r =
√

x2 + y2, and the function h restricts to an L1 function on any
compact subset of B (i.e. the cusp has finite area). The arguments in [13]
imply that other than the homothetically dilating solution (1 + 2t)h defined
on B \ {0}, there is an alternative complete ‘contracting cusp’ Ricci flow
solution gcc(t) defined on B, which caps the cusp off at infinity and then
allows it to contract.

Theorem 1.1. There exists a smooth, complete Ricci flow gcc(t) =
ucc(t)(dx

2 + dy2) on B for t > 0 such that gcc(t) → H smoothly locally on
B\{0}, and

(1.2) ucc(t) → h in L1
loc(B),

as t ↓ 0. Moreover, if g̃(t) is any other smooth, complete Ricci flow on B,
defined for t ∈ (0, T ), with H as L1 initial data in the sense of (1.2), then
g(t) = g̃(t) for all t ∈ (0, T ).

The uniqueness assertion is a little different to that in [13], and will be
proved in Section 2.3. Moreover, the L1 − L∞ smoothing estimate developed
in [15] will allow us to give a streamlined proof of the existence, in Section
2.2, with some additional control.
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It was conjectured in [13] that the curvature should blow up like t−2,
analogous to the result of Hamilton and Daskalopoulos, and it is this con-
jecture that we settle in this paper.

Theorem 1.2. For some universal number c2 > 0 and any c1 > 32, if Kcc

is the Gauss curvature of gcc, then

1

c1t2
≤ max

B
Kcc(t) ≤

c2
t2

for sufficiently small t > 0 depending only on c1.

Although rather standard, as we discuss in Section 3.4, it is worth record-
ing that the curvature blow up above is happening asymptotically at the
origin in the following sense.

Proposition 1.3. For each ε ∈ (0, 1), we have Kcc(t) → −1 uniformly on
B\Bε as t ↓ 0.

In contrast, the techniques of [6] would allow one to construct Ricci flows
with different rates of curvature blow-up on noncompact surfaces where the
blow-up occurs not locally but at spatial infinity. Wu constructed higher
dimensional Ricci flows with other blow-up rates in [17].

The proof of Theorem 1.2 will use a combination of techniques, the
main ones not exploiting the rotational symmetry of our setting, and the
result could be generalised. One ingredient will be sharp estimates on the
conformal factor of the flow. Recall that (1.1) is equivalent to

(1.3) ∂tu = △ log u

if g(t) = u(t)(dx2 + dy2), or equivalently

(1.4) ∂tv = e−2v△v = −K

if u(t) = e2v(t). The L1 − L∞ smoothing estimate from [15] will give sharp
upper control on the conformal factor of gcc(t) almost immediately. More-
over, by comparing with a family of cigar solutions, we will also obtain a
sharp lower bound of the conformal factor, which is also an improvement of
the lower bounds in [13], established using Perelman’s pseudolocality theo-
rem. More precisely, we will prove
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Theorem 1.4. Let ucc be the conformal factor of gcc on B and vcc :=
1
2 log ucc. Then

1

8t
+

1

2
(1 + log(4t)) ≤ vcc(0, t)

for t ∈ (0, 1/4), and

max
x∈B1/2

vcc(x, t) ≤
1

t
+ C

for t ∈ (0, 1) and universal C < ∞.

In other words, the conformal factor at the origin decays at a rate be-
tween 1/(8t) and 1/t, neglecting lower order terms.

The upper bounds on the conformal factor will be exploited by a new
Li-Yau differential Harnack estimate (Theorem 3.4) that we prove in Sec-
tion 3.2. This estimate is more reminiscent of the original Li-Yau estimates
[10] than the curvature Harnack estimates of Hamilton for Ricci flow [8],
although we will exploit crucially that we are working on a Ricci flow solu-
tion. The upshot of that estimate will be that we can control the curvature
from above in terms of the supremum of the conformal factor divided by
time. Then the upper bound of vcc in Theorem 1.4 can be converted into
the upper bound of curvature in Theorem 1.2.

Meanwhile, the lower bound for the conformal factor at the origin will
be key in order to obtain the lower bound for the curvature: The solution
must remain under the hyperbolic cusp solution (1 + 2t)h for all time (see
Lemma 2.3 and its consequence Remark 2.11 below), so the large conformal
factor at the origin (for small t) implies some large bending near the origin,
which gives the desired lower curvature bound in Theorem 1.2. The details
of this argument appear in Section 4.

Finally, we remark that an alternative way of deriving sharp estimates
for the flow gcc(t) would be the method of rigorous matched asymptotic ex-
pansions. This alternative approach could give slightly refined asymptotic
information, but would be harder to generalise to the non-rotationally sym-
metric case.

2. The contracting cusp Ricci flow solution

The first aim of this section is to construct the Ricci flow solution gcc, which
has the hyperbolic cusp metric as the initial data in the sense of Theorem 1.1
and caps off the cusp at infinity instantaneously. (An underlying aim is also
to gather the sharp estimates that will be required to prove our curvature
asymptotics.) Giesen and the first author established the well-posedness of
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instantaneously complete Ricci flows from any smooth initial data whether
complete or not [5, 14]. The hyperbolic cusp metric can be regarded as a
metric defined on B with a singular point at the origin. A natural approach
for constructing a Ricci flow solution from it is to consider a sequence of
smooth metrics approximating the hyperbolic cusp metric and to show that
the sequence of Ricci flow solutions starting from these approximations con-
verges to the desired solution.

2.1. An approximation of the hyperbolic cusp

There are many different ways of choosing the approximation sequence here.
It will be clear by the end of Section 2.3 that the final limit solution will
be independent of the choice. However, for later use in Section 3.2, we shall
use a special sequence obtained by considering cigar metrics touching the
hyperbolic cusp.

Recall that the standard cigar metric on R
2 is given by

1

1 + r2
(dx2 + dy2).

We introduce two parameters ε > 0 and δ > 0 and consider the family of
conformal factors

ε

δ + r2

of scaled cigars. Note that ε determines the maximum curvature of the metric
and δ is irrelevant to the geometry and is related to the parametrization, or
equivalently, since the cigar is a steady soliton, is related to time.

Amongst this two-parameter family of cigar metrics, we are interested
in a one-parameter subfamily of metrics that are tangent to the hyperbolic
cusp. For each δ > 0, we can increase ε from zero until the conformal factors
first touch. It is obvious from Figure 1 or a simple argument that the cigar
will only be tangent to the cusp on a circle r = r0, with r0 <

1
e . Moreover,

as indicated in Figure 2, the family of cigar metrics has the cusp metric as
an envelope up to the ‘horizon’ at r = e−1.

For r0 < 1/e, we want to solve for ε and δ so that the conformal factors
of the cigar and the cusp are tangent at r = r0. This is equivalent to the
following two equations, asserting that the metrics agree

ε

δ + r20
=

1

r20(log r0)
2
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r

1
r2(log r)2

r0 e−1

Figure 1: A cigar (solid) tangent to the hyperbolic cusp (dashed).

re−1

Figure 2: The cusp (dashed) as the envelope of cigars (solid).

as do their first derivatives

ε
2r0

(δ + r20)
2
= 2

(− log r0 − 1)

r30(− log r0)3
.

Dividing the first equation by the second gives

(2.1) δ + r20 =
r20(− log r0)

(− log r0 − 1)
,
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from which we get

(2.2) δ(r0) =
r20(− log r0)

(− log r0 − 1)
− r20 =

r20
− log r0 − 1

and

(2.3) ε(r0) = (δ + r20)
1

r20(log r0)
2
=

1

(− log r0 − 1)(− log r0)
.

The next lemma implies that the cigar metric corresponding to ε(r0) and
δ(r0), i.e.

(2.4) ũr0(x) :=
ε(r0)

δ(r0) + r2
,

where x = (x, y) so that r = |x|, lies below the cusp and touches it only on
{r = r0}. The proof, being very elementary computations, is moved to the
appendix.

Lemma 2.1. For 0 < r0 < e−1, and with δ(r0) and ε(r0) given as above,
we have

ε

δ + r2
≤

1

r2(log r)2

for all 0 < r < 1 with equality only at r = r0.

With the help of ũr0 , we define for r0 ∈ (0, e−1), a function ur0 : B → R

by

ur0(x) =

{

ũr0(x) 0 ≤ r ≤ r0

h(x) r0 < r < 1.

The graph of ur0 is shown in Figure 1 as the solid line (the cigar metric)
for r < r0 and the dashed line (the hyperbolic cusp metric) for r ≥ r0. By
our choice of ε and δ, ur0 is a C1 function. Moreover, it is obvious from the
graph or a simple argument that

(2.5) ur0(r) ≥ ur0(e
−1) = e2

for all r ∈ [0, 1). Now, for any rn ↓ 0, the sequence un := urn is an approxi-
mation of h. Besides the obvious fact that for any r ∈ (0, 1), un = h on any
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B \Br for sufficiently large n, we note that

(2.6) lim
n→∞

∫

B
|un − h| dx = 0

and that:

Lemma 2.2. The functions ur0 : B → R are decreasing in r0. In particular,
{un} is an increasing sequence of functions B → R.

The simple proof of this lemma is postponed to the appendix.

2.2. Existence of gcc

In this section, we confirm the existence part of Theorem 1.1, taking a short-
cut compared with [13] by exploiting the estimate in [15]. The construction
will also imply the upper bound of Theorem 1.4 automatically.

The local existence of a Ricci flow starting from ur0(dx
2 + dy2) is known

by a result of Shi [16]. The global existence of a solution ur0(t)(dx
2 + dy2),

for t ∈ [0,∞), was proved by Giesen and the first author in [5]. More gen-
erally, the solutions from [5] for general initial data, together with their
property of being maximally stretched (see [5]) and the uniqueness of [14],
gives us the following comparison principle (as explained in [14, ➜1]).

Lemma 2.3. Suppose u(t) and ũ(t) are the conformal factors of two smooth
Ricci flows on some underlying Riemann surface for t ∈ [0, T ] and u(0) ≥
ũ(0). If the Ricci flow of u(t) is complete, then u(t) ≥ ũ(t) for all t ∈ [0, T ].

Remark 2.4. A first application of this lemma, combined with Lemma 2.2,
is that if 0 < r0 ≤ r̃0 < e−1 then ur̃0(t) ≤ ur0(t).

We wish to consider flows ur0(t) for r0 equal to each rn ↓ 0 considered
above, and we denote this increasing sequence by un(t) := urn(t). We claim
that

(a) a subsequence (still denoted by un) converges to another solution ucc
smoothly locally on B × (0,∞);

(b) as t ↓ 0, ucc(t) converges to h smoothly locally on B \ {0};

(c) for any K ⊂⊂ B,

(2.7) lim
t↓0

∫

K
|ucc(t)− h| dx = 0.
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The metric gcc(t) := ucc(t)(dx
2 + dy2) would then be the contracting cusp

Ricci flow solution whose existence is asserted by Theorem 1.1. Note that
the limit ucc(t) would be automatically complete because the sequence un(t)
is increasing, and so un(t) ≤ ucc(t). The rest of this section is devoted to the
proof of this claim (a) to (c).

The key to proving (a) is obtaining upper and lower bounds on the
conformal factors un. We will then be able to apply parabolic regularity
theory. The following simple lemma gives the lower bound, and upper bounds
away from the origin.

Lemma 2.5. For all t ≥ 0, we have

(2.8) un(·, t) ≥ e2 in B,

and

(2.9) un(·, t) ≤ (1 + 2t)h in B\{0}.

Proof. The lower bound (2.8) follows immediately from (2.5) together with
Lemma 2.3, because un(·, t) and e2 are the conformal factors of two Ricci
flows on B, and the former is complete. Meanwhile, the upper bound also
follows from Lemma 2.3, but this time because (1 + 2t)h is the conformal
factor of a complete Ricci flow on B \ {0}, and un(·, 0) ≤ h. □

The more subtle issue is to obtain upper bounds near the origin, but this
will follow from an application of the L1 − L∞ estimate proved in [15].

Lemma 2.6. Suppose u : B × [0, T ) → (0,∞) is a smooth solution to the
equation (1.3) with

u0 := u(·, 0) ≤ h

on B \ {0}. Then

log u ≤
2

t
+ C

on B1/2 for t ∈ (0,min{1, T}), where C is universal.

Remark 2.7. In [13] it was shown, for example, that a surface with a
hyperbolic cusp can be evolved under Ricci flow by allowing the cusp to
collapse. The key a priori estimate there, in the language of this paper, was
essentially a weaker version of the above lemma in the sense that the upper
bound for log u was C/t with C some uncontrolled universal constant C.
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We will give a proof of Lemma 2.6 based on the following estimate from
[15], describing the evolution compared with the Poincaré metric on B with
conformal factor

h̃(x) =

(

2

1− r2

)2

.

Theorem 2.8 (Special case of [15, Theorem 1.3]). Suppose u : B ×
[0, T ) → (0,∞) is a smooth solution to the equation ∂tu = ∆ log u, with ini-
tial data u0 := u(0) on the unit ball B ⊂ R

2, and suppose that (u0 − αh̃)+ ∈
L1(B) for some α ≥ 1. Then for all δ > 0 (however small) and any time
t ∈ [0,min{1, T}) satisfying

t ≥
∥(u0 − αh̃)+∥L1(B)

4π
(1 + δ), we have u(t) ≤ Cαh̃ throughout B,

where C < ∞ depends only on δ.

The special case of our result that we have given here focuses on the rel-
evant case for us that ∥(u0 − αh̃)+∥L1(B) is small, and indeed the theorem is

vacuous unless ∥(u0 − αh̃)+∥L1(B) < 4π/(1 + δ). See [15] for a more general
statement.

Proof of Lemma 2.6. For t ∈ (0,min{1, T}), set r = e−1/t ∈ (0, e−1] and

α =

(

1

r log r

)2

≤
1

r2
= e2/t > 1.

Coarse estimation and precise computation (see Figure 3) gives

∥(u0 − αh̃)+∥L1(B) ≤ ∥h− α∥L1(Br) =
2π

− log r
−

π

(log r)2
≤

2π

− log r
= 2πt,

and so Theorem 2.8 applies with δ = 1 to give

u(t) ≤ Cαh̃ = Ce2/th̃,

and hence

log u(t) ≤ C + log h̃+
2

t
,

throughout B, for universal constants C. □
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h
αh̃

r e−1

α

4α

−1 1

u0

Figure 3: Hyperbolic metrics.

Note that the upper bound deteriorates as t ↓ 0. However, we can apply
it to the solutions un to give

(2.10) log un(t) ≤
2

t
+ C,

on B1/2, for t ∈ (0, 1). From time t = 1 onwards, we can then compare

un against the Ricci flow (M + 2t)ĥ, where ĥ is the complete hyperbolic
(Poincaré) metric on B1/2 and M is chosen sufficiently large so that this
flow majorises un at time t = 1. Together with Lemma 2.5, we then con-
clude that for all K ⊂⊂ B and ε > 0, we have upper and lower bounds for
un on K × [ε, 1/ε] that are uniform in n. Standard parabolic regularity the-
ory then generates the higher-order estimates from which (a) follows. More
precisely, we have a choice of applying parabolic theory to the equation (1.3)
for un or (1.4) for vn := 1

2 log un. In the former case, one can start with [9,
Theorem III.10.1], and in the latter case with [9, Theorem V.1.1], followed
by Schauder estimates.

To prove (b), it suffices to establish upper and lower bounds for the
conformal factors un on an arbitrary K ⊂⊂ B\{0} that are uniform all the
way back to time t = 0, because for sufficiently large n, we have un(0) = h
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on K, and parabolic regularity theory will then give uniform higher-order
estimates for un down to t = 0, which then imply that the convergence
un → ucc is smooth local convergence all the way down to t = 0. This time,
the bounds for the conformal factor are immediate from Lemma 2.5, which
gives

sup
K×[0,1]

un ≤ sup
K

3h < ∞.

Finally we turn to (c). Because the flows un(t) are increasing with n, we
know that un ≤ ucc. On the other hand, by passing to the limit n → ∞ in
(2.9), we have ucc(t) ≤ (1 + 2t)h. Using these inequalities, we can estimate

|ucc(t)− h| ≤ |ucc(t)− (1 + 2t)h|+ 2th = ((1 + 2t)h− ucc(t)) + 2th(2.11)

≤ (h− un(t)) + 4th

≤ |h− un(0)|+ |un(0)− un(t)|+ 4th.

Now for any K ⊂⊂ B and ε > 0, by (2.6) we can fix n large so that

∫

K
|h− un(0)| ≤ ε/3.

For this fixed n, by smoothness of un, there exists t0 > 0 small enough so
that

∫

K
|un(0)− un(t)| ≤ ε/3 for all t ∈ [0, t0],

and

4t0

∫

K
h ≤ ε/3.

Therefore, by integrating (2.11), we have

∫

K
|ucc(t)− h| ≤ ε,

for t ∈ [0, t0], which is enough to conclude (c).

Remark 2.9. In the limit n → ∞, the uniform lower bound un(t) ≥ e2

from (2.8) implies a lower bound of ucc, i.e. ucc(x, t) ≥ e2 for all x ∈ B and
t ≥ 0.

Remark 2.10. We can also take a limit n → ∞ in the uniform upper bound
(2.10) to deduce the upper bound of Theorem 1.4.
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Remark 2.11. Additional upper and lower bounds for ucc(t) hold thanks
to Lemma 2.3. First, observe that h̃ ≤ h either by computing or by applying
the comparison principle. Hence by construction of un we have h̃ ≤ un(0)
throughout B. Therefore, we have (1 + 2t)h̃ ≤ un(t), and in the limit n →
∞, this gives (1 + 2t)h̃ ≤ ucc(t). Meanwhile, by comparing ucc(t) and (1 +
2t)h on B\{0}, or simply passing to the limit n → ∞ in (2.9) as in the proof
of (c), we obtain ucc(t) ≤ (1 + 2t)h.

2.3. Uniqueness

In this section, we prove the uniqueness assertion of Theorem 1.1. One im-
plication of this uniqueness result is that we have some freedom in choosing
the approximation sequence un used in the construction of gcc. The proof
will use the following result that follows easily from Lemma 5.1 of [14].

Lemma 2.12. Suppose 1/2 < r0 < r
1/3
0 < R < 1, and γ ∈ (0, 12). Suppose

g1(t) = u1(t)(dx
2 + dy2) is any complete Ricci flow on B, and g2(t) =

u2(t)(dx
2 + dy2) is any Ricci flow on BR, both for t ∈ (0, T ]. Then we have

for all t ∈ (0, T ] that

[

∫

Br0

(u2(t)− u1(t))+dx

]
1

1+γ

(2.12)

≤ lim inf
s↓0

[
∫

BR

(u2(s)− u1(s))+dx

]
1

1+γ

+ C(γ)

[

t

(− log r0) [log(− log r0)− log(− logR)]γ

]
1

1+γ

.

Corollary 2.13. Suppose g(t) = u(t)(dx2+dy2) and g̃(t) = ũ(t)(dx2+dy2)
are complete Ricci flows on B for t ∈ (0, T ] with u(t)− ũ(t) → 0 in L1

loc as
t ↓ 0. Then g(t) = g̃(t) for all t ∈ (0, T ].

Clearly the uniqueness assertion of Theorem 1.1 is just one instance of
this general corollary.

Proof of Corollary 2.13. First, we apply Lemma 2.12 with g1(t) = g̃(t) and
g2(t) = g(t) and γ = 1/4 to establish that

∫

Br0

(u(t)− ũ(t))+dx ≤ C
t

(− log r0) [log(− log r0)− log(− logR)]1/4
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for all t ∈ (0, T ] and 1/2 < r0 < r
1/3
0 < R < 1. By taking the limits R ↑ 1

and then r0 ↑ 1, we find that u(t) ≤ ũ(t) throughout B, for all t ∈ (0, T ]. By
repeating the argument with g(t) and g̃(t) interchanged, we conclude that
g(t) = g̃(t). □

2.4. Proof of Theorem 1.4

We have already proved the upper bound of Theorem 1.4 — see Remark
2.10. For the lower bound, we use the approximation in Section 2.1 again.
The advantage is that the approximations un : B → (0,∞) are envelopes of
families of cigar metrics whose evolution under the Ricci flow can be written
down explicitly. More precisely, the complete Ricci flow starting from ũr0 is
given by

(2.13) ũr0(x, t) =
ε(r0)

δ(r0)e4t/ε(r0) + r2
.

By Remark 2.4, we have for t > 0,

ucc(0, t) = lim
n→∞

un(0, t) = sup
r0∈(0,e−1)

ur0(0, t).

By the definition of ur0 , we know that ũr0(x) ≤ ur0(x) and hence, by Lemma
2.3, ũr0(x, t) ≤ ur0(x, t), which implies

ucc(0, t) ≥ max
r0∈(0,e−1)

ũr0(0, t).

Thanks to the explicit formula (2.13), and (2.2) and (2.3), we can compute

(2.14) − log ũr0(0, t) = 2 log r0 + log(− log r0) + 4t(− log r0)(− log r0 − 1).

We would like to maximise this over r0 ∈ (0, e−1), so we compute

∂

∂r0
(− log ũr0(0, t)) =

(−2 log r0 − 1)

r0

[

1

− log r0
− 4t

]

,

and deduce that for t ∈ (0, 1/4) we should set r0 = e−1/(4t) in (2.14) to obtain
the optimal estimate

ucc(0, t) ≥ 4te
1

4t
+1.

The lower bound in Theorem 1.4 then follows from the fact that vcc(t) =
1
2 log ucc(t).
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3. A Li-Yau differential Harnack estimate and the

curvature upper bound

In this section, we prove a new Li-Yau Harnack estimate for the Ricci flow,
Theorem 3.4, which allows us to prove the curvature upper bound in The-
orem 1.2. Compared with other known Li-Yau Harnack inequalities [1], our
argument in Section 3.2 will exploit an additional geometric property of the
initial metric (the hyperbolic cusp metric h(dx2 + dy2)), which is given by
the inequality

(3.1) h−1

∣

∣

∣

∣

∇ log

(

1

2
log h

)∣

∣

∣

∣

2

≤ C

for some universal constant C > 0, as formally asserted in Lemma 3.1. We
note that the computation and argument in Section 3.2 still works without
this extra information, to give an upper bound of curvature, but it is not
the sharp bound we give here.

In fact, we will not apply the Li-Yau-type estimate starting at t = 0, but
at some later time. This gives rise to a technical issue that we want (3.1) to
remain true for ucc(t) for a period of time instead of just for t = 0. This is
proved in Lemma 3.3 by using the approximations un defined in Section 2.1,
albeit only on B 1

2

.

3.1. Gradient bounds for the approximations un

The aim of this section is to prove Lemma 3.3, which is a gradient bound
property of ucc alone. However, the proof relies on the special choice of ap-
proximations un in Section 2.1. In some sense, un smooths out the singularity
of h at the origin while keeping (3.1) valid.

In what follows, we use the subscript u in |∇f |u,△u and ⟨·, ·⟩u to indicate
that the gradient norm, the Laplacian and the inner product are taken with
respect to the metric u(dx2 + dy2), whereas no subscript means that the
gradient norm, the Laplacian and the inner product are those of the flat
metric dx2 + dy2 on B.

Lemma 3.1. There exists a universal constant C > 0 such that (3.1) holds,
and also so that

(3.2) Fn := |∇fn|
2
un

≤ C
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throughout B, where fn := log vn, vn := 1
2 log un ≥ 1 by (2.5), and un : B →

(0,∞) is defined as in Section 2.1.

In other words, not only does (3.1) hold for h, it also holds for the
approximations un. Since we have explicit formulae for h and un, the proof
is a straightforward computation and is moved to the appendix.

The estimate (3.2) holds not only for un, but also for its evolution un(t),
with t ∈ (0, 1], and the corresponding Fn = Fn(t). (Note that the evolving Fn

makes sense because vn(t) =
1
2 log un(t) ≥ 1 by (2.8).) This is proved using

the maximum principle for domains with boundary. Therefore we must argue
first that this Fn is bounded on the boundary of B1/2 for t ∈ [0, 1]. This is
the aim of the next lemma.

Lemma 3.2. There exists a universal constant C > 0 such that

sup
∂B1/2×[0,1]

Fn ≤ C

where Fn := |∇fn|
2
un
, fn = log(12 log un) and un = un(t) is the Ricci flow

evolution of un : B → (0,∞).

Proof. Lemma 2.5 tells us that there exists a universal constant C > 0 such
that

(3.3) e2 ≤ un(y, t) ≤ C

for all t ∈ [0, 1] and y ∈ B5/8 \B3/8. By the definition of fn and (3.3), we
know it suffices to prove

sup
∂B1/2×[0,1]

|∇un|
2 ≤ C.

Indeed, we have ∥un∥C2,α(B17/32\B15/32×[0,1]) for some α ∈ (0, 1) bounded by a

universal number as well. To see this, we first note that un(0) is nothing but
h on the annulus B5/8 \B3/8 for large n, hence we have uniform bounds of
all derivatives at t = 0. We will then be able to appeal to parabolic regular-
ity theory as before: The estimate (3.3) implies that ∂tun = △ log un is uni-
formly parabolic on the annulusB5/8 \B3/8 and hence ∥un∥Cα(B9/16\B7/16×[0,1])

is uniformly bounded. The rest follows from the linear Schauder theory. □

Finally, we can prove the property mentioned at the beginning of this
section.
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Lemma 3.3. There exists a universal constant C1 > 0 such that

|∇ log vcc|
2
ucc

≤ C1

on B1/2 × (0, 1].

Proof. Since un converges to ucc smoothly, locally on B × (0, 1], it remains to
prove Fn ≤ C1 on B1/2 × [0, 1] where Fn = |∇fn|

2
un

is defined in Lemma 3.1.
Direct computation shows that Fn satisfies

(∂t −△un
)Fn = −2 |Hessfn|

2
un

− 2⟨∇Fn,∇fn⟩un
.

By Lemma 3.1 and Lemma 3.2, we can apply the classical maximum prin-
ciple for domains with boundary to Fn to see that

(3.4) sup
B1/2×[0,1]

Fn ≤ C1.

□

3.2. A Li-Yau differential Harnack inequality

Next, we present a Li-Yau type Harnack inequality for solutions of (1.4).
Note that vcc satisfies a ‘linear’ heat equation with background metric evolv-
ing as a Ricci flow. Such Harnack inequalities are known in various cases,
for example, Lemma 2.1 of [1]. Here vcc is not only the solution to the heat
equation, but also the conformal factor of the Ricci flow. This dual role of
vcc helps us to remove the curvature assumption in [1].

Theorem 3.4 (Li-Yau type estimate). Let v(t) be a solution to (1.4)
on B1/2 × [0, t0] with t0 < 1/2 and u(t) = e2v(t). If

(3.5) v(t) ≥ 1 and |∇ log v|2u ≤ C2

on B1/2 × [0, t0] for some C2 > 0 and

(3.6) t0 ≤
1

8maxB1/2×[0,t0] v
,

then there exists C3 > 0 depending only on C2 such that the Gauss curvature
is controlled by

K ≤
C3v

t
on B1/4 for 0 < t ≤ t0.
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Remark 3.5. The result of this theorem is sharp in the sense that when
combined with Theorem 1.4, it yields Theorem 1.2, which is sharp as far as
the order of t is concerned.

The proof of this theorem starts with a computation similar to that of
Li and Yau in [10]. However, we use a different F , taking advantage of the
second part of (3.5). Writing f for log v and keeping in mind that

(3.7) ∂tf = △uf + |∇f |2u and ∂tf =
∂tv

v
=

−K

v
,

by (1.4), we make the equivalent definitions

F = |∇f |2u − t∂tf(3.8)

= |∇f |2u +
Kt

v
(3.9)

= −△uf + (1− t)∂tf(3.10)

= −△uf − (1− t)
K

v
(3.11)

= (1− t) |∇f |2u − t△uf.(3.12)

By (3.9), Theorem 3.4 reduces to the claim that F is bounded from above
on B1/4 × (0, t0]. At t = 0, (3.5) implies that F ≤ C2 throughout B1/2, so
we would like to establish whether an upper bound persists. As in [10], we
first derive the evolution equation for F . Direct computation shows

△uF = 2 |Hessuf |
2
u + 2⟨∇△uf,∇f⟩u + 2K |∇f |2u − t△u∂tf

and
∂tF = − |∇f |2u −△uf

+ (1− t)
(

2K |∇f |2u + 2⟨∇f,∇∂tf⟩u

)

− t∂t△uf,

which combine to give

∂tF −△uF = −2 |Hessuf |
2
u − 2⟨∇△uf,∇f⟩u + 2(1− t)⟨∇f,∇∂tf⟩u

− (1 + 2Kt) |∇f |2u
+ t (△u∂tf − ∂t△uf)−△uf.

We simplify the above by using (3.10) and computing △u∂tf − ∂t△uf =
2△uf∂tv = −2K△uf , which in turn used (1.4), to get

∂tF −△uF = −2 |Hessuf |
2
u + 2⟨∇F,∇f⟩u − (1 + 2Kt)

(

|∇f |2u +△uf
)

.
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By (3.7) we then have

∂tF −△uF = −2 |Hessuf |
2
u + 2⟨∇f,∇F ⟩u + (1 + 2Kt)

K

v
.

Meanwhile, inserting (3.11) in the Schwarz inequality

2 |Hessuf |
2
u ≥ (△uf)

2 =

(

F + (1− t)
K

v

)2

= F 2 +
2(1− t)FK

v
+

(1− t)2K2

v2
,

we obtain

∂tF −△uF ≤ −F 2 −
2(1− t)FK

v
−

(1− t)2K2

v2
(3.13)

+ 2⟨∇f,∇F ⟩u + (1 + 2Kt)
K

v
.

Let ϕ be some smooth cut-off function supported in B1/2, satisfying
0 ≤ ϕ ≤ 1 on B1/2 and ϕ ≡ 1 on B1/4, so that

(3.14) |△ϕ|+ |∇ϕ|2 ≤ C

on B1/2 for some universal C > 0. By (3.13) we obtain

(∂t −△u)(ϕ
2F ) = ϕ2(∂t −△u)F −△u(ϕ

2) · F − 4⟨ϕ∇ϕ,∇F ⟩u

≤ −ϕ2F 2 −
2(1− t)K

v
(ϕ2F )−

(1− t)2K2

v2
ϕ2

+ (1 + 2Kt)
K

v
ϕ2 −△u(ϕ

2) · F

+ 2ϕ2⟨∇f,∇F ⟩u − 4⟨ϕ∇ϕ,∇F ⟩u.

Next, we consider the maximum of ϕ2F on B1/2 × (0, t0]. If it is smaller
than C2 + 1 for C2 in (3.5), then by the definition of ϕ, we get the desired
bound of F on B1/4 × (0, t0] and finish the proof of Theorem 3.4. Hence,
we may assume it is no less than C2 + 1. By (3.5) and (3.8), there is some
t̃ ∈ (0, t0] and x̃ ∈ B1/2 such that

(3.15) (ϕ2F )(x̃, t̃) = max
B1/2×(0,t0]

ϕ2F ≥ C2 + 1.
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At this point (x̃, t̃), we have (∂t −△u)(ϕ
2F ) ≥ 0 and∇(ϕ2F ) = 0, and hence

0 ≤ −ϕ2F 2 −
2(1− t̃)K

v
(ϕ2F )−

(1− t̃)2K2

v2
ϕ2

+ (1 + 2Kt̃)
K

v
ϕ2 −△u(ϕ

2) · F

− 4ϕF ⟨∇f,∇ϕ⟩u + 8F |∇ϕ|2u .

Moreover, since v ≥ 1 on B1/2 × [0, t0], by (3.5), the bound (3.14) implies

that
∣

∣△u(ϕ
2)
∣

∣+ |∇ϕ|2u ≤ C. Thus, at (x̃, t̃), Young’s inequality and (3.9)
give

0 ≤ −ϕ2F 2 −
2(1− t̃)K

v
(ϕ2F )−

(1− t̃)2K2

v2
ϕ2(3.16)

+ (1 + 2Kt̃)
K

v
ϕ2 + CF +

1

4
Fϕ2 |∇f |2u

= −
3

4
ϕ2F 2 +

(

−2 +
7

4
t̃

)

K

v
(ϕ2F )−

(1− t̃)2K2

v2
ϕ2

+
K + 2K2t̃

v
ϕ2 + CF.

By (3.6) and t̃ ≤ t0 < 1/2, we have at (x̃, t̃),

(3.17)
2K2t̃

v
ϕ2 ≤

K2

4v2
ϕ2 ≤

(1− t̃)2K2

v2
ϕ2.

Using (3.17) in (3.16) and multiplying both sides by ϕ2 yields that at (x̃, t̃),

0 ≤ −
3

4
(ϕ2F )2 +

(

−2 +
7

4
t̃

)

K

v
ϕ2(ϕ2F ) +

K

v
ϕ4 + C(ϕ2F ).

To proceed further, we must consider the sign of K(x̃, t̃). We claim that
K(x̃, t̃) > 0 since if we had K(x̃, t̃) ≤ 0, then by (3.9) and (3.5) we would
have

(ϕ2F )(x̃, t̃) ≤ F (x̃, t̃) = |∇f |2u (x̃, t̃) +
t̃K

v
(x̃, t̃) ≤ C2,

which is a contradiction to (3.15). Therefore we may assume K(x̃, t̃) > 0,
which allows us to replace K

v ϕ
4 by a larger number K

v ϕ
4F (at (x̃, t̃)) because

(ϕ2F )(x̃, t̃), hence F (x̃, t̃) is larger than 1 as assumed in (3.15). Precisely,
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at (x̃, t̃),

0 ≤ −
3

4
(ϕ2F )2 +

(

−1 +
7

4
t̃

)

K

v
(ϕ4F ) + C(ϕ2F )

≤ −
3

4
(ϕ2F )2 + C(ϕ2F ).(3.18)

Here in the last line above, we used the assumption that t̃ ≤ t0 <
1
2 . Estimate

(3.18) implies an upper bound for (ϕ2F )(x̃, t̃), which gives the desired upper
bound of F on B1/4 × (0, t0] and finishes the proof of Theorem 3.4.

3.3. Curvature upper bound in Theorem 1.2

By Theorem 1.4, we know for sufficiently small t > 0,

(3.19) max
B1/2

vcc ≤
2

t
.

Choose t1 < 1/2 so small that the above holds on [t1,
17
16 t1] and set

v(x, t) = vcc(x, t+ t1),

for t ∈ [0, t0], where t0 :=
t1
16 .

We want to apply Theorem 3.4 to v. For this v, we check that the lower
bound in (3.5) holds by Remark 2.9, that the rest of (3.5) follows from
Lemma 3.3 and that (3.6) holds because

max
B1/2×[0,t0]

v = max
B1/2×[t1,

17

16
t1]

vcc ≤
2

t1
=

1

8t0

by (3.19). Hence, there exists a constant C4 depending only on C1 (therefore,
it is a universal constant) such that

Kcc(t) ≤
C4vcc
t− t1

on B1/4 × [t1,
17
16 t1]. In particular, this implies the existence of another uni-

versal constant C5 such that for t = 17
16 t1,

max
B1/4

Kcc(t) ≤
C5

t2
.
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By the arbitrariness of t1 (small as required above) and hence t, this proves
the upper bound estimate inside B1/4. The upper bound over the whole of
B then follows from Proposition 1.3, which we prove in the next section.

3.4. Good behaviour at spatial infinity

In this section we prove Proposition 1.3. There are multiple ways one could
prove this; for example, the asymptotics of Remark 2.11 allow one to argue
using parabolic regularity theory that because for each time t the spatial
asymptotics of ucc(t) agree with those of h and h̃, we also have the curvatures
agreeing. More precisely, for each L < ∞, by taking ε > 0 small enough we
can make Kcc(t) as close as we like to −1/(1 + 2t) on B\B1−ε × [0, L], for
example.

Instead of detailing this argument, we proceed via existing Ricci flow
theory, and in particular the following result of B.-L. Chen.

Proposition 3.6 (Proposition 3.9 in [2]). Let g(t), t ∈ [0, T ], be a smooth
solution to the Ricci flow on a two-dimensional manifold M , and let x0 ∈
M , R > 0 and v0 > 0. Assume Bg(t)(x0, R) is compactly contained in M
for every t ∈ [0, T ], and at t = 0 that

∣

∣Kg(0)

∣

∣ ≤ R−2 on Bg(0)(x0, R) and
Volg(0)(Bg(0)(x0, R)) ≥ v0R

2. Then there exists a constant η > 0, depending
only on v0, such that for 0 ≤ t ≤ min

{

T, ηR2
}

, we have

∣

∣Kg(t)

∣

∣ ≤ 2R−2 on Bg(t)

(

x0,
R

2

)

.

Here Bg(x0, R) is the geodesic ball centred at x0 with radius R measured
with respect to the metric g.

For ε > 0 as given in Proposition 1.3, choose R ∈ (0, 1/2] as large as
possible so that for each x0 ∈ B \Bε/2, we have R ≤ 1

2 injh(x0). For each
x0 ∈ B \Bε/2, we can then apply Proposition 3.6 with M = B, v0 equal
to the area of the unit disc in the flat plane, and g(t) = gcc(t+ γ) for γ >
0 sufficiently small so that Bg(0)(x0, R) equipped with the metric g(0) is
sufficiently close to a ball in hyperbolic space of radius R that the hypotheses
of the proposition are satisfied.

The proposition, in the limit γ ↓ 0, gives us a curvature bound at x0
depending only on ε, which holds for a time interval also depending only on
ε. We may then invoke Shi’s local derivative bounds to obtain control on
all space and time derivatives of the curvature, depending only on the order
of the derivative and ε, and not on x0. Since the Gauss curvature starts
initially at −1, the proposition follows.
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4. Curvature lower bound in Theorem 1.2

In this section, we prove the lower curvature bound in Theorem 1.2. By
Theorem 1.4, for any µ ∈ (0, 18) and t > 0 sufficiently small, depending on
µ, we have

(4.1) vcc(0, t) ≥
µ

t
.

This means that when t is small, ucc(0, t) is very large. On the other hand,
by Remark 2.11, we have

(4.2) ucc(x, t) ≤ (1 + 2t)h(x) = (1 + 2t)
1

r2(log r)2
,

throughout B \ {0}, for all t ≥ 0. These two facts combined together will im-
ply the existence of some large positive curvature of gcc(t). The proof needs
another family of special metrics lying below, but touching, the (scaled) hy-
perbolic cusp metric, that we now construct. Consider the family of metrics
uβ,K(dx2 + dy2) on R

2 parametrized by K > 0 and β > 0, where

uβ,K(r) :=
β2

(

1 + β2Kr2

4

)2 .

Each of these is the metric of a (punctured) sphere with constant curvature
K parametrized so that the conformal factor at the origin is β2. The next
lemma gives us the touching family mentioned above.

Lemma 4.1. For each fixed α > 1, there exist a continuous strictly in-
creasing function K0 : (αe,∞) → (0,∞) and a continuous strictly decreasing
function r0 : (αe,∞) → (0, e−1) such that

(1) for any β > αe, we have

(4.3) uβ,K0(β)(r) =
β2

(

1 + β2K0(β)r2

4

)2 ≤
α2

r2(log r)2
= α2h(r)

for all r ∈ (0, 1) with equality only at r0(β).
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(2) the asymptotic behavior of K0 and r0 when β approaches αe or ∞
is given by

(4.4)

lim
β→∞

K0 = ∞ lim
β↓αe

K0 = 0

lim
β→∞

r0 = 0 lim
β↓αe

r0 = e−1.

Moreover, we have

(4.5) lim
β→∞

inf
r∈[0,r0]

uβ,K0
(r) → ∞.

(3) we have the following lower bound for K0:

(4.6) K0 ≥
2

α

(

(

log
β

2α

)2

− 1

)

.

Proof. The proof consists of two steps. First, we prove the existence of some
K0 and r0 satisfying (1). Then in the second step, we show that (2) and (3)
also hold for this K0 and r0 using some results from the first step.

We start the first step by giving equivalent forms of (1). It is elementary
that (1) is equivalent to

(1′) for any β > αe, we have

(4.7)
β

α
r(− log r) ≤ 1 +

β2K0(β)r
2

4
,

for all r ∈ (0, 1) with equality only at r0(β).

We claim that (1′) and hence (1) is also equivalent to

(1′′) for any β > αe, we have

β

α
r0(− log r0) = 1 +

β2K0r
2
0

4
(4.8)

1

α
(− log r0 − 1) =

1

2
βK0r0.(4.9)

It is easier to see that (1′′) is a necessary condition of (1′) because (4.8) and
(4.9) are nothing but the claim that both sides of (4.7) and their first order
derivatives with respect to r agree at r0(β). To see that it is also sufficient,
we observe that the left-hand side of (4.7) is a strictly concave function of
r on (0, 1), while the right-hand side is strictly convex.
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With the equivalence of (1) and (1′′) in mind, it suffices to find K0(β)
and r0(β) satisfying (4.8) and (4.9). While solving K0(β) and r0(β) from
(4.8) and (4.9) seems not easy, we can obtain explicit formulae relating β
and K0 to r0. More precisely, we eliminate K0 to get

(4.10) β =
2α

r0(− log r0 + 1)
.

Substituting (4.10) into (4.9) yields

(4.11) K0 =
2

α
(− log r0 − 1)(− log r0 + 1).

It is elementrary to check that β as a function of r0 given in (4.10) is a de-
creasing diffeomorphism from (0, e−1) to (αe,∞). Therefore, it is equivalent
to say that (4.10) defines a function r0(β) which is a decreasing diffeomor-
phism from (αe,∞) to (0, e−1). K0(r0) as given in (4.11) is a decreasing
diffeomorphism from (0, e−1) to (0,∞), which we compose with the r0(β)
just obtained to get a function K0(β) that is an increasing diffeomorphism
from (αe,∞) to (0,∞). The K0(β) and r0(β) thus obtained satisfy (1′′) and
hence (1), finishing the first step of the proof.

For (2), we notice that the asymptotic behavior of K0 and r0 as in (4.4)
is proved in the previous paragraph. By the monotonicity of uβ,K0(β)(r) as
a function of r and (4.8), we have

inf
r∈[0,r0(β)]

uβ,K0(β)(r) = uβ,K0(β)(r0(β)) =
α2

(r0(β)2(log r0(β))2)
→ ∞

when β → ∞, which is (4.5).
An easy observation from (4.10) is that

β =
2α

r0(− log r0 + 1)
≤

2α

r0
,

which gives r0 ≤
2α
β . By the monotonicity of (4.11), we obtain (4.6). □

Now, we return to the proof of Theorem 1.2. For any c1 larger than 32
as in Theorem 1.2, we choose any µ < 1

8 and any α > 1 so that

(4.12)
1

32
>

2µ2

α
>

1

c1
.

Then we can pick t0 > 0 such that for all 0 < t < t0, we have

(4.13) 1 + 2t < α2,
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(4.14) vcc(0, t) ≥
1

8t
+

1

2
(1 + log 4t) >

µ

t
,

and

(4.15)
2

α

[

(µ

t
− log 2α

)2
− 1

]

>
1

c1t2
.

where we have used Theorem 1.4 in (4.14). We claim that

max
B

Kcc(t) >
1

c1t2
,

for all t ∈ (0, t0), which would conclude the proof of Theorem 1.2.
To see the claim is true for a given t ∈ (0, t0), consider the family wβ of

functions defined for β > αe by

wβ(r) =

{

uβ,K0
(r) 0 ≤ r < r0

α2h(r) r0 ≤ r < 1,

where K0 and r0 are given in Lemma 4.1. Each value wβ(r) will vary contin-
uously in β by Lemma 4.1. By (4.13) and the fact that ucc(t) ≤ (1 + 2t)h,
by (4.2), we have

(4.16) ucc(t) < α2h.

Therefore, by construction of wβ , and by (4.5) of Lemma 4.1, we have
wβ(r) > ucc(r, t) for large enough β.

We now reduce β from such a large value until the largest β for which
this fails, i.e. so that wβ(r) ≥ ucc(r, t), with equality for some r1 ∈ [0, 1). By
the definition of wβ and (4.14) we then have

β2 = wβ(0) ≥ ucc(0, t) ≥ e
2µ

t ,

and in particular,

(4.17) log β ≥
µ

t
.

By (4.16) and the definition of wβ , we know r1 < r0, where r0 = r0(β)
is given in Lemma 4.1. Because ucc(t) and wβ(r) = uβ,K0

(r) are two smooth
functions in a small neighbourhood of r1 and ucc touches uβ,K0

from below
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at r1, we deduce that Kcc(r1, t) ≥ K0. Finally, we use (3) of Lemma 4.1,
(4.17) and (4.15) to conclude that

max
B

Kcc(t) ≥ K0 ≥
2

α

[

(log β − log 2α)2 − 1
]

>
1

c1t2
,

for each t ∈ (0, t0), completing the proof of Theorem 1.2.

Acknowledgements: The first author was supported by EPSRC Pro-
gramme grant number EP/K00865X/1 and the second author was supported
by NSFC 11471300.

Appendix A. Appendix: Proofs of Lemmas

A.1. Proof of Lemma 2.1

Proof. By (2.2) and (2.3), it suffices to show that

r2(log r)2 ≤ (− log r0)
(

r20 + (− log r0 − 1)r2
)

,

or equivalently that F (r) := r2(log r)2 − (− log r0)
(

r20 + (− log r0 − 1)r2
)

≤
0, with equality if and only if r = r0. Equality at r = r0 is clear. We compute

F ′(r) = [2r((− log r) + (− log r0)− 1)] ((− log r)− (− log r0)),

and because 0 < r0 < 1/e, the part in square brackets is positive, and we
see that F ′(r) < 0 for 0 < r < r0, while F ′(r) > 0 for r0 < r < 1, which is
enough to conclude that F (r) < 0 for 0 < r < r0 and r0 < r < 1. □

A.2. Proof of Lemma 2.2

Proof. When r = |x| > r0, ur0(x) = h(x) does not depend on r0 at all, and
is hence trivially decreasing. For |x| < r0, we use (2.4), (2.2) and (2.3) to
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compute

∂

∂r0
(u−1

r0 ) =
∂

∂r0

(

−r20 log r0 + r2(log r0)
2 + r2 log r0

)

= −2r0 log r0 − r0 +
r2

r0
(2 log r0) +

r2

r0

=
1

r0

(

−2r20 log r0 − r20 + 2r2 log r0 + r2
)

=
1

r0
(r20 − r2)(−2 log r0 − 1),

which is positive since r0 <
1
e . □

A.3. Proof of Lemma 3.1

Proof. To prove (3.1), we compute

1

2
log h = − log |r log r|

and

h−1

∣

∣

∣

∣

∇ log

(

1

2
log h

)∣

∣

∣

∣

2

=
r2(log r)2

(log |r log r|)2
(log r + 1)2

|r log r|2

=
(log r + 1)2

(log |r log r|)2
.

It is not hard to see that the limit of the above quantity is 1 as r ↓ 0 and 0
as r ↑ 1. It is therefore bounded, by continuity, as required for (3.1).

Because un = h for r ∈ [rn, 1), we see that (3.2) holds for this range of
values of r, by virtue of (3.1).

Having dealt with the hyperbolic cusp part, i.e. for r ∈ [rn, 1), it remains
to verify (3.2) for r < rn, i.e. on the cigar part where

un =
ε

δ + r2

and hence

vn =
1

2
log un =

1

2

(

log ε− log(δ + r2)
)

.

It suffices then to show that Fn is an increasing function of r ∈ (0, rn], since
we have already established the bound for r = rn. We compute

|∇fn|
2 =

|∇vn|
2

v2n
=

r2

(δ + r2)2
4

(log ε− log(δ + r2))2
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and thus

(A.1) Fn = u−1
n |∇fn|

2 =
1

ε

1

(1 + δ
r2 )

4

(log ε− log(δ + r2))2
.

By (2.3), we have

δ + r2 ≤ δ + r2n = εr2n(− log rn)
2 ≤

ε

e2
< ε,

which together with (A.1) implies that Fn is an increasing function of r, as
required. □
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