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In this paper, we introduce a geometric flow for Kähler metrics ωt

coupled with closed (1, 1)-forms αt on a compact Kähler manifold,
whose stationary solution is a constant scalar curvature Kähler
(cscK) metric, coupled with a harmonic (1, 1)-form. We establish
the long-time existence, i.e., assuming the initial (1, 1)-form α is
nonnegative, then the flow exists as long as the norm of the Rie-
mannian curvature tensors are bounded.
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1. Introduction

Let (M,ω) be a closed Kähler manifold of complex dimension n. The study of
Kähler metrics with constant scalar curvature (cscK metric) in the Kähler
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class [ω] was initiated by Calabi [4, 5], by considering the Calabi-Futaki
invariant of the Kähler class and the Calabi energy functional

Cω(φ) :=
∫

M
R2

ωϕ
ωn
φ

on the spaceHω := {φ ∈ C∞(M)|ωφ := ω +
√
−1∂∂̄φ > 0} of Kähler poten-

tials. Here Rωϕ
is the scalar curvature of ωφ. The Euler-Lagrange equation

for the Calabi functional is

∇∇Rωϕ
= 0.

Solutions are the so called extremal Kähler metrics. Since the gradient vector
field gradRωϕ

is holomorphic, if the manifold X does not admit nontrivial
holomorphic vector fields, then the extremal Kähler metric equation reduces
to Rωϕ

= constant. We call such metrics cscK for constant scalar curvature
Kähler. The search for cscK metrics is one of the central problems in Kähler
geometry and there has been extensive study on this and related problems.

Calabi [4] proposed a parabolic flow, the Calabi flow:

∂tωt =
√
−1∂∂̄Rωt

, ω0 = ω,

with its stationary solution a cscK metric. Observe that this is a fully non-
linear fourth order partial differential equation. In [7], Chen and He derived
the long-time existence provided the Ricci curvature is uniformly bounded.
The interested reader may refer to [18, 19, 22, 23, 26, 28, 30, 35, 36, 39] for
more recent development on the Calabi flow and the list is by no means to
be complete.

The cscK metric is unique up to holomophic automorphisms [11, 13].
On the other hand, Yau conjectured that the existence of cscK metrics is
equivalent to a certain geometric stability in geometric invariant theory (cf.
[15, 37, 42]). One particularly important class of cscK metrics are Kähler-
Einstein metrics. When c1(M) < 0, the existence of Kähler-Einstein metrics
was independently proven by Aubin [1] and Yau [41]. When c1(M) = 0,
the existence of Kähler-Einstein metrics was proved by Yau [41]. In this
case the Kähler-Einstein metrics are Ricci-flat, and are called Calabi-Yau
metrics. When c1(M) > 0, the existence of Kähler-Einstein metrics was re-
cently independently proved by Chen-Donaldson-Sun [8–10] and Tian [37],
under some stability conditions. Besides Kähler-Einstein metrics, Donald-
son proved the existence of the cscK metrics on toric surfaces under some
stability conditions [17].



✐

✐

“1-Yuan” — 2020/10/20 — 23:39 — page 1253 — #3
✐

✐

✐

✐

✐

✐

A new geometric flow over Kähler manifolds 1253

We now introduce a new parabolic flow to study the existence problem
of cscK metrics. This flow is a modified Kähler-Ricci flow coupled with
a heat flow for (1, 1)-forms, whose stationary solution is a cscK metric,
coupled with a harmonic (1, 1)-forms. The short-time existence follows from
the standard theory of strictly parabolic equations and we establish the long-
time existence, i.e., if the initial (1, 1)-form is nonnegative and the norm of
the Riemannian curvature tensors is uniformly bounded, then the flow exists
for all time.

Let (M,ω) be a closed Kähler manifold and α be a closed Hermitian
(1, 1)-form. Consider the flow

(1.1) ∂tωt = −ρ(ωt)− ωt + αt, ∂tαt = □ωt
αt, (ω0, α0) = (ω, α),

where ρ(ωt) denotes the Ricci form of ωt and □ωt
denotes the complex

Hodge-Laplace operator. Note that this flow is parallel to the pseudo-Calabi
flow studied by Chen-Zheng [14].

The short-time existence of (1.1) follows from the standard parabolic
theory. In fact, the solution still exists for short time when (M,ω) is only
assumed to be Hermitian and α is not necessarily closed. Namely, if (M,ω) is
a closed Hermitian manifold with a Hermitian (1, 1)-form α, the generalized
flow of (1.1) defined by

(1.2)
∂tωt = −ρ̂(2)(ωt)− ωt + αt,

∂tαt =
1

2
∆HL,ωt,Rαt, (ω0, α0) = (ω, α),

exists for short time, where ρ̂(2)(ωt) is the second Ricci-Chern form (see
(2.22)) and ∆HL,ωt,R = dd∗ωt

+ d∗ωt
d denotes the Riemannian Hodge-Laplace

operator on (M,ωt).

Proposition 1.1. Suppose that (M,ω) is a closed Hermitian manifold and
α is a Hermitian (1, 1)-form on M . Then the flow (1.2) has a unique solution
(ωt, αt) on [0, T ) for some T ∈ (0,∞].

If ω is Kähler and α is closed, then the flow (1.2) is exactly the flow
(1.1). Suppose that −2πc1(M) + [α] ∈ KM , where KM is the Kähler cone
of M . Assume ω ∈ −2πc1(M) + [α]. One can show that the solution ωt also
lies in the class −2πc1(M) + [α] by Corollary 3.4. In addition, one can show
that αt ∈ [α]. By ∂∂̄-lemma, one writes

ωt = ω +
√
−1∂∂̄φt and αt = α+

√
−1∂∂̄ft



✐

✐

“1-Yuan” — 2020/10/20 — 23:39 — page 1254 — #4
✐

✐

✐

✐

✐

✐

1254 Yi Li, Yuan Yuan, and Yuguang Zhang

for smooth functions φt and ft on M . We further choose a smooth volume
form Ω on M such that

(1.3) ω = α+
√
−1∂∂̄ log Ω.

Then the flow (1.1) or (1.2) is equivalent to the following parabolic equations
on scalar functions.

Proposition 1.2. Under the assumption ω ∈ −2πc1(M) + [α], the flow
(1.1) is equivalent to the parabolic complex Monge-Ampère equation coupled
with a heat equation

(1.4) ∂tφt = log
(ω +

√
−1∂∂̄φt)

n

Ω
− φt + ft, ∂tft = ∆ωt

ft + trωt
α,

with (φ0, f0) = (0, 0), where ∆ωt
stands for the complex Laplacian on M .

Note that if c1(M) < 0 and α = 0, then the flow (1.1) is the normalized
Kähler-Ricci flow on M . Thus the flow (1.1) converges exponentially to the
negative Kähler-Einstein metric coupled with α∞ = 0 (cf. [1][6][41]). The
main theorem of this paper is the long time existence of equation (1.1).

Theorem 1.3. Suppose that (M,ω) is a closed Kähler manifold and α is
a closed nonnegative (1, 1)-form such that

ω ∈ −2πc1(M) + [α].

Let (ωt, αt) be the solution to the flow (1.1) on the maximal time interval
[0, T ) for T < ∞ with the initial condition (ω, α). Then

lim sup
t→T

max
M

|Rmωt
|ωt

= ∞.

Corollary 1.4. Assume that α is a closed nonnegative (1, 1)-form such that

ω ∈ −2πc1(M) + [α].

Let (ωt, αt) be the solution to the flow (1.1) for t ∈ [0, T ) with the initial
condition (ω, α). Suppose that the Ricci curvature of ωt and |αt|ωt

are uni-
formly bounded on [0, T ). Then the solution (ωt, αt) can be extended past
time T .
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The motivation to study the flow (1.1) is its connection to cscK metrics.
Suppose that (ω∞, α∞) is a stationary solution to flow (1.1). Then, in par-
ticular, α∞ is a harmonic (1, 1)-form with respect to ω∞. This implies that
trω∞

α∞ =constant, and therefore, Rω∞
= constant by equation (1.1).

To end the introduction, we remark that the nonnegativity assumption
on the (1, 1)-form α is not essential. Suppose we seek a cscK metric in the
class [ω]. As ω is Kähler, there exists a positive number δ > 0 such that

(1.5) [ω] + δ2πc1(M) ≥ 0.

Hence there exists a closed nonnegative (1, 1)-form α̂ satisfying

(1.6) ω ∈ −δ2πc1(M) + [α̂] ∈ KM .

Now we can consider the flow

(1.7) ∂tωt = −δρ(ωt)− ωt + αt, ∂tαt = ∆L,ωt
αt, (ω0, α0) = (ω, α̂),

which is a renormalized flow to (1.1). The stationary solution to (1.7) is still
the pair of a cscK metric and a harmonic (1, 1)-form. By the same argument,
we can prove the similar existence result as Theorem 1.3.

We give an outline of the present paper. We review the basic notions in
Kähler geometry and Chern connection in Section 2. In Section 3 we prove
Proposition 1.1 for closed Hermitian manifolds. In Section 4, we prove higher
derivatives estimates and then Theorem 1.3 under the assumption that the
initial (1, 1)-form is nonnegative.

Acknowledgement. We thank the referees for the helpful suggestions.

2. Basic complex geometry

We fix the notations in this section. Let (M, g) be a Kähler manifold of
complex dimension n and let (zi)1≤i≤n be holomorphic local coordinates on
M . Write ∂i =

∂
∂zi , ∂i = ∂ī =

∂
∂zī , and let

gAB := g

(
∂

∂zA
,

∂

∂zB

)
, A,B ∈ {1, . . . , n, 1̄, . . . , n̄}.

Since g is invariant with respect to the complex structure of M , it follows
that

gij̄ = gīj = gj̄i, gij = 0 = gīj̄
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and then the Hermitian metric g takes the form

(2.1) g = 2gij̄dz
i ⊗ dzj̄ .

The fundamental form ωg associated to g is a real (1, 1)-form given by

(2.2) ωg =
√
−1gij̄dz

i ∧ dzj̄

and the real cohomology class

[ωg] ∈ H1,1
R

(M) ⊂ H2
R(M)

is called the Kähler class of ωg.
The complex linear extensions of the Levi-Civita connection ∇g, the

Riemannian curvature tensor Rmg, and the Ricci curvature Rcg are still
denoted as ∇g, Rmg, and Rcg, respectively. The Christoffel symbols of the
Levi-Civita connection are given by

(∇g) ∂

∂zA

∂

∂zB
:= ΓC

AB

∂

∂zC
, A,B,C ∈ {1, . . . , n, 1̄, . . . , n̄},

and one can check that they are zero unless all the indices are unbarred or
all the indices are barred. The Riemannian curvature tensor field Rmg are
defined by

Rmg

(
∂

∂zA
,

∂

∂zB

)
∂

∂zC
:= RD

ABC

∂

∂zD
, A,B,C,D ∈ {1, . . . , n, 1̄, . . . , n̄}

and

RABCD := g

(
Rmg

(
∂

∂zA
,

∂

∂zB

)
∂

∂zC
,

∂

∂zD

)
,

The straightforward calculation indicates that the only non-vanishing com-
ponents are Rℓ

ij̄k
, Rℓ̄

ij̄k̄
, Rℓ

ījk
and Rℓ̄

ījk̄
and Rij̄kℓ̄, Rij̄k̄ℓ, Rījkℓ̄, Rījk̄ℓ. By taking

the trace, the non-vanishing components in

RAB := Rcg

(
∂

∂zA
,

∂

∂zB

)
, A,B ∈ {1, . . . , n, 1̄, . . . , n̄},

are Rij̄ and Rījsatisfying Rij̄ = Rjī. The straightforward calculation yields

(2.3) Rij̄ = −∂i∂j̄ log det(g),
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where g := (gkℓ̄)1≤k,ℓ≤n stands for the matrix of gkℓ̄. The Ricci form ρg as-
sociated to g is a real closed (1, 1)-form defined by

(2.4) ρg =
√
−1Rij̄dz

i ∧ dzj̄ = −
√
−1∂∂̄ log det(g).

The real de Rham cohomology class [ρg/2π] is the first Chern class c1(M)
of M . The (complex) scalar curvature is defined to be

(2.5) Rg := Rij̄g
j̄i,

which is the one-half of the Riemannian scalar curvature of g.

2.1. Hodge-Laplace operators

Suppose now (M, g) is a closed complex manifold of complex dimension n.
For any two (unordered) (p, q)-forms

α =
1

p!q!
αi1···ipj̄1···j̄qdz

i1 ∧ · · · ∧ dzip ∧ dzj̄1 ∧ dzj̄q ,

β =
1

p!q!
βi1···ipj̄1···j̄qdz

i1 ∧ dzip ∧ dzj̄1 ∧ · · · ∧ dzj̄q ,

we define the global inner product of α and β (cf. [24]) by

(2.6) ⟨⟨α, β⟩⟩g :=

∫

M
⟨α, β⟩gdVg =

∫

M
⟨α, β⟩

ωn
g

n!
.

where

(2.7) ⟨α, β⟩g :=
1

p!q!
αi1···ipj̄1···j̄q β̄

i1···ipj̄1···j̄q ,

and

β̄i1···ipj̄1···j̄q := gk̄1i1 · · · gk̄pipgj̄1ℓ1 · · · gj̄qℓqβk1···kpℓ̄1···ℓ̄q .

Let ∂∗
g : Ωp,q(M) → Ωp−1,q(M) be the adjoint operator of ∂. For any

p ≥ 1, ∂∗
g is defined by

(2.8) ⟨⟨∂∗
gβ, α⟩⟩g = ⟨⟨β, ∂α⟩⟩g,

for α ∈ Ωp−1,q(M) and β ∈ Ωp,q(M). ∂̄∗
g : Ωp,q(M) → Ωp,q−1(M) for q ≥ 1

can be defined in the same manner.
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The complex Hodge-Laplace operators of g are given by

(2.9) □g := −
(
∂∂∗

g + ∂∗
g∂
)
, □g := −

(
∂̄∂̄∗

g + ∂̄∗
g ∂̄
)
.

The principal parts of □g,□g are both given by gij̄∂i∂j̄ , and hence the partial

differential operators □g,□g are strictly elliptic. More precisely, as showed
in [24], for any (p, q)-form α we have

(2.10) □gα = gij̄∂i∂j̄α+Ai(g, g−1)∂iα+B j̄(g, g−1)∂j̄α+ C(g, g−1)α,

where Ai(g, g−1), B j̄(g, g−1), C(g, g−1) are polynomials of g, g−1 and their
partial derivatives.

When (M, g) is a Kähler manifold, it is well-known that □g = □g =
1
2∆HL,g,R, where ∆HL,g,R = dd∗g + d∗gd is the Riemannian Hodge-Laplace op-
erator on (M, g). In general, we have

(2.11) ∆HL,g,R = □g +□g + lower order terms.

The following lemma can be found in the standard textbooks (cf. [24]).

Lemma 2.1. Let α =
√
−1
∑

1≤i,j≤n αij̄dz
i ∧ dzj̄ be a real (1, 1)-form. Then

(∂̄∗α)ℓ̄ = −
(

∂

∂zk
+

∂ log det(g)

∂zk

)
αℓ̄k

The following calculation of Hodge-Laplace operator can be found in
standard textbooks (cf. [24]).

Lemma 2.2. Let α =
√
−1
∑

1≤i,j≤n αij̄dz
i ∧ dzj̄ be a real (1, 1)-form. Then

□gα =
√
−1

∑

1≤i,j≤n

(
∇ℓ̄∇ℓ̄αij̄ + gq̄kgℓ̄pRkj̄iℓ̄αpq̄ − gℓ̄kRkj̄αiℓ̄

)
dzi ∧ dzj̄ .

We may rewrite the complex Laplace operator as:

□gα =
√
−1

∑

1≤i,j≤n

[
∆gαij̄ + gℓ̄pgq̄kRkj̄iℓ̄αpq̄

− 1

2
gℓ̄k
(
3Rkj̄αiℓ̄ +Riℓ̄αkj̄

) ]
dzi ∧ dzj̄

and it reads in the local coordinates:

(2.12) □gαij̄ = ∆gαij̄ + gℓ̄pgq̄kRkj̄iℓ̄αpq̄ −
1

2
gℓ̄k
(
3Rkj̄αiℓ̄ +Riℓ̄αkj̄

)
.
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The following proposition is important in the later argument.

Proposition 2.3. Let (M, g) be a closed Kähler manifold and let α =√
−1
∑

1≤i,j≤n αij̄dz
i ∧ dzj̄ be a closed Hermitian (1, 1)-form. Then

(2.13) □gα =
√
−1∂∂̄(trgα),

where trgα = gij̄αij̄. As a consequence, □gα is d-exact.

Proof. We calculate □gα and
√
−1∂∂̄(trgα) in a normal coordinate. Making

use of Lemma 2.1,

(∂̄∗α)ℓ̄ = −
(

∂

∂zk
+

∂ log det(g)

∂zk

)
(gℓ̄pgkq̄αpq̄) = −(I)− (II),

where

(I) = −∂gst̄
∂zk

gpt̄gsℓ̄gkq̄αpq̄ −
∂gst̄
∂zk

gpℓ̄gsq̄gkt̄αpq̄ + gℓ̄pgkq̄
∂αpq̄

∂zk
,

and

(II) = gst̄
∂gst̄
∂zk

gℓ̄pgkq̄αpq̄.

Therefore,

(□gα)ij̄ = −∂j̄

(
giℓ̄(∂̄

∗α)ℓ̄
)

= ∂j̄

(
−giℓ̄

∂gst̄
∂zk

gpt̄gsℓ̄gkq̄αpq̄ − giℓ̄
∂gst̄
∂zk

gpℓ̄gsq̄gkt̄αpq̄

)

+ ∂j̄

(
giℓ̄g

ℓ̄pgkq̄
∂αpq̄

∂zk
+ giℓ̄g

st̄∂gst̄
∂zk

gℓ̄pgkq̄αpq̄

)

= −
∑

1≤p≤n

∂2gip̄

∂zk∂zj̄
αpk̄ −

∑

1≤q≤n

∂2gqk̄

∂zk∂zj̄
αiq̄

+
∑

1≤k≤n

∂2αik̄

∂zk∂zj̄
+
∑

1≤s≤n

∂2gss̄

∂zk∂zj̄
αik̄

= −
∑

1≤p,k≤n

∂2gkp̄

∂zi∂zj̄
αpk̄ +

∑

1≤k≤n

∂2αkk̄

∂zi∂zj̄
,

where the third equality uses the properties of normal coordinates and the
fourth equality uses the closedness of g and α and the second and fourth
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terms cancel each other among terms in front of the fourth equality by the
closedness of g. On the other hand,

√
−1∂i∂j̄(trgα) = ∂i

(
−gpℓ̄gkq̄

∂gpq̄

∂zj̄
αkℓ̄ + gkℓ̄

∂αkℓ̄

∂zj̄

)

= −
∑

1≤k,ℓ≤n

∂2gℓk̄
∂zi∂zj̄

αkℓ̄ +
∑

1≤k≤n

∂2αkk̄

∂zi∂zj̄
.

The proposition is proved. □

2.2. Chern connections on Hermitian manifolds

Let (M, g) be a Hermitian manifold of complex dimension n. A Chern con-
nection ∇̂ is a unique connection on the holomorphic tangent bundle T 1,0M
such that ∇̂ is compatible with the Hermitian structure and the holomorphic
structure.

The non-vanishing components of Chern connection are Γ̂k
ij and Γ̂k̄

īj̄
,

where

(2.14) Γ̂k
ij = gℓ̄k∂igjℓ̄, Γ̂k̄

īj̄ = Γ̂k
ij .

The torsion T̂ of the Chern connection is defined by

(2.15) T̂ (X,Y ) := ∇̂XY − ∇̂Y X − [X,Y ], X, Y ∈ Ω1,0(M).

Its components T̂ k
ij defined by T̂ (∂i, ∂j) = T̂ k

ij∂k can be computed according
to the formula

(2.16) T̂ k
ij = Γ̂k

ij − Γ̂k
ji.

If we set T̂ijk̄ := gℓk̄T̂
ℓ
ij , then

(2.17) T̂ijk̄ = ∂igjk̄ − ∂jgik̄.

The curvature of the Chern connection is

(2.18) R̂ij̄kℓ̄ = −∂i∂j̄gkℓ̄ + gq̄p∂igkq̄∂j̄gpℓ̄.

The first Ricci-Chern curvature defined by

(2.19) R̂
(1)

ij̄
:= gℓ̄kR̂ij̄kℓ̄ = −∂i∂j̄ log det(g)



✐

✐

“1-Yuan” — 2020/10/20 — 23:39 — page 1261 — #11
✐

✐

✐

✐

✐

✐

A new geometric flow over Kähler manifolds 1261

represents the first Chern class of M (up to a constant). The second Ricci-
Chern curvature is defined by

(2.20) R̂
(2)

ij̄
:= gℓ̄kR̂kℓ̄ij̄ .

Those two Ricci-Chern curvatures are related by

(2.21) R̂
(1)

ij̄
− R̂

(2)

ij̄
= ∇̂k̄T̂k̄j̄i − ∇̂j̄T̂i,

where T̂k̄j̄i = T̂kjī and T̂i =
∑

1≤j≤n T̂
j
ij . In particular, if g is Kähler, then

R̂
(1)

ij̄
= R̂

(2)

ij̄
. Set

(2.22) ρ̂(1) :=
√
−1R̂

(1)

ij̄
dzi ∧ dzj̄ , ρ̂(2) :=

√
−1R̂

(2)

ij̄
dzi ∧ dzj̄ .

Note that both ρ̂(1) and ρ̂(2) are real (1, 1)-forms on M .

3. A geometric flow and cscK metrics

Let M be a closed complex manifold with a fundamental form

ω =
√
−1gij̄dz

i ∧ dzj̄ .

Then g := gij̄dz
i ⊗ dzj̄ defines a Hermitian metric on T 1,0M . In this setting,

all quantities associated to g will be written as quantities associated to ω.
For example, the Ricci-Chern forms of g are written as ρ̂(·)(ω).

Suppose α is a fixed Hermitian (1, 1)-form onM . In this section we study
the flow (1.2) starting with a initial pair (ω, α) on M . In particular, if (ω, α)
is a closed pair (i.e., dω = dα = 0), we can show that (ωt, αt) is also a closed
pair. Thus the flow preserves the closedness condition.

3.1. A flow on the triple (M,ω, α) - short time existence

Consider the flow

(3.1)
∂tωt = −ρ̂(2)(ωt)− ωt + αt,

∂tαt =
1

2
∆HL,ωt,Rαt, (ω0, α0) = (ω, α).

We say that a family of pairs (ωt, αt) is a solution to (3.1), if

(i) ωt is a fundamental form for each t,
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(ii) αt is a Hermitian (1, 1)-form, and

(iii) (ωt, αt) satisfies the equation (3.1).

The first result of this paper is the short-time existence and uniqueness
of (3.1).

Theorem 3.1. Suppose M is a closed complex manifold with a fundamental
form ω and α is a Hermitian (1, 1)-form on M . Then the flow (3.1) has a
unique solution (ωt, αt) on [0, T ) for some T > 0.

Proof. Let us denote by H and H+ the space of all Hermitian (1, 1)-forms
and the space of all positive Hermitian (1, 1)-forms, respectively. Define an
operator F : H+ × H → H × H by

F(ω, α) :=

(
−ρ̂(2)(ω)− ω + α,

1

2
∆HL,ω,Rα

)
.

Writing α =
√
−1αij̄dz

i ∧ dzj̄ and using (2.18), (2.20), (2.22), (2.11), (2.12),
we obtain

−ρ̂(2)(ω) =
√
−1
(
gℓ̄k∂k∂ℓ̄gij̄ − gℓ̄kgq̄p∂kgiq̄∂ℓ̄gpj̄

)
dzi ∧ dzj̄ ,

1

2
∆HL,ω,Rα =

√
−1
(
gℓ̄k∂k∂ℓ̄αij̄ + lower order terms of α

)
dzi ∧ dzj̄ .

Consequently,

F(ω, α) = gℓ̄k∂k∂ℓ̄(ω, α) + lower order terms of (ω, α);

thus the operator F is strictly elliptic and therefore the flow equation (3.1)
is a system of strictly parabolic partial differential equations. The standard
theory gives the short-time existence and uniqueness. □

As a corollary, we have the following theorem in the Kähler case.

Theorem 3.2. Suppose that (M,ω) is a closed Kähler manifold with a
closed Hermitian (1, 1)-form α. Then the solution (ωt, αt)t∈[0,T ) to (3.1) is
closed, i.e. dωt = dαt = 0. Furthermore, the flow (3.1) reduces to

(3.2) ∂tωt = −ρ(ωt)− ωt + αt, ∂tαt = □ωt
αt, (ω0, α0) = (ω, α).
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Proof. The proof follows similar calculation as in the Kähler-Ricci flow. Let
(ωt, αt)t∈[0,T ) be the unique solution to (3.1). Then

∂t(dαt) = d∂tαt =
1

2
d∆HL,ωt,Rαt =

1

2
∆HL,ωt,R(dαt), dα0 = dα = 0.

By the uniqueness, we must have dαt = 0 for all t ∈ [0, T ). On the other
hand, applying the exterior differentiation operator d to the evolution equa-
tion of ωt, we arrive at

∂t(dωt) = −dρ̂(2)(ωt)− dωt, dω0 = dω = 0.

To prove the closedness of ωt, we use the similar argument in [27] (see
the proof of Theorem 7.1). Since d = ∂ + ∂̄ and ∂̄ωt = ∂ωt (ωt is real), it
suffices to prove ∂ωt = 0. In local holomorphic coordinates we have

∂tgij̄ = −R̂
(2)

ij̄
− gij̄ + αij̄ ,

where

ωt =
√
−1gij̄dz

i ∧ dzj̄ , ρ̂(2)(ωt) =
√
−1R̂

(2)

ij̄
dzi ∧ dzj̄

and

αt =
√
−1αij̄dz

i ∧ dzj̄

(without the subscript t in the components). According to (2.17),

∂ωt =
√
−1

∑

1<i<j≤n

∑

1≤k≤n

T̂ijk̄dz
i ∧ dzj ∧ dzk̄.

We need only to show that T̂ijk̄ = 0 along the flow equation (3.1). To achieve

this, we compute the evolution equation of T̂ijk̄. Since dαt = 0, we obtain
∂iαjk̄ = ∂jαik̄ for any indices i, j, k. Therefore,

∂tT̂ijk̄ = ∂t(∂igjk̄ − ∂jgik̄)

= ∂i

(
−R̂

(2)

jk̄
− gjk̄ + αjk̄

)
− ∂j

(
−R̂

(2)

ik̄
− gik̄ + αik̄

)

= −
(
∂iR̂

(2)

jk̄
− ∂jR̂

(2)

ik̄

)
+ T̂ijk̄.

For operators P,Q, the symbol P ∼ Q means that Q is the principal part
of Q. Define an operator by

P(ωt)ijk̄ := −
(
∂iR̂

(2)

jk̄
− ∂jR̂

(2)

ik̄

)
.
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Using (2.19) and (2.21) we get

−R̂
(2)

jk̄
= ∂j∂k̄ log det(gt) + ∇̂ℓ̄T̂ℓ̄k̄j − ∇̂k̄T̂j

and thus

P(ωt)ijk̄ = ∂i

(
∂j∂k̄ log det(gt) + ∇̂ℓ̄T̂ℓ̄k̄j − ∇̂k̄T̂j

)

− ∂j

(
∂i∂k̄ log det(gt) + ∇̂ℓ̄T̂ℓ̄k̄i − ∇̂k̄T̂i

)

= ∂i

(
gℓ̄p∇̂pT̂ℓ̄k̄j

)
− ∂j

(
gℓ̄p∇̂pT̂ℓ̄k̄i

)
− ∂i∇̂k̄T̂j + ∂j∇̂k̄T̂i

∼ gℓ̄p
(
∂i∂pT̂ℓ̄k̄j − ∂j∂pT̂ℓ̄k̄i

)
− ∂i∂k̄T̂j + ∂j∂k̄T̂i.

Using (2.17), we get

∂i∂pT̂ℓ̄k̄j = ∂i∂p(∂ℓ̄gjk̄ − ∂k̄gjℓ̄) = ∂p∂ℓ̄T̂ijk̄ + ∂p∂ℓ̄∂jgik̄ − ∂i∂p∂k̄gjℓ̄.

By switching the indices i, j, we obtain

∂j∂pT̂ℓ̄k̄i = ∂j∂p(∂ℓ̄gik̄ − ∂k̄giℓ̄).

On the other hand,

−∂i∂k̄T̂j + ∂j∂k̄T̂i = −∂i∂k̄T̂
ℓ
jℓ + ∂j∂k̄T̂

ℓ
iℓ

= −∂i∂k̄

(
gp̄ℓ∂jgℓp̄ − gp̄ℓ∂ℓgjp̄

)

+ ∂j∂k̄

(
gp̄ℓ∂igℓp̄ − gp̄ℓ∂ℓgip̄

)

∼ gp̄ℓ (−∂i∂k̄∂jgℓp̄ + ∂i∂k̄∂ℓgjp̄ + ∂j∂k̄∂igℓp̄ − ∂j∂k̄∂ℓgip̄)

= gp̄ℓ (∂i∂k̄∂ℓgjp̄ − ∂j∂k̄∂ℓgip̄) .

Plugging those expression into P(ωt)ijk̄, we obtain

P(ωt)ijk̄ ∼ gℓ̄p∂p∂ℓ̄T̂ijk̄.

Consequently, the system of partial differential equations

∂tT̂ijk̄ = P(ωt)ijk̄ + T̂ijk̄

is strictly parabolic. When T̂ijk̄ ≡ 0, we must have R̂
(1)

jk̄
= R̂

(2)

jk̄
and then

P(ωt)ijk̄ = 0. Thus 0 is a solution of the above system because dω = 0. By
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the uniqueness, we get T̂ijk̄ = 0 and hence ∂ωt = 0. Taking the complex
conjugate we prove that dωt = 0 for any t ∈ [0, T ).

Finally, the equation (3.2) immediately follows from (3.1), since □ωt
=

1
2∆HL,ωt,R when ωt is Kähler. □

Remark 3.3. The “Hermitian” condition in Theorem 3.1 and Theorem 3.2
is not necessary. In fact, we can always modify any (1, 1)-form α to get a
Hermitian (1, 1)-form α†.

3.2. Stationary solutions and cscK metrics

Let us now assume that (M,ω) is a closed Kähler manifold of complex
dimension n. The Kähler cone KM is the open convex cone consisting of
all real cohomology classes in H1,1

R
(M) that can be represented by smooth

closed positive (1, 1)-forms. Namely,

(3.3) KM := {Λ ∈ H1,1
R

(M) : Λ = [η] for some closed (1, 1)-form η > 0}.

We also consider the set

(3.4) K′
M := {Λ ∈ H1,1

R
(M) : −2πc1(M) + Λ ∈ KM}.

Corollary 3.4. Suppose that (M,ω) is a closed Kähler manifold with a
closed (1, 1)-form α satisfying

(i) [α] ∈ K′
M , and

(ii) ω ∈ −2πc1(M) + [α].

The the solution (ωt, αt)t∈[0,T ) to (3.2) is closed and ωt ∈ [ω] = −2πc1(M) +
[α].

Proof. The closedness of solutions was proved in Theorem 3.2. Taking the
cohomology class of (3.2) we have

∂t[ωt] = −2πc1(M)− [ωt] + [αt] = −2πc1(M)− [ωt] + [α],

where we use Proposition 2.3 to deduce [αt] = [α]. Therefore

[ωt] = −2πc1(M) + [α] + e−t([ω] + 2πc1(M)− [α]).

From assumption (ii), we have [ωt] = −2πc1(M) + [α]. □
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Theorem 3.5. If (M,ω) is a closed Kähler manifold with a closed Hermi-
tian (1, 1)-form α, then the stationary solution of equation (3.2) is a cscK
metric coupled with a harmonic (1, 1)-form.

Proof. Let (ω∞, α∞) be the stable solution to (3.2). Then they satisfy

ρ(ω∞) = −ω∞ + α∞, □ω∞
α∞ = 0.

Namely, α∞ is a harmonic (1, 1)-form. Hence, trω∞
α∞ is constant by Propo-

sition 2.3. Consequently,

R(ω∞) = −n+ trω∞
α∞ = constant.

Namely, ω∞ is a cscK metric. □

3.3. Equivalent scalar equations

Let (ωt, αt)t∈[0,T ) be the solution to the flow equation (3.2) given by Theo-

rem 3.2. As □ωt
αt is d-exact by Proposition 2.3, one has ∂t[αt] = 0, implying

αt ∈ [α]. By ∂∂̄-lemma, there exists a smooth function ft such that

(3.5) αt = α+
√
−1∂∂̄ft.

Plugging this into ∂tαt = □ωt
αt, making use of □ωt

αt = ∂∂̄trωt
αt and get-

ting rid of ∂∂̄, one obtains

∂tft = ∆ωt
ft + trωt

α,

with ft satisfying f0 = 0 and the normalization
∫
M ∂tftω

n
t = n[α] ∧ [ω]n−1.

Assume ω ∈ −2πc1(M) + [α]. Then there exists a smooth volume form
Ω on M such that

(3.6) ω = α+
√
−1∂∂̄ log Ω.

Since ωt ∈ [ω], we may write ωt = ω +
√
−1∂∂̄φt. Making use of (3.5), then

the equation

∂tωt = −ρ(ωt)− ωt + αt

is equivalent to the parabolic Monge-Ampere equation

∂tφt = log
(ω +

√
−1∂∂̄φt)

n

Ω
− φt + ft
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by the standard deduction as in the Kähler-Ricci flow. Proposition 1.2 is
thus proved.

4. Higher order derivatives estimates and the long-time

existence

In this section we first collect evolution equations for related geometric quan-
tities and then derive the long time existence for the flow (3.2).

4.1. Evolution equations

To simplify notions, we always raise or lower the indices. For example,

Rī
j̄k

ℓ := gīpgq̄ℓRpj̄kq̄.

Proposition 4.1. Along the flow (3.2), we have

∂tRij̄kℓ̄ = ∆gtRij̄kℓ̄ +Rip̄qℓ̄R
p̄
j̄k

q −Rip̄kq̄R
p̄
j̄
q̄
ℓ̄ +Rij̄pq̄R

q̄p
kℓ̄(4.1)

− 1

2

(
Rip̄R

p̄
j̄kℓ̄ +Rpj̄Ri

p
kℓ̄ +Rkp̄Rij̄

p̄
ℓ̄ +Rpℓ̄Rij̄k

p
)
−Rij̄kℓ̄

+Rij̄
q̄
ℓ̄αkq̄ −∇i∇j̄αkℓ̄.

Proof. Combining

∂tg
ij̄ = −gℓ̄igj̄k∂tgkℓ̄ = gℓ̄igj̄k(Rkℓ̄ − αkℓ̄) + gℓ̄igj̄kgkℓ̄,

and

∂tRij̄kℓ̄ = −∂i∂j̄(∂tgkℓ̄) + ∂tg
q̄p∂igkq̄∂j̄gpℓ̄

+ gq̄p∂i(∂tgkq̄)∂j̄gpℓ̄ + gq̄p∂igkq̄∂j̄(∂tgpℓ̄),

we obtain

∂tRij̄kℓ̄ = ∂i∂j̄(Rkℓ̄ − αkℓ̄ + gkℓ̄) + gs̄pgq̄r(Rrs̄ − αrs̄ + grs̄)Γ
a
ikgaq̄Γ

b̄
j̄ℓ̄gb̄p

− gq̄p∂i(Rkq̄ − αkq̄ + gkq̄)∂j̄gpℓ̄ − gq̄p∂j̄(Rpℓ̄ − αpℓ̄ + gpℓ̄)∂igkq̄

= ∂i∂j̄(Rkℓ̄ − αkℓ̄) + Γp
ikΓ

q̄

j̄ℓ̄
(Rpq̄ − αpq̄)

− Γq̄

j̄ℓ̄
∂i(Rkq̄ − αkq̄)− Γp

ik∂j̄(Rpℓ̄ − αpℓ̄)−Rij̄kℓ̄.
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On the other hand, by the commutator formulas, we obtain

∇i∇j̄βkℓ̄ = ∂i∇j̄βkℓ̄ − Γp
ik∇j̄βpℓ̄

= ∂i

(
∂j̄βkℓ̄ − Γq̄

j̄ℓ̄
βkq̄

)
− Γp

ik∇j̄βpℓ̄

= ∂i∂j̄βkℓ̄ − ∂iΓ
q̄

j̄ℓ̄
· βkq̄ − Γq̄

j̄ℓ̄
∂iβkq̄ − Γp

ik

(
∂j̄βpℓ̄ − Γq̄

j̄ℓ̄
βpq̄

)

= ∂i∂j̄βkℓ̄ + Γp
ikΓ

q̄

j̄ℓ̄
βpq̄ − Γp

ik∂j̄βpℓ̄ − Γq̄

j̄ℓ̄
∂iβkq̄ +Rij̄

q̄
ℓ̄βkq̄

for any (1, 1)-form βkℓ̄. Letting βkℓ̄ = Rkℓ̄ − αkℓ̄, it follows

∂tRij̄kℓ̄ = ∇i∇j̄(Rkℓ̄ − αkℓ̄)−Rij̄
q̄
ℓ̄(Rkq̄ − αkq̄)−Rij̄kℓ̄

= ∇i∇j̄Rkℓ̄ −Rij̄
q̄
ℓ̄Rkq̄ −Rij̄kℓ̄ −∇i∇j̄αkℓ̄ +Rij̄

q̄
ℓ̄αkq̄.

Using the formula in [3, 33],

∆gRij̄kℓ̄ = ∇i∇j̄Rkℓ̄ −Rij̄pq̄R
q̄p

kℓ̄ +Rip̄kq̄R
p̄
j̄
q̄
ℓ̄ −Rip̄qℓ̄R

p̄
j̄k

qRkq̄Rij̄
q̄
ℓ̄

+
1

2

(
Rip̄R

p̄
j̄kℓ̄ +Rpj̄Ri

p
kℓ̄ +Rkp̄Rij̄

p̄
ℓ̄ +Rpℓ̄Rij̄k

p
)
.

The proposition is thus proved. □

Corollary 4.2. Along the flow (3.2), we have

(4.2) ∂tRij̄ = ∆gtRij̄ +Rij̄kℓ̄R
ℓ̄k −Rik̄R

k̄
j̄ −∇i∇j̄trgtαt.

Proof. Taking the trace of (4.1), we have

∂tRij̄ = Rij̄kℓ̄∂tg
ℓ̄k + gℓ̄k∂tRij̄kℓ̄

= Rij̄kℓ̄g
q̄kgℓ̄p(Rpq̄ − αpq̄ + gpq̄) + ∆gtRij̄ +Rip̄qℓ̄R

p̄
j̄
ℓ̄q −Rip̄kq̄R

p̄
j̄
q̄k

+Rij̄pq̄R
q̄p − 1

2

(
Rip̄R

p̄
j̄ +Rpj̄Ri

p +Rkp̄Rij̄
p̄k +Rpℓ̄Rij̄

ℓ̄p
)
−Rij̄

+Rij̄
q̄kαkq̄ −∇i∇j̄trgtαt

= ∆gtRij̄ +Rij̄kℓ̄R
ℓ̄k −Rik̄R

k̄
j̄ −∇i∇j̄trgtαt.

□

Corollary 4.3. Along the flow (3.2), we have

(4.3) ∂tRωt
= ∆gtRωt

+ |ρ(ωt)|2ωt
+Rωt

−∆ωt
trωt

αt − ⟨ρ(ωt), αt⟩ωt
.
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Proof. Taking the trace of (4.2), we have

∂tRgt = −Rij̄g
ℓ̄igj̄k∂tgkℓ̄

+ gj̄i
(
∆gtRij̄ +Rij̄kℓ̄R

ℓ̄k −Rik̄R
k̄
j̄ −∇i∇j̄trgtαt

)

= −Rℓ̄k(−Rkℓ̄ − gkℓ̄ + αkℓ̄)

+ ∆gtRgt +Rkℓ̄R
ℓ̄k −Rik̄R

k̄i −∆gttrgtαt

= Rkℓ̄R
ℓ̄k +Rgt − αkℓ̄R

ℓ̄k +∆gtRgt −∆gttrgtαt

= ∆gtRωt
+ |ρ(ωt)|2ωt

+Rωt
−∆ωt

trωt
αt − ⟨ρ(ωt), αt⟩ωt

.

□

Proposition 4.4. Along the flow (3.2), we have

(4.4) ∂ttrωt
αt = ∆ωt

trωt
αt − |αt|2ωt

+ ⟨ρ(ωt), αt⟩ωt
+ trωt

αt.

Proof. Applying Propsition 2.3 and using the flow, we have

∂ttrωt
αt = −gℓ̄igj̄k∂tgkℓ̄ · αij̄ + gj̄i∂tαij̄

= −gℓ̄igj̄k(−Rkℓ̄ − gkℓ̄ + αkℓ̄)αij̄ + gj̄i∂i∂j̄trωt
αt

= ⟨ρ(ωt), αt⟩ωt
+ trωt

αt − |αt|2ωt
+∆ωt

trωt
αt.

□

Proposition 4.5. Along the flow (3.2), we have

∂t|αt|2ωt
= ∆ωt

|αt|2ωt
− 2|∇ωt

αt|2ωt
+ 2|αt|2ωt

(4.5)

+ 2Rij̄kℓ̄α
ℓ̄kαj̄i − 2αij̄α

j̄
ℓ̄α

ℓ̄i.

Proof. Applying Lemma 2.2, we obtain

∂t|αt|2ωt
= 2∂tg

ℓ̄i · gj̄kαij̄αkℓ̄ + 2gℓ̄igj̄kαkℓ̄∂tαij̄

= 2(Rℓ̄i − αℓ̄i + gℓ̄i)gj̄kαij̄αkℓ̄

+ 2αj̄i

(
∆ωt

αij̄ +Rkj̄iℓ̄α
ℓ̄k − 1

2
gℓ̄k(3Rkj̄αiℓ̄ +Riℓ̄αkj̄)

)

= 2αj̄i∆ωt
αij̄ + 2|αt|2ωt

− 2αℓ̄iαij̄α
j̄
ℓ̄

+ 2Rkj̄iℓ̄α
ℓ̄kαj̄i − 2αij̄α

j̄
ℓ̄R

ℓ̄i.
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Combining

∆ωt
αij̄ =

1

2
gℓ̄k
(
∇k∇ℓ̄αij̄ +∇ℓ̄∇kαij̄

)

=
1

2
gkℓ̄
(
2∇k∇ℓ̄αij̄ +Rkℓ̄i

pαpj̄ +Rkℓ̄
q̄
j̄αiq̄

)

= gℓ̄k∇k∇ℓ̄αij̄ +
1

2
Rip̄α

p̄
j̄ +

1

2
Rqj̄αi

q,

where the second equality uses commutator formula, and

∆ωt
|αt|2ωt

= 2αj̄igℓ̄k∇k∇ℓ̄αij̄ + 2|∇ωt
αt|2ωt

,

the proposition is proved. □

4.2. Long-time existence with bounded curvatures in the general
situation

For any two tensor fields A and B we denote by A ∗B any linear combination
of tensor products of tensors A and B formed by contractions on Ai1···ik and
Bj1···jl using the metric g. For example,

Rip̄qℓ̄R
p̄
j̄k

q = g−1 ∗ g−1 ∗ Rmg ∗ Rmg.

Using the ∗-notion and Lemma 2.2, we have

∂tgt = −Rcgt − gt + αt

and

∂tαt = ∆ωt
αt + g−1

t ∗ g−1
t ∗ Rmgt ∗ αt − g−1

t ∗ Rcgt ∗ αt.

Furthermore, from Proposition 4.1 we arrive at

∂tRmgt = ∆gtRmgt − Rmgt −∇2
gtαt(4.6)

+ g−1
t ∗

(
g−1
t ∗ Rmgt ∗ Rmgt +Rmgt ∗ αt

)
.

For any t-dependent tensor field A(t), we have

(4.7) ∂t∇gtA(t) = ∇gt∂tA(t) + (∂tΓgt) ∗A(t).

On the other hand, the evolution equation of Γgt is given by

(4.8) ∂tΓ
k
ij = −gℓ̄k∇i(Rjℓ̄ − αjℓ̄),
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from which we obtain

(4.9) ∂tΓgt = g−1
t ∗ ∇gt(Rcgt − αt),

and thus

(4.10) ∂t∇gtA(t) = ∇gt∂tA(t) + g−1
t ∗ ∇gt(Rcgt − αt) ∗A(t).

Another useful commutator formula is (see [3])

∆g∇gA = ∇g∆gA+ g−1 ∗ g−1 ∗ Rmg ∗ ∇gA(4.11)

+ g−1 ∗ g−1 ∗ ∇gRmg ∗A.

We introduce a tensor field Sg(t) defined by

(4.12) Sij̄kℓ̄ := Rij̄
q̄
ℓ̄αkq̄ −∇i∇j̄αkℓ̄.

This tensor field shares the same symmetric properties of Rmg(t).

Proposition 4.6. We have

(4.13) Sij̄kℓ̄ = Skj̄iℓ̄ = Siℓ̄kj̄ = Skℓ̄ij̄ , Sij̄kℓ̄ = Sjīℓk̄.

Proof. By the symmetry of Rij̄kℓ̄ and the identity ∇j̄αkℓ̄ = ∂j̄αkℓ̄ −
Γq̄

j̄ℓ̄
αkq̄, we immediately get Sij̄kℓ̄ = Siℓ̄kj̄ . To prove Sij̄kℓ̄ = Skj̄iℓ̄, we first

compute

∇k∇j̄αiℓ̄ −∇i∇j̄αkℓ̄ = ∂k∇j̄αiℓ̄ − Γp
ki∇j̄αpℓ̄ − ∂i∇j̄αkℓ̄ + Γp

ik∇j̄αpℓ̄

= ∂k

(
∂j̄αiℓ̄ − Γq̄

j̄ℓ̄
αiq̄

)
− ∂i

(
∂j̄αkℓ̄ − Γq̄

j̄ℓ̄
αkq̄

)

= ∂iΓ
q̄

j̄ℓ̄
· αkq̄ − ∂kΓ

q̄

j̄ℓ̄
· αiq̄

= −Rij̄
q̄
ℓ̄αkq̄ +Rkj̄

q̄
ℓ̄αiq̄.

Therefore, one obtains

Rkj̄
q̄
ℓ̄αiq̄ −∇k∇j̄αiℓ̄ = Rij̄

q̄
ℓ̄αkq̄ −∇i∇j̄αkℓ̄,

i.e. Skj̄iℓ̄ = Sij̄kℓ̄. The last symmetric identity follows from the above two
identities. □
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Consequently, the evolution (4.1) or (4.6) can be rewritten as the follow-
ing nice form:

(4.14) ∂tRmgt = ∆gtRmgt − Rmgt + g−1
t ∗ g−1

t ∗ Rmgt ∗ Rmgt + Sgt .

In general, we have

Proposition 4.7. Along the flow (3.2), for any nonnegative integer k, it
follows

∂t∇k
gtRmgt = ∆gt∇k

gtRmgt −∇k
gtRmgt(4.15)

+
∑

i+j=k

∇i
gtRmgt ∗ ∇j

gtαt ∗ g−1
t

+
∑

i+j=k

∇i
gtRmgt ∗ ∇j

gtRmgt ∗ g−1
t ∗ g−1

t −∇k+2
gt αt.

Proof. The case k = 0 was proved in (4.14). For convenience, we omit the
subscripts gt and t in the proof of the case k > 0. By (4.10), (4.11) and the
inductive hypothesis, we have

∂t∇k+1Rm = ∇∂t∇kRm+ g−1 ∗ ∇kRm ∗ ∇(g−1 ∗ Rm− α)

= ∇


∆∇kRm−∇kRm+

∑

i+j=k

∇iRm ∗ ∇jRm ∗ g−1 ∗ g−1

+
∑

i+j=k

∇iRm ∗ ∇jα̃ ∗ g−1 −∇k+2α




+ g−1 ∗ g−1 ∗ ∇Rm ∗ ∇kRm+ g−1 ∗ ∇kRm ∗ ∇α

= ∆∇k+1Rm+ g−1 ∗ g−1 ∗
(
Rm ∗ ∇k+1Rm+∇Rm ∗ ∇kRm

)

−∇k+1Rm+
∑

i+j=k+1

∇iRm ∗ ∇jRm ∗ g−1 ∗ g−1

+
∑

i+j=k+1

∇iRm ∗ ∇jα ∗ g−1 −∇k+3α+ g−1 ∗ ∇kRm ∗ ∇α,

yielding (4.15) for k + 1. □
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Proposition 4.8. Along the flow (3.2), for any nonnegative integer k, we
have

∂t∇k
gtαt = ∆gt∇k

gtαt +
∑

i+j=k

∇i
gtRmgt ∗ ∇j

gtαt ∗ g−1
t ∗ g−1

t(4.16)

+
∑

i+j=k

∇i
gtαt ∗ ∇j

gtαt ∗ g−1
t .

Proof. Using again (4.10) and (4.11), we can prove (4.16) by induction
on k. □

Corollary 4.9. Along the flow (3.2), for any nonnegative integer k, we
have

∂t|∇k
gtRmgt |2gt ≤ ∆gt |∇k

gtRmgt |2gt − 2|∇k+1
gt Rmgt |2gt + Ck|∇k

gtRmgt |2gt(4.17)

+
∑

i+j=k

Ck|∇i
gtRmgt |gt |∇j

gtRmgt |gt |∇k
gtRmgt |gt

+
∑

i+j=k

Ck|∇i
gtRmgt |gt |∇j

gtαt|gt |∇k
gtRmgt |gt

+ |∇k+2
gt αt|2gt ,

∂t|∇k
gtαt|2gt ≤ ∆gt |∇k

gtαt|2gt − 2|∇k+1αt|2gt + Ck|∇k
gtαt|2gt(4.18)

+
∑

i+j=k

Ck|∇i
gtRmgt |gt |∇j

gtαt|gt |∇k
gtαt|gt

+
∑

i+j=k

Ck|∇i
gtαt|gt |∇j

gtαt|gt |∇k
gtαt|gt ,

where Ck is a positive constant depending only on k and n.

We now prove the higher order derivatives estimates for the flow (3.2),
from which we can prove the long-time existence as long as the Riemann
curvature tensor Rmgt and the (1, 1)-form αt are bounded.

Proposition 4.10. Suppose that (ωt, αt)t is the solution to (3.2) on a
closed Kähler manifold (M, g) with a closed Hermitian (1, 1)-form α. Let K
be an arbitrary given positive constant. Then for each a > 0 and each integer
m ≥ 1 there exists a positive constant C̄m depending only on m,n,max{a, 1},
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K such that if

|Rmgt |gt ≤ K, |αt|gt ≤ K

on M for all t ∈ [0, a/K], then

(4.19)
∣∣∇m−1

gt Rmgt

∣∣
gt
+
∣∣∇m

gtαt

∣∣
gt
≤ C̄m

tm/2

on M for all t ∈ (0, a/K].

Proof. The proof is standard as in the Ricci flow and we follow the idea used
in [25] (see also [2, 3]). To simplify notions, we always omit the subscripts
gt and t, and let C,C ′, C0, C1, . . . be positive constants depending only on
n,m,max{a, 1}, which may take different values at different places.

The basic idea to prove (4.19) is to find a suitable quantity u so that
along the flow (3.2) it is bounded from above. To motivate such an idea, we
first consider the case m = 1. From Corollary 4.9, we have

∂t|Rm|2 ≤ ∆|Rm|2 − 2|∇Rm|2 + C0K
2 + 2C0K

3 + |∇2α|2,
∂t|∇Rm|2 ≤ ∆|∇Rm|2 − 2|∇2Rm|2 + C1|∇Rm|2

+ 3C1K|∇Rm|2 + C1K|∇Rm||∇α|+ |∇3α|2,
∂t|α|2 ≤ ∆|α|2 − 2|∇α|2 + C0K

2 + 2C0K
3,

∂t|∇α|2 ≤ ∆|∇α|2 − 2|∇2α|2 + C1|∇α|2 + C1K|∇α|2

+ C1K|∇Rm||∇α|+ 2C1K|∇α|2.

In order to control the bad terms |∇2α| in the evolution equation of |Rm|2,
we need the evolution equation of |∇α|2; similarly, to control the bad terms
|∇α|, |∇Rm| in the evolution equation of |∇α|2, we also need the evolution
equation of |α|2. Therefore, we may consider the quantity

(4.20) u := t(|Rm|2 + |∇α|2) +A|α|2.

Applying the above evolution inequalities in the evolution of u:

∂tu ≤ ∆u− 2t|∇Rm|2 +K2 + C0Ka+ 2C0K
2a+ (C0K

2 + 2C0K
3)A

+ (1 + C1t+ 3C1Kt− 2A)|∇α|2 + C1K
(√

t|∇Rm|
)(√

t|∇α|
)

≤ ∆u+

(
1 + 3C1a+

C1a

K
+

C2
1a

4
K − 2A

)
|∇α|2 + C0aK

+ (1 + 2C0a)K
2 +K2(C0 + 2C0K)A.
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Taking 2A = 1 + 3C1a+ C1a
K + C2

1
a

4 K, we then obtain

∂tu ≤ ∆u+ C0aK + (1 + 2C0a)K
2

+
C0K

2

2
(1 + 2K)

(
1 + 3C1a+

C1a

K
+

C2
1a

4
K

)

≤ ∆u+ C(K +K2 +K3 +K4)

for some positive constant C = C(n,max{1, a}). Using u(0) ≤ AK2 and the
maximum principle, we arrive at

t(|Rm|2 + |∇α|2) ≤ 1

2

(
1 + 3C1a+

C1a

K
+

C2
1

4
K

)
K2

+ C(K4 +K3 +K2 +K)t

≤ C ′(K3 +K2 +K + 1)

for some positive constant C ′ = C ′(n,max{1, a}). Consequently,

|Rm|+ |∇α| ≤
√

2C ′(K3 +K2 +K + 1)

t1/2
.

In general, we consider the quantity

u := tm(|∇m−1Rm|2 + |∇mα|2)(4.21)

+
∑

0≤i≤m−1

Ait
i(|∇i−1Rm|2 + |∇iα|2),

where m ≥ 1 and |∇0−1Rm|2 := 0. Letting

Φm := |∇m−1Rm|2 + |∇mα|2,

we have

∂tΦm ≤ ∆Φm − Φm+1 +
∑

i+j=m

C ′
mΦ

1/2
i+1Φ

1/2
j Φ1/2

m

+
∑

i+j=m

C ′
mΦ

1/2
i+1Φ

1/2
j Φ

1/2
m−1 +

∑

i+j=m

C ′
mΦ

1/2
i Φ

1/2
j Φ1/2

m ,
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where C ′
m are constants depending only on Cm and m. In particular

∂tΦ0 ≤ ∆Φ0 − Φ1 + C ′
0K

2Φ
1/2
1 + C ′

0K
3

≤ ∆Φ0 −
1

2
Φ1 +

(C ′
0K

2)2

2
+ C ′

0K
3,

∂tΦ1 ≤ ∆Φ1 − Φ2 + 4C ′
1KΦ1 + C ′

1KΦ
1/2
1 Φ

1/2
2 + C ′

1K
2Φ

1/2
2

≤ ∆Φ1 −
1

2
Φ2 + (C ′

1K)2Φ1 + (C ′
1K

2)2,

∂tΦ2 ≤ ∆Φ2 − Φ3 + 2C ′
3Φ

1/2
1 Φ2 + 2KC ′

3Φ
1/2
2 Φ

1/2
3 + C ′

2KΦ
1/2
1 Φ

1/2
3

+ 3C ′
2Φ1Φ

1/2
2 + 2KC ′

2Φ2

≤ ∆Φ2 −
1

2
Φ3 + [(2KC ′

3)
2 + 2KC ′

2]Φ2 + 2C ′
3Φ

1/2
1 Φ2

+ 3C ′
2Φ1Φ

1/2
2 + (C ′

2K)2Φ1.

Consequently, in the case m = 2,

∂tu ≤ ∆u+

[
a(C ′

2C
2
1)

2

4
+

(C ′
0K

2)2A0

2
+ C ′

0K
3A0 +

A1a(C
′
1K

2)2

K

]

+

[
(C ′

2K)2a2

K2
− A0

2
+

A1a(C
′
1K)2

K
+A1

]
Φ1

+

[
4(C ′

3a)
2

K
+

2C ′
2a

2

K
+

2C ′
3C1a

3/2

K3/2
+ 1 +

2a

K
− a

2K
A1

]
Φ2.

Choosing sufficiently large A0 and A1, we can make the last two terms on
the right-hand side of above inequality non-positive, and therefore, by the
maximum principle, u is bounded from above by some positive constant
depending only on n,max{1, a},K. Thus we prove the estimate (4.19) for
m = 2.

Using the same argument as in [2, 3, 25, 33], we can prove the full
estimate (4.19). □

Lemma 4.11. Suppose that (ωt, αt)t∈[0,T ) for T < ∞ is the solution to the
flow (3.2). If

|ρ(ωt)|ωt
≤ K, |αt|ωt

≤ K

on M for all t ∈ [0, T ), then

e−Cω ≤ ωt ≤ eCω
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on M for all t ∈ [0, T ), where C = T + 2TeTK. Moreover, the Kähler forms
ωt converge uniformly as t → T to a continuous fundamental form ωT with
e−Cω ≤ ωT ≤ eCω.

Proof. If (ωt, αt)t is the solution to the flow (3.2), then we can define a new
family of Kähler metrics by setting

(4.22) g̃t := etgt.

Hence g̃0 = g0 = g and

∂tg̃ij̄ = et(−Rij̄ + αij̄).

By Hamilton’s result [20] (or see [2]), it suffices to show

(4.23)

∫ T

0
|∂tg̃t|g̃t dt ≤ 2TeTK.

Indeed, if (4.23) would be true, then Hamilton’s result implies

e−2TeTKω ≤ ω̃t ≤ e2TeTKω.

Using etωt = ω̃t, we immediately get the desired result. To prove (4.23), we
integrate the inequality

|∂tg̃t|g̃t ≤ et (|ρ(ωt)|ωt
+ |αt|ωt

) ≤ 2KeT

from 0 to T and then obtain the estimate. □

Theorem 4.12. Let [0, T ) be the maximal time interval with T < ∞ such
that (ωt, αt)t∈[0,T ) is the solution to the flow (3.2). Then

lim sup
t→T

max
M

{|Rmgt |gt , |αt|gt} = ∞.

Proof. Otherwise, we can assume that max{|Rmgt |gt , |αt|gt} ≤ K on M for
all t ∈ [0, T ), where K is a positive constant. From Proposition 4.10 and
Lemma 4.11, ωt → ωT as t → T in any Ck-norm. Hence ωT is a smooth
Kähler form. Similarly, it is not hard to see that |∂tαt|ωt

≤ C for some pos-
itive constant C depending on n,K, T , and therefore, e−TCα ≤ αt ≤ eTCα.
As a consequence, αt converges uniformly as t → T to a continuous real
(1, 1)-form αT satisfying e−TCα ≤ αT ≤ eTCα. Using again Theorem 4.10,
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it follows that αt → αT as t → T in any Ck-norm. Therefore αT is a smooth
real closed (1, 1)-form. Starting from the pair (ωT , αT ), according to Theo-
rem 3.1, we can extend the solution (ωt, αt)t to the time interval [0, T + ϵ]
for some ϵ > 0. This contradicts with the maximal time interval [0, T ). □

4.3. Long-time existence with bounded curvatures under extra
assumptions

In this subsection, we assume that (M,ω) is a closed Kähler manifold with
a closed (1, 1)-form α satisfying

[α] ∈ K′
M , ω ∈ −2πc1(M) + [α].

By Proposition 1.2 (see its proof in section 3.3), the flow equation (3.2)
is equivalent to the following parabolic complex Monge-Ampère equation
coupled with a heat equation

(4.24) ∂tφt = log
(ω +

√
−1∂∂̄φt)

n

Ω
− φt + ft, ∂tft = ∆ωt

ft + trωt
α,

with (φ0, f0) = (0, 0), where φt, ft are smooth functions on M with de-
sired normalization conditions such that ωt = ω +

√
−1∂∂̄φt > 0 and ω =

α+
√
−1∂∂̄ log Ω for some smooth volume form Ω on M .

Lemma 4.13. Let T < ∞. If the Ricci curvature is uniformly bounded, i.e.
|ρ(ωt)|ωt

≤ C1 on M × [0, T ) for some positive constant C1, then there exists
some positive uniform constant C2 depending on supM trωα, n, C1, and T ,
such that

(4.25) trωt
αt ≤ C2

on M × [0, T ).

Proof. From (4.4), we have

∂t
(
e−ttrωt

αt

)
= ∆ωt

(
e−ttrωt

αt

)
− e−t

(
|αt|2ωt

+ ⟨ρ(ωt), αt⟩ωt

)
.

Then, by applying the Cauchy-Schwarz inequality,

∂t
(
e−ttrωt

αt

)
≤ ∆ωt

(
e−ttrωt

αt

)
− 1

2
e−t
(
|αt|2ωt

− |ρ(ωt)|2ωt

)
.
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Suppose e−ttrωt
αt achieves its maximum at a point (x0, t0) ∈ M × [0, T ). If

t0 = 0, then e−ttrωt
αt ≤ trωα(x0) ≤ supM trωα. If t0 > 0, then by the max-

imum principle we have

|αt|2ωt
≤ |ρ(ωt)|2ωt

at (x0, t0),

and hence |αt|2ωt
≤ C2

1 at (x0, t0). The inequality trωt
αt ≤

√
n|αt|ωt

implies
trωt

αt ≤
√
nC1 at (x0, t0). Consequently, trωt

αt ≤
√
nC1e

T on M × [0, T ).
□

As a consequence of Lemma 4.13, we can get the uniform C0 bound on
φt provided that α is nonnegative.

Proposition 4.14. Suppose T < ∞ and α is nonnegative. If the Ricci cur-
vature is uniformly bounded, i.e., |ρ(ωt)|ωt

≤ C1 on M × [0, T ) for some
positive uniform constant C1, then there exist positive uniform constants
C3, C4, C5 depending only on ω,Ω, α, n, C1, T such that

(4.26) |ft| ≤ C3, φ̇t ≤ C4, |φt| ≤ C5,

on M × [0, T ).

Proof. Since α is nonnegative, we have trωt
α ≥ 0 along the flow (4.24) and

then ∂tft ≥ ∆ωt
ft. By the maximum principle, we must have ft ≥ 0 on M ×

[0, T ). On the other hand, applying Lemma 4.13 to flow (4.24), we have

∂tft ≤ C2

on M × [0, T ). Integrating with respect to t, we obtain ft ≤ C2t ≤ C2T on
M × [0, T ). Thus we prove |ft| ≤ C3 on M × [0, T ) for some positive uniform
constant C3.

Differentiation of (4.24) with respect to t yields

∂tφ̇t = trωt
(
√
−1∂∂̄φ̇t)− φ̇t + ḟt = ∆ωt

φ̇t − φ̇t + ḟt.

By Lemma 4.13, ḟt = trωt
αt ≤ C2, and therefore, it follows from the maxi-

mum principle that,

φ̇t ≤ C2.

Moreover, it follows from the parabolic maximum principle for the first
equation in Proposition 1.2 that

|φt| ≤ max
M

∣∣∣∣log
ωn

Ω

∣∣∣∣+ max
M×[0,T )

|ft| =: C5. □
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Proposition 4.15. Suppose T < ∞ and α is nonnegative. If |Rmωt
|ωt

≤
C0 on M × [0, T ) for some positive uniform constant C0, then there exists
positive uniform constants C6, C7 such that

(4.27)
1

C6
ω ≤ ωt ≤ C6ω, |αt|2ωt

≤ C7

on M × [0, T ).

Proof. Since ρ(ωt) is uniformly bounded along the flow by our assumption,
it follows from Proposition 4.14 that φt is uniformly bounded. Therefore, by
the compactness theorem in [7], ωt and ω are uniformly equivalent for any
t ∈ [0, T ). Namely, there exists a positive constant C6, such that

1

C6
ω ≤ ωt ≤ C6ω.

To simplify the notion, we use ω̂ (or ĝ, respectively) to denote ω (or g,
respectively), use ω̃ (or g̃) to denote ωt (or gt) and use α̃ to denote αt. Then

∂t|αt|2ω ≡ ∂t|α̃|2ω̂ = ∂t

(
ĝℓ̄j ĝj̄kα̃ij̄α̃kℓ̄

)

= 2ĝℓ̄iĝj̄kα̃kℓ̄∂tα̃ij̄ = 2ĝℓ̄iĝj̄kα̃kℓ̄□g̃α̃ij̄

= 2ĝℓ̄iĝj̄kα̃kℓ̄

(
∆ω̃αij̄ + R̃ij̄rs̄g̃

s̄pg̃q̄rα̃pq̄ −
3

2
g̃q̄pR̃pj̄α̃iq̄ −

1

2
g̃q̄pR̃iq̄α̃pj̄

)
.

From the identity

∆ω̃α̃ij̄ = g̃q̄p∇p∇q̄α̃ij̄ +
1

2
R̃ip̄g̃

p̄qα̃qj̄ +
1

2
R̃qj̄ g̃

p̄qα̃ip̄,

we arrive at

∂t|αt|2ω = 2ĝℓ̄iĝj̄kα̃kℓ̄

(
g̃q̄p∇p∇q̄α̃ij̄ + R̃ij̄rs̄g̃

s̄pg̃q̄rα̃pq̄ − g̃r̄sR̃sj̄α̃ir̄

)
.

Choose normal coordinates on M for ω̃ = ωt such that

g̃ij̄ = δij , ∂kg̃ij̄ = 0, ĝij̄ = λiδij .

In particular, R̃ij̄kℓ̄ = −∂i∂j̄ g̃kℓ̄ = −g̃pℓ̄∂j̄Γ̃
p
ik. Consequently,

∇k∇ℓ̄α̃ij̄ = ∂k∇ℓ̄α̃ij̄ = ∂k

(
∂ℓ̄α̃ij̄ − Γ̃q

ℓjα̃iq̄

)
= ∂k∂ℓ̄α̃ij̄ + g̃q̄pR̃kℓ̄pj̄α̃iq̄
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and

∂t|αt|2ω = 2ĝℓ̄iĝj̄kα̃kℓ̄

(
g̃q̄p∂p∂q̄α̃ij̄ + R̃ij̄rs̄g̃

s̄pg̃q̄rα̃pq̄

)

=
2

λiλj
δiℓδjkα̃kℓ̄

(
δpq∂p∂q̄α̃ij̄ + R̃ij̄rs̄δspδqrα̃pq̄

)

=
∑

1≤i,j,p≤n

(
2αjī

λiλj
∂p∂p̄α̃ij̄ +

2α̃jīα̃pq̄

λiλj
R̃ij̄qp̄

)
.

On the other hand,

∆ωt
|αt|2ω = g̃q̄p∂p∂q̄

(
ĝℓ̄iĝj̄kα̃ij̄α̃kℓ̄

)

= 2g̃q̄p∂p

(
α̃ij̄α̃kℓ̄ĝ

j̄k∂q̄ ĝ
ℓ̄i + α̃kℓ̄ĝ

ℓ̄iĝj̄k∂q̄α̃ij̄

)

= I1 + I2,

where I1 and I2 denote the first and second term on the right-hand side. For
I1, using the normal coordinates, we have

I1 = 2g̃q̄p
(
α̃ij̄α̃kℓ̄ĝ

j̄k∂p∂q̄ ĝ
ℓ̄i + α̃ij̄α̃kℓ̄∂q̄ ĝ

ℓ̄i∂pĝ
j̄k

+ α̃kℓ̄ĝ
j̄k∂q̄ ĝ

ℓ̄i∂pα̃ij̄ + α̃ij̄ ĝ
j̄k∂q̄ ĝ

ℓ̄i∂pα̃kℓ̄

)

= 2δpq

(
α̃ij̄α̃kℓ̄

λk
δjk∂p∂q̄ ĝ

ℓ̄i + α̃ij̄α̃kℓ̄∂q̄ ĝ
ℓ̄i∂pĝ

j̄k

+
α̃kℓ̄δjk
λk

∂q̄ ĝ
ℓ̄i∂pα̃ij̄ +

α̃ij̄δjk

λk
∂q̄ ĝ

ℓ̄i∂pα̃kℓ̄

)

=
∑

1≤i,j,k,ℓ≤n

(
2α̃ij̄α̃jℓ̄

λj
∂k∂k̄ĝ

ℓ̄i +
∑

1≤p≤n

2α̃ij̄α̃kℓ̄∂pĝ
j̄k∂p̄ĝ

ℓ̄i

+
2α̃jℓ̄

λj
∂kα̃ij̄∂k̄ĝ

ℓ̄i +
2α̃ℓj̄

λj
∂kα̃jī∂k̄ĝ

īℓ

)
.

Similarly, we can show that

I2 =
∑

1≤i,j,p≤n

2α̃jī

λiλj
∂p∂p̄α̃ij̄ +

∑

1≤i,j,p≤n

2

λiλj
∂pα̃jī∂p̄α̃ij̄

+
∑

1≤i,j,k,ℓ≤n

(
2α̃jℓ̄

λj
∂k̄α̃ij̄∂kĝ

ℓ̄i +
2α̃ℓj̄

λj
∂k̄α̃jī∂kĝ

īℓ

)
.
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From I1, I2, we finally obtain

∂t|αt|2ω = ∆ωt
|αt|2ω +

∑

1≤i,j,p,q≤n

2α̃jīα̃pq̄

λiλj
R̃ij̄qp̄ −

∑

1≤i,j,p≤n

2

λiλj

∣∣∂pα̃jī

∣∣2

−
∑

1≤i,j,k,ℓ≤n

2α̃ij̄α̃jℓ̄

λj
∂k∂k̄ĝ

ℓ̄i −
∑

1≤i,j,k,ℓ,p≤n

2α̃ij̄α̃kℓ̄∂pĝ
j̄k∂p̄ĝ

ℓ̄i

+
∑

1≤i,j,k,ℓ≤n

4

λi
ℜ
(
α̃jℓ̄∂kα̃ij̄∂k̄ĝ

ℓ̄i
)

+
∑

1≤i,j,k,ℓ≤n

4

λj
ℜ
(
α̃ℓj̄∂kα̃jī∂k̄ĝ

īℓ
)
,(4.28)

where ℜ(Z) means the real part of Z. Since ω is a Kähler form on the
compact manifold M , we can find two positive uniform constants λmin and
λmax such that λmin ≤ λi, . . . , λn ≤ λmax and hence

(4.29)
1

λ2
max

∑

1≤i,j≤n

|α̃ij̄ |2 ≤ |αt|2ω ≤ 1

λ2
min

∑

1≤i,j≤n

|α̃ij̄ |2.

We denote by P ≲ Q if P ≤ CQ for some positive uniform constant C. Then

∑

1≤i,j≤n

|α̃ij̄ |2 ≲ |αt|2ω.

Since the curvature is uniformly bounded along the flow, it follows that

∑

i,j,p,q

2α̃jīα̃pq̄

λiλj
R̃ij̄qp̄ ≲

∑

i,j,p,q

2|α̃jīα̃pq̄| ≤
∑

i,j,p,q

(
|α̃jī|2 + |α̃pq̄|2

)

≤ n2
∑

i,j

|α̃jī|2 + n2
∑

p,q

|α̃pq̄|2 ≲ |αt|2ω,

∑

i,j,k,ℓ

2α̃ij̄α̃jℓ̄

λj
∂k∂k̄ĝ

ℓ̄i ≲
∑

i,j,k,ℓ

2|α̃ij̄α̃jℓ̄| ≤
∑

i,j,k,ℓ

(
|α̃ij̄ |2 + |α̃jℓ̄|2

)

≤ n2
∑

i,j

|α̃ij̄ |2 + n2
∑

j,ℓ

|α̃jℓ̄|2 ≲ |αt|2ω,
∑

i,j,k,ℓ,p

2α̃ij̄α̃kℓ̄∂pĝ
j̄k∂p̄ĝ

ℓ̄i ≲
∑

i,j,k,ℓ,p

2|α̃ij̄α̃kℓ̄| ≤ n
∑

i,j,k,ℓ

(
|α̃ij̄ |2 + |α̃kℓ̄|2

)

≤ n2
∑

i,j

|α̃ij̄ |2 + n2
∑

j,ℓ

|α̃jℓ̄|2 ≲ |αt|2ω,
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where all indices are taken in the set {1, . . . , n}. By the Cauchy-Schwarz
inequality, we have

4
∑

i,j,k,ℓ

1

λi
ℜ
(
α̃jℓ̄∂kα̃ij̄∂k̄ĝ

ℓ̄i
)
≤ 4

∣∣∣∣∣∣

∑

i,j,k

(
1√
λiλj

∂kα̃ij̄

)(√
λj

λi

∑

ℓ

α̃jℓ̄∂k̄ĝ
ℓ̄i

)∣∣∣∣∣∣

≤
∑

i,j,k

1

λiλj

∣∣∂kα̃ij̄

∣∣2 + 4
∑

i,j,k

λj

λi

∣∣∣∣∣
∑

ℓ

α̃jℓ̄∂k̄ĝ
ℓ̄i

∣∣∣∣∣

2

;

by the Cauchy-Schwarz inequality again, the second term on the right-hand
side is bounded from above by

4n
λmax

λmin


∑

i,j,k

∣∣∣∂k̄ĝj̄i
∣∣∣
2




∑

j,ℓ

|α̃jℓ̄|2

 ≲ |αt|2ω

according to (4.29). Similarly, we can show that

4
∑

i,j,k,ℓ

1

λi
ℜ
(
α̃ℓj̄∂kα̃jī∂k̄ĝ

iℓ̄
)
≤
∑

i,j,k

1

λiλj
|∂kα̃jī|2 + 4

∑

i,j,k

λj

λi

∣∣∣∣∣
∑

ℓ

α̃ℓj̄∂k̄ĝ
īℓ

∣∣∣∣∣

2

where the second term on the right-hand side is still ≲ |αt|2ω. Plugging those
estimates into (4.28), we arrive at

(∂t −∆ωt
) |αt|2ω ≲ |αt|2ω.

Hence, we can find a positive uniform constant C ′ depending on ω,m such
that

∂t|αt|2ω ≤ ∆ωt
|αt|2ω + C ′|αt|2ω.

According to the maximum principle, we immediately obtain

|αt|2ω ≤ eC
′t sup

M
|α|2ω ≤ eC

′T sup
M

|α|2ω.

Thus |αt|2ω is uniformly bounded from above, and, by the fact that ωt is
uniformly equivalent to ω, we have |αt|2ωt

≤ C7 for some positive uniform
constant C7. □

Combining Theorem 4.12 with Proposition 4.15, the main theorem fol-
lows from the similar argument as in the proof of Theorem 4.12.
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Theorem 4.16. Let (M,ω) be a compact Kähler manifold and α be a closed
nonnegative (1, 1)-form satisfying

[α] ∈ K′
M , ω ∈ −2πc1(M) + [α].

Let [0, T ) with T < ∞ be the maximal time interval such that (ωt, αt)t∈[0,T )

is the solution to the flow (1.1) with the initial condition (ω, α). Then

lim sup
t→T

max
M

|Rmωt
|ωt

= ∞.

By using the standard blow-up argument as in [32], we have following
corollary:

Corollary 4.17. Assume that α is a closed nonnegative (1, 1)-form such
that

ω ∈ −2πc1(M) + [α] > 0.

Let (ωt, αt) be the solution to the flow (1.1) for t ∈ [0, T ) with the initial
condition (ω, α). Suppose that the Ricci curvature of ωt and |αt|ωt

are uni-
formly bounded on [0, T ). Then the solution (ωt, αt) can be extended past
time T .

Proof. We only sketch the proof by pointing out the difference from [32]. Let
s = et − 1, ω̃s = etωt and α̃s = αt. Then the equation (1.1) can be rewritten
as

(4.30) ∂sω̃s = −Ric(ω̃s) + α̃s, ∂sα̃s = □ω̃s
α̃s, (ω̃0, α̃0) = (ω, α),

Suppose on the contrary that (ωt, αt) cannot be extended past T . Then
(ω̃s, α̃s) cannot be extended past eT − 1. By Theorem 4.16, there exists a
sequence of points and times (xi, si) with si → eT − 1 such that

Ki = |Rmω̃|ω̃(xi, si) = sup
M×[0,si]

|Rmω̃|ω̃(x, s) → ∞.

The pointed rescaled solutions (M,ωi(s), αi(s), xi) for s ∈ [−siKi, 0] are de-
fined as

ωi(s) = Kiω̃(si +K−1
i s), αi(s) = α̃(si +K−1

i s).

Obviously, |Rmωi
| ≤ 1; |Rmωi

|(xi, 0) = 1; (ωi, αi) satisfies ∂sωi(s) =
−Ric(ωi(s)) + αi(s) and ∂sαi(s) = □ωi(s)α̃i(s). Since |Ric(ωt)|ωt

and |αt|ωt

are uniformly bounded, then ω̃s is uniformly continuous and |Ric(ω̃s)|ω̃s
is
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also uniformly bounded. By the standard argument as in Ricci flow [32], the
injective radius injωi(0)(xi) has a positive lower bound independent of i. It
follows from the Cheeger-Gromov compactness theorem and Hamilton com-
pactness theorem [21] that (M,ωi, xi) subconverges to a complete pointed so-
lution (M,ω∞, x∞) with |Rmω∞

|ω∞
(x∞, 0) = 1 by applying Proposition 4.10

to (ωi, αi). Moreover, the Ricci curvature tensor Ricω∞
≡ 0. Again by the

standard argument as in Ricci flow [32], the metric ω∞(0) has Euclidean vol-
ume growth. Therefore, Bishop-Gromov volume comparison theorem implies
that ω∞(0) is Euclidean. This contradicts to |Rmω∞

|ω∞
(x∞, 0) = 1. □
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