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A new geometric flow over Kahler
manifolds

Y1 L1, YUAN YUAN, AND YUGUANG ZHANG

In this paper, we introduce a geometric flow for Kahler metrics wy
coupled with closed (1,1)-forms a; on a compact Kahler manifold,
whose stationary solution is a constant scalar curvature Kahler
(escK) metric, coupled with a harmonic (1,1)-form. We establish
the long-time existence, i.e., assuming the initial (1,1)-form « is
nonnegative, then the flow exists as long as the norm of the Rie-
mannian curvature tensors are bounded.
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1. Introduction

Let (M, w) be a closed Kéhler manifold of complex dimension n. The study of
Kéhler metrics with constant scalar curvature (cscK metric) in the Kéhler

The first author is supported in part by the Fonds National de la Recherche
Luxembourg (FNR) under the OPEN scheme (project GEOMREV 014/7628746);
the second author is supported in part by NSF grant DMS-1412384; and the third
author is supported in part by the Simons Foundation’s program: Simons Collab-

oration on Special Holonomy in Geometry, Analysis and Physics.

1251



1252 Yi Li, Yuan Yuan, and Yuguang Zhang

class [w] was initiated by Calabi [4, [5], by considering the Calabi-Futaki
invariant of the Kahler class and the Calabi energy functional

Culp) = /M R2_wl!

on the space Hy, 1= {¢ € C®(M)|w, := w + v/—199p > 0} of Kiihler poten-
tials. Here R, is the scalar curvature of w,. The Euler-Lagrange equation
for the Calabi functional is

VVR,, =0.

Solutions are the so called extremal Kéhler metrics. Since the gradient vector

field grad R,,, is holomorphic, if the manifold X does not admit nontrivial

holomorphic vector fields, then the extremal Kahler metric equation reduces

to R, = constant. We call such metrics cscK for constant scalar curvature

Kahler. The search for cscK metrics is one of the central problems in Kéhler

geometry and there has been extensive study on this and related problems.
Calabi [4] proposed a parabolic flow, the Calabi flow:

0w = V—100R,,, wo=w,

with its stationary solution a cscK metric. Observe that this is a fully non-
linear fourth order partial differential equation. In [7], Chen and He derived
the long-time existence provided the Ricci curvature is uniformly bounded.
The interested reader may refer to [18| 19 22| 23], 26} 28| 30, 35 [36, [39] for
more recent development on the Calabi flow and the list is by no means to
be complete.

The cscK metric is unique up to holomophic automorphisms [11, [13].
On the other hand, Yau conjectured that the existence of cscK metrics is
equivalent to a certain geometric stability in geometric invariant theory (cf.
[15, 87, [42]). One particularly important class of cscK metrics are Kéahler-
Einstein metrics. When ¢;(M) < 0, the existence of Kahler-Einstein metrics
was independently proven by Aubin [I] and Yau [4I]. When c¢; (M) =0,
the existence of Kéhler-Einstein metrics was proved by Yau [41]. In this
case the Kéhler-Einstein metrics are Ricci-flat, and are called Calabi-Yau
metrics. When ¢;(M) > 0, the existence of Kéhler-Einstein metrics was re-
cently independently proved by Chen-Donaldson-Sun [8-10] and Tian [37],
under some stability conditions. Besides Kahler-Einstein metrics, Donald-
son proved the existence of the cscK metrics on toric surfaces under some
stability conditions [17].
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We now introduce a new parabolic flow to study the existence problem
of cscK metrics. This flow is a modified K&hler-Ricci flow coupled with
a heat flow for (1,1)-forms, whose stationary solution is a cscK metric,
coupled with a harmonic (1, 1)-forms. The short-time existence follows from
the standard theory of strictly parabolic equations and we establish the long-
time existence, i.e., if the initial (1, 1)-form is nonnegative and the norm of
the Riemannian curvature tensors is uniformly bounded, then the flow exists
for all time.

Let (M,w) be a closed Kédhler manifold and « be a closed Hermitian
(1,1)-form. Consider the flow

(11) Opwy = —p(OJt) —wp+ oy, Oy = ﬁwtatv (OJ(), Oéo) = (w> Oé),

where p(w;) denotes the Ricci form of w; and ﬁwt denotes the complex
Hodge-Laplace operator. Note that this flow is parallel to the pseudo-Calabi
flow studied by Chen-Zheng [14].

The short-time existence of follows from the standard parabolic
theory. In fact, the solution still exists for short time when (M, w) is only
assumed to be Hermitian and « is not necessarily closed. Namely, if (M, w) is
a closed Hermitian manifold with a Hermitian (1, 1)-form «, the generalized

flow of (|1.1]) defined by

Oy = —,5(2)(%) — Wt + oy,
(1.2) 1
Oy = §AHL,wt,RO¢t, (wo, 0) = (w, @),

exists for short time, where p(®(w;) is the second Ricci-Chern form (see
(2.22)) and Apr ., r = dd,, + dJ,, d denotes the Riemannian Hodge-Laplace
operator on (M, wy).

Proposition 1.1. Suppose that (M,w) is a closed Hermitian manifold and

a is a Hermitian (1,1)-form on M. Then the flow has a unique solution
(wi, o) on [0,T) for some T € (0, 00].

If w is Kahler and « is closed, then the flow is exactly the flow
(L.1). Suppose that —2mcy (M) + [a] € Kps, where Ky is the Kéhler cone
of M. Assume w € —2mc1 (M) + [a]. One can show that the solution w; also
lies in the class —2mc1 (M) + [a] by Corollary [3.4] In addition, one can show
that a; € [a]. By 00-lemma, one writes

wi=w+V—-100p; and o =a++V/—1900f;
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for smooth functions ¢; and f; on M. We further choose a smooth volume
form €2 on M such that

(1.3) w=a+v-1901og .

Then the flow (1.1]) or (|1.2)) is equivalent to the following parabolic equations

on scalar functions.

Proposition 1.2. Under the assumption w € —2mci(M) + [a], the flow
s equivalent to the parabolic complex Monge-Ampére equation coupled
with a heat equation

(1.4)  Oppr = log Chs —Qlﬁ&pt)

— e+ fr,  Oufe = Dy, fe + try,a,
with (@o, fo) = (0,0), where Ay, stands for the complex Laplacian on M.

Note that if ¢ (M) < 0 and a = 0, then the flow is the normalized
Kahler-Ricci flow on M. Thus the flow converges exponentially to the
negative Kéahler-Einstein metric coupled with as = 0 (cf. [I][6]]41]). The
main theorem of this paper is the long time existence of equation ([1.1)).

Theorem 1.3. Suppose that (M,w) is a closed Kdihler manifold and o is
a closed nonnegative (1,1)-form such that

w € —2mc1 (M) + [a].

Let (wi, o) be the solution to the flow on the maximal time interval
[0,T) for T < oo with the initial condition (w,«). Then

lim sup max |Rmy,, |,,, = oc.
t—T M

Corollary 1.4. Assume that o is a closed nonnegative (1,1)-form such that
w e —2me1 (M) + [a].

Let (wi, ) be the solution to the flow for t € [0,T) with the initial
condition (w, «). Suppose that the Ricci curvature of wy and |oy|,, are uni-
formly bounded on [0,T). Then the solution (w¢, ) can be extended past
time T'.
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The motivation to study the flow is its connection to cscK metrics.
Suppose that (weo, so) is a stationary solution to flow . Then, in par-
ticular, a is a harmonic (1, 1)-form with respect to ws. This implies that
try, oo =constant, and therefore, R, = constant by equation .

To end the introduction, we remark that the nonnegativity assumption
on the (1,1)-form « is not essential. Suppose we seek a cscK metric in the
class [w]. As w is Kéahler, there exists a positive number 6 > 0 such that

(1.5) [w] + 0271 (M) > 0.
Hence there exists a closed nonnegative (1,1)-form & satisfying
(1.6) w e —02me (M) + [&] € K.

Now we can consider the flow

A~

(1-7) Owy = —5/)(%) —wi oy, Oy = AL,wtO‘t’ (W07 ao) = (Wv a)v

which is a renormalized flow to . The stationary solution to is still
the pair of a cscK metric and a harmonic (1, 1)-form. By the same argument,
we can prove the similar existence result as Theorem

We give an outline of the present paper. We review the basic notions in
Kéhler geometry and Chern connection in Section [2] In Section [3| we prove
Proposition 1.1} for closed Hermitian manifolds. In Section 4} we prove higher
derivatives estimates and then Theorem under the assumption that the
initial (1,1)-form is nonnegative.

Acknowledgement. We thank the referees for the helpful suggestions.
2. Basic complex geometry

We fix the notations in this section. Let (M, g) be a Kéhler manifold of
complex dimension n and let (z")1<;<, be holomorphic local coordinates on

M. Write 9; = %,Ez@;: %, and let

o 0 = _
gAB—g(azA7aZB>, A,BG{I,...,H,I,...,n}.

Since g is invariant with respect to the complex structure of M, it follows
that

95 = 9 = %5i» 95 =0=g5
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and then the Hermitian metric g takes the form
(2.1) g =2g5d7' ©d.
The fundamental form w, associated to g is a real (1, 1)-form given by
(2.2) Wy = \/jgijdzi A dzl
and the real cohomology class
lwg] € Hg' (M) C HR(M)

is called the Kdhler class of w.

The complex linear extensions of the Levi-Civita connection V,, the
Riemannian curvature tensor Rmg, and the Ricci curvature Rc, are still
denoted as Vg, Rmgy, and Rcg, respectively. The Christoffel symbols of the
Levi-Civita connection are given by

0 0 - _
(Vg)ﬁﬁ:FgBazic’ A,B,Ce{l,...,n,l,...,n},
and one can check that they are zero unless all the indices are unbarred or
all the indices are barred. The Riemannian curvature tensor field Rm, are
defined by

o 0 0 0 ) 7
Rm, <8ZA7823> 9.0 = RABcﬁ, A,B,C,De{l,...,n,1,...,n}

and

0 0 0 0
Rapop =g (ng <82A’ 8,23) 02¢"7 azD> ’

The straightforward calculation indicates that the only non-vanishing com-

¢ Z ¢ ‘ D p :
ponents are Rﬁk, RijE’ R;jk and RZle and R;5.7, Bishe RBijpe, Bijre- By taking
the trace, the non-vanishing components in

o 0

RABI:RCQ<8ZA,8ZB>, A,BG{I,...,n,I,...,ﬁ},

are R;; and R;;satisfying R;; = Riﬁ The straightforward calculation yields

(2.3) Rj; = —0;0;log det(g),
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where g := (g;7)1<k¢<n stands for the matrix of g;7. The Ricci form p, as-
sociated to g is a real closed (1, 1)-form defined by

(2.4) pg = V—1R;dz" A dz) = —/=1801og det(g).

The real de Rham cohomology class [py/27] is the first Chern class ¢; (M)
of M. The (complex) scalar curvature is defined to be

(2.5) Ry := Rg”,
which is the one-half of the Riemannian scalar curvature of g.

2.1. Hodge-Laplace operators

Suppose now (M, g) is a closed complex manifold of complex dimension 7.
For any two (unordered) (p, q)-forms

1 , . - -

o= ——=ay . 5.5,d2" N Ad Nd2 N dZ
bq:

1

7=

ﬁil...ipjl_._jqdzil Adz AdzTt A - A dze

we define the global inner product of a and 8 (cf. [24]) by

(26) (0= [ (@u)oaty = [ (00)%2.
where

(2.7) (a, B)g = p'lqlajjgzjj
and

Bh...ipjl"'jq = gklil ce. gkpipgilel e gjqeq/Bky"kle”'Zq'

Let 9 : QP4(M) — QP~L4(M) be the adjoint operator of 9. For any
p > 1, 97 is defined by

(2.8) ({98, a))g = ((B,0)) g,

for o € QP~H9(M) and B € QP4(M). 9} : QP4(M) — QP4 H(M) for ¢ > 1

can be defined in the same manner.
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The complex Hodge-Laplace operators of g are given by
(2.9) Oy :=—(00; +0;0), Oy :=— (89, 4 0;0) .

The principal parts of [y, ig are both given by gij 0;0;, and hence the partial
differential operators Dg,ﬁg are strictly elliptic. More precisely, as showed
n [24], for any (p, q)-form « we have

(2.10)  Oya = ¢99,0;0 + A'(g, g )i+ Bi(g, g0 + C(g,97 Ve,

where A'(g,g71),B/(g,g7'),C(g,97 ") are polynomials of g,¢~! and their
partial derivatives.

When (M, g) is a Kéhler manifold, it is well-known that 0, = O, =
%AHL%R, where App g r = ddg + dyd is the Riemannian Hodge-Laplace op-
erator on (M, g). In general, we have

(2.11) Anrgr = Uy + 0, + lower order terms.
The following lemma can be found in the standard textbooks (cf. [24]).

Lemma2.1. Leta=+v-1} .., adz" A dz? be a real (1,1)-form. Then

o ] ;
(5*a) = — (aic 9 0%3?“9)) ok

The following calculation of Hodge-Laplace operator can be found in
standard textbooks (cf. [24]).

Lemma 2.2. Leta=+v-1} .., adz" A dz7 be a real (1,1)-form. Then

Oy =+v—-1 Z <V€Vgai3 + qugngkjigapq - gﬁkngaig) dz' A dz.
1<i,j<n
We may rewrite the complex Laplace operator as:
Il /1 Ip gk
Hyor = V-1 Z [Agaij + 979" Ry5:0004
1<4,j<n

15 . -
— §ng (3Rk3ait7 + Rigozk;) ] dzt N\ d2?
and it reads in the local coordinates:

_ . 1 -
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The following proposition is important in the later argument.

Proposition 2.3. Let (M,g) be a closed Kdihler manifold and let o =
V=131 i<n a;dz" Ndz? be a closed Hermitian (1,1)-form. Then

(2.13) Oga = V—190(trya),
where tryo = g”a =. As a consequence, D « is d-exact.

Proof. We calculate Oya and +/—189(trga) in a normal coordinate. Making
use of Lemma

@) = (o + EE ) (gH0rg) = -0 - ),
where
I = ?fskt A ggskt g g e + g gkq?j:] ’
and
GD:=QJ%%%g%gWamf
Therefore,

gttZk 89te kt
= 0; ( m“92¢%fgq%a gwgigpf%iam>
9

Oa 0g
+ <my@fﬁa A+mw“6ff%“ q)

_ & gip 8qu ‘
T Z 92k02i Yk~ Z 92k02i iq

1<p<n 1<g<n
S Doy - 3295{0%
e 02k S 0zk0z7 "

_ Z 8 gkp i Z 820%];,_

| ok 021027 “pk \Sin 021923’

where the third equality uses the properties of normal coordinates and the
fourth equality uses the closedness of g and « and the second and fourth
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terms cancel each other among terms in front of the fourth equality by the
closedness of g. On the other hand,

 9g- v
V=1005(trga) = 9; <g’”zgkquq Qg + gkzakf)

027 Dz
82 _ (9204 -
1<k e<n 9% 97 1<k<n 9% 0%
The proposition is proved. U

2.2. Chern connections on Hermitian manifolds

Let (M, g) be a Hermitian manifold of complex dimension n. A Chern con-
nection V is a unique connection on the holomorphic tangent bundle TOM
such that V is compatible with the Hermitian structure and the holomorphic
structure. R ~

The non-vanishing components of Chern connection are Ffj and f%,
where

Tk Ok Pk
(2.14) U =g%0ig;7, T3 =T%.
The torsion 7T of the Chern connection is defined by
(2.15) T(X,Y):=VxY —-VyX - [X,Y], X,Y eQ"M).

Its components ﬁ’j defined by f(@i, 0;) = ﬁ?@k can be computed according
to the formula

(2.16) Tk =Tk - T%.

If we set ﬁj,; = g T%, then

(2.17) T =09 —

The curvature of the Chern connection is

(2.18) Rz = —0:05047 + 9703913059,
The first Ricci-Chern curvature defined by

(2.19) ]?ES) = QZkEﬁkZ = —0;0; log det(g)
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represents the first Chern class of M (up to a constant). The second Ricci-
Chern curvature is defined by

(2.20) RY = ¢ Ry 7.

)

Those two Ricci-Chern curvatures are related by

AT~

S50 _ B _SkA. _ o
(2.21) RY - RY = V', - VT,

where f,;ﬁ = ﬁﬁ and T; = Zl<j<n ijj In particular, if g is Kahler, then
RY = R®). Set o
ij ij "
(2.22) Y = \/—1§§%)dzi ANdZ, PP = \/—1§§§)dzi Adz.
Note that both 5" and p®) are real (1,1)-forms on M.

3. A geometric flow and cscK metrics

Let M be a closed complex manifold with a fundamental form
w = \/—1gi3dzi Adz.

Then g := gijdzi ® dz? defines a Hermitian metric on 71°M . In this setting,
all quantities associated to g will be written as quantities associated to w.
For example, the Ricci-Chern forms of ¢ are written as p()(w).

Suppose « is a fixed Hermitian (1, 1)-form on M. In this section we study
the flow starting with a initial pair (w, @) on M. In particular, if (w, @)
is a closed pair (i.e., dw = da = 0), we can show that (wy, o) is also a closed
pair. Thus the flow preserves the closedness condition.

3.1. A flow on the triple (M, w, ) - short time existence

Consider the flow
Oywy = _ﬁ@)(wt) — wy + oy,

(3.1) 1
Oroy = §AHL,wt,RO‘t, (wo, ap) = (w, a).

We say that a family of pairs (w¢, ay) is a solution to (3.1)), if

(i) we is a fundamental form for each t,
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(ii) oy is a Hermitian (1, 1)-form, and
(iii) (wy, on) satisfies the equation (3.1)).

The first result of this paper is the short-time existence and uniqueness

of.

Theorem 3.1. Suppose M is a closed complex manifold with a fundamental
form w and « is a Hermitian (1,1)-form on M. Then the flow has a

unique solution (w¢, o) on [0,T") for some T > 0.

Proof. Let us denote by ¢ and J#; the space of all Hermitian (1, 1)-forms
and the space of all positive Hermitian (1, 1)-forms, respectively. Define an
operator F : S X H — H x I by

Flw,a) = <—ﬁ2) (W) —w+ «a, ;AHL,W,Ra> .

Writing o = v/~ Lag;dz A dz/ and using (2.18), (2.20), (2.22), (2.11), (2.12),
we obtain

—E(Q)(w) =+/—1 (gék(?kf)ggij — gékgqpakgiqaggpﬁ dzt A d2,
1 7 ) -
§AHL,w,ROé =+/-1 (ggk(?k@gaﬁ + lower order terms of a) dz" NdZ7.
Consequently,
Flw,a) = ggkak(?g(w, a) + lower order terms of (w, a);
thus the operator F is strictly elliptic and therefore the flow equation ({3.1])
is a system of strictly parabolic partial differential equations. The standard

theory gives the short-time existence and uniqueness. O

As a corollary, we have the following theorem in the Kéhler case.

Theorem 3.2. Suppose that (M,w) is a closed Kdhler manifold with a
closed Hermitian (1,1)-form a. Then the solution (wi, at)ejo,r) to is
closed, i.e. dwy = day = 0. Furthermore, the flow reduces to

(3.2) Owr = —p(w) —wr + g, Oy = Oy, (wo, ) = (w, ).



A new geometric flow over Kéhler manifolds 1263

Proof. The proof follows similar calculation as in the Kahler-Ricci flow. Let
(wt, at)iefo,) be the unique solution to (3.1)). Then

1 1
8t(dat) = d(‘)tat = idAHL,wt,Rat = iAHLMt,R(dat)? da() = dOz = 0.

By the uniqueness, we must have day =0 for all ¢ € [0,7). On the other
hand, applying the exterior differentiation operator d to the evolution equa-
tion of wy, we arrive at

O(dwy) = —dﬁ(2) (wy) — dwy, dwy = dw = 0.

To prove the closedness of w;, we use the similar argument in [27] (see
the proof of Theorem 7.1). Since d = 9 4+ 0 and Jw; = Ow; (wy is real), it
suffices to prove dw; = 0. In local holomorphic coordinates we have

(2
Orgi5 = —R%) — 9ij T a5,

where
wp = \/jlgijdzi Ad2 | p® (wi) = \/jlﬁg)dzi Ad
and
o = \/jlaijdzi A dz
(without the subscript ¢ in the components). According to ,
Owy =/—1 Z Z ﬁj,-cdzi Adz A dZF.

1<i<j<n1<k<n

We need only to show that fij,; = 0 along the EOW equation 1) To achieve
this, we compute the evolution equation of Tk Since da; = 0, we obtain
Oiaji, = Ojayy, for any indices 14, j, k. Therefore,
atTijE = at(aing — 0;9;5)
(2 (2

=0; <—R](~,;) — Yk T 04;‘12) —0; <_R§;‘c) — 9k + O‘z’fc)

_ p@ p@ 7o

— — (0B - ,RY ) + Ty

For operators P, Q, the symbol P ~ Q means that Q is the principal part
of Q. Define an operator by

(2 (2
P(wt)iﬂ; = - ((%R;’—{) — (%RE;) .
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Using (2.19) and (2.21)) we get
o~ 2 AN A~ A~ ~
~RY = 0,0 log det(g) + V'Tyz; — Vi T,
and thus
Pe)iji = 0 (050 log det(ar) + V' T, — VT )
— 9 (81-8,; log det(g;) + V' Ty, — %Ti)
= az (gZp§pf@j) — Oj (gZpﬁpf‘ﬁ%) — (91615'/]?‘] + @-@;{f‘i
~ 9" (0,0, Ty — 0,0, Tz ) — i T + 0,05 T,
Using (2.17)), we get
9i0p T = 0i0p(0p9;1; — Or9;7) = OpOfTy i + 0p070; 97 — 0500197
By switching the indices 4, j, we obtain
95T = 0;0p(9g9:r, — OYir)-
On the other hand,
~ 0,05 T; + 0,0, T; = — 00, Th, + 0;0,T),
= —0;05 (gﬁ ‘0965 — 9" gﬁer;s)
+ 0,05 <9p £0ig5 — 9" Kafgiﬁ>
~ gﬁg (—818];8]'.%}3 + 32'8,;8@%5 + @»8,;&9@ - 8]-8,;65%)
= ¢" (90300955 — 0;040ugip)

Plugging those expression into P(wt),;z, we obtain
7 .
p(wt)ijE ~ g 0,0 ijk-

Consequently, the system of partial differential equations

)

OT,;r = P(wt) ik + Tk

is strictly parabolic. When ﬁj,;, =0, we must have ]?ij%) = ﬁﬁ—; and then
P(wt);jz = 0. Thus 0 is a solution of the above system because dw = 0. By
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the uniqueness, we get T\Z-j,-g =0 and hence Ow; = 0. Taking the complex
conjugate we prove that dw; = 0 for any ¢t € [0,T).

Finally, the equation immediately follows from , since O, =
%AHL,W“R when w; is Kéahler. O

Remark 3.3. The “Hermitian” condition in Theorem B.1]and Theorem [3.2]
is not necessary. In fact, we can always modify any (1,1)-form « to get a
Hermitian (1,1)-form af.

3.2. Stationary solutions and cscK metrics

Let us now assume that (M,w) is a closed K&hler manifold of complex
dimension n. The Kdhler cone KCps is the open convex cone consisting of
all real cohomology classes in Hlll’l(M ) that can be represented by smooth
closed positive (1, 1)-forms. Namely,

(3.3) Ku:={A¢€ Hlll’l(M) : A = [n)] for some closed (1, 1)-form n > 0}.
We also consider the set
(3.4) K= {A € Hg' (M) : —2mei(M) + A € Kar}.

Corollary 3.4. Suppose that (M,w) is a closed Kdhler manifold with a
closed (1,1)-form « satisfying

(i) [o] € Ky, and
(il) w e —2mc1 (M) + [af.

The the solution (wt, it )sejo,r) to is closed and wy € [w] = —2me1 (M) +
[a].

Proof. The closedness of solutions was proved in Theorem Taking the
cohomology class of (3.2]) we have

Oplwr] = —2mer (M) — [wi] + [a] = =2mer (M) — [wi] + [a],
where we use Proposition [2.3| to deduce [ay] = [a]. Therefore
[we] = —2mer (M) + [a] + 7" ([w] + 2mes (M) — [a]).

From assumption (ii), we have [wi] = —2meq (M) + [a]. O
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Theorem 3.5. If (M,w) is a closed Kdhler manifold with a closed Hermi-
tian (1,1)-form «, then the stationary solution of equation is a cscK
metric coupled with a harmonic (1,1)-form.

Proof. Let (woo, oo) be the stable solution to (3.2). Then they satisfy

P(Woo) = —Woo + Aoy Ui oo = 0.

Namely, aso is a harmonic (1, 1)-form. Hence, tr,, o is constant by Propo-
sition Consequently,

R(woo) = —n + tr,__ oo = constant.

Namely, wy is a cscK metric. O
3.3. Equivalent scalar equations

Let (wi, at)ejo,) be the solution to the flow equation (3.2) given by Theo-
rem As iwiat is d-exact by Proposition one has 0[ay] = 0, implying
oy € [a]. By 00-lemma, there exists a smooth function f; such that

(35) o = o+ \/—7185ft

Plugging this into Oy = O, o, making use of O, ay = AOtr,, ap and get-
ting rid of 0, one obtains

Orft = Ay, [t + try,a,
with f; satisfying fo = 0 and the normalization [, 9 fyw]" = n[a] A [w]™ 1.

Assume w € —2mc1 (M) + [a]. Then there exists a smooth volume form
2 on M such that

(3.6) w=a+v—-1801og .

Since w; € [w], we may write w; = w + v/—190¢;. Making use of (3.5)), then
the equation

Oy = —p(wy) — wy + ay

is equivalent to the parabolic Monge-Ampere equation

(w+ /—100¢p;)"
Q

Orpr = log — ot + [t
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by the standard deduction as in the Kéhler-Ricci flow. Proposition [1.2] is
thus proved.

4. Higher order derivatives estimates and the long-time
existence

In this section we first collect evolution equations for related geometric quan-
tities and then derive the long time existence for the flow (3.2]).

4.1. Evolution equations

To simplify notions, we always raise or lower the indices. For example,

i 0 ip qt
R = 979" Byjug
Proposition 4.1. Along the flow , we have

(4.1) OiRijpg = Dg, Rijeg + Ripgel 51" — Ripieg R 577 + Rijpa R g
1 - _
— 5 (RpR7j + RygRi"4z + RipRi 1+ RypRigy”) — Rijug
+ Rﬁqgakq — ViViag.
Proof. Combining
019" = —g"g" 01 = 9" 9" (Ryr — ) + 9" 9" ns
and
O Rj; = —0:0;(Oegyz) + 0eg™ igrgd; 9,
+ 9% 0i(0t9kq) 059,7 + 97 0igrkg0; (Ot gpp),
we obtain
O Ripz = 005 (Ryg — gz + 937) + 99" (Rrs — s + 9r5) D daq 595,
— g%0;(Rig — g + gkq)ajgpz — 9" 0;(Ryp — app + 9,0)Oigg
= 0:05(Ryg — ayg) + TRy — 0pg)
- F;-J-gai(Rkti — Q) — ka:ai(Rp? — ) — Rz
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On the other hand, by the commutator formulas, we obtain
= 0, (9360 — Tiibra) ~ ThViby
= 0:05By; — 055 - Brg — T5;0iBkg — T (535p2 - ngﬁpq)
= 0:0; Pz + Uit 7Bpa — Ui 03By — T5;0i8kq + RijibBrq

for any (1,1)-form B,;. Letting 8,7 = Ry7 — oy, it follows

ORijne = ViVi(Ryz — ang) = Rij?i(Rig — ang) — Rijrz
= ViV;Rys — R;59Rkq — Rijer — ViVioyg + R oug.
Using the formula in [3] 33],
AgRiug = ViViRyy — RigpgR7 g + Riphg R 577 — Ripge R 3.  RigRi g
+ % (RipRP517+ Ry R 15 + RipRiP 7 + RypRi57) -
The proposition is thus proved. O

Corollary 4.2. Along the flow , we have

(4.2) OiR;; = Ag, R + R pR™ — R RY5 — VVstrg, .

Proof. Taking the trace of (4.1)), we have
OiR;5 = Rii0ig™ + g™ 0 R517
= Rz’jkz’quggp(Rpé — apg + gpti) + Ay, Ri} + Rz’;ﬁqiRﬁqu - RiﬁkQRﬁi a
1 _ ) i
+ Rigpg 1 — 5 (RiﬁRp3 + Ry Ri” + RipRig™ + Ry ) — Rj
+ Rijqkakq — ViVjtl"gtOét

= Ay Ry + Rz iR™ — Ry R — V;Vstrg, au.

Corollary 4.3. Along the flow , we have

(43) 8tth, = Agtwa, + ’p(wt)‘it + th - Awttrwtat - <p(wt>7 at>wt'
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Proof. Taking the trace of (4.2)), we have

&Ry, = —R9" 7" 09,7
g7 (8g, R + RijeR™ = RigRY; = ViVjtrg,ar)
= —R%(—Ry; - i + i)
+ Ay, Ry, 4+ Ry gR™ — Ry RF — Ay trg,oq
= RkZRZk + Ry, — O‘kZRek + Ag, Ry, — Ag, trg,aq

= Agf,th + |P(Wt)’at =+ th - Awttrwtat - (p(Wt), at>wt'

Proposition 4.4. Along the flow , we have
(4.4) Otre, o = Ay, tre, ap — |2, + (p(wr), ), + tru, .
Proof. Applying Propsition [2.3] and using the flow, we have

Oty ap = — Zi ;katng' ;5 + gﬁﬁtaij
= thjk( Ry — g7+ ak@)aﬁ + Qﬂaz‘ajtl"wtat

= <p(wt)7 at)Wt + trwtat - ’atﬁ)t + AUJttrUJtat'

Proposition 4.5. Along the flow , we have

(4.5) Oloul?, = Au,Jeul?, — 2|V, e, + 2|2,

+ QRZ-ijO/kOéjZ —2a; ozjeo/

Proof. Applying Lemma we obtain

67t|ozt|?ut =20,4" - gjka,;jakg + Qgﬁgjkakg@tazj
— 2(R£i —ab + g“)gjkaijakg

. 1
+ 207" (Awt%‘j + Rkﬁza - *9 (3Rk] i+ Rzeakg)>

2
=207 A, 0 U—i—2]at\w —2a0 o oﬂg

+ QRREZZO/kaﬂ — 20 oﬂ RY.

1269
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Combining

1 _
Ayoi5 = 59" (VYo + ViViayg)
1

- 5gk? (2ViVia; + RypP oy + Rigoig)
= ¢V, Vo + %Riﬁa% + %qua,-q,
where the second equality uses commutator formula, and
Awt\atﬁt = 2a5ingVngaij + Q\that]it,

the proposition is proved. [l

4.2. Long-time existence with bounded curvatures in the general
situation

For any two tensor fields A and B we denote by A * B any linear combination
of tensor products of tensors A and B formed by contractions on A4;,..;, and
Bj,...j, using the metric g. For example,

RiﬁqZRﬁjkq =g lxglx Rmg * Rmy.
Using the *-notion and Lemma we have
gt = —Reg, — gt + o

and
1., -1 -1
Oy = Ay, + g, - *x g, *Rmyg, xa; — g, * Reg, * ay.

Furthermore, from Proposition [.1] we arrive at

(4.6) 9 Rmgy, = Ag Rmg, — Rmy, — vgtat
+g;1 * (g;l * R’mgt * ngt + ngt * at) :

For any ¢t-dependent tensor field A(t), we have
(4.7) 0V, A(t) = Vg,00A(t) + (0.1y,) * A(t).
On the other hand, the evolution equation of Iy, is given by

(4.8) ot = —gf’“vi(Rjg— ajp),
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from which we obtain

(49) atht = g;l * Vgt (cht - Oét),
and thus
(4.10) 0V, A(t) = V4,0, A(t) + 9;1 * Vg, (Reg, — ay) x A(t).

Another useful commutator formula is (see [3])
(4.11) AGVgA=VAjA+g g ! xRmy x VA
+g txg T« VyRm, * A.

We introduce a tensor field S,y defined by

(4.12) S‘jk@ = Riquakq — ViVjOékg.

?

This tensor field shares the same symmetric properties of Rmy).
Proposition 4.6. We have

(4.13) Sijkz = Skji[ - Siikj = Sk@ija Sijk@ = Sﬁél_c‘

Proof. By the symmetry of R;7 and the identity Vo= 0507 —

ngakq, we immediately get S5z = S;z,;- To prove Sg 7= Sps7, we first
compute
ViVia; — ViV = 0V — FiiV3ozpl7 A F?ijapg
=0 (830% — Fggaiq) — 0; (850%7 — Fggakq—>
= &»F% . akq — 6k1“;-1.z . Odiq
= —Rij%pang + Ryjpcig.
Therefore, one obtains

Ry3%p0ig — ViViar = Riglgong — ViV,

Le. Spzi7 = Sizpz- The last symmetric identity follows from the above two

identities. O
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Consequently, the evolution (4.1)) or (4.6)) can be rewritten as the follow-
ing nice form:

(4.14) dRm,, = Ay Rm,, — Rmy, +g; ' % g; " * Rmy, * Rmy, + S,,.
In general, we have

Proposition 4.7. Along the flow , for any nonnegative integer k, it
follows

(4.15)  9,Vh Rmy, = Ay, Vi Rmy, — V5 Ry,
+ Z Vthmgt * Vgtat * gt_l
i+j=k
+ Z thngt * Vgtngt * g;l * g[l — V]g“j'Qat.
i+j=Fk

Proof. The case k = 0 was proved in (4.14]). For convenience, we omit the

subscripts ¢g; and ¢ in the proof of the case k > 0. By (4.10)), (4.11]) and the
inductive hypothesis, we have

O VFIRm = V&, VFRm 4 ¢! « VFRm * V(¢! * Rm — )

=V [ AV*Rm - VFRm+ ) VRmx V/Rmxg 'xg™!
itj=k

+ Z VRm * Via x g~ — V2

i+j=k

-1 -1 k -1 k
+9 xg "« VRm*xV'Rm+ ¢ " * V' Rm*x Va
= AV IRm + g txg 1t x (Rm * VFT'Rm 4+ VRm * VkRm)
— VFRm + Z ViRm * VIRm * g s gt
itj=k+1

+ Z ViRm * Viax ¢g~! — VF3a 4+ g7 % VFRm * Va,

itj=k+1

yielding (4.15)) for k + 1. O
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Proposition 4.8. Along the flow , for any nonnegative integer k, we

have
(4.16) O VE oy = Ny Vi oy + Z Vi Rmg, « VI ap# gt gt
i+j=k
+ Z V;tat * Vgtozt x gt

i+j=k

Proof. Using again (4.10) and (4.11)), we can prove (4.16) by induction
on k. 0

Corollary 4.9. Along the flow , for any nonnegative integer k, we
have

(4.17) 0,|Vi Rmg, |2 < Ay, |V Rmg, |2 — 2|Vi Ry, |2 + C|VE Ry,
+ Z Ck|v;f R‘mgt ‘gt |v.;f ngt |9t |v§, R‘mgt |!]t
i+j=k
+ Y Gkl Vi Rmy, ||V, aulg, V5, Rimg,|g,
i+j=k

+ ’v’;jgat‘g”

2 2
|gt |gt

k k k k
(418) 8t\Vgtozt\3t < Agtlvgtat@ — Q‘V +1at|§t + Ck|vgt05t|§t
i j k
+ Z Ck‘v;tngt‘9t|v§tat|gt|vgtat|gt
i+j=k
i j k
+ Z Ck|v;tat‘gt|ngtat|gt|vg,at|gt’
i+j=k

where C is a positive constant depending only on k and n.

We now prove the higher order derivatives estimates for the flow ([3.2)),
from which we can prove the long-time existence as long as the Riemann
curvature tensor Rmy, and the (1, 1)-form oy are bounded.

Proposition 4.10. Suppose that (wy, )¢ is the solution to on a
closed Kdhler manifold (M, g) with a closed Hermitian (1,1)-form «. Let K
be an arbitrary given positive constant. Then for each a > 0 and each integer
m > 1 there exists a positive constant C,, depending only on m,n, max{a, 1},
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K such that if
|ngt|gt S K’ ‘at|9t S K

on M for allt € [0,a/K], then

C,
gt + ‘vzat‘gt < %

(419) ‘V‘Zz_lngt ~ W

on M for allt € (0,a/K].

Proof. The proof is standard as in the Ricci flow and we follow the idea used
in [25] (see also [2 3]). To simplify notions, we always omit the subscripts
g and t, and let C,C’,Cy, C1, ... be positive constants depending only on
n,m, max{a, 1}, which may take different values at different places.

The basic idea to prove is to find a suitable quantity u so that
along the flow it is bounded from above. To motivate such an idea, we
first consider the case m = 1. From Corollary we have

dRm[* < A|Rm|? — 2|VRm|?> + CoK? + 2Co K> + |[V2a?,
d;|VRm|? < A|[VRm|? — 2|V?*Rm|? + C;|VRm|?
+ 3C1K|VRm|? + CK|VRm||Va| + |V3a|?,
dlaf?* < Alal? = 2|Val? + CoK? 4+ 20, K3,
o|Val|* < AlVal? - 2|V2al? + C1|Val|? + C1K|Va|?
+ C1K|VRm||Va| + 2C1K|VO¢’2.
In order to control the bad terms |V2a| in the evolution equation of |[Rm|?,
we need the evolution equation of |Va|?; similarly, to control the bad terms

|Val,|VRm| in the evolution equation of |Va|?, we also need the evolution
equation of |a|?. Therefore, we may consider the quantity

(4.20) w:=t(|Rm|? + |Val?) + Alaf?
Applying the above evolution inequalities in the evolution of w:

Ou < Au — 2t|VRm|? + K2 + CoKa + 2CoK?a + (CoK? + 2C K3 A
+(1+ Cit +3C1 Kt —24)|Val + O K (VE[VRm|) (VEVal )
Cia  Cia

< Au+ (1 +3C1a + ya + TK — 2A> \Va|2 + CoaK

+ (1 4+ 2Cpa) K* + K*(Co + 2Co K) A.
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Taking 24 = 1+ 3C1a + Cf{“ + CjaK, we then obtain

O < Au + CoaK + (1 +2Cha)K?

2 2
ColT 1 1 ok (1 +3Ca+ % + CiaK)

+
<Au+CO(K + K* 4+ K? + K%)

for some positive constant C' = C(n, max{1,a}). Using u(0) < AK? and the

maximum principle, we arrive at

_

Cia C?
<1+301a+;<+41K> K2

t(|Rm|* +[Val?) < 3
+ CO(K*+ K3+ K2 + K)t
<SCO(K*+K*+ K+1)

for some positive constant C’ = C’(n, max{1, a}). Consequently,

20(K3+ K2+ K +1
| + Vo) < V2CUCHRERKED

In general, we consider the quantity

w:=t" (V™ 'Rm|? + |[V"a|?)
+ D, At'(V7TRm +|Viaf?),

0<i<m—1

(4.21)

where m > 1 and |[V'"1Rm|? := 0. Letting

O, = [V IRm? + |[V™a)?,

we have
0P < Ay, — Bpy1 + Y Ch@i 10} 0L/
i+j=m
Y cellielelt e Y el
i+j=m

i+j=m
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where C/ are constants depending only on Cp,, and m. In particular

810y < Ay — &y + C)K201? + C) K3

(CoK?)?
2

0B < AD) — By + AC, KDy + CL KDY + O K23/

1
< AP, — 5<1>2 + (C1K)*®, + (C1K?)?,

1
< APy — §<I>1 + + CLK3,

01Py < ADy — By + 2051 2By + 2K C4 Y202 + CLK 203/
+3C5,0Y7 + 2K C)d,
1
< Ay — 03 +[(2KCH)° + 2K G5l + 204012,

+ 30501352 + (CLK)2®.

Consequently, in the case m = 2,

1 2\2 ! 172\2 7 779\ 2
Oru < Au+ [a(%cl) L+ GoK Ao, CLE3 Ay + Al“(ClK)}
4 2 K
(C3K)*a®>  Ag | Aa(C1K)?
+ |:K*2 - 7 + T + A | &
4(C§a)2 205@2 20{;61&3/2 2a a

Choosing sufficiently large Ay and A;, we can make the last two terms on
the right-hand side of above inequality non-positive, and therefore, by the
maximum principle, u is bounded from above by some positive constant
depending only on n,max{1,a}, K. Thus we prove the estimate for

m = 2.

Using the same argument as in [2, B, 25, B3], we can prove the full

estimate (4.19).

Lemma 4.11. Suppose that (wi, at)iepo,ry for T < 0o is the solution to the

flow . If
’p(wtﬂwt S K7 ‘O‘t|wt S K

on M for allt € [0,T), then
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on M for allt € [0,T), where C =T + 2Tel K. Moreover, the Kdhler forms
wy converge uniformly ast — T to a continuous fundamental form wp with
e Cuw <wr< eCw.

Proof. If (wy, ay)y is the solution to the flow (3.2)), then we can define a new
family of Kdhler metrics by setting

(4.22) g = e'gy.
Hence go = go = g and
OG5 = €' (=R + a;5).

By Hamilton’s result [20] (or see [2]), it suffices to show
T
(4.23) / |0:G¢|5, dt < 2Te K.
0

Indeed, if (4.23]) would be true, then Hamilton’s result implies

— T ~ T
e 2Te ngtheQTe Kw.

Using efw; = @&y, we immediately get the desired result. To prove (4.23)), we
integrate the inequality

100Gel, < €' (Ip(wi)lw, + lovlw,) < 2Ke”
from 0 to T" and then obtain the estimate. O

Theorem 4.12. Let [0,T) be the mazimal time interval with T < oo such
that (wt, at)sejo,r) @8 the solution to the flow . Then

lim sup max {|Rmy, |, , |a|g, } = 0.
t—T M

Proof. Otherwise, we can assume that max{|Rmyg,|,, |o¢|g, } < K on M for
all t € [0,7), where K is a positive constant. From Proposition and
Lemma w = wr as t — T in any C*-norm. Hence wp is a smooth
Kahler form. Similarly, it is not hard to see that |0y, < C for some pos-
itive constant C' depending on n, K, T, and therefore, e 7 < oy < €70
As a consequence, «; converges uniformly as ¢ — T to a continuous real
(1,1)-form ar satisfying e 7“a < ar < eTCa. Using again Theorem m
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it follows that o — ap ast — T in any Ck-norm. Therefore oy is a smooth
real closed (1, 1)-form. Starting from the pair (wr, ar), according to Theo-
rem we can extend the solution (wy, ay); to the time interval [0,7 + €]
for some € > 0. This contradicts with the maximal time interval [0,7"). O

4.3. Long-time existence with bounded curvatures under extra
assumptions

In this subsection, we assume that (M,w) is a closed Kéahler manifold with
a closed (1,1)-form « satisfying

[a] € Ky, w € —2mer (M) + [af.
By Proposition (see its proof in section 3.3), the flow equation ({3.2))

is equivalent to the following parabolic complex Monge-Ampeére equation
coupled with a heat equation

(424) 815(,015 = 10g

W+ /—1909p,)™
( Q 2 — i+ fi, Ocfi = Ay, fi + try,a,

with (¢o, fo) = (0,0), where ¢y, f; are smooth functions on M with de-
sired normizlization conditions such that w; = w + v/—190¢; > 0 and w =
a4+ v/ —1001og ) for some smooth volume form €2 on M.
Lemma 4.13. LetT < oco. If the Ricci curvature is uniformly bounded, i.e.
lp(wi)]w, < C1 on M x [0,T) for some positive constant C1, then there exists
some positive uniform constant Cy depending on sup,y trpa, n, C1, and T,
such that
(4.25) try,ar < Cy
on M x [0,T).
Proof. From (4.4), we have

Oy (e_ttrwtozt) =A,, (e_ttrwtozt) —et (|at|i,, + (p(wy), ozt>wt) .

Then, by applying the Cauchy-Schwarz inequality,

Wt

1
O (e "trw,on) < Ay, (e Hry, ap) — ie_t (|at|it — |p(wy)? ).
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Suppose e~ 'tr,, a; achieves its maximum at a point (zg,t9) € M x [0,T). If
to = 0, then e ttry,,cp < tr,a(zo) < supy, treya. If tg > 0, then by the max-
imum principle we have

e, < lp(wo)l2,  at (zo,t0),

and hence |oy|2, < C} at (wo,t0). The inequality tr,,a; < v/n|oyl,, implies
try, ap < /nCy at (wg,tp). Consequently, tr,, o < /nCrel on M x [0,T).
U

As a consequence of Lemma we can get the uniform C° bound on
¢ provided that « is nonnegative.

Proposition 4.14. Suppose T' < oo and « is nonnegative. If the Ricci cur-
vature is uniformly bounded, i.e., |p(wt)|w, < C1 on M x[0,T) for some
positive uniform constant C1, then there exist positive uniform constants
C3, Cy, Cs depending only on w, 2, a,n,Cq, T such that

(4.26) Ifil <Cs, @ <C4, || < Cs,
on M x [0,T).

Proof. Since « is nonnegative, we have tr,, a > 0 along the flow (4.24) and
then O fr > Ay, fr- By the maximum principle, we must have f; > 0 on M x
[0,T). On the other hand, applying Lemma to flow (4.24]), we have

Ofr < Co

on M x [0,T). Integrating with respect to ¢, we obtain f; < Caot < CoT on
M x [0,T). Thus we prove | f;] < C3 on M x [0,7T) for some positive uniform
constant Cj.

Differentiation of with respect to t yields

Oy = tro, (V—100¢) — o1 + fr = Duyor — o1 + fr.

By Lemma f‘t = try, a; < C9, and therefore, it follows from the maxi-
mum principle that,

¢r < .
Moreover, it follows from the parabolic maximum principle for the first
equation in Proposition [T.2] that

w'fl
log O

< =: (5.
lt] < max + max ) | fil 5

Mx[0,T



1280 Yi Li, Yuan Yuan, and Yuguang Zhang

Proposition 4.15. Suppose T' < 0o and « is nonnegative. If |Rmy,, |, <
Co on M x [0, T) for some positive uniform constant Cy, then there exists
positive uniform constants Cg, C7 such that

1
(4.27) @w < wi < Cyw, |ozt]it < CY

on M x [0,T).

Proof. Since p(wy) is uniformly bounded along the flow by our assumption,
it follows from Proposition that ¢y is uniformly bounded. Therefore, by
the compactness theorem in [7], w; and w are uniformly equivalent for any
t € [0,T). Namely, there exists a positive constant Cg, such that

1
—w < w < Chw.
Cﬁw_wt_ (1%

To simplify the notion, we use @ (or g, respectively) to denote w (or g,
respectively), use @ (or g) to denote w; (or g;) and use & to denote cy. Then

2 = 815 (géjgjkamakf)

2A€’Lg O[kzﬁtalj — ngz ‘]k kfﬁ ~'3

6t|04t‘3, = 8t|64

= 2597 ay, (A&% + Rij,59 G Gipg —
From the identity
Agay; = §"V,Vsa,
we arrive at
Op|ow|? = = 24" jka,d( PN,V 765 —I—Rmsg §7ap; — 3" staz,n).
Choose normal coordinates on M for & = w; such that
f]z‘j = dij, 3k§h‘j =0, fh‘j = Aidij.-
In particular, RZJ ki = —0i05G,; = —gpga;ffk. Consequently,

Vngdij = angO?ﬁ = 0Ok (ag& Fq Ozzq) = 8}49@5%3 + g‘jpﬁikm&iq
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and

8t’at|w = 29& Ajkdkg ( a» 8 8 Oé  + R’L]T’Sg ap‘l)

2
= - Oudinng (OpaOpDadi; + RijsdopSuring )
ANy
2a 20500 ~
— Jt ]l Pq -
= Z <)\)\ 0p0p0y;5 + By qup).
1<i,j,p<n

On the other hand,

Ay, |at|c2u = gqpapaq (g&gjkazyo‘ke)
~ ~ o~ A ~ ~ Alinrdka ~
= 2470y <O‘i5akt79j 0q9" + "9 8@%5)
= Il + 127

where I; and I> denote the first and second term on the right-hand side. For
I, using the normal coordinates, we have

I = 257 (dijaugﬂ"fapaqgfi + Gy560,0049" 07"
+ G077 049" 0p65 + G597 kﬁq@“@:%e)

6[ 7&]9!7 D ~ ~ N N
= 25pq( z;k 5jk8p8c79& + aiiakéaqg&apgjk

aLpbik - 7 a0k o g -
+ keCjk aqg& apaij + 1)) 8@9&01)0%@
Ak Ak

200707 T ko AT
= Z ( Z)f]] 0k039™" + Z 2650u,70pG7" 054"

1<i,j,k<n 1<p<n

207 A 20007 =
+ y 8k01 8k h )\j] 8kaj;8,;gz’3>.
Similarly, we can show that

2G; 2 o
L= Y MJ Ddplg + Y o Opliilhli;

1<ijp<n 1<i,j,p<n Ak

266[ ~ A_’i 26[67' ~i
+ ) (Aé O ;508" +Tjﬂaka Og f).

1<i,j,k0<n 7
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From Iy, I, we finally obtain

20[ -_'Oépq ~ 2 ~ 2
Oloul2 = Ag a2+ > %/\jf%qﬁ - > Ny |0pj3]

1<i,5,p,9<n 1<i,j,p<n
20500 = o
Yaei14 ~0i ~ _~ o ~jkq Ali
- > v OORgT — Y 2850055 0pg
1<4,,k 0<n J 1<4,5,k,L,p<n
4 o
~ ~li
1<i,jk,e<n "
4.2 % (645006505
(4.28) + Z N\ Oi0kg T )
1<i,jke<n "~

where (Z) means the real part of Z. Since w is a K&hler form on the
compact manifold M, we can find two positive uniform constants A, and
Amax such that Apin < Aiy ..., Ap < Amax and hence

1 2 2 1 ~ |12
(4.29) eI Z |az]” < ol < v Z |az]”.
max 1 <,5<n min 1<4,5<n
We denote by P < Q if P < C'Q for some positive uniform constant C'. Then
~ 2 2
D
1<ij<n
Since the curvature is uniformly bounded along the flow, it follows that

2050 ~ - ~ ~
)\J;\ Rz}qp ~ 2|OéﬁOépq| < Z (|O[ﬁ|2 + |O[P¢j|2)
i\j

4,J,P,q 4,J,P,q 1,J,p,4

<n? Y lagl® +n? ) 1Gpal” S leull,
i,j p,q
20
> a”aﬂa " S D Adiggel < D7 (16l + lagel?)

i:jzké .] k@ j:kzz
<n?) lagl +n® Y lal < loul?,
1,J g

~ o~ Ak a A0 ~ o~ ~ ~
D 2504007 050" S Y 2ldgang <n Y (lagl + lagl®)
i.j.klp ik bp .

<n® Y lagl +n® Y lagel® < leal,

] gt
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where all indices are taken in the set {1,...,n}. By the Cauchy-Schwarz
inequality, we have

4 Z (Nﬂa’“dﬁa’;g@) <4 Z (ﬁ%@'j) <\/§Edjéakg&>
£ Y pa

,jkﬂ 1,7,k
2
—Zﬁ(ak%\ +4Z Zdﬁ@& ;
1,5,k 0,5,k y4

by the Cauchy-Schwarz inequality again, the second term on the right-hand
side is bounded from above by

A 2
3= S o | ) | X bl | S el
ik it

according to (4.29). Similarly, we can show that

4 Z )t% (d@iakdﬂak.@lz) Z ﬁ’akaﬂﬁ + 42

i?j7k7z 7]7 7]7

Z Qgj 816

where the second term on the right-hand side is still < |oy|?. Plugging those
estimates into (4.28]), we arrive at

(0 — Au,) Jauld S a2

Hence, we can find a positive uniform constant C’ depending on w, m such
that

Orleuel, < A lanl2 + Ol 2
According to the maximum principle, we immediately obtain

oct2 < eCltsup al? < eC/Tsup al?.
w w w
M M

Thus |oy|? is uniformly bounded from above, and, by the fact that w; is
uniformly equivalent to w, we have |at|£t < (7 for some positive uniform
constant C7. O

Combining Theorem with Proposition the main theorem fol-
lows from the similar argument as in the proof of Theorem [4.12
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Theorem 4.16. Let (M, w) be a compact Kihler manifold and o be a closed
nonnegative (1,1)-form satisfying

[a] € Ky, we —2mer (M) + [al.

Let [0, T) with T < oo be the mazximal time interval such that (we, at)iefo 1)
is the solution to the flow with the initial condition (w,«). Then

lim sup max |Rmy,, |, = oo.
t—17 M

By using the standard blow-up argument as in [32], we have following
corollary:

Corollary 4.17. Assume that « is a closed nonnegative (1,1)-form such
that

w e —2me1 (M) + [o] > 0.
Let (wi, ) be the solution to the flow for t €0, T) with the initial

condition (w, a). Suppose that the Ricci curvature of wy and |y, are uni-
formly bounded on [0,T). Then the solution (w¢, ) can be extended past
time T

Proof. We only sketch the proof by pointing out the difference from [32]. Let
s=¢el — 1,0, = elw; and &, = ay. Then the equation (1.1 can be rewritten
as

(4.30) 0@ = —Ric(@s) + s,  Osts = Ua. s, (@0, d0) = (w, ),

Suppose on the contrary that (w¢, ;) cannot be extended past T. Then
(Qs, @&s) cannot be extended past e — 1. By Theorem there exists a
sequence of points and times (z;, s;) with s; — e’ — 1 such that

K; = |Rmg|o(wi, i) = sup |[Rmglz(z,s) — oo.
MX[O,SI’}

The pointed rescaled solutions (M, w;(s), ai(s), z;) for s € [—s;K;,0] are de-
fined as

wi(s) = Kio(si + K's),  au(s) = als; + K 's).
Obviously, |Rmy,| <1; |Rmy,|(z;,0)=1; (wi,q;) satisfies Oswi(s) =

—Ric(wi(s)) + ai(s) and ds0(s) = O, (5)@i(s). Since [Ric(wy)|w, and |oylw,
are uniformly bounded, then @, is uniformly continuous and |Ric(@s)|e, is
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also uniformly bounded. By the standard argument as in Ricci flow [32], the
injective radius inj,, y(z;) has a positive lower bound independent of i. It
follows from the Cheeger-Gromov compactness theorem and Hamilton com-
pactness theorem [21] that (M, w;, ;) subconverges to a complete pointed so-
lution (M, Weo, Too) With [Rmy, _|w.. (Zeo, 0) = 1 by applying Proposition
to (wj, ). Moreover, the Ricci curvature tensor Ric,, = 0. Again by the
standard argument as in Ricci flow [32], the metric ws(0) has Euclidean vol-
ume growth. Therefore, Bishop-Gromov volume comparison theorem implies
that wso(0) is Euclidean. This contradicts to |Rmy,_|w.. (o0, 0) = 1. O
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