
✐

✐

“6-Watanabe” — 2020/10/27 — 0:12 — page 1451 — #1
✐

✐

✐

✐

✐

✐

Communications in

Analysis and Geometry

Volume 28, Number 6, 1451–1487, 2020

Total p-powered curvature of closed curves

and flat-core closed p-curves in S2(G)

Naoki Shioji† and Kohtaro Watanabe‡

We consider a variational problem of p-elastic curves in two-
dimensional sphere. We give its first variation formula, and in two-
dimensional sphere, we give a realization of a solution which sat-
isfies that the first variation formula is zero. We also show the
existence of a flat-core, closed p-elastic curve.

1 Introduction 1451

2 A local coordinate and first variation formula 1454

3 Realization theorem of X(s) ≡ 0 in S2(G) 1464

4 Classifications of p-elastic curves in S2(G) 1479

5 Existence of flat-core, closed p-elastic curves and
numerical examples of closed p-elastic curves 1482

References 1485

1. Introduction

An elastica is a curve which appears as a critical point, i.e., a stationary
curve of a variational problem for the total squared curvature of curves
under certain constraints. In the two-dimensional Euclidean space case, in
1691, James Bernoulli proposed a problem of finding the possible shapes
of an inextensible rod such that its bottom end is fixed perpendicular to
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the ground and it is bent by a load sufficient to make its top end horizon-
tal. After that, Daniel Bernoulli discovered a functional which is suitable
for the problem, and Euler solved the variational problem; see [12, 13, 19].
It is known such variational problem has broad connections with various
fields, such as elliptic function theory, differential geometry, soliton theory,
etc. For example, it can be seen that stationary wave solutions (cn-wave
and dn-wave solutions) of the mKdV equations are essentially planar elas-
ticae; see [18, Chapter 5]. As for the relation with differential geometry,
Langer-Singer [11] and Bryant-Griffiths [7] studied the problem in Rieman-
nian manifolds with nonzero constant scalar curvature, in particular, in two-
dimensional spheres and two-dimensional hyperbolic spaces. Arroyo-Garay-
Menćıa [1–6], Huang [9], Jurdjevic [10] and others developed the problem in
Riemannian manifolds by considering various functionals; see also [16]. In
[1], for a C∞ function P (t), Arroyo-Garay-Menćıa considered the functional

(1.1) J(c) =

∫ L

0
P (κ) ds

for each c : [0, L] → S2(G) of class C4 such that dc/ds ̸= 0, where L is the
length of c, κ is the curvature of c and S2(G) is a two-dimensional sphere
with constant Gaussian curvature G. They showed a first variation formula
for the functional, a closedness condition for a stationary curve, a second
variation formula, etc. They considered the particular case P (t) =

√
t2 + λ

with λ > 0. In [3] and [6], they also studied the case P (t) = (t− κ0)
2 in two

dimensional spheres and in two dimensional hyperbolic spaces, respectively.
We note that Langer-Singer [11] and Bryant-Griffiths [7] studied the case
P (t) = t2 + λ with λ ∈ R.

In this paper, we consider the case P (t) = |t|p + λ with p > 2 and λ > 0.
In [1, Proposition 8], Arroyo-Garay-Menćıa showed that if P (t) = tp, p > 2
and p ∈ N, then C4-stationary curves of J are only geodesics. (The assump-
tion p ∈ N comes from that they assumed P (t) is of class C∞.) Instead of
C4-curves, we consider functional (1.1) for P (t) = |t|p + λ with p > 2 and
λ > 0 on

D =
{

c ∈ C2([0, 1],S2(G)) | ct(t) ̸= 0 for each t ∈ [0, 1]
}

.

By a formal calculation based on the argument in [11, p.3] (see also Remark 1
below), we can see that if c ∈ D is a stationary curve, then it seems that the
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curvature κ of c satisfies

(1.2) p(p− 1)|κ|p−2κss + p(p− 1)(p− 2)|κ|p−4κκ2s

+ (p− 1)|κ|pκ+Gp|κ|p−2κ− λκ = 0.

We note that in the case p = 2, (1.2) is identical with [11, (1.2)]. However,
since c ∈ D has only C2 regularity, κ is only continuous in general. So it seems
to be difficult to consider its derivatives κs, κss as in (1.2). In addition, in
the case 2 < p < 3, since (1.2) has a negative exponent of κ, it seems to be
difficult to find a stationary curve of J whose curvature has a zero point,
and hence it seems to be hopeless to find C2 stationary curves in the case
p ̸= 2. Moreover, even if we obtain a solution of (1.2), it does not directly
imply the existence of a stationary curve of J . In the case p = 2, it was
done with the aid of Killing vector field or Noether’s theorem; see [1, 7, 11]
and others. However, since a solution κ of (1.2) may not be differentiable
in our setting, it seems to be difficult to apply them. Overcoming these
difficulties, we show the existence of C2 stationary curves of J other than
geodesics whose curvatures may have zero points. Moreover, we will show
the existence of rather curious stationary curves of J , which we call flat-
core stationary curves of J . In [20], the second author considered a similar
problem in R

2, he showed the existence of flat-core stationary curves for
a corresponding functional, like J . We note that the concept of flat-core
solution itself was introduced by Guedda-Veron [8] and recently developed
by Takeuchi [17] for 1-dimensional nonlinear eigenvalue problems (not for
elasticae).

This paper is organized as follows. In the next section, we give a for-
mulation of our problem and a first variation formula to the problem. In
Section 3, we will show that if κ satisfies that the first variation formula is
zero, like (1.2), then there is a stationary curve in S2(G) whose curvature
is κ. In Section 4, we give some classifications of the stationary curves. In
particular, we define minimal period crossing and non minimal period cross-
ing stationary curves. In the final section, we show the existence of closed,
flat-core stationary curves and we also show some numerical results of closed
stationary curves for various p > 2 and λ > 0. Although numerical compu-
tations indicate the existence of various types of stationary closed curves in
any case of p > 2 and λ > 0, it does not seem to be easy to give rigorous
proofs of their existence in general. We give some pictures of them. In our
future work, we will prove their existence in general.



✐

✐

“6-Watanabe” — 2020/10/27 — 0:12 — page 1454 — #4
✐

✐

✐

✐

✐

✐

1454 N. Shioji and K. Watanabe

2. A local coordinate and first variation formula

Let S2(G) be a compact two-dimensional submanifold in R
3 with constant

Gaussian curvature G. Since any compact two-dimensional submanifold in
R
3 of constant Gaussian curvature must be a sphere, which is Liebmann’s

theorem ([15, Theorem 3.7]), we consider that S2(G) is a sphere whose radius
is r = 1/

√
G. We note that we use the relation

G =
1

r2

throughout this paper. Since we consider that S2(G) is a sphere in R
3 with

radius r, we represent a point (x, y, z) in S2(G) with the polar coordinate
defined by

(x, y, z) = (r sin v cosu, r sin v sinu,−r cos v),(2.1)

(0 ≤ u < 2π, 0 ≤ v ≤ π),

and we consider that S2(G) has the standard Riemannian metric which is
induced from the embedding from S2(G) into R

3. That is, we consider that

guu = r2 sin2 v, guv = gvu = 0, gvv = r2

is our Riemannian metric tensor. We say c = (u, v) is a curve in S2(G) if it
is represented as

c(t) = (r sin v(t) cosu(t), r sin v(t) sinu(t),−r cos v(t)), t ∈ R.

Let D be a set of C2 curves in S2(G) defined by

D =
{

c = (u, v) ∈ C2([0, 1],S2(G)) |
c(t) = (r sin v(t) cosu(t), r sin v(t) sinu(t),−r cos v(t)),

ct(t) ̸= (0, 0, 0) and 0 < v(t) < π for each t ∈ [0, 1]
}

.

Let c = (u, v) ∈ D whose length is L, and let s be its arclength parameter.
Then it satisfies

r2 sin2 v(s)us(s)
2 + r2vs(s)

2 = 1.(2.2)
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Such an arclength parameter can be defined as follows. Let s(t) be the
function from [0, 1] into [0, L] defined by

s(t) =

∫ t

0

√

⟨ct(t), ct(t)⟩R3 dt

=

∫ t

0

√

r2 sin2 v(t)ut(t)2 + r2vt(t)2 dt, t ∈ [0, 1],

where ⟨·, ·⟩R3 is the standard inner product in R
3. Since

ds/dt =
√

⟨ct(t), ct(t)⟩R3 > 0,

by the inverse function theorem, we can define its inverse function t(s) from
[0, L] into [0, 1]. We note ts(s) > 0, and we write c(s) = (u(s), v(s)) instead
of c(t(s)) = (u(t(s)), v(t(s))). Let e1(s) be the unit tangent vector cs(s) and
e2(s) its π/2-rad anti-clockwise rotation at c(s). Then, by the Frenet-Serret
formula, we have

∇e1(s)e1(s) = κ(s)e2(s),
(

e1(s) = cs(s)
)

.

Here, ∇e1(s) is the covariant derivative to the direction e1(s). We obtain the
expression of the curvature of a curve in D as follows.

Lemma 1. Let c = (u, v) ∈ D and let s be its arclength parameter. Then

the curvature κ of c is expressed as

κ(s) = r2
(

− uss(s)vs(s) sin v(s) + us(s)vss(s) sin v(s)(2.3)

− 2us(s)vs(s)
2 cos v(s)− us(s)

3 sin2 v(s) cos v(s)
)

.

If a parameter t of c does not represent its arclength, then κ is expressed as

(2.4) κ(t) =
r2
(

−uttvt sin v + utvtt sin v − 2utv
2
t cos v − u3t sin

2 v cos v
)

(

r2 sin2 v u2t + r2v2t

) 3

2

.
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Proof. By direct calculations, we have

cs(s) = r





vs(s) cosu(s) cos v(s)− us(s) sinu(s) sin v(s)
us(s) cosu(s) sin v(s) + vs(s) sinu(s) cos v(s)

vs(s) sin v(s)





T

,

css(s) = r





cos v (vss cosu− 2usvs sinu)− sin v
(

uss sinu+ cosu
(

u2s + v2s
))

cos v (2usvs cosu+ vss sinu) + sin v
(

uss cosu− sinu
(

u2s + v2s
))

vss sin v + v2s cos v





T

.

Using (2.2), we can see

〈

css(s), c(s)
〉

R3 = −r2(us(s)
2 sin2 v(s) + vs(s)

2) = −1,

⟨c(s)× cs(s), c(s)× cs(s)⟩R3 = r4(us(s)
2 sin2 v(s) + vs(s)

2) = r2,

where × is the outer product, and hence we get

∇e1(s)e1(s) = css(s)−
〈

css(s), c(s)
〉

R3

r2
c(s)

= r





−u2s cosu cos
2 v sin v − 2usvs cos v sinu− uss sinu sin v + vss cosu cos v

−u2s sinu cos
2 v sin v + 2usvs cosu cos v + uss cosu sin v + vss sinu cos v

−u2s cos v sin
2 v + vss sin v





T

,

e2(s) =
c(s)× cs(s)

⟨c(s)× cs(s), c(s)× cs(s)⟩
1

2

R3

= r





us cosu cos v sin v + vs sinu
us sinu cos v sin v − vs cosu

us sin
2 v





T

.

From κ(s) =
〈

∇e1(s)e1(s), e2(s)
〉

R3 , we obtain (2.3). In the case when t is
not an arclength parameter, by changing variables, we can show (2.4). □

Lemma 2. Let (u, v) ∈ D and let s be its arclength parameter. Then it

holds that

{

uss(s) sin v(s) = −vs(s)
(

2us(s) cos v(s) + κ(s)
)

,

vss(s) = us(s) sin v(s)
(

us(s) cos v(s) + κ(s)
)

.

Proof. From (2.2) and (2.3), we have

(

us(s) sin v(s) vs(s)
−vs(s) us(s) sin v(s)

)(

uss(s) sin v(s)
vss(s)

)

=

(

−us(s)
2vs(s) sin v(s) cos v(s)

κ(s)/r2 + 2us(s)vs(s)
2 cos v(s) + us(s)

3 sin2 v(s) cos v(s)

)

.
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Using (2.2), we obtain

(

uss(s) sin v(s)
vss(s)

)

= r2
(

us(s) sin v(s) −vs(s)
vs(s) us(s) sin v(s)

)

·
(

−us(s)
2vs(s) sin v(s) cos v(s)

κ(s)/r2 + 2us(s)vs(s)
2 cos v(s) + us(s)

3 sin2 v(s) cos v(s)

)

=

(

−vs(s)
(

2us(s) cos v(s) + κ(s)
)

us(s) sin v(s)
(

us(s) cos v(s) + κ(s)
)

)

.

□

In the rest of this paper, we always assume p > 2 and λ > 0. We consider
the functional

J(c) =

∫ L

0

(∣

∣κ(s)
∣

∣

p
+ λ
)

ds =

∫ 1

0

(∣

∣κ(t)
∣

∣

p
+ λ
)

⟨ct, ct⟩
1

2

R3dt, c ∈ D,

where s represents an arclength parameter of c, κ is the curvature of c and
L is the total length of c. In the case p = 2, it coincides with the one treated
in [11]. We say a mapping c(w, t) : (−ε, ε)× [0, 1] → S2(G) with ε > 0 is a
variation of c ∈ D if it satisfies

(i) c(0, t) = c(t) for each t ∈ [0, 1],

(ii) for each w ∈ (−ε, ε), c(w, ·) is an element of D,

(iii) for each t ∈ [0, 1], c(·, t) is smooth.

An example of such a mapping can be obtained by

c(w, t) = (u(w, t), v(w, t)) = exp(u(0,t),v(0,t))
(

w(uw(0, t), vw(0, t))
)

for (w, t) ∈ (−ε, ε)× [0, 1] with some ε > 0. We say c ∈ D is a p-elastic curve

if

dJ(c(w, ·))
dw

∣

∣

∣

∣

w=0

= 0

for each variation c(w, t) : (−ε, ε)× [0, 1] → S2(G) of c satisfying

(2.5)
c(w, 0) = c(0), ct(w, 0) = ct(0),

c(w, 1) = c(1) and ct(w, 1) = ct(1)

for each w ∈ (−ε, ε). We denote by S the set of closed curves in D, i.e.,

S =
{

c ∈ D | c(0) = c(1), ct(0) = ct(1), ctt(0) = ctt(1)
}

.
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We also say c ∈ S is a closed p-elastic curve if

dJ(c(w, ·))
dw

∣

∣

∣

∣

w=0

= 0

for each variation c(w, t) : (−ε, ε)× [0, 1] → S2(G) of c satisfying c(w, ·) ∈ S
for each w ∈ (−ε, ε).

Now, we give a first variation formula of J .

Theorem 1. Let (u, v) ∈ D such that |κ|p−2κ is of class C2, where κ is

the curvature of (u, v). Then for each variation c(w, t) = (u(w, t), v(w, t)) :
(−ε, ε)× [0, 1] → S2(G) of (u, v) with ε > 0, there holds

1

r2
dJ(c(w, ·))

dw

∣

∣

∣

∣

w=0

=

∫ L

0
X(s) sin v(s)

(

−vs(s)uw(0, s) + us(s)vw(0, s)
)

ds

+
[

Y1(s)uw(0, s) + Y2(s)vw(0, s) + Y3(s)uws(0, s) + Y4(s)vws(0, s)
]L

0

in the coordinate (2.1), where s is an arclength parameter of (u(0, ·), v(0, ·)),
L is the total length of (u(0, ·), v(0, ·)) and






















































X(s) = p
(

|κ(s)|p−2κ(s)
)

ss
+ (p− 1)|κ(s)|pκ(s) +Gp|κ(s)|p−2κ(s)− λκ(s),

Y1(s) = sin v(s)
(

λus(s) sin v(s) + pvs(s)(|κ(s)|p−2κ(s))s
)

− p

r2
|κ(s)|p−2κ(s) cos v(s)− (p− 1)|κ(s)|pus(s) sin2 v(s),

Y2(s) = vs(s)
(

λ− p|κ(s)|p−2κ(s)us(s) cos v(s)− (p− 1)|κ(s)|p
)

− pus(s)(|κ(s)|p−2κ(s))s sin v(s),

Y3(s) = −p|κ(s)|p−2κ(s)vs(s) sin v(s),

Y4(s) = p|κ(s)|p−2κ(s)us(s) sin v(s).

Remark 1. If κ is of class C2, X(s) ≡ 0 is equivalent to (1.2). We note
that if a curve in S2(G) is of class C4, its curvature κ is of class C2.

Before giving the proof of Theorem 1, we give a direct consequence of
the theorem.

Corollary 1. Let (u, v) ∈ D such that |κ|p−2κ is of class C2, and let s and

X(s) be as in Theorem 1, and assume X(s) ≡ 0. Then (u, v) is a p-elastic
curve in S2(G). Moreover, if (u, v) ∈ S then (u, v) is a closed p-elastic curve

in S2(G).
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Proof. Let c(w, t) = (u(w, t), v(w, t)) : (−ε, ε)× [0, 1] → S2(G) be a varia-
tion of (u, v) which satisfies (2.5) for each w ∈ (−ε, ε). Let L be the total
length of (u(0, ·), v(0, ·)). We consider that s is the arclength parameter of
(u(0, ·), v(0, ·)) defined as in the beginning of this section. As we stated, we
write u(w, s) and v(w, s) instead of u(w, t(s)) and v(w, t(s)), respectively.
For the sake of completeness, we note that s is generally not an arclength
parameter of (u(w, ·), v(w, ·)) for w ̸= 0, and that the meanings of uws(w, s)
and vws(w, s) are uwt(w, t(s))ts(s) and vwt(w, t(s))ts(s), respectively. From
(2.5), we have

uw(0, 0) = uw(0, L) = vw(0, 0) = vw(0, L) = 0,

uws(0, 0) = vws(0, 0) = uws(0, L) = vws(0, L) = 0,

and hence

[

Y1(s)uw(0, s) + Y2(s)vw(0, s) + Y3(s)uws(0, s) + Y4(s)vws(0, s)
]L

0
= 0.

So, by Theorem 1, we can find that (u, v) is a p-elastic curve in S2(G).
Next, let (u, v) ∈ S and assume c(w, ·) ∈ S for each w ∈ (−ε, ε). From

Yi(0) = Yi(L) for each i = 1, 2, 3, 4,

where Y1, Y2, Y3 and Y4 are as in Theorem 1, and

uw(0, 0) = uw(0, L), vw(0, 0) = vw(0, L),

uws(0, 0) = vws(0, 0), uws(0, L) = vws(0, L),

we can see that (u, v) ∈ S is a closed p-elastic curve in S2(G). □

Now, we give the proof of Theorem 1.

Proof of Theorem 1. Let c(w, t) = (u(w, t), v(w, t)) : (−ε, ε)×[0, 1] → S2(G)
be a variation of (u, v). We put

l(w, t) =
(

r2 sin2 v(w, t)ut(w, t)
2 + r2vt(w, t)

2
) 1

2

,

m(w, t) = r2
[

−utt(w, t)vt(w, t) sin v(w, t) + ut(w, t)vtt(w, t) sin v(w, t)

− 2ut(w, t)vt(w, t)
2 cos v(w, t)− ut(w, t)

3 sin2 v(w, t) cos v(w, t)
]

.

Let s be the arclength parameter of (u(0, ·), v(0, ·)) defined as in the begin-
ning of this section. We write u(w, s) and v(w, s) instead of u(w, t(s)) and
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v(w, t(s)), respectively. We define l̃(w, s), m̃(w, s) by

l̃(w, s) =
(

r2 sin2 v(w, s)us(w, s)
2 + r2vs(w, s)

2
) 1

2

,

m̃(w, s) = r2
[

−uss(w, s)vs(w, s) sin v(w, s) + us(w, s)vss(w, s) sin v(w, s)

− 2us(w, s)vs(w, s)
2 cos v(w, s)− us(w, s)

3 sin2 v(w, s) cos v(w, s)
]

.

From
us(w, s) = ut(w, t(s))ts(s),

uss(w, s) = utt(w, t(s))(ts(s))
2 + ut(w, t(s))tss(s),

vs(w, s) = vt(w, t(s))ts(s),

vss(w, s) = vtt(w, t(s))(ts(s))
2 + vt(w, t(s))tss(s),

we can see

l̃(w, s) = l(w, t(s))ts(s), m̃(w, s) = m(w, t(s)) (ts(s))
3 ,

l̃(0, s) = 1, m̃(0, s) = κ(s).

Using (2.2) and Lemma 2, we have

∂l̃

∂w
(0, s) = r2

[

us(s)
2 sin v(s) cos v(s)vw(0, s)

+ us(s) sin
2 v(s)uws(0, s) + vs(s)vws(0, s)

]

and

∂m̃

∂w
(0, s) = r2

(

−uss(0, s)vs(0, s) cos v(0, s) + us(0, s)vss(0, s) cos v(0, s)

+ 2us(0, s)vs(0, s)
2 sin v(0, s)− 2us(0, s)

3 sin v(0, s) cos2 v(0, s)

+ us(0, s)
3 sin3 v(0, s)

)

vw(0, s) + r2
(

vss(0, s) sin v(0, s)

− cos v(0, s)(2vs(0, s)
2 + 3us(0, s)

2 sin2 v(0, s))
)

usw(0, s)

− r2(uss(0, s) sin v(0, s) + 4us(0, s)vs(0, s) cos v(0, s))vsw(0, s)

− r2vs(0, s) sin v(0, s)ussw(0, s) + r2us(0, s) sin v(0, s)vssw(0, s)

= r2
(

vs(s)
2(2us(s) cos v(s) + κ(s)) cos v(s)

+ us(s)
2 sin v(s)(us(s) cos v(s) + κ(s)) cos v(s)

+ 2us(s)vs(s)
2 sin v(s)− 2us(s)

3 sin v(s) cos2 v(s)

+ us(s)
3 sin3 v(s)

)

vw(0, s) + r2
(

us(s) sin
2 v(s)(us(s) cos v(s)

+ κ(s))− cos v(s)(2vs(s)
2 + 3us(s)

2 sin2 v(s))
)

usw(0, s)
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+ r2(vs(s)(2us(s) cos v(s) + κ(s))− 4us(s)vs(s) cos v(s))vsw(0, s)

− r2vs(s) sin v(s)ussw(0, s) + r2us(s) sin v(s)vssw(0, s)

= r2
[κ(s)

r2
cot v(s) + 2us(s)vs(s)

2 csc v(s)

− us(s)
3 sin v(s) cos 2v(s)

]

vw(0, s)

+ r2
[

κ(s)us(s) sin
2 v(s)− 2

r2
cos v(s)

]

uws(0, s)

+ r2vs(s)
[

κ(s)− 2us(s) cos v(s)
]

vws(0, s)

− r2vs(s) sin v(s)uwss(0, s) + r2us(s) sin v(s)vwss(0, s).

So, we obtain

dJ(c(w, ·))
dw

∣

∣

∣

∣

w=0

=
d

dw

∫ 1

0

(

l(w, t)1−3p|m(w, t)|p + λl(w, t)
)

dt
∣

∣

∣

w=0

=

∫ 1

0

(

(1− 3p)l(0, t)−3p ∂l

∂w
(0, t)|m(0, t)|p

+ pl(0, t)1−3p|m(0, t)|p−2m(0, t)
∂m

∂w
(0, t) + λ

∂l

∂w
(0, t)

)

dt

=

∫ L

0

(

(1− 3p)
∂l̃

∂w
(0, s)|κ(s)|p

+ p|κ(s)|p−2κ(s)
∂m̃

∂w
(0, s) + λ

∂l̃

∂w
(0, s)

)

ds

= r2
∫ L

0

(

((1− 3p)|κ(s)|p + λ)
[

us(s)
2 sin v(s) cos v(s)vw(0, s)

+ us(s) sin
2 v(s)uws(0, s) + vs(s)vws(0, s)

]

+
[κ(s)

r2
cot v(s)

+ 2us(s)vs(s)
2 csc v(s)− us(s)

3 sin v(s) cos 2v(s)
]

vw(0, s)

+
[

κ(s)us(s) sin
2 v(s)− 2

r2
cos v(s)

]

uws(0, s)

+ vs(s)
[

κ(s)− 2us(s) cos v(s)
]

vws(0, s)

− vs(s) sin v(s)uwss(0, s) + us(s) sin v(s)vwss(0, s)

)

ds

= r2
∫ L

0

(

A(s)vw(0, s) +B(s)uws(0, s) + C(s)vws(0, s)

+D(s)uwss(0, s) + E(s)vwss(0, s)
)

ds,
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where

A(s) =|κ(s)|p
[

(1− 3p)us(s)
2 sin v(s) cos v(s) +

p

r2
cot v(s)

]

+ |κ(s)|p−2κ(s)
[

2pus(s)vs(s)
2 csc v(s)− pus(s)

3 sin v(s) cos 2v(s)
]

+ λus(s)
2 sin v(s) cos v(s),

B(s) =− (2p− 1)|κ(s)|pus(s) sin2 v(s)−
2

r2
p|κ(s)|p−2κ(s) cos v(s)

+ λus(s) sin
2 v(s),

C(s) =− (2p− 1)|κ(s)|pvs(s)− 2p|κ(s)|p−2κ(s)us(s)vs(s) cos v(s) + λvs(s),

D(s) =− p|κ(s)|p−2κ(s)vs(s) sin v(s) = Y3(s),

E(s) = p|κ(s)|p−2κ(s)us(s) sin v(s) = Y4(s).

Since |κ(s)|p−2κ(s) is of class C2, |κ(s)|p is of class C1. Hence, A(s), B(s),
C(s) are of class C1. From Lemma 2, we have

{

uss(s)|κ(s)|p−2κ(s) = −vs(s) csc v(s)
(

2us(s) cos v(s)|κ(s)|p−2κ(s) + |κ(s)|p
)

,

vss(s)|κ(s)|p−2κ(s) = us(s) sin v(s)
(

us(s) cos v(s)|κ(s)|p−2κ(s) + |κ(s)|p
)

.

So, we can find that uss(s)|κ(s)|p−2κ(s) and vss(s)|κ(s)|p−2κ(s) are of class
C1, and hence D(s), E(s) are of class C2. Then, we obtain

1

r2
dJ(c(w, ·))

dw

∣

∣

∣

∣

w=0

=

∫ L

0

(

(

−Bs(s) +Dss(s)
)

uw(0, s)

+
(

A(s)− Cs(s) + Ess(s)
)

vw(0, s)
)

ds

+
[

(

B(s)−Ds(s)
)

uw(0, s) +
(

C(s)− Es(s)
)

vw(0, s)
]L

0

+
[

D(s)uws(0, s) + E(s)vws(0, s)
]L

0
.

Using Lemma 2, we have

Ds(s) = −p(|κ(s)|p−2κ(s))svs(s) sin v(s)

− p|κ(s)|p−2κ(s)us(s) sin
2 v(s)(us(s) cos v(s) + κ(s))

− p|κ(s)|p−2κ(s)vs(s)
2 cos v(s)

= −p(|κ(s)|p−2κ(s))svs(s) sin v(s)

− p

r2
|κ(s)|p−2κ(s) cos v(s)− p|κ(s)|pus(s) sin2 v(s),
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and hence we obtain

B(s)−Ds(s) = −(p− 1)|κ(s)|pus(s) sin2 v(s)−
p

r2
|κ(s)|p−2κ(s) cos v(s)

+ p(|κ(s)|p−2κ(s))svs(s) sin v(s) + λus(s) sin
2 v(s) = Y1(s).

From Lemma 2 and (p− 1)(|κ(s)|p)s = pκ(s)(|κ(s)|p−2κ(s))s, we can see

−Bs(s) +Dss(s) = pκ(s)(|κ(s)|p−2κ(s))sus(s) sin
2 v(s)

− (p− 1)|κ(s)|pvs(s)(2us(s) cos v(s) + κ(s)) sin v(s)

+ 2(p− 1)|κ(s)|pus(s)vs(s) sin v(s) cos v(s)
+

p

r2
(|κ(s)|p−2κ(s))s cos v(s)

− p

r2
|κ(s)|p−2κ(s)vs(s) sin v(s)

− p(|κ(s)|p−2κ(s))ssvs(s) sin v(s)

− p(|κ(s)|p−2κ(s))sus(s) sin
2 v(s)(us(s) cos v(s) + κ(s))

− p(|κ(s)|p−2κ(s))svs(s)
2 cos v(s)

+ λvs(s)(2us(s) cos v(s) + κ(s)) sin v(s)

− 2λus(s)vs(s) sin v(s) cos v(s)

= −X(s)vs(s) sin v(s).

Similarly, we have

C(s)− Es(s) = −(p− 1)|κ(s)|pvs(s)− p|κ(s)|p−2κ(s)us(s)vs(s) cos v(s)

− p(|κ(s)|p−2κ(s))sus(s) sin v(s) + λvs(s) = Y2(s),

−Cs(s) + Ess(s) = pκ(s)(|κ(s)|p−2κ(s))svs(s)

+ (p− 1)|κ(s)|pus(s) sin v(s)(us(s) cos v(s) + κ(s))

+ p(|κ(s)|p−2κ(s))sus(s)vs(s) cos v(s)

− p|κ(s)|p−2κ(s)vs(s)
2(2us(s) cos v(s) + κ(s)) cot v(s)

+ p|κ(s)|p−2κ(s)us(s)
2 sin v(s)(us(s) cos v(s)

+ κ(s)) cos v(s)− p|κ(s)|p−2κ(s)us(s)vs(s)
2 sin v(s)

+ p(|κ(s)|p−2κ(s))ssus(s) sin v(s)

− p(|κ(s)|p−2κ(s))svs(s)(2us(s) cos v(s) + κ(s)) sin v(s)

+ p(|κ(s)|p−2κ(s))sus(s)vs(s) cos v(s)

− λus(s) sin v(s)(us(s) cos v(s) + κ(s))
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= p(|κ(s)|p−2κ(s))ssus(s) sin v(s) + (p− 1)|κ(s)|pκ(s)us(s) sin v(s)
+ |κ(s)|p

(

(2p− 1)us(s)
2 sin v(s) cos v(s)− pvs(s)

2 cot v(s)
)

+ |κ(s)|p−2κ(s)
(

−2pus(s)vs(s)
2 cos v(s) cot v(s)

+ pus(s)
3 sin v(s) cos2 v(s)− pus(s)vs(s)

2 sin v(s)
)

− λκus(s) sin v(s)− λus(s)
2 sin v(s) cos v(s),

and hence we obtain

A(s)− Cs(s) + Ess(s)

= p(|κ(s)|p−2κ(s))ssus(s) sin v(s) + (p− 1)|κ(s)|pκ(s)us(s) sin v(s)
+ |κ(s)|p

[

(1− 3p)us(s)
2 sin v(s) cos v(s) +

p

r2
cot v(s)

+ (2p− 1)us(s)
2 sin v(s) cos v(s)− pvs(s)

2 cot v(s)
]

+ |κ(s)|p−2κ(s)
[

2pus(s)vs(s)
2 csc v(s)− pus(s)

3 sin v(s) cos 2v(s)

− 2pus(s)vs(s)
2 cos v(s) cot v(s) + pus(s)

3 sin v(s) cos2 v(s)

− pus(s)vs(s)
2 sin v(s)

]

− λκus(s) sin v(s)

= X(s)us(s) sin v(s).

Therefore, we have shown our assertion. □

3. Realization theorem of X(s) ≡ 0 in S2(G)

In this section, we will find a condition that (u, v) ∈ D satisfies X(s) ≡ 0,
where X is the function given in Theorem 1. That is, for a given κ(s) which
satisfies X(s) ≡ 0, we give a p-elastic curve in S2(G) whose curvature is κ.

If we set κ(s) = |ω(s)|
2−p

p−1ω(s), then X(s) = 0 is transformed to

(3.1) pωss(s) + (p− 1)|ω(s)|
2

p−1ω(s) +Gpω(s)− λ|ω(s)|
2−p

p−1ω(s) = 0.

We study the solutions of (3.1). Multiplying 2pωs(s) to (3.1) and integrating
it, we have

p2ωs(s)
2 + (p− 1)2|ω(s)|

2p

p−1 +Gp2ω(s)2 − 2λ(p− 1)|ω(s)|
p

p−1 = d

with some constant d. We define F : R → R by

F (ω) = (p− 1)2|ω|
2p

p−1 +Gp2ω2 − 2λ(p− 1)|ω|
p

p−1 for ω ∈ R.
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We note that F is even and

Fω(ω) = 2p(p− 1)|ω|
2

p−1ω + 2Gp2ω − 2λp|ω|
2−p

p−1ω for ω ∈ R.

Here, we consider a differential equation

(3.2)

{

2p2ωss(s) + Fω(ω(s)) = 0, s ∈ R,

ωs(0) = 0, ω(0) = ω0 ∈ R.

We note that the first line in (3.2) is the same as (3.1).
In order to study (3.2), we investigate the behavior of F . We define

(3.3) H(ω) = (p− 1)|ω|
p

p−1 +Gp|ω|
p−2

p−1 − λ for ω ∈ R.

We note it holds

(3.4) Fω(ω) = 2p|ω|
2−p

p−1ωH(ω) for ω ∈ R

and both (3.1) and the first line in (3.2) are the same as

pωss(s) + |ω(s)|
2−p

p−1ω(s)H(ω(s)) = 0, s ∈ R.

Recall that we always assume p > 2 and λ > 0. Hence, by (3.3), we can easily
see that H(ω) = 0 has exactly one positive root, and we put it ω1;λ. For the
sake of completeness, we note that

{ω ∈ R | Fω(ω) = 0} = {0,±ω1;λ},

and the following holds.

Lemma 3. F has local extremes as follows: 0 is a local maximizer, ±ω1;λ

are global minimizers, and F does not have any other local extreme.

Proof. We note it holds for ω > 0,

Fω(ω) = 2pω
1

p−1H(ω), Hω(ω) = pω
1

p−1 +G
p(p− 2)

p− 1
ω− 1

p−1 ,

and H(0) = −λ < 0. Since H is monotone increasing on (0,∞), Fω changes
its sign only once from minus to plus at ω = ω1;λ on the interval (0,∞).
Thus, F takes its minimum at ω = ±ω1;λ. Hence, we can easily see that our
assertion holds. □
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)(F ω

ω1; ,dλ
ω1;λω2; ,dλ

ω

d

Figure 1: The Graph of F in the case p = 3, λ = 7 and G = 1.

For reader’s convenience, we give a figure of the function F . The definitions
of ω1;λ,d, ω2;λ,d in the figure are given as follows. We set

minF = min
ω∈R

F (ω)(= F (ω1;λ)).

From Lemma 3, we see that for each d ≥ minF , the equation F (ω) = d has
at most two positive roots and at least one positive root. We put these roots
ω1;λ,d > ω2;λ,d as long as they exist. In other words, we set

{ω > 0 | F (ω) = d} =

{

{ω1;λ,d} in the case d > 0 or d = minF ,

{ω1;λ,d, ω2;λ,d} in the case minF < d < 0.

Now, we study the solutions of (3.2) in Lemmas 4 and 5. In particular, we
will show that problem (3.2) has multiple solutions in the case F (ω0) = 0.

Lemma 4. Let ω0 ∈ R such that

(3.5) F (ω0) ̸= 0 and F (ω0) ̸= F (ω1;λ).

Then, (3.2) has a unique solution defined on R, and it is non constant and

periodic.

Proof. From the evenness of F and ω0 ̸= 0, without loss of generality, we
may assume ω0 > 0. From

Fωω(ω) = 2p

(

(p+ 1)|ω|
2

p−1 +Gp− λ

p− 1
|ω|

2−p

p−1

)

for ω ̸= 0,

we can find the local Lipschitz property of Fω as follows:
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(L) Fω is locally Lipschitz on R \ {0} and it is not locally Lipschitz at 0.

Since (3.2) is equivalent to the initial value problem of the system of first
order differential equations

(

ωs(s)
φs(s)

)

=

(

φ(s)
−Fω(ω(s))/(2p

2)

)

for s ∈ R and

(

ω(0)
φ(0)

)

=

(

ω0

0

)

,

from (L) and ω0 > 0, we can see that (3.2) has a unique solution in a neigh-
borhood of s = 0. By a similar argument in the beginning of this section,
we see that each solution of (3.2) satisfies

(3.6) p2ωs(s)
2 = F (ω0)− F (ω(s))

as long as it exists. Let I be the maximal interval such that (3.2) has a
unique solution on I. We will show I = (−∞,∞). To the contrary, without
loss of generality, we may assume 0 < s1 < ∞, where s1 = sup I. From (3.6),
we have

(3.7) F (ω0) ≥ F (ω(s)) for each s ∈ I.

In the case F (ω0) < 0, from (L), we can easily see that the solution is
uniquely extendable on an interval I ∪ [s1, s1 + ε1) with some ε1 > 0. This
is a contradiction. So, we consider the case F (ω0) > 0. If ω(s1) ̸= 0, then
from (L), we can easily see the solution is uniquely extendable on an in-
terval I ∪ [s1, s1 + ε2) with some ε2 > 0. Hence, without loss of generality,
we may assume ω(s) > 0 for each s ∈ [0, s1) and ω(s1) = 0. From (3.6) and
(3.7), we have ωs(s) < 0 for each s ∈ (0, s1]. We note that in a small open in-
terval containing s1 on which ωs does not vanish, the differential equations
2p2ωss(s) + Fω(ω(s)) = 0 and p2ωs(s)

2 = F (ω0)− F (ω(s)) are equivalent.
Thus we have

ωs(s) = −1

p

√

F (ω0)− F (ω(s)) for s ∈ [0, s1].

From F (ω0) > 0, the mapping ω 7→
√

F (ω0)− F (ω) is locally Lipschitz at
ω = 0, Hence, we can see that the solution is uniquely extendable on an inter-
val I ∪ [s1, s1 + ε3) with some ε3 > 0. This is also a contradiction. Therefore,
we can see I = (−∞,∞), i.e., under assumption (3.5), problem (3.2) has a
unique solution.

Next, we will show that under assumption (3.5), each solution of (3.2) is
non constant and periodic. From (3.5), we have Fω(ω0) ̸= 0, and hence the
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unique solution of (3.2) is non constant. We recall we assumed ω0 > 0. We
set ω1 by

ω1 =











−ω1;λ,F (ω0) if F (ω0) > 0; (we note ω0 = ω1;λ,F (ω0) in this case),

ω2;λ,F (ω0) if F (ω0) < 0 and ω0 = ω1;λ,F (ω0),

ω1;λ,F (ω0) if F (ω0) < 0 and ω0 = ω2;λ,F (ω0).

We will show that there is s0 ∈ (0,∞] such that ω(s) ̸= ω1 for each s ∈ (0, s0)
and ω(s) → ω1 as s → s0. If such s0 ∈ (0,∞] does not exist, from (3.6), we
can see ωs(s) ̸= 0 for each s > 0, and hence inf{|ωs(s)| : s ∈ (0,∞)} > 0.
Since ω is bounded by (3.6), it is a contradiction. Hence such s0 exists. We
will show that s0 is finite. Once 0 < s0 < ∞ was shown, we can see that ω
is periodic and 2s0 is the minimal period of ω. In the case ω1 < ω0, i.e., in
the case ω0 = ω1;λ,F (ω0), we have Fω(ω0) > 0, Fω(ω1) < 0,

1
√

F (ω0)− F (ω)
=

1
√

Fω(ω0)

(

1 +O(ω0 − ω)
)

(ω0 − ω)−
1

2 as ω → ω0 − 0,

and

1
√

F (ω0)− F (ω)
=

1
√

F (ω1)− F (ω)

=
1

√

−Fω(ω1)

(

1 +O(ω − ω1)
)

(ω − ω1)
− 1

2

as ω → ω1 + 0. Using (3.6), we see that

s0 =

∫ s0

0
ds =

∫ ω1

ω0

ds

dω
dω =

∫ ω1

ω0

p
√

F (ω0)− F (ω)
dω

is finite. In the case ω0 < ω1, i.e., in the case ω0 = ω2;λ,F (ω0), we can show
s0 < ∞ similarly. Hence, we can see that the unique solution of (3.2) oscil-
lates between ω0 and ω1 and it is periodic. □

Lemma 5. The following hold.

(i) If F (ω0) = 0, then problem (3.2) has multiple solutions defined on R.

(ii) If F (ω0) = F (ω1;λ), then problem (3.2) has a unique solution defined

on R and it is constant.

Proof. We can easily see (ii) by Lemma 3 and (3.6). We will show (i). Let
ω0 ∈ R with F (ω0) = 0. Without loss of generality, we may assume ω0 > 0.
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By similar arguments as in the proof of the previous lemma, we can see that
there is s0 ∈ (0,∞] such that ω(s) > 0 for each s ∈ [0, s0) and ω(s) → 0 as
s → s0. We will show that s0 is finite. Noting Fω(ω0) > 0, we have

1
√

−F (ω)
=

1
√

F (ω0)− F (ω)

=
1

√

Fω(ω0)
(ω0 − ω)−

1

2 +O(ω0 − ω) as ω → ω0 − 0.

Since p/(2(p− 1)) < 1 and

1
√

−F (ω)
=

1

ω
p

2(p−1)

√

2λ(p− 1)− (p− 1)2ω
p

p−1 −Gp2ω
p−2

p−1

for ω ∈ (0, ω0),

we can see that

(3.8) s0 = p

∫ ω0

0

dω
√

−F (ω)

is finite. Hence, for example, both ω̂(s) and ω̃(s) defined by

ω̂(s) =

{

ω(s− 2ns0) for 2ns0 ≤ s ≤ (2n+ 1)s0 and n ∈ Z,

ω(2ns0 − s) for (2n− 1)s0 ≤ s ≤ 2ns0 and n ∈ Z

and

ω̃(s) =



















0 for s ≤ −s0,

ω(−s) for −s0 ≤ s ≤ 0,

ω(s) for 0 ≤ s ≤ s0,

0 for s ≥ s0

are solutions of (3.2). Thus, we have shown (i). □

The next lemma classifies the solutions ω of (3.2) with ω0 ∈ R and d = F (ω0)
into four types (I)–(IV) below. We note that such solutions satisfy

F (ω0) = max
s∈R

F (ω(s))

and that type (I) solutions exist only when d = 0 or d = F (ω1;λ), and types
(II), (III) and (IV) solutions exist only when d < 0, d > 0 and d = 0, respec-
tively.
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(I) (d = 0 or d = F (ω1;λ)) Constant solution ω ≡ ω0. (ω0 is one of 0 and
±ω1;λ.)

(II) (d < 0) Positive or negative periodic solution which oscillates between
ω1;λ,d and ω2;λ,d or −ω1;λ,d and −ω2;λ,d. (For the sake of completeness,
if ω oscillates between ω1;λ,0 and 0 or −ω1;λ,0 and 0, we do not call it
type (II) solution, but we call it type (IV) solution; see (IV) below.)

(III) (d > 0) Sign changing periodic solution which oscillates between
−ω1;λ,d and ω1;λ,d.

(IV) (d = 0) Solution constructed along the following rule.
– It consists of the following (IV-i), (IV-ii) and (IV-iii).
– It includes at least one of (IV-ii) or (IV-iii).
– It is obtained by gluing (IV-i), (IV-ii) and (IV-iii) in arbitrary order.

(IV-i) Constant zero solution on [s0, s1], where s0, s1 are any elements in
[−∞,∞] with s0 < s1. In the case s0 = −∞, [−∞, s1] is considered
as (−∞, s1] and in the case s1 = ∞, [s0,∞] is considered as [s0,∞).

(IV-ii) The solution of











2p2ωss(s) + Fω(ω(s)) = 0, s ∈ [s0, s0 + T ],

ωs(s0) = ω(s0) = 0,

ω(s) > 0, s ∈ (s0, s0 + T ),

where s0 is any real number and T > 0 is the constant given by

(3.9) T =

∫ ω1;λ,0

0

2p
√

−F (ω)
dω.

(IV-iii) The solution of











2p2ωss(s) + Fω(ω(s)) = 0, s ∈ [s0, s0 + T ],

ωs(s0) = ω(s0) = 0,

ω(s) < 0, s ∈ (s0, s0 + T ),

where s0 is any real number and T > 0 is the constant given in
(3.9).

We sometimes call type (IV) solution of (3.2) a flat-core solution. Glued so-
lutions such as (IV-ii), (IV-i)-(IV-ii)-(IV-iii)-(IV-i), (IV-ii)-(IV-iii), (IV-ii)-
(IV-i)-(IV-iii) are examples of flat-core solutions. For the last one, we give
a graph of a flat-core solution; see Figure 2. The following is a direct conse-
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t

w

(IV-ii) (IV-iii)

(IV-i)

Figure 2: A graph of a flat-core solution of equation (3.2) composed by
(IV-ii), (IV-i), (IV-iii); p = 3, λ = 7 and G = 1.

quence of Lemmas 4 and 5. We note that we can see the existence of flat-core
solutions of (3.2) by Lemma 5 (i).

Lemma 6. Let d ≥ minF . Then all the solutions ω of (3.2) with d = F (ω0)
are classified as in the following table.

d solution type

(i) d = F (ω1;λ) (I)×2 (ω = ±ω1;λ)
(ii) F (ω1;λ) < d < 0 (II)×2 (−ω1;λ,d ≤ ω ≤ −ω2;λ,d, ω2;λ,d ≤ ω ≤ ω1;λ,d)
(iii) d = 0 (I) (ω = 0), (IV)
(iv) d > 0 (III) (−ω1;λ,d ≤ ω ≤ ω1;λ,d)

Table 1: Table of solution types.

Figure 3 gives graphs of prototypical solutions of (3.2).
In order to realize a solution of X(s) ≡ 0 in S2(G), we define dλ by

dλ = F

((

λ

p− 1

)
p−1

p

)

= Gp2
( λ

p− 1

)
2(p−1)

p − λ2 (≥ minF = F (ω1;λ)).

The following lemma is crucial to realize solutions of X(s) ≡ 0 in S2(G); see
Theorem 3. Moreover, it gives information of the shapes of the graphs of the
realized solutions in S2(G); see Section 4.
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1;(i) ( )d F
λ

ω=

1;(ii) ( ) 0F d
λ

ω < <

(iii) 0d =

(iv) 0d >

ω

)(F ω

t

ω

1,λω

1,λω−

(i)

(ii) (iii)

1, ,dλ
ω

2, ,dλ
ω

2, ,dλ
ω−

1, ,dλ
ω−

ω

(iv)

ω
1, ,dλ

ω

1, ,dλ
ω−

ω

0

Figure 3: The graph of F in the case p = 3, λ = 7 and G = 1, and graphs
of solutions (3.2) for (I)–(III).

Lemma 7. Let d ≥ minF . Then d+ λ2 > 0 and

(3.10)















































ω1;λ,d <

√

d+ λ2

Gp2
<
( λ

p− 1

)
p−1

p

in the case d < dλ,

ω1;λ,d =

√

d+ λ2

Gp2
=
( λ

p− 1

)
p−1

p

in the case d = dλ,

ω1;λ <
( λ

p− 1

)
p−1

p

< ω1;λ,d <

√

d+ λ2

Gp2
in the case d > dλ.

Proof. From d ≥ minF and

(3.11) F (ω) =
(

(p− 1)|ω|
p

p−1 − λ
)2

+Gp2ω2 − λ2,

we have d+ λ2 > 0. From (3.11),

(3.12) Fω

(

(

λ

p− 1

)
p−1

p

)

= 2Gp2
(

λ

p− 1

)
p−1

p

> 0,

and the definitions of ω1;λ,d and dλ, we have

ω1;λ,d =
( λ

p− 1

)
p−1

p ⇔ d = dλ.
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Hence, if d ̸= dλ, then d+ λ2 = F (ω1;λ,d) + λ2 > Gp2ω2
1;λ,d. So we have

(3.13)

√

d+ λ2

Gp2
> ω1;λ,d if d ̸= dλ, and

√

dλ + λ2

Gp2
= ω1;λ,dλ

.

On the other hand, since

√

d+ λ2

Gp2
=
( λ

p− 1

)
p−1

p ⇔ d = Gp2
( λ

p− 1

)
2(p−1)

p − λ2(= dλ),

we can easily see

(3.14)















































√

d+ λ2

Gp2
<
( λ

p− 1

)
p−1

p

if d < dλ,

√

d+ λ2

Gp2
=
( λ

p− 1

)
p−1

p

if d = dλ,

( λ

p− 1

)
p−1

p

<

√

d+ λ2

Gp2
if d > dλ.

Hence, from (3.13) and (3.14), we can see (3.10) except for the case d > dλ.
We consider the case d > dλ. Since we have ω1;λ,d ≥ ω1;λ, F (ω1;λ,d) = d >
dλ = F ((λ/(p− 1))(p−1)/p) and (3.12), from Lemma 3, we obtain

ω1;λ <
( λ

p− 1

)
p−1

p

< ω1;λ,d.

Noting (3.13), we have shown (3.10) in the case d > dλ. □

Now, we give our realization theorems of X(s) ≡ 0 in S2(G).

Theorem 2. Let ω0 ∈ {0,±ω1;λ}, and let

(3.15) v0 = arccot
(

−r|ω0|
2−p

p−1ω0

)

.

Then s represents an arclength parameter of the curve

(3.16)

(

s

r sin v0
, v0

)
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in S2(G), (3.16) has a constant curvature |ω0|
2−p

p−1ω0, and (3.16) satisfies

X(s) ≡ 0. In particular, for each s0, s1 ∈ R with s0 ̸= s1,

(3.17)

(

s0 + (s1 − s0)t

r sin v0
, v0

)

, t ∈ [0, 1]

is a p-elastic curve in S2(G).

Proof. Let (u, v) has form (3.16). From (2.2), we can find that s represents
its arclength parameter, and from (2.3), we can see that it has constant
curvature κ0 = −(cot v0)/r. By κ0 = −(cot v0)/r and (3.15), we have κ0 =

|ω0|
2−p

p−1ω0. From ω0 ∈ {0,±ω1;λ}, we can see

X(s) = p(|κ0|p−2κ0)ss + κ0H(|κ0|p−2κ0) = |ω0|
2−p

p−1ω0H(ω0) = 0.

Therefore, we have shown that our assertion holds. □

Theorem 3. Let d ≥ minF such that d ̸= dλ. Let ω be a solution of (3.2)
with ω0 ∈ R and d = F (ω0), and let (u, v) be a curve in S2(G) satisfying

v(s) = arccos
(

−
√

G

d+ λ2
pω(s)

)

,(3.18)

us(s) =

√

G

d+ λ2
· λ− (p− 1)|ω(s)|

p

p−1

1− Gp2

d+λ2ω(s)2
(3.19)

for s ∈ R. Then s represents an arclength parameter of the curve (u, v), i.e.,
it satisfies (2.2), the curvature κ(s) of (u, v) satisfies
(3.20)

κ(s) = |ω(s)|
2−p

p−1ω(s) (which is equivalent to ω(s) = |κ(s)|p−2κ(s)),

and there hold

X(s) ≡ 0 for each s ∈ R

and

(3.21) 0 < v(s) < π for each s ∈ R.

In particular, for each s0, s1 ∈ R with s0 ̸= s1, the curve in S2(G) defined

by

(3.22) c(t) = (u(s0 + (s1 − s0)t), v(s0 + (s1 − s0)t)), t ∈ [0, 1],
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which belongs to D, is a p-elastic curve in S2(G), and it passes neither the

north pole nor the south pole in the coordinate (2.1).

Remark 2. In Theorem 3, if ω is constant, a curve (u, v) satisfying (3.18)
and (3.19) is essentially the same as (3.16). We will show it. Assume that ω
in the theorem is constant. From X(s) ≡ 0, we have ω(0) = 0, or ω(0) ̸=
0 and H(ω(0)) = 0. In the case ω(0) ̸= 0 and H(ω(0)) = 0, we can see

λ− (p− 1)|ω(0)|
p

p−1 = Gp|ω(0)|
p−2

p−1 , v is a constant function, cos v =
−
√

G/(d+ λ2) pω(0), and

us(s) =

√

G

d+ λ2
· λ− (p− 1)|ω(0)|

p

p−1

1− Gp2

d+λ2ω(0)2

= − cos v

pω(0)
· Gp|ω(0)|

p−2

p−1

sin2 v
= − 1

r sin v
· cot v

r|ω(0)|
2−p

p−1ω(0)
.

From cos v = −
√

G/(d+ λ2) pω(0) and (3.10), we have

{

0 < v < π/2 in the case ω(0) < 0,

π/2 < v < π in the case ω(0) > 0.

So we have us(s) > 0. Since s represents an arclength parameter of (u, v)
from Theorem 3, we obtain

1 = (r sin v)us(s) = − cot v

r|ω(0)|
2−p

p−1ω(0)
,

which yields (3.15) and (u(s), v(s)) = (s/(r sin v0), v0). In the case ω(0) = 0,
we have us(s) ≡

√

G/(d+ λ2)λ > 0 and v(s) ≡ π/2, which implies (3.15)
and (u(s), v(s)) = (s/(r sin v0), v0). Therefore, in both cases, we can see that
our assertions hold.

Proof of Theorem 3. We note that the denominator d+ λ2 in (3.18) is posi-
tive by Lemma 7. Since d ≥ minF , d ̸= dλ and |ω(s)| ≤ ω1;λ,d for each s ∈ R,
from Lemma 7, we have

sup
s∈R

∣

∣

∣

∣

√

G

d+ λ2
pω(s)

∣

∣

∣

∣

< 1.
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Thus the denominator in (3.19) is also positive and (3.21) is proved. We will
show that s is an arclength parameter of (u, v). From (3.18), we have

(3.23)
sin v(s)vs(s) =

√

G

d+ λ2
pωs(s),

sin2 v(s) = 1− Gp2

d+ λ2
ω(s)2.

Using (3.6) and (3.11), we can see

(

λ− (p− 1)|ω(s)|
p

p−1

)2
+ p2ωs(s)

2

=
(

λ− (p− 1)|ω(s)|
p

p−1

)2
+ d− F (ω(s))

= d+ λ2 −Gp2ω(s)2.

Hence, we obtain

r2
(

sin v(s)
)2
us(s)

2 + r2vs(s)
2

= r2
(

1− Gp2

d+ λ2
ω(s)2

)

G

d+ λ2

(

λ− (p− 1)|ω(s)|
p

p−1

)2

(

1− Gp2

d+λ2ω(s)2
)2

+ r2
G

d+ λ2
p2ωs(s)

2 1

1− Gp2

d+λ2ω(s)2

=

(

λ− (p− 1)|ω(s)|
p

p−1

)2
+ p2ωs(s)

2

d+ λ2 −Gp2ω(s)2
= 1.

Thus, we have shown that s is an arclength parameter of (u, v). Next, we
will show (3.20). From Lemma 2, we have

(3.24) κ(s) =
−us(s)

2 cos v(s) sin2 v(s) + vss(s) sin v(s)

us(s)
(

sin v(s)
)2 .

By differentiating the first equation in (3.23), we obtain

vss(s) sin v(s) = −vs(s)
2 cos v(s) +

√

G

d+ λ2
pωss(s),
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which, (2.2) and (3.1) yield

− us(s)
2 cos v(s) sin2 v(s) + vss(s) sin v(s)

= −us(s)
2 cos v(s) sin2 v(s)− vs(s)

2 cos v(s) +

√

G

d+ λ2
pωss(s)

= −G cos v(s)−
√

G

d+ λ2

(

(p− 1)|ω(s)|
2

p−1ω(s)

+Gpω(s)− λ|ω(s)|
2−p

p−1ω(s)
)

=

√

G

d+ λ2

(

λ− (p− 1)|ω(s)|
p

p−1

)

|ω(s)|
2−p

p−1ω(s).

From (3.19) and the second equation in (3.23), we have

us(s) sin
2 v(s) =

√

G

d+ λ2

(

λ− (p− 1)|ω(s)|
p

p−1

)

,

which and (3.24) yield (3.20). Since ω(s) is of class C2, so is |κ(s)|p−2κ(s).
Thus the assumption of class C2 of |κ(s)|p−2κ(s) in Corollary 1 (Theorem 1)
is satisfied. From (3.6) and (3.20), we have

p2((|κ(s)|p−2κ(s))s)
2 = d− (p− 1)2|κ(s)|2p(3.25)

−Gp2|κ(s)|2(p−1) + 2λ(p− 1)|κ(s)|p,

which yields X(s) ≡ 0. Hence from Corollary 1, we can see that (3.22) is a
p-elastic curve in S2(G). □

Remark 3. We will show how to find (3.18) and (3.19). Assume that v
takes the form

(3.26) cos v(s) = C1|κ(s)|p−2κ(s).

In Theorem 1, we have shown that if s is an arclength parameter of the
curve (u, v) ∈ D then X(s) = 0 is sufficient to be that (u, v) is a p-elastic
curve. Moreover, in the proof, we have shown

(3.27)
dY1
ds

(s) = Bs(s)−Dss(s) = vs(s) sin v(s)X(s).
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So it is sufficient that s is an arclength parameter of (u, v) and Y1(s) = C2

with some constant C2. We assume Y1(s) = C2, i.e.,

(

(p− 1)|κ(s)|p − λ
)(

sin v(s)
)2
us(s)(3.28)

= −C2 + p(|κ(s)|p−2κ(s))svs(s) sin v(s)

−Gp|κ(s)|p−2κ(s) cos v(s).

From (3.27) and Y1(s) = C2, we have X(s) = 0, and hence (3.25) holds
with some d ≥ minF . From (3.26), vs(s) sin v(s) = −C1(|κ(s)|p−2κ(s))s and
(3.28), we have

us(s) =
−C2 − C1

p

(

p2((|κ(s)|p−2(κ(s))s)
2 +Gp2|κ(s)|2(p−1)

)

(

(p− 1)|κ(s)|p − λ
)(

1− C2
1 |κ(s)|2(p−1)

)

=
−C2 − C1

p

(

d− (p− 1)2|κ(s)|2p + 2λ(p− 1)|κ(s)|p
)

(

(p− 1)|κ(s)|p − λ
)(

1− C2
1 |κ(s)|2(p−1)

)

=

C1

p

(

(p− 1)2|κ(s)|2p − 2λ(p− 1)|κ(s)|p − pC2

C1
− d
)

(

(p− 1)|κ(s)|p − λ
)(

1− C2
1 |κ(s)|2(p−1)

) .

We choose C2 to satisfy −pC2/C1 − d = λ2. Then we have

(3.29) us(s) =
C1

(

(p− 1)|κ(s)|p − λ
)

p
(

1− C2
1 |κ(s)|2(p−1)

) .

From (3.25), (3.26), vs(s) sin v(s) = −C1(|κ(s)|p−2κ(s))s and (3.29), we have

us(s)
2 sin2 v(s) + vs(s)

2 =
C2
1

(

(p− 1)|κ(s)|p − λ
)2

p2
(

1− C2
1 |κ(s)|2(p−1)

)2

(

1− C2
1 |κ(s)|2(p−1)

)2

+
C2
1

(

(|κ(s)|p−2κ(s))s
)2

p2
(

1− C2
1 |κ(s)|2(p−1)

)

=
C2
1

(

d+ λ2 −Gp2|κ(s)|2(p−1)
)

p2
(

1− C2
1 |κ(s)|2(p−1)

) .

Hence, if C1 = −
√

G/(d+ λ2) p, then we can see (2.2) and C2 =
√

G(d+ λ2).
Therefore, we have deduced the expressions (3.18) and (3.19).
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4. Classifications of p-elastic curves in S2(G)

In this section, we give some classifications of our p-elastic curves in S2(G).
Let d ≥ minF . We say a p-elastic curve in S2(G) is of type (I) if it is defined
as in (3.17), and we say a p-elastic curve in S2(G) is of type (II), (III) or
(IV) if it is defined by (3.18) and (3.19) with a solution ω of (3.2), and
ω is of type (II), (III) or (IV), respectively. We also say a p-elastic curve
in S2(G) is flat-core (resp. normal) if it is of type (IV) (resp. if it is of
one of type (I), (II) or (III)). Following [11, 16], we say a p-elastic curve in
S2(G) is orbitlike if its curvature does not change sign and it is wavelike if its
curvature changes sign. Thus type (II), p-elastic curves in S2(G) are normal,
orbitlike, and type (III), p-elastic curves in S2(G) are normal, wavelike. We
also note that if a p-elastic curve in S2(G) is of type (IV) with a solution
ω of (3.2), and ω does not include (IV-ii) or (IV-iii) (resp. ω includes both
(IV-ii) and (IV-iii)), then it is orbitlike (resp. wavelike).

Remark 4. Let d ≥ minF such that d ̸= dλ, and let (u, v) be a curve in
S2(G) which satisfies (3.18) and (3.19) with some solution ω of (3.2). From
(3.20), we can see that (u, v) is wavelike (resp. orbitlike) if and only if ω(s)
changes sign (resp. ω(s) does not change sign). Moreover, from (3.18), we
can see that (u, v) is wavelike (resp. orbitlike) if and only if the range of v(s)
intersects both of the intervals (0, π/2) and (π/2, π) (resp. the range of v(s)
is included in one of the interval (0, π/2] or [π/2, π)).

For each d ≥ minF and (I) ∈ {(II), (III)}, if there is a solution ω of (3.2)
such that d = F (ω(0)) and ω is a type (I) solution of (3.2), we define

T
(I)
p;λ,d = inf{s > 0 | ω(s) = ω(0), ωs(s) = ωs(0) = 0},

Λ
(I)
p;λ,d =

∫ T
(I)
p;λ,d

0
us(s)ds (= u(T

(I)
p;λ,d)− u(0)),(4.1)

where u is defined by (3.19). We can see T
(I)
p;λ,d and Λ

(I)
p;λ,d are given by

T
(II)
p;λ,d =

∫ ω1;λ,d

ω2;λ,d

2p
√

d− F (ω)
dω, T

(III)
p;λ,d =

∫ ω1;λ,d

0

4p
√

d− F (ω)
dω,
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and

Λ
(II)
p;λ,d = 2p

√

G

d+ λ2

∫ ω1;λ,d

ω2;λ,d

λ− (p− 1)ω
p

p−1

(

1− Gp2

d+λ2ω2
)√

d− F (ω)
dω,

Λ
(III)
p;λ,d = 4p

√

G

d+ λ2

∫ ω1;λ,d

0

λ− (p− 1)ω
p

p−1

(

1− Gp2

d+λ2ω2
)√

d− F (ω)
dω.

In the case d = 0, although each non constant solution ω of (3.2) may not

be periodic, we define T
(IV)
p;λ,0 and Λ

(IV)
p;λ,0 by (3.9) and (4.1) with (I) = (IV),

respectively. More precisely, we define T
(IV)
p;λ,0 and Λ

(IV)
p;λ,0 by

T
(IV)
p;λ,0 =

∫ ω1;λ,0

0

2p
√

−F (ω)
dω,

Λ
(IV)
p;λ,0 =

2p
√
G

λ

∫ ω1;λ,0

0

λ− (p− 1)ω
p

p−1

(

1− Gp2

λ2 ω2
)√

−F (ω)
dω,

respectively. From Corollary 1 and Theorems 2 and 3, we can obtain the
following closedness condition for p-elastic curves in S2(G).

Theorem 4. Let d ≥ minF and let ω be a solution of (3.2) with ω0 ∈ R

and d = F (ω0). Then the following hold.

(i) If ω is of type (I), then

c(t) = (±2πt, v0), t ∈ [0, 1]

is a closed p-elastic curve in the coordinate (2.1), where ω(0) ∈
{0,±ω1;λ} and

v0 = arccot(−r|ω(0)|
2−p

p−1ω(0)).

(ii) If d ̸= dλ, ω is of type (II) (resp. ω is of type (III) ), (u, v) is a curve

in S2(G) which satisfies (3.18) and (3.19), and mΛ
(II)
p;λ,d = 2nπ (resp.

mΛ
(III)
p;λ,d = 2nπ) with some (n,m) ∈ Z× N satisfying n = 0, or n ̸= 0

and gcd (|n|,m) = 1, then c(t) given by

c(t) = (u(±mT
(II)
p;λ,dt), v(±mT

(II)
p;λ,dt)), t ∈ [0, 1],

(resp. c(t) = (u(±mT
(III)
p;λ,dt), v(±mT

(III)
p;λ,dt)), t ∈ [0, 1], )

which belongs to S, is a closed p-elastic curve in S2(G) and it passes

neither the north pole nor the south pole in the coordinate (2.1).
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(iii) If ω is of type (IV) and there is s0 > 0 satisfying ω(s0) = ω(0) and

ωs(s0) = ωs(0) = 0, and (u, v) is a curve satisfying (3.18), (3.19) and

u(s0)− u(0) = 2nπ

with some n ∈ Z, then (u, v) given by

c(t) = (u(±s0t), v(±s0t)), t ∈ [0, 1]

is a closed p-elastic curve in S2(G) and it passes neither the north pole

nor the south pole in the coordinate (2.1).

In order to study the shapes of the graphs of the realized solutions in
S2(G), we define the regions N and C in (0,∞)× R by

N =
{

(λ, d) ∈ (0,∞)× R | minF ≤ d < dλ

}

,

C =
{

(λ, d) ∈ (0,∞)× R | d > dλ

}

,

respectively. We say a p-elastic curve (u, v) in S2(G) satisfying (3.18) and
(3.19) with a solution ω of (3.2) is minimal period crossing (resp. non min-

imal period crossing) if (λ, d) ∈ C (resp. (λ, d) ∈ N or (u, v) is of type (I)).
For the sake of simplicity, we abbreviate minimal period crossing (resp.
non minimal period crossing) to MP–crossing (resp. non MP–crossing). The
reason why we define p-elastic curves in S2(G) are MP–crossing or non
MP–crossing is that the shapes of the curves in the case (λ, d) ∈ C and
those in the case (λ, d) ∈ N are drastically different. In fact, if (λ, d) ∈ N
or (u, v) is of type (I), from (3.10) and (3.19), we see that u(s) is mono-

tone increasing on (0, T
(I)
p;λ,d), while if (λ, d) ∈ C, us(s) changes its sign on

(0, T
(I)
p;λ,d), where (I) ∈ {(II), (III), (IV)}. So, if (λ, d) ∈ C, each p-elastic curve

{(u(s), v(s)) : 0 ≤ s ≤ T
(I)
p;λ,d} in S2(G) satisfying (3.18) and (3.19) with a

solution ω of (3.2) and ω0 ∈ R satisfying d = F (ω0) has a self-intersection
point; even in the case when ω is of type (IV), the curve (u(s), v(s)) corre-
sponding to each of the parts (IV-ii) and (IV-iii) has a self-intersection point.
See the figures of MP–crossing, closed p-elastic curves and non MP–crossing,
closed p-elastic curves in the next section. Figure 4 shows the regions N and
C in R

2. For the figure, we note that from the definition of dλ, it holds

(4.2) dλ < 0 ⇔ λ >
G

p

2 pp

(p− 1)p−1
and dλ > 0 ⇔ 0 < λ <

G
p

2 pp

(p− 1)p−1
.
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N

C

C

λ

d

d d
λ

=

O

2 1( 1
p

p pG p p −
−

1;( )d F
λ

ω=

Figure 4: The regions N and C.

5. Existence of flat-core, closed p-elastic curves and
numerical examples of closed p-elastic curves

In this section, we show the existence of a closed, flat-core p-elastic curves
in S2(G). For closed, normal p-elastic curves, it is not easy to give complete
conditions for p, λ and d when such curves exist. We consider that it is our
future work. Instead of giving rigorous proofs of the existence of p-elastic
curves of type (II) or those of type (III), we give some numerical examples of
them. However, we can easily show the existence of closed flat-core, p-elastic
curves as follows.

Theorem 5. There exist infinitely many closed flat-core, p-elastic curves

in S2(G).

Proof. A flat-core, p-elastic curve in S2(G) can be obtained through a type
(IV) solution ω of (3.2). Since ω can have (IV-i) as its part, we can find
that there exist infinitely many closed, type (IV) solutions of (3.2). In fact,

if mΛ
(IV)
p;λ,0 ̸= 2nπ with (m,n) ∈ N× Z, we can get a closed, flat-core solution

by gluing (IV-i). Even if m0Λ
(IV)
p;λ,0 = 2n0π with some (m0, n0) ∈ N× Z, we

can get a closed, flat-core solution by gluing (IV-i), and we can glue (IV-i),
(IV-ii) and (IV-iii) in arbitrary order. Hence, there exist infinitely many
closed flat-core, p-elastic curves in S2(G). □

From (4.2), we can see that in the case 0 < λ < G
p

2 pp(p− 1)1−p, flat-core,
p-elastic curves are non MP–crossing, and in the case λ > G

p

2 pp(p− 1)1−p,
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0 2 4 6 8 10 12

u

v

π/2

Figure 5: A non MP–crossing, flat-core, orbitlike, closed 3-elastic curve with
λ = 5, G = 1.

0 2 4 6

u

v

π/2

0 2 4 6

u

v

π/2

Figure 6: MP–crossing, flat-core, orbitlike and wavelike, closed 3-elastic
curves with λ = 100, G = 1.

they are MP–crossing. Figure 5 shows an example of a non MP–crossing, flat-
core, closed p-elastic curve, and Figure 6 shows examples of MP–crossing,
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flat-core, closed p-elastic curves. In these figures, red lines represent (IV-i).In
the rest of this section, we show some numerical examples of normal, closed
p-elastic curves. For each (n,m) ∈ Z× N with n = 0, or n ̸= 0 and gcd (|n|,m) =
1, and (I) ∈ {(II), (III)}, we define

(5.1) S(I)
n,m :=

{

(u, v) | (u, v) satisfies (3.18), (3.19) and mΛ
(I)
p;λ,d = 2nπ

}

.

By Theorem 4, each curve in S(I)
n,m is closed, p-elastic, it moves round S2(G)

n-times in the positive direction and it closes up after the time of m-period
of ω. We give some pictures of normal, closed p-elastic curves in Figures 7–9.
In Figures 7 and 8, each blue curve and each red curve represent half of a
minimal period curve.

u

v

π/2

0 2 4 6

Figure 7: An MP–crossing, normal, wavelike, closed 3-elastic curve belong-

ing to S(III)
1,4 ; λ = 3, d ∼ 6.762, G = 1.

u

v

0 2 4 6

/ 2π

Figure 8: An MP–crossing, normal, orbitlike, closed 3-elastic curve belong-

ing to S(II)
1,4 ; λ = 10, d ∼ −2.653, G = 1.



✐

✐

“6-Watanabe” — 2020/10/27 — 0:12 — page 1485 — #35
✐

✐

✐

✐

✐

✐

Total p-powered curvature of closed curves 1485

u

v

π/2

Figure 9: A non MP–crossing, normal, orbitlike, closed 3-elastic curve be-

longing to S(III)
4,3 ; λ = 5, d ∼ −0.401, G = 1.
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