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We consider a variational problem of p-elastic curves in two-
dimensional sphere. We give its first variation formula, and in two-
dimensional sphere, we give a realization of a solution which sat-
isfies that the first variation formula is zero. We also show the
existence of a flat-core, closed p-elastic curve.
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1. Introduction

An elastica is a curve which appears as a critical point, i.e., a stationary
curve of a variational problem for the total squared curvature of curves
under certain constraints. In the two-dimensional Fuclidean space case, in
1691, James Bernoulli proposed a problem of finding the possible shapes
of an inextensible rod such that its bottom end is fixed perpendicular to
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the ground and it is bent by a load sufficient to make its top end horizon-
tal. After that, Daniel Bernoulli discovered a functional which is suitable
for the problem, and Euler solved the variational problem; see [12} 13 [19].
It is known such variational problem has broad connections with various
fields, such as elliptic function theory, differential geometry, soliton theory,
etc. For example, it can be seen that stationary wave solutions (cn-wave
and dn-wave solutions) of the mKdV equations are essentially planar elas-
ticae; see [I8, Chapter 5]. As for the relation with differential geometry,
Langer-Singer [I1] and Bryant-Griffiths [7] studied the problem in Rieman-
nian manifolds with nonzero constant scalar curvature, in particular, in two-
dimensional spheres and two-dimensional hyperbolic spaces. Arroyo-Garay-
Mencia [IH6], Huang [9], Jurdjevic [10] and others developed the problem in
Riemannian manifolds by considering various functionals; see also [16]. In
[1], for a C*° function P(t), Arroyo-Garay-Mencia considered the functional

L
(1.1) J(c):/o P(k)ds

for each c: [0, L] — S%(G) of class C* such that dc/ds # 0, where L is the
length of ¢, x is the curvature of ¢ and S?(G) is a two-dimensional sphere
with constant Gaussian curvature G. They showed a first variation formula
for the functional, a closedness condition for a stationary curve, a second
variation formula, etc. They considered the particular case P(t) = vt + A
with A > 0. In [3] and [6], they also studied the case P(t) = (t — ko)? in two
dimensional spheres and in two dimensional hyperbolic spaces, respectively.
We note that Langer-Singer [11] and Bryant-Griffiths [7] studied the case
P(t) = t> + X\ with A € R.

In this paper, we consider the case P(t) = [t|P + A with p > 2 and A > 0.
In [I, Proposition 8|, Arroyo-Garay-Mencia showed that if P(t) =P, p > 2
and p € N, then C*-stationary curves of .J are only geodesics. (The assump-
tion p € N comes from that they assumed P(t) is of class C*°.) Instead of
C*-curves, we consider functional for P(t) = |t|P + A with p > 2 and
A >0 on

D ={ce C*[0,1],8%(Q)) | e(t) # 0 for each t € [0,1]}.

By a formal calculation based on the argument in [11} p.3] (see also Remark([l]
below), we can see that if ¢ € D is a stationary curve, then it seems that the
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curvature s of ¢ satisfies

(1.2) p(p— D|6P kg5 + p(p — 1)(p — 2)|K[P~ 2
+ (p — 1)|k|Pk 4 Gp|s[P~2k — Ak = 0.

We note that in the case p = 2, (1.2)) is identical with [I1], (1.2)]. However,
since ¢ € D has only C? regularity, & is only continuous in general. So it seems
to be difficult to consider its derivatives kg, kg5 as in . In addition, in
the case 2 < p < 3, since has a negative exponent of k, it seems to be
difficult to find a stationary curve of J whose curvature has a zero point,
and hence it seems to be hopeless to find C? stationary curves in the case
p # 2. Moreover, even if we obtain a solution of , it does not directly
imply the existence of a stationary curve of J. In the case p =2, it was
done with the aid of Killing vector field or Noether’s theorem; see [I}, [7} [11]
and others. However, since a solution x of may not be differentiable
in our setting, it seems to be difficult to apply them. Overcoming these
difficulties, we show the existence of C? stationary curves of J other than
geodesics whose curvatures may have zero points. Moreover, we will show
the existence of rather curious stationary curves of J, which we call flat-
core stationary curves of J. In [20], the second author considered a similar
problem in R2, he showed the existence of flat-core stationary curves for
a corresponding functional, like J. We note that the concept of flat-core
solution itself was introduced by Guedda-Veron [§] and recently developed
by Takeuchi [I7] for 1-dimensional nonlinear eigenvalue problems (not for
elasticae).

This paper is organized as follows. In the next section, we give a for-
mulation of our problem and a first variation formula to the problem. In
Section (3] we will show that if k satisfies that the first variation formula is
zero, like , then there is a stationary curve in S?(G) whose curvature
is k. In Section [ we give some classifications of the stationary curves. In
particular, we define minimal period crossing and non minimal period cross-
ing stationary curves. In the final section, we show the existence of closed,
flat-core stationary curves and we also show some numerical results of closed
stationary curves for various p > 2 and A > 0. Although numerical compu-
tations indicate the existence of various types of stationary closed curves in
any case of p > 2 and A > 0, it does not seem to be easy to give rigorous
proofs of their existence in general. We give some pictures of them. In our
future work, we will prove their existence in general.
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2. A local coordinate and first variation formula

Let S?(G) be a compact two-dimensional submanifold in R? with constant
Gaussian curvature G. Since any compact two-dimensional submanifold in
R3 of constant Gaussian curvature must be a sphere, which is Liebmann’s
theorem ([15, Theorem 3.7]), we consider that S?(G) is a sphere whose radius
is 7 = 1/4/G. We note that we use the relation

1
G==
r2

throughout this paper. Since we consider that S?(G) is a sphere in R? with

radius 7, we represent a point (r,y,z) in S?(G) with the polar coordinate
defined by

(2.1) (z,y,2) = (rsinvcosu,rsinvsinu, —r cosv),
(0<u<2m0<v<m),

and we consider that S?(G) has the standard Riemannian metric which is
induced from the embedding from S?(G) into R3. That is, we consider that

2 .2 2
Juu =T78I0°V,  Guv = Gou =0, G =T

is our Riemannian metric tensor. We say ¢ = (u,v) is a curve in S(G) if it
is represented as

c(t) = (rsinv(t) cosu(t), rsinv(t) sinu(t), —rcosv(t)), teR.
Let D be a set of C? curves in S?(G) defined by

D = {e= (uv) € (0,1, 84C)) |
)

c(t) = (rsinv(t) cosu(t), rsinv(t) sinu(t), —r cosv(t)),
ci(t) # (0,0,0) and 0 < v(t) < 7 for each t € [0,1]}.

Let ¢ = (u,v) € D whose length is L, and let s be its arclength parameter.
Then it satisfies

(2.2) r?sin? v(s)ugs(s)? + r2vg(s)? = 1.
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Such an arclength parameter can be defined as follows. Let s(¢) be the
function from [0, 1] into [0, L] defined by

s(t) = /0 NCOOrY

t
- / \/7“2 sin? v(t)ur(t)? + r2v(t)2 dt, ¢ € [0,1],
0

where (-, -)gs is the standard inner product in R?. Since
dsdt = /{a(®), B} > 0,

by the inverse function theorem, we can define its inverse function t(s) from
[0, L] into [0, 1]. We note t5(s) > 0, and we write c(s) = (u(s),v(s)) instead
of c(t(s)) = (u(t(s)),v(t(s))). Let ei(s) be the unit tangent vector cs(s) and
ex(s) its m/2-rad anti-clockwise rotation at ¢(s). Then, by the Frenet-Serret
formula, we have

Ve, (s)€1(s) = K(s)ea(s), (e1(s) = cs(s)).

Here, V¢, () is the covariant derivative to the direction e;(s). We obtain the
expression of the curvature of a curve in D as follows.

Lemma 1. Let ¢ = (u,v) € D and let s be its arclength parameter. Then
the curvature K of ¢ is expressed as

(2.3) K(s) = T‘2< — Ugs(5)vs(s) sinv(s) + us(s)ves(s) sinv(s)

— 2u(s)vs(s)? cosv(s) — us(s)? sin® v(s) cos v(s)) .

If a parameter t of ¢ does not represent its arclength, then x is expressed as

72 (—uttvt Sin v + ugvg sinwv — 2utvt2 cosv — u? sin® v cos v)

3
. 2
<r2 sin? v u? + 7"21)?)
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Proof. By direct calculations, we have

vs(s) cosu(s) cosv(s) — us(s)sinu(s)sinwv(s)
cs(s) =1 | us(s) cosu(s)sinv(s) + vs(s) sinu(s)cosv(s) |
vs(s) sinwv(s)

cos U (Vgs COS U — 2ugvg sinu) — sinw (uss sinu + cosu (ug + vg)) r
css(8) = 1| cosv (2usvs cosu + vgs sinu) + sinwv (uss cosu — sinu (ug + vg))

Vgs SINV + vg COS v

Using (2.2), we can see

(css(8),¢(8)) go = —12(us(s)?sin v(s) + vs(s)?) = —1,
(c(s) x cs(s),c(s) x cs( )rs = 1 (us(s)? sin® v(s) + vs(s)?) =17,

where X is the outer product, and hence we get

Vel(s)e1(8) = cg5(8) — <CSS(S)7,*26(8)>R36(8)

. . T
ug uZ cosucos? vsinv — 2ugvs COSUSIN U — Ugg SIN U SIN U + Vg COS U COS U
=T|—u y

?Slnucos2 VSN v 4 2UsVs COS U COSV + Ugg COS U SIN U + Vgg SIN U COS V

—ug cosvsin? v + vsg sin v

c(s) x cs(s) Ug COS U COS ¥V Sinv + vgsinu
ex(s) = = =71 | ussinucosvsinv — vgs COSU

(e(s) X es(s), e(s) X e5(s))2a e sin? v

From k(s) = <Ve1(s)e1(s),eg(s)>R3, we obtain (2.3). In the case when ¢ is
not an arclength parameter, by changing variables, we can show (2.4). O

Lemma 2. Let (u,v) € D and let s be its arclength parameter. Then it
holds that

{uss(s) sinv(s) = —vs(s) (2us(s) cosv(s) + k(s)),
Vss(8) = us(s) sinv(s) (us(s) cosv(s) + k(s)).

Proof. From (2.32) and (2:3), we have
(us(s) sinv(s) vs(s) > (uss(s) sinv(s)>

—us(s) us(s)sinw(s) vss(S)
—us(8)%v4(s) sin v(s) cosv(s)

- </<c(s)/'r’2 + 2us(s)vs(s)? cos v(s) + us(s)? sin? v(s) cos v(s)) '
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Using (2.2), we obtain
() = (MU )

. ( g (5)?v4(s) sin v(s) cos v(s) )
#(8) /7% 4 2us(s)vs(s)? cosv(s) + us(s)? sin? v(s) cos v(s)

B —vs(s) (2us(s) cosv(s) + K(s))

- <u3(s) sinv(s) (us(s) cos v(s) + m(s))) ' 0

In the rest of this paper, we always assume p > 2 and A > 0. We consider
the functional

L 1 1
J(c)—/o (‘/ﬁ;(s)‘p+/\)ds—/0 (|[£®]7 + ) (et er)zadt, ceD,

where s represents an arclength parameter of ¢, k is the curvature of ¢ and
L is the total length of c. In the case p = 2, it coincides with the one treated
n [I1]. We say a mapping c(w,t) : (—¢,¢) x [0,1] — S?(G) with € > 0 is a
variation of ¢ € D if it satisfies

(i) ¢(0,t) = ¢(t) for each t € [0, 1],
(ii) for each w € (—¢,¢), c¢(w, ) is an element of D,
(iii) for each t € [0,1], ¢(+,t) is smooth.

An example of such a mapping can be obtained by

C(wv t) = (u(wv t)v U(wv t)) = €XP(w(0,t),v(0,t)) (w(uw (07 t)? Vw (0’ t)))

for (w,t) € (—¢,¢) x [0, 1] with some ¢ > 0. We say ¢ € D is a p-elastic curve
if
dJ(c(w, -))

dw =0

w=0
for each variation c(w,t) : (—¢,¢) x [0,1] — S%(G) of c satisfying

c(w,0) = ¢c(0), c(w,0) = ¢ (0),

(2.5) c(w,1) =c¢(1) and ¢ (w,1)=c(1)

for each w € (—¢,¢). We denote by S the set of closed curves in D, i.e.,

S={ceD|c(0) =c(1), ct(0) = ct(1), et (0) = (1) }.
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We also say c € S is a closed p-elastic curve if

dJ(c(w, ))

=0
dw

w=0

for each variation c(w,t) : (—¢,¢) x [0,1] = S%(G) of ¢ satisfying c(w, ) € S
for each w € (—¢,¢).
Now, we give a first variation formula of J.

Theorem 1. Let (u,v) € D such that |k[P~2k is of class C2, where K is
the curvature of (u,v). Then for each variation c(w,t) = (u(w,t),v(w,t)) :
(—¢e,€) x [0,1] = S%(G) of (u,v) with e > 0, there holds

1 dJ(c(w,-))

r2

L
—— = / X (s) sinv(s) (—vs(s)uw(0, ) + us(s)vw(0, s)) ds
w=0 0

n [Yl(s)uw(o, 5) + Ya(8)0w(0, 8) + Y3 (8)ttas (0, 8) + Ya(5)vs (0, S)K

in the coordinate (2.1)), where s is an arclength parameter of (u(0,-),v(0,-)),
L is the total length of (u(0,-),v(0,-)) and

(s) = p(|s(s)[P%K(5)) ,, + (p — VI(5)[Pr(s) + Gplr(s) P 2k(s) — Ar(s),
Yi (s) = sinv(s) (Aus(s) sinv(s) + pg(s)(|6(s)[P2k(s))s)
%W )P~2k(s) cosv(s) — (p — 1)]k(s)[Pus(s) sin® v(s),
) = vs(5) (A = plr(s) [Pk (s)us(s) cosv(s) — (p — 1)|x(s)[?)
— pug(s)(|K(s)[P*k(s))s sinv(s),
Y3(s) = —plr(s)[P*k(s)vs(s) sinv(s),
Yi(s) = plr(s)[P*k(s)us(s) sinv(s).

Remark 1. If s is of class C2?, X(s) =0 is equivalent to (1.2)). We note
that if a curve in S?(Q) is of class C*, its curvature  is of class C?.

Before giving the proof of Theorem [I} we give a direct consequence of
the theorem.

Corollary 1. Let (u,v) € D such that |k|P~2k is of class C?, and let s and
X(s) be as in Theorem[l], and assume X(s) = 0. Then (u,v) is a p-elastic

curve in S?(G). Moreover, if (u,v) € S then (u,v) is a closed p-elastic curve
in S%(G).



Total p-powered curvature of closed curves 1459

Proof. Let c(w,t) = (u(w,t),v(w,t)) : (—&,€) x [0,1] — S?(G) be a varia-
tion of (u,v) which satisfies for each w € (—¢,¢). Let L be the total
length of (u(0,-),v(0,-)). We consider that s is the arclength parameter of
(u(0,-),v(0,-)) defined as in the beginning of this section. As we stated, we
write u(w, s) and v(w,s) instead of u(w,t(s)) and v(w,t(s)), respectively.
For the sake of completeness, we note that s is generally not an arclength
parameter of (u(w,-),v(w,-)) for w # 0, and that the meanings of wu,s(w, s)
and vys(w, s) are uy(w, t(s))ts(s) and vy (w, t(s))ts(s), respectively. From

(2.5), we have

U (0,0) = 1y (0, L) = v4,(0,0) = v,(0, L) = 0,
Us(0,0) = Vys(0,0) = s (0, L) = vy5(0, L) =0,

and hence
[Yl(s)uw((), $) + Ya(8)vw (0, 8) + Y3(8)uws(0,8) + Ya(s)vyws(0, s)]j = 0.

So, by Theorem [1} we can find that (u,v) is a p-elastic curve in S?(G).
Next, let (u,v) € S and assume c(w, -) € S for each w € (—¢,¢). From

Y;(0) =Y;(L) for eachi=1,2,3,4,
where Y7, Y5, Y3 and Y, are as in Theorem (1}, and
U (0,0) = uy(0,L),  y(0,0) = vy(0, L),
Uws(0,0) = 0us(0,0), s (0, L) = vus(0, L),
we can see that (u,v) € S is a closed p-elastic curve in S?(G). O

Now, we give the proof of Theorem [T}

Proof of Theorem[1 Let c(w,t) = (u(w,t),v(w,t)) : (—¢,¢)x[0,1] = S*(G)
be a variation of (u,v). We put

1

l(w,t) = (7"2 sin? v(w, t)ug(w, t)? + r2vp(w, t)2) °
m(w,t) = r? [—utt(w, tyvg(w, t) sinv(w, t) + w(w, t)vy(w, t) sinv(w, t)

— 2uy(w, t)vg(w, )% cos v(w, t) — ug(w, t)3 sin? v(w, t) cos v(w, t)].

Let s be the arclength parameter of (u(0, ), v(0,)) defined as in the begin-
ning of this section. We write u(w, s) and v(w, s) instead of u(w,t(s)) and
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v(w, t(s)), respectively. We define I(w, s), m(w, s) by

l(w,s) = <r2 sin? v(w, 8)us(w, s)? + r’vs(w, 8)2> 57
m(w,s) = r? [—uss(w, s)vs(w, s) sinv(w, s) + us(w, $)vss(w, s) sinv(w, s)

— 2uy(w, s)vs(w, ) cosv(w, s) — us(w, s) sin? v(w, s) cos v(w, s)} .

From
us(w, s) = u(w, t(s))ts(s),
Uss(w, 5) = u(w, t(s))(ts(s))” + ur(w, t(s))tss(s),
vs(w, s) = vi(w, t(s))ts(s),
0ss(10,5) = o (10, 1(5)) (£4(5))2 + v, 1(5) s (5)

N(wﬂ S) = l(wv t(S))tS(S), fn‘(wv S) = m(w7 t(S)) (ts(s))g )
1(0,s) =1, m(0,s) = k(s).

Using (2.2) and Lemma [2| we have

9 10,5) = 12 [us(s)? sinv(s) cosv(s)ua(0, )

+ 1(5) sin% 0(8) s (0, 8) + v5(8) Vs (0, 8)

and

a—m(o, 5) =12 (—uss(O, $)vs(0, s) cosv(0, s) + us(0, s)vss(0, s) cosv(0, s)

ow
+ 2us (0, 8)vs(0, 5) sinv(0, s) — 2u4(0, 5)® sin v(0, s) cos? v(0, s)
+ u,(0, 5)3 sin® v(0, s))vw(O, s) 4 12 (vss(0, s) sinv(0, s)
— cosv(0, 8)(2v5(0, 8)* + 3us(0, 8)* sin® v(0, 8)) ) s (0, 5)
— 1% (uss(0, 5) sinv(0, s) + 4u(0, 5)vs(0, 5) cos v(0, 5))vew (0, 5)
— 1r204(0, 5) 8in v(0, 8) s (0, 8) + 72us(0, 5) sin v(0, 8) Vg5 (0, 5)

=r? (vs(s)2(2us(s) cosv(s) + K(s)) cosv(s)

+ ug(s)? sinv(s) (us(s) cosv(s) + K(s)) cosv(s)
+ 2u(s)vs(s)? 3
+ ug(s)3 sin® v(s))vw(o, s) + 12 (us(s) sin? v(s)(us(s) cos v(s)

+ k(s)) — cosv(s)(2us(s)? + 3us(s)? sin? v(s)))usw(O, s)

sinv(s) — 2u,(s)® sinv(s) cos® v(s)
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+ 1% (v5(8) (2us(8) cos v(s) + K (s)) — dug(s)vs(s) cosv(s)) vy (0, 5)
— 17205(8) $i0 0(8) s (0, 8) + 725 () 8N V(8) Vg5 (0, 5)
= r? VS) cot v(s) 4 2us(s)vs(s)? cscv(s)

— u,(s)® sinv(s) cos 21)(8)] v (0, 8)

+ 7"2[ (s)us(s) sin® v(s) — %cosv(s)}uws((),s)
+ 72v4(s )[K(s) = 2us(s) cos v(s)]vws(0, 5)

— 1204(8) SN V(8) Unss (0, 8) + 7214(8) 80 V(8)Vyss (0, 5).

So, we obtain

dJ(c(w, -))

w=0 % 0
— ' _ —sp 0L m P
= [ (0= s0.07 S 0.0m0.0)

+ pl(0,) 3P |m (0, 1)[P~2m(0, t)g—Z(o, t) + /\%(0, t)) dt

L ol ,

= [M (=g 0000

+ p|m(s)]p_2/f(s)g:(0, s) + )\%(0, s)>ds

=2 /L <((1 —3p)|k(s)[P + A) {us(s)2 sinv(s) cosv(s)vy (0, s)
0

+ () 80 0(8) s (0, 8) + Vs(8) Vs (0, S)} + [K;S) cot v(s)

+ 2us(s)vs(s) cscv(s) — us(s)® sinw(s) cos 211(3)} v (0, )

+ [s(s)us(s)s 2@(5)—%0%2}( ) s (0,5
+ vs(s) [K(5) — 2us(s) cosv(s) | vus(0, s)

(
— v5(8) sinv(8)uyss(0, ) + us(s) sin v(8)vyss (0, s)) ds
L
= 7‘2 / (A(S)Uw(oa S) + B(S)uws(()’ 8) + C(S)'Uws (O’ S)
0

+ D(S)Uwss(oa S) + E(S)Uwss(oa 3)>d57
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where
A(s) =|k(s)|P [(1 — 3p)us(s)? sinv(s) cosv(s) + ?% cot v(s)]

+ [k(s)[P2k(s )[qus(s)vs( )2 esco(s) — pus(s)® sinv(s) cos 2U(S):|
+ Aug(s)? sinv(s) cos v(s)

B(s) = — (2p = 1)|r(s)[Pus(s) sin* v(s) — ﬁplﬂ(S)lp_Qﬁ(S) cos v(s)
+ Aug(s) sin® v(s),
C(s) = = (2p = Dr(s)Pvs(s) — 2p|r(s)[P~?k(s)us(s)vs(s) cos v(s) + Avs(s),
D(s) = — pli(s) [Pk (s)vs(s) sinv(s) = Y3(s),
E(s) = pl(s)[P~?k(s)us(s) sinv(s) = Ya(s).

Since |k(s)[P~2k(s) is of class C?, |k(s)|P is of class C'. Hence, A(s), B(s),
C(s) are of class C'. From Lemma [2, we have

{u55(5)|1€(8)|p2ﬁ(8) = —v,(s) escv(s) (2us(s) cos v(s)|k(s) P2k (s) + [k (s)[P),
Vs (8) () [P 2K(8) = us(s) sinv(s) (us(s) cosv(s)|k(s)[P~2k(s) + |r(s)[P).

So, we can find that uss(s)|x(s)[P2k(s) and vss(s)|x(s)[P~2k(s) are of class
C*, and hence D(s), E(s) are of class C?. Then, we obtain

1 dJ(c(w,-))

72 dw

L
_ / ((=B.(5) + Dys()) (0, 5)

w=0 0

+ (A(s) — Cs(s) + Ess(s))vw(0, s))ds

n [(B(s) — Dy(s))uw(0,8) + (C(s) — Es(s))va (0, s)]
L

+ [D(s)uws(O, 5) + E(8)us(0, s)} N

L

0

Using Lemma [2], we have

Duls) = =p{I(s)” (5. sin (o)
— plR(s)P 2R (s)u(s) sin® v(s) (us(s) cos v(s) + (s))

— plA(s) P~ 2k(s)vs(s)* cos o(s)

— —p(Ir(s)P 2 (s))svs(s) sin v(s)
(s) — pla(s)Pus(s) sin® o(s),

— P (s)[P"2k(s) cos v
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and hence we obtain

B(s) — Dy(s) = —(p — 1)|k(s)[Pus(s) sin® v(s) — %|H(s)\p_2/<c(s) cos v(s)
+ p(|K(8)|P2K(s) ) svs(s) sinv(s) + Aug(s) sin® v(s) = Yi(s).

From Lemma 2 and (p — 1)(|k(5)|P)s = pr(s)(|k(s)|P~2k(s))s, we can see

—Bs(s) + Dgs(s)

Similarly, we have

Cls) = Es(s) =

—Cs(s) + Ess(s) =

= pr(s)(|K(s) P2 (5))sus(s) sin® v(s)

— (p = Dr(s)[Pvs(s)(2us(s) cos v(s) + k(s)) sinv(s)
+2(p — 1)|6(8)[Pus(s)vs(s) sinv(s) cosv(s)

+ %(|/€(s)|p_2/£(s)) cosv(s)

— 7%]/{( )|p_2 (s)vs(s)sinw(s)

)
s(s)sinv(s)
s) sin? v(s)
5)? cos v(s)
) + K(s)) sinv(s)

osv(s)

s)(us(s) cosv(s) + K(s))

S

—(p—1)|x(s )|pvs(8) Pl ()P k() us (s)vs(s) cos v(s)
$)[P2k(s))sus(s) sinw(s) + Avs(s) = Ya(s),
s)P~ 2 K(8))svs(8)

|k (s)[Pus(s) sinv(s) (us(s) cosv(s) + k(s))

!p 2k(8))sus(5)vs(s) cos v(s)
r(5)vs(5)%(2us(s) cosv(s) + K(s)) cot v(s)
K(s)u ()2smv

—~
V2]
—~ =
—~
<
»
—~
VA
~—
Q
@]
w0
<
—~
VA
~—
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= p(1s(3)P25(5)) sstts(5) 50 0(5) + (p — 1) () Pi(s)uss () sin vs)
+ |5(s)[P((2p — Dus(s )2 sinw(s) cosv(s) — pus(s)? cot v(s))

+[1(5)[P72k(s) (—2pus(s)vs(s)? cos v(s) cot v(s)

+ pug(s)? sinv(s) cos® v(s) — pus(s)vs(s)? sin v(s))
— Mrug(s) sinv(s) — Aug(s)? sinv(s) cos v(s),
and hence we obtain
A(s) = Cs(s) + Ess(s)
= p(15(5) P 20(5) Yoot (5) sin v(5) + (p — 1) () Pr()us(5) sin o(5)
+ |k(s)P [(1 — 3p)us(s)?sinwv(s) cosv(s) + 7% cot v(s)
+ (2p — 1us(s)?sinv(s) cosv(s) — pus(s)? cot U(S):|

+ |k(8) P2 k(s) [qus(s)vs(s)2 cscv(s) — pus(s)® sinv(s) cos 2v(s)

— 2pug(s)vs(s)? cosv(s) cot v(s) 4 pus(s)® sinv(s) cos® v(s)

— pug(s)vs(s)? sin U(S):| — Akus(s) sinv(s)
= X (s)us(s) sinv(s).

Therefore, we have shown our assertion. O

3. Realization theorem of X (s) = 0 in S?*(G)

In this section, we will find a condition that (u,v) € D satisfies X (s) =0,
where X is the function given in Theorem (1| That is, for a given x(s) which
satisfies X (s) = 0, we give a p-elastic curve in S?(G) whose curvature is .

If we set k(s) = |w(s)|%w(s), then X (s) = 0 is transformed to
(31)  pwss(s) + (p— Dlw(s)| 7 w(s) + Gpw(s) — Aw(s)| = w(s) = 0.

We study the solutions of (3.1). Multiplying 2pws(s) to (3.1]) and integrating
it, we have

PPws(s)2 + (p— 12w(s)| 7T + Gplu(s)? — 2A(p — 1)|w(s)| 77 = d
with some constant d. We define F': R — R by

Fw) = (p— 12|72 + Gp2w? — 2A(p — D|w|T  for w € R.
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We note that F' is even and
F,(w)=2p(p— 1)|w|ﬁw + 2Gp*w — 2)\p|w\%w for w e R.
Here, we consider a differential equation

(3.2) {2p2wss<s> +F(w(s) =0, scR,

ws(0) =0, w(0) =wy€R.

We note that the first line in (3.2)) is the same as (3.1)).
In order to study (3.2)), we investigate the behavior of F. We define

(3.3) H(w) = (p— 1)|w|77 +Gplw|r— —A  for w € R.
We note it holds
(3.4) F(w) = 2plw|twH(w) forweR
and both and the first line in are the same as

Pwss(8) + |w(s)| 7~ w(s)H(w(s)) =0, seR.
Recall that we always assume p > 2 and A > 0. Hence, by , we can easily
see that H(w) = 0 has exactly one positive root, and we put it wj.y. For the
sake of completeness, we note that

{weR | F,(w) =0} = {0, +w.\},

and the following holds.

Lemma 3. F has local extremes as follows: 0 is a local mazimizer, £wy.)
are global minimizers, and F does not have any other local extreme.

Proof. We note it holds for w > 0,

1 1 —-2) _1
F,(w) =2pwr—1 H(w), H,(w) =pwr7 + Gp(pl)w p1,
p —_—
and H(0) = —\ < 0. Since H is monotone increasing on (0, 00), F,, changes

its sign only once from minus to plus at w = wy;) on the interval (0, 00).
Thus, F' takes its minimum at w = Zw;.). Hence, we can easily see that our
assertion holds. O
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F(w)

Drpa Oy By !U
. T

\ 7

Figure 1: The Graph of F' in the case p =3, A=7 and G = 1.

For reader’s convenience, we give a figure of the function F. The definitions
of wi; d, wa;x 4 in the figure are given as follows. We set

min F' = anellg F(w)(= F(win))-

From Lemma (3| we see that for each d > min F', the equation F(w) = d has
at most two positive roots and at least one positive root. We put these roots
W1iA,d > Wa;x 4 as long as they exist. In other words, we set

{wina} in the case d > 0 or d = min F,
{wind,war 4} in the case min F' < d < 0.

{w>0\F(w):d}:{

Now, we study the solutions of (3.2]) in Lemmas [4f and [5| In particular, we
will show that problem ({3.2)) has multiple solutions in the case F'(wg) = 0.

Lemma 4. Let wy € R such that
(3.5) F(wy) #0 and F(wy) # F(wi;n)-

Then, (3.2) has a unique solution defined on R, and it is non constant and
periodic.

Proof. From the evenness of F' and wy # 0, without loss of generality, we
may assume wg > 0. From

2 A 2-p
Fow(w) = 2p<(p + Dw|r=1 + Gp — HIWIPI) for w # 0,

we can find the local Lipschitz property of F,, as follows:
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(L) F, is locally Lipschitz on R\ {0} and it is not locally Lipschitz at 0.

Since (3.2)) is equivalent to the initial value problem of the system of first
order differential equations

ws(s)\ _ (s) > <u%0)>__ <um>
<¢s<s>> - (—Fw<w<s>>/<zp2> forseiand {40)) = o)
from and wg > 0, we can see that has a unique solution in a neigh-

borhood of s = 0. By a similar argument in the beginning of this section,
we see that each solution of (3.2 satisfies

(3.6) PPws(s)? = Flwo) — F(w(s))

as long as it exists. Let I be the maximal interval such that (3.2)) has a
unique solution on I. We will show I = (—o0, 00). To the contrary, without
loss of generality, we may assume 0 < s; < 00, where s1 = sup I. From (3.6)),
we have

(3.7) F(wg) > F(w(s)) foreach sel.

In the case F(wp) <0, from , we can easily see that the solution is
uniquely extendable on an interval I U [sq, s1 + €1) with some €1 > 0. This
is a contradiction. So, we consider the case F'(wp) > 0. If w(s1) # 0, then
from , we can easily see the solution is uniquely extendable on an in-
terval I U [s1,s1 + e2) with some €3 > 0. Hence, without loss of generality,
we may assume w(s) > 0 for each s € [0,s1) and w(s1) = 0. From and
(3-7), we have ws(s) < 0 for each s € (0, 51]. We note that in a small open in-
terval containing s; on which ws does not vanish, the differential equations
2p%wss(s) + Fu(w(s)) = 0 and p?ws(s)? = F(wp) — F(w(s)) are equivalent.
Thus we have

wils) = ]19\/F(w0) " Fw(s)) for s € [0,s1].

From F'(wp) > 0, the mapping w — /F(wp) — F(w) is locally Lipschitz at
w = 0, Hence, we can see that the solution is uniquely extendable on an inter-
val I U [s1, s1 + €3) with some £3 > 0. This is also a contradiction. Therefore,
we can see | = (—00,00), i.e., under assumption , problem has a
unique solution.

Next, we will show that under assumption , each solution of is
non constant and periodic. From , we have F,,(wo) # 0, and hence the
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unique solution of (3.2)) is non constant. We recall we assumed wy > 0. We
set w1 by

—Wi Fw) if F(wo) > 05 (We note wy = wy;y p(w,) in this case),
W1 = W2\ F(wo) if F(WO) < 0and wy = WL, F(wo)>
Wi F(w)  if Fwo) <0 and wo = wax Fw)-

We will show that there is 5o € (0, 0o] such that w(s) # wy for each s € (0, sp)
and w(s) = w1 as s — so. If such s € (0, 00] does not exist, from (3.6)), we
can see ws(s) # 0 for each s >0, and hence inf{|ws(s)|:s € (0,00)} > 0.
Since w is bounded by , it is a contradiction. Hence such sy exists. We
will show that sq is finite. Once 0 < sg < oo was shown, we can see that w
is periodic and 2sp is the minimal period of w. In the case w; < wy, i.e., in
the case wo = wi;x p(wy), We have Fi,(wo) > 0, Fi,(w1) <0,

1 1 1

F(WO) — F(CL)) = Fw(wo) (1 + O(WO - W)) (wo - w)ii as w — wp — 07

and
1 B 1
VF(w) — F(w) /F(w) - F(w)
- _Flwwu 4+ 0w — w1))(w — wi) "

as w — wy + 0. Using (3.6]), we see that

So w1 d W1
80:/ ds:/ de:/ P dw
0 wo dw wo F(WO) - F(w)

is finite. In the case wp < wy, i.e., in the case wy = wy.) F(u,), We can show
so < oo similarly. Hence, we can see that the unique solution of ([3.2)) oscil-
lates between wgy and wy and it is periodic. O

Lemma 5. The following hold.

(i) If F(wo) = 0, then problem (3.2) has multiple solutions defined on R.
(ii) If F(wo) = F(w1;)), then problem (3.2) has a unique solution defined

on R and it is constant.

Proof. We can easily see (ii) by Lemma 3| and (3.6)). We will show (i). Let
wo € R with F(wp) = 0. Without loss of generality, we may assume wy > 0.
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By similar arguments as in the proof of the previous lemma, we can see that
there is sg € (0, 00] such that w(s) > 0 for each s € [0, sp) and w(s) — 0 as
s — s9. We will show that sg is finite. Noting F,,(wo) > 0, we have

1 1

V@  /F@o) - F@)
- Fj(wg)(wo —w)_% +O(wp —w) asw —wy—0.

Since p/(2(p — 1)) < 1 and

1 1
= for w € (0,wp),

V-FWw) i \/2)\(p 1) = (p—1)2wr — Gp%uz%f

we can see that

wo dw
(3.8) So=p ——

0 V—F(w)

is finite. Hence, for example, both @&(s) and @&(s) defined by

5(s) w(s —2nsg) for 2nsy < s < (2n+ 1)sg and n € Z,
w(s) =
w(2nsg —s) for (2n —1)sg < s <2nsp and n € Z

and
0 for s < —sy,
~ w(—s) for —sp < s <0,
w(s) =
w(s) for 0 < s < s,
0 for s > s
are solutions of (3.2)). Thus, we have shown (i). O

The next lemma classifies the solutions w of (3.2) with wp € R and d = F'(wy)
into four types f below. We note that such solutions satisfy

F(wp) = max F(w(s))

and that type () solutions exist only when d = 0 or d = F'(w1,5), and types
, and solutions exist only when d < 0, d > 0 and d = 0, respec-
tively.
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(I) (d=0or d = F(w;;x)) Constant solution w = wy. (wp is one of 0 and
iww\.)

(IT) (d < 0) Positive or negative periodic solution which oscillates between
wi:ng and way ¢ O —wi;) g and —wa,) 4. (For the sake of completeness,
if w oscillates between wy.) o and 0 or —wy.y o and 0, we do not call it
type solution, but we call it type solution; see below.)

(III) (d > 0) Sign changing periodic solution which oscillates between
—w1;n,d and wi;) g-

(IV) (d = 0) Solution constructed along the following rule.
— It consists of the following , (IV-ii) and ([V-iiif).
— It includes at least one of or (@ .
— Tt is obtained by gluing (TV-il), (IV-ii) and ([V-iii) in arbitrary order.
(IV-i) Constant zero solution on [sg, $1], where sg, s are any elements in
[—00, 00] with sp < s1. In the case so = —o0, [—00, 51] is considered
as (—oo, s1] and in the case s1 = 00, [sg, 00| is considered as [sg, 00).
(IV-ii) The solution of

2p2w38(5) + F,(w(s)) =0, s€[so,s0+ T,
ws(s0) = w(so) =0,
w(s) >0, se&(sg,s0+T),

where sg is any real number and 7" > 0 is the constant given by

W1;X,0 2p

———dw.
0 vV —F(w)

(3.9) T =

(IV-iii) The solution of

2p2wss(s) + F,(w(s)) =0, s € [so,s0+T],
ws(s0) = w(sp) =0,
w(s) <0, se(so,s0+1T),

where sg is any real number and 7" > 0 is the constant given in

B9).
We sometimes call type solution of (3.2)) a flat-core solution. Glued so-

lutions such as ([V-iil), (IV-i)-(IV-ii))-(TV-iii)-(IV-if), ([V-ii)-(IV-iii), ([V-ii))-
(IV-i)-(IV-iii) are examples of flat-core solutions. For the last one, we give
a graph of a flat-core solution; see Figure |2l The following is a direct conse-
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(IV-ii)

Figure 2: A graph of a flat-core solution of equation (3.2) composed by
(TV-ii), (IV-i), (IV-iiil); p=3, A =7 and G = 1.

quence of Lemmas ] and [f] We note that we can see the existence of flat-core

solutions of (3.2)) by Lemma [5| (i).

Lemma 6. Letd > min F'. Then all the solutions w of (3.2) with d = F(wy)
are classified as in the following table.

’ | d | solution type ‘
(i) | d= F(wiz) [Mx2 (w=twi,)
(il) | Flwin) <d <0 | ([@M)x2 (—wipg € w < —wangs wond < w < wind)
(iii) | d =0 (D) (w=0),
(iV) d>0 (L1I) (—wl;,\vd <w< ww\,d)

Table 1: Table of solution types.

Figure 3| gives graphs of prototypical solutions of (3.2]).
In order to realize a solution of X (s) =0 in S%(G), we define dy by

A\ of AN,
dx F((p—l) ) Gp <p—1> A (> min F' = F(wy,)))

The following lemma is crucial to realize solutions of X (s) = 0 in S%(G); see
Theorem [3| Moreover, it gives information of the shapes of the graphs of the
realized solutions in S2(G); see Section



1472 N. Shioji and K. Watanabe

t R el S (V) d>0

@, 2 (iii) d =0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (if) F(@,,) <d <0

(I) )d=F(m,)

@ 2
" ’\ 77777777777777 /

(iii)

@54

004

O

Figure 3: The graph of F in the case p =3, A =7 and G = 1, and graphs
of solutions (3.2)) for (I)—(III).

Lemma 7. Letd>minF. Then d+ A2 > 0 and

)
d+ X A =
wind < \@ < <p — 1) : in the case d < dy,
d+ X A =
(3.10) Wing = A ( ) : in the case d = dy,
w Gp? p—1

- ( A )"pl - - d+ \?
wi. — w1 —_—
LA p—1 LAd Gp?

i the case d > d.

Proof. From d > min F' and
(3.11) F(w) = ((p = Dw|7T = A)* + Gp*w? = A2,

we have d + A2 > 0. From (3.11]),

(3.12) F, ((pil> ) = 2Gp? (pil> o > 0,

and the definitions of wy.) 4 and dy, we have

p—1

A pP—2
WiNd = (*) ' o d=d,.
p—1
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Hence, if d # dy, then d + \? = F(winag) + A2 > Gp2wiA7d. So we have

d+ A2 dy + A2
(3.13) \/;—pQ Swig ifd#dy,  and AG; = Wi d,-

On the other hand, since

d+>\2_( AVE A
Gp*  \p B

we can easily see

2 p=1
d+ X <( Al) " i d < dy,
p

(3.14) C“”?:(pA >_ if d = dy,

( A )"pl< d+ \2

Gp?

pr— if d > dj.

Hence, from (3.13]) and -, we can see 0) except for the case d > d).

We consider the case d > dy. Since we have wind > Wi, Flwing) =d >
dy = F((\/(p—1))P~1/P) and ([3.12), from Lemma we obtain

p—1

AT
w1 < (7) < WiNd-
p—1

Noting , we have shown in the case d > dj. O
Now, we give our realization theorems of X (s) = 0 in S%(G).

Theorem 2. Let wy € {0,Fwi.)\}, and let

(3.15) vg = arccot(—r|w0|%wo>.

Then s represents an arclength parameter of the curve

(3.16) < - ,vo>
7 sin vy
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in S%(G), (3.16) has a constant curvature |w0]%wo, and (3.16)) satisfies
X (s) = 0. In particular, for each sg,s1 € R with so # s1,

(3.17) <50+(8150)t7vo>7 t€[0,1]

T sin vg
is a p-elastic curve in S*(G).

Proof. Let (u,v) has form (3.16]). From (2.2)), we can find that s represents
its arclength parameter, and from , we can see that it has constant

curvature ko = —(cotwvg)/r. By ko = (cot vo)/r and (B.15]), we have kg =
|w0|p T wp. From wp € {0, +wi,\}, we can see

X(S) = p(|f€0’p72lﬁlo)ss + HOH(|K}0’p72/€0) = \w0|ﬁw0H(w0) =0.
Therefore, we have shown that our assertion holds. [l

Theorem 3. Let d > min F' such that d # dy. Let w be a solution of (3.2))
with wy € R and d = F(wp), and let (u,v) be a curve in S*(G) satisfying

(3.18) = arccos( \/ d—i—)\pr( ))>
— (p = Dw(s)[
19 F e

for s € R. Then s represents an arclength parameter of the curve (u,v), i.e.,
it satisfies (2.2)), the curvature £(s) of (u,v) satisfies
(3.20)

k(s) = |w(s)|»Tw(s) (which is equivalent to w(s) = |k(s)|P~2k(s)),

and there hold
X(s)=0 foreachseR

and
(3.21) 0<w(s)<m foreachseR.

In particular, for each sg,s1 € R with so # s1, the curve in S*(G) defined
by

(3.22) c(t) = (u(so + (s1 — s0)t),v(so + (s1 — s0)t)), t € [0,1],
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which belongs to D, is a p-elastic curve in S*(Q), and it passes neither the
north pole nor the south pole in the coordinate (2.1)).

Remark 2. In Theorem |3 if w is constant, a curve (u,v) satisfying
and is essentially the same as . We will show it. Assume that w
in the theorem is constant. From X(s) =0, we have w(0) =0, or w(0) #
0 and H(w(0)) =0. In the case2w(0) #0 and H(w(0)) =0, we can see

A—(p—1)|w(0)[77 = Gplw(0)|>, v is a constant function, cosv =
G/(d+ X?) pw(0), and

- G A—(p —1)|W(0)|p%1
us(s) = \/; 1— d+)\2w(0)2

cosv  Gplw(0 )|p,1 B 1 cot v
pw(0)  sin’v rSINU ()] w(0)
From cosv = —/G/(d + A?) pw(0) and (B.10)), we have

0<wv<m/2 in the case w(0) <0,
m/2 <v <7 in the case w(0) > 0.

So we have u4(s) > 0. Since s represents an arclength parameter of (u,v)
from Theorem [3] we obtain

cotv

1 = (rsinv)uys(s) = ———————,
rlw(0)[»~Tw(0)

which yields (3.15) and (u(s),v(s)) = (s/(rsinvg),vg). In the case w(0) = 0,
we have us(s) = /G/(d+ A2) A > 0 and v(s) = 7/2, which implies (3.15))
and (u(s),v(s)) = (s/(rsinwvg), vg). Therefore, in both cases, we can see that
our assertions hold.

Proof of Theorem [ We note that the denominator d + A\? in (3.18)) is posi-
tive by Lemmal7] Since d > min F, d # dy and |w(s)| < wy;zq for each s € R,

from Lemma [7] we have
G
Ve re)

sup < 1.

seR
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Thus the denominator in (3.19) is also positive and (3.21)) is proved. We will
show that s is an arclength parameter of (u,v). From (3.18]), we have

- ]G s
3.23) sinv(s)vs(s) = PRy s(s),

sin?u(s) =1 — P w(s)?.

Using (3.6) and (3.11]), we can see

P

(A= (0 = Dl(s)|77)” + pPws(s)”
=A=(p-1)|w $)|Pl%1)2 +d— F(w(s))
—d+ N\ — GpQw(s)Q.

Hence, we obtain

r? (sin v(s))Zus(s)2 + r?v,(s)?
_\2

(1= ) S O D)

2 2 Gp? 2
d+ A d+ X (1_ﬁp)\2w<3)2)
G 1
+7"2 2ws S 2 p)
d+/\2p ) L— ﬁrp,\z‘w(s)2

(A== D)7 4 pPwy(s)?

=1
d+ N2 — Gpw(s)?

Thus, we have shown that s is an arclength parameter of (u,v). Next, we
will show (3.20)). From Lemma [2| we have

—u4(s)% cosv(s)sin® v(s) + vss(s) sinv(s)

us(s) (sin v(s))2

(3.24) K(s) =

By differentiating the first equation in (3.23]), we obtain

: /| G
vss(s) sinv(s) = —vy(s)% cosv(s) + mpwss(s),
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which, (2.2]) and (3.1)) yield

2 2

— us(8)* cosv(s) sin v(s) + vss(s) sinv(s)

= —u4(s)? cosv(s)sin® v(s) — vs(s)? cosv(s) + \/ 7 f)\Q pwss(8)
= ~Geosuls) ~ | 55 (0= Dles) Frels)

+ Gp(s) = Aw(s) [T w(s) )

From (3.19) and the second equation in (3.23)), we have

%@ﬁﬁw®=¢;fv0—@—ww@wﬁy

which and (3.24) yield (3.20). Since w(s) is of class C?, so is |k(s)[P~2k(s).
Thus the assumption of class C? of |k (s)[P~2k(s) in Corollary (Theorem
is satisfied. From and -, we have

(325)  p*((K(s)P7?k(5))s)? = d — (p — 1)*|K(s)[*
= GP?|(s)PPY + 2(p — 1)|R(s) PP,

which yields X (s) = 0. Hence from Corollary |1} we can see that (3.22)) is a
p-elastic curve in S?(G). O

Remark 3. We will show how to find (3.18) and (3.19)). Assume that v
takes the form

(3.26) cosv(s) = C1|k(s)[P~2k(s).

In Theorem [1, we have shown that if s is an arclength parameter of the
curve (u,v) € D then X(s) =0 is sufficient to be that (u,v) is a p-elastic
curve. Moreover, in the proof, we have shown

d¥1

(3.27) —

——(8) = Bs(s) — Dss(s) = vs(s) sinv(s) X (s).
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So it is sufficient that s is an arclength parameter of (u,v) and Yi(s) = Co
with some constant Co. We assume Y7 (s) = Cy, i.e.,

(3.28) ((p = V)](s)[? = ) (sinv(s)) *us(s)
= —Cy + p(|K(s)[P2K(s))svs(s) sinv(s)
— Gplr(s)[P~2k(s) cosv(s).

From (3.27) and Yi(s) = Ca, we have X(s) =0, and hence (3.25) holds
with some d > min F. From ([3.26]), vs(s) sinv(s) = —C1(|k(s)[P~2k(s))s and

(3.28]), we have

us(s) = —Cy = (P ((K(s) P2 (K(s))s ) +Gp RO

) (0~ DI — ) (1 - )P )
Oy f(d—( —1)2\H(8)!2”+2A( — D)|x(s)[?)
(= D) =) (1= CElr(s)PEY)

Sl - >m<nb—2x —1»«)@—%%—d)
((p = DIs(s)lP = 2) (1 = Cln(s)[2F=D)

We choose Cy to satisty —pCq/Cy — d = A2. Then we have

Ci((p = DIr(s)” = A)
p(1 = Cflr(s)]Pr=1)) -

(3.29) us(s) =

From ([3.25) , vs(8) sinw(s) = —C1(|k(s)|P~2k(s))s and (3.29)), we have

CH(p = DIr(s)P - A’ .
p;(l - Cl2|;~;(5),2(p_1))2 (1- C2 |k (s) X 1))2
C3((|r(s)P~2k(s))s)”
p2(1 - C12|[{/(5)|2(p71))
= Crd+X° - Gp2|l€(5)|2(p—1))
 p2(1 - C3lk(s)|2e-D)

us(s)?sin? v(s) + vs(s)? =

Hence, if Cy = —/G/(d 4+ A\?) p, then we can see (2.2)) and Co = \/G(d + \?).
Therefore, we have deduced the expressions (3.18]) and ([3.19)).
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4. Classifications of p-elastic curves in S?(G)

In this section, we give some classifications of our p-elastic curves in S?(G).
Let d > min F. We say a p-elastic curve in S?(G) is of type () if it is defined
as in , and we say a p-elastic curve in S?(G) is of type , or
if it is defined by and with a solution w of , and
w is of type , or , respectively. We also say a p-elastic curve
in S?(G) is flat-core (resp. normal) if it is of type (resp. if it is of
one of type (), or (). Following [11], [16], we say a p-elastic curve in
S2(G) is orbitlike if its curvature does not change sign and it is wavelike if its
curvature changes sign. Thus type , p-elastic curves in S?(G) are normal,
orbitlike, and type ([TI)), p-elastic curves in S%(G) are normal, wavelike. We
also note that if a p-elastic curve in S?(G) is of type with a solution
w of , and w does not include ([V-ii) or (IV-ii) (resp. w includes both
(IV-ii)) and (IV-iii)), then it is orbitlike (resp. wavelike).

Remark 4. Let d > min F' such that d # d, and let (u,v) be a curve in

S?(@) which satisfies (3.18)) and (3.19) with some solution w of (3.2). From
(3.20), we can see that (u,v) is wavelike (resp. orbitlike) if and only if w(s)

changes sign (resp. w(s) does not change sign). Moreover, from , we
can see that (u,v) is wavelike (resp. orbitlike) if and only if the range of v(s)
intersects both of the intervals (0,7/2) and (7/2,7) (resp. the range of v(s)
is included in one of the interval (0,7/2] or [7/2,7)).

For each d > min F and (J) € {(II), (IIT) }, if there is a solution w of ([3.2))
such that d = F(w(0)) and w is a type (J) solution of (3.2), we define

TO) = inf{s > 0] w(s) = w(0), ws(s) = w(0) = 0},

7
~ pi;A,d 5
@ A= [ s (= uT R — ulo)).
where u is defined by (3.19). We can see T 153\)7 g and AI():? 4 are given by

WiN,d 2 W1ia,d 4
7D / P dw. 0 _ P dw,

A VA F) pAd Vd— Fw)



1480 N. Shioji and K. Watanabe

and .,
G Wiid.d A—(p—Dwrt
A(H) — 2]3 / dw
A.d )
P d+ X Ju . (1- dﬁAQwZ) d— F(w)
A wrd — (p— Dwr
A d =49\ 3 / € dw
p d+ A\ 1 — ﬁp)@ ) d— F(w )
In the case d = 0, although each non constant solution w of may not
be periodic, we define T( ) and A;IXO by (3.9 . and . Wlth = (IV),

respectively. More premsely, we define Tp(.;/% and A;I'}\/)O by

W1i;x,0 2

Iv)
T ) = 7dw
;A0 0 /_F
2 / W1i;x,0 _ —1 ﬁ
AS3o = p G( L dw,
DiA, p ) _F(w)

respectively. From Corollary [1] and Theorems [2] and [3] we can obtain the
following closedness condition for p-elastic curves in S?(G).

Theorem 4. Let d > min F' and let w be a solution of (3.2) with wy € R
and d = F(wg). Then the following hold.

(i) If w is of type , then
c(t) = (£27t, v), t €10,1]

is a closed p-elastic curve in the coordinate (2.1)), where w(0) €
{0, 2w\ } and

vy = arccot(—r|w(0)|%w(0)).

(i) If d # dy, w is of type (resp. w is of type (III) ), gu, v) is a curve
. 2 . . (11
in S*(G) which satisfies (3.18) and (B.19), and mA prd = 2nm (resp.
mA(If\I)d = 2n7) with some (n m) €ZxN satzsfymg n=0, orn#0

and ged(|n|,m) = 1, then c(t) given by
c(t) = (u(FEmT 1), v(EmT) ), te0,1],
(resp. () = (u(EmTH00), 0@EMTH),  te0,1],)

which belongs to S, is a closed p-elastic curve in S*(G) and it passes
neither the north pole nor the south pole in the coordinate (2.1)).
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(i) If w is of type and there is sp > 0 satisfying w(sp) = w(0) and
ws(s0) = ws(0) =0, and (u,v) is a curve satisfying (3.18), (3.19) and

u(sg) — u(0) = 2nm
with some n € Z, then (u,v) given by
c(t) = (u(£sot),v(£sot)),  t€[0,1]

is a closed p-elastic curve in S*(G) and it passes neither the north pole
nor the south pole in the coordinate (2.1)).

In order to study the shapes of the graphs of the realized solutions in
S?(@), we define the regions A" and C in (0,00) x R by

N =

{(/\,d) € (0,00) xR | min F < d < d,\},

c= {()\,d) € (0,00) xR | d > dk},

respectively. We say a p-elastic curve (u,v) in S?(G) satisfying and
with a solution w of is minimal period crossing (resp. non min-
imal period crossing) if (A, d) € C (resp. (A, d) € N or (u,v) is of type (I)).
For the sake of simplicity, we abbreviate minimal period crossing (resp.
non minimal period crossing) to MP—crossing (resp. non MP—crossing). The
reason why we define p-elastic curves in S?(G) are MP-crossing or non
MP—crossing is that the shapes of the curves in the case (\,d) € C and
those in the case (\,d) € N are drastically different. In fact, if (\,d) € N/
or (u,v) is of type (I), from (3.10) and (3.19), we see that u(s) is mono-
tone increasing on (O,sz\yd), while if (A, d) € C, us(s) changes its sign on
(0, T;E?/\),d)’ where (J) € {(II), (III), (IV)}. So, if (A, d) € C, each p-elastic curve
{(u(s),v(s)) : 0 < s < T} in S%(G) satisfying (18) and (B-19) with a
solution w of and wp € R satisfying d = F(wp) has a self-intersection
point; even in the case when w is of type (IV]), the curve (u(s),v(s)) corre-
sponding to each of the parts (IV-ii) and (TV-iii) has a self-intersection point.
See the figures of MP—crossing, closed p-elastic curves and non MP—crossing,
closed p-elastic curves in the next section. Figure [d shows the regions N and
C in R?. For the figure, we note that from the definition of dy, it holds

G:pP

G pP
p_1)p1 =11

4.2 d A .
(4.2) A<0&e A > 1

and dy>0<0< A<
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d
C
GEpP(p-D7
2
[¢]
N @
_d=d,
d=F@,)

Figure 4: The regions N and C.

5. Existence of flat-core, closed p-elastic curves and
numerical examples of closed p-elastic curves

In this section, we show the existence of a closed, flat-core p-elastic curves
in S2(G). For closed, normal p-elastic curves, it is not easy to give complete
conditions for p, A and d when such curves exist. We consider that it is our
future work. Instead of giving rigorous proofs of the existence of p-elastic
curves of type ([II)) or those of type , we give some numerical examples of
them. However, we can easily show the existence of closed flat-core, p-elastic
curves as follows.

Theorem 5. There exist infinitely many closed flat-core, p-elastic curves

in S%(G).

Proof. A flat-core, p-elastic curve in S%(G) can be obtained through a type

(IV]) solution w of (3.2). Since w can have 1' as its part we can find
that there exist infinitely many closed, type (IV]) solutions of (3.2). In fact,

if mAI() A0 75 2nm with (m,n) € N x Z, we can get a closed, ﬂat core solution
by gluing (I . Even if mOA( )0 = 2nom Wlth some (mg,ng) € N x Z we

can get a closed ﬂat core solutlon by gluing (I , and we can glue (| ,
(IV-ii) and ( in arbitrary order. Hence, there exist infinitely many

closed ﬂat—core, p—elastic curves in S%(G). O

From (£.2), we can see that in the case 0 < A < G2pP(p — 1)'~P, flat-core,
p-elastic curves are non MP—crossing, and in the case A > G pP (p— 1)L,
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Figure 5: A non MP—crossing, flat-core, orbitlike, closed 3-elastic curve with
A=5G=1.

. Q.

/2

u

Figure 6: MP—crossing, flat-core, orbitlike and wavelike, closed 3-elastic
curves with A = 100,G = 1.

they are MP—crossing. Figure[5]shows an example of a non MP—crossing, flat-
core, closed p-elastic curve, and Figure [6] shows examples of MP-crossing,
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flat-core, closed p-elastic curves. In these figures, red lines represent .In
the rest of this section, we show some numerical examples of normal, closed
p-elastic curves. For each (n,m) € Z x Nwithn = 0, or n # 0 and ged (|n], m) =
1, and (J) € {(I), (III) }, we define

(5.1) Sg}n ::{(u,v) | (u,v) satisfies (3.18]), (3.19)) and mAg))Hd = 2n7r}.

By Theorem each curve in 87(137)71 is closed, p-elastic, it moves round S?(G)
n-times in the positive direction and it closes up after the time of m-period
of w. We give some pictures of normal, closed p-elastic curves in Figures [7{9}
In Figures [7] and [8] each blue curve and each red curve represent half of a
minimal period curve.

Figure 7: An MP—crossing, normal, wavelike, closed 3-elastic curve belong-
ing to S A = 3,d ~ 6.762,G = 1.

v | // \
. o)

S \\ _ ! /‘/

TS N
AN

Figure 8: An MP—crossing, normal, orbitlike, closed 3-elastic curve belong-
ing to S{'; A =10, d ~ —2.653,G = 1.
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”%L%v%\

N —-=—=—— - — == — - — —=_— — — \ \ _ /
u

~ -— -

Figure 9: A non MP-crossing, normal, orbitlike, closed 3-elastic curve be-

longing to Szi 3

D, N =5, d~—0401,G = 1.
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