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Integrability theorems and conformally
constant Chern scalar curvature metrics
in almost Hermitian geometry

MEHDI LEJMI AND MARKUS UPMEIER'

The various scalar curvatures on an almost Hermitian manifold
are studied, in particular with respect to conformal variations. We
show several integrability theorems, which state that two of these
can only agree in the Kéahler case. Our main question is the exis-
tence of almost Kahler metrics with conformally constant Chern
scalar curvature. This problem is completely solved for ruled mani-
folds and in a complementary case where methods from the Chern—
Yamabe problem are adapted to the non-integrable case. Also a
moment map interpretation of the problem is given, leading to a
Futaki invariant and the usual picture from geometric invariant

theory.
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The present paper is devoted to the conformal geometry of almost Her-
mitian structures, in particular to aspects relating to their scalar curvature.

The necessary background is briefly reviewed in In particular, we
recall the Chern connection and its torsion (see [28]) on almost Hermitian
manifolds, which reflects also the almost complex structure. From it one de-
rives three Ricci forms and two scalar curvatures: the Hermitian (or Chern)
scalar curvature s = 2s¢ and the third scalar curvature s. From the Levi-
Civita connection we also have the Riemannian scalar curvature s? and all
three evidently coincide in the Kéhler case. In §2] their precise relationship in
general is established by careful calculation in local coordinates (see Propo-
sitions . The formulas generalize those of Gauduchon in the
integrable case [27].

These are applied in §3] to prove several new integrability theorems,
which assert that when two scalar curvatures coincide we must already be
in the Kéahler case. These holds in any dimension when we have a nearly
Kéhler structure (Corollary . We also have results in any dimension in
the almost Kahler case (see Corollary and also Apostolov—Draghici [7]).
The completely general almost Hermitian case is restricted to dimension
4 (Theorem [3.2). We also obtain an interesting result (Corollary on
6-dimensional compact non-Kéhler, nearly Kahler manifolds: they all have
st =0.

We then compute in §4the behaviour of our Ricci forms and scalar curva-
tures under conformal variations (see Corollaries |4.4] and . This allows us
to prove another integrability theorem (Theorem for conformally almost
Kahler structures, relating the Hermitian and Riemannian scalar curvature.

In §5| we state the basic problem that will concern us for the rest of the
paper: find almost Hermitian structures which have conformally constant
Hermitian scalar curvature (ccHsc). We first extend the results of Angella—
Calamai-Spotti [I] on the Chern-Yamabe problem to the non-integrable
case and show some independent results of interest. In Corollary we
obtain that every almost Hermitian structure with non-positive fundamen-
tal constant has ccHsc. The remaining case is much more difficult. It is
not even known in general whether one can find any ccHsc almost Hermi-
tian structure. This is our Existence Problem where we restrict to the
symplectic case.

In §6| we solve this problem for ruled manifolds given by the generalized
Calabi construction (Theorem . Drawing on the fundamental work by
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Apostolov—Calderbank—Gauduchon-Tgnnesen-Friedman [3| 5], the proof is
carried out in §6.3] and quickly reduces to an ODE for a metric on the
moment polytope, an interval in our case. The main difficulty is to show
positivity of the solution and this is done by a careful asymptotic analysis
in §6.4. The manifolds thus constructed are new examples of non-Kéahler
structures of constant Hermitian scalar curvature with positive fundamental
constant.

Finally in §7 we give an interpretation of our existence problem in the
framework of moment maps (Theorem [7.9)). Here we assume a symmetry on
the manifold, namely a Hamiltonian vector field which is Killing for some
metric.

This leads to the usual existence and uniqueness conjectures in terms of
geometric invariant theory, and also to a Futaki invariant (see §7.4]). We end
in with concrete calculations in the toric case.
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1. Preliminaries

Let (M, J,g) be an almost Hermitian manifold of real dimension m = 2n.
Thus J: TM — TM is an almost complex structure J? = —1 that is or-
thogonal for the Riemannian metric g. The associated fundamental form
is F =g(J-,-). We usually do not distinguish between the metric and the
almost complex structure and write g := F(+, J-) for the metric correspond-
ing to J. The volume form is vol, = % On the complexification TM @ C =
T10 @ T%! we consider the C-bilinear extension of g, the Hermitian form
h(X ®2,Y ®@w) = 2zwg(X,Y), and the restriction of h to 710, which we

identify with TM using X — X150 = %

1.1. Complex notation

Let z, denote a complex basis of 710, Then Zg is the basis of 79! obtained
by conjugation. The dual basis is denoted 2%, z%. The components of the
Hermitian form are

hog = h(za, 23).
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The transposed inverse of h,,; is denoted h?. Thus _hom—,hm =65 and ho5 =
%. The fundamental form is then F' = ih, 524N z8. We shall use the Her-
mitian form to raise and lower tensor indices. Note that for any tensor
()% = ()a™

We also get a J-adapted orthonormal frame ej,es = Jeq,...,em_1,
em = Jem—1 of the real tangent bundle T'M by decomposing z, into the
real and imaginary part:

1 )
(1) 2o = §(€2a—1 —i€24)

By convention «,f,7,... range over 1,...,n while ¢,7,k,... range over
1,....,m.

The twisted exterior differential of a p-form 1 is defined as (see [24],
(1.11.1)])

d) = JdJ 1,
where J acts on forms by (J~1)* (some authors have a different sign con-
vention).

1.2. Type decomposition

Let E be a vector bundle on M with complex structure J¥. Unless E = C
the space QP(M; E) of E-valued differential p-forms has two different type
decompositions.

Definition 1.1. A form 1 € QP(M; E) has E-type (r,s) when p=1r+s
and

p
(2) > xisxx, = (r— )T (bx,..x,) VX; € TM.
k=1

The subspace of forms of E-type (r,s) is denoted by Q"*(M; E). We write
™ for the projection with respect to this direct sum decomposition of
OP(M; E).

Hence 1 behaves like an ordinary (r,s)-form, except that it is vector-
valued. For example, the Nijenhuis tensor N € Q2(M;TM) has T M-type
(0,2).

Lemma 1.2. For a connection with VxJ =0, Vx has the same E-type
as .
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To understand the E-type with respect to contractions, let us say that
¥ has ordinary type (r,s) when in a local frame as in Section we may
write

1 _ _
(3) P = ¢a1"'ar,51"'652a1 2% A 0. .. 2/85’

~rls!

the coefficients being sections of FE, anti-symmetric for «j---«, and for
B -+ Bs. Thus, the ordinary type behaves as expected under contraction
with (1,0) and (0, 1)-vector fields. Concerning the E-type, we have the fol-
lowing observation:

Lemma 1.3. A form ¢ has E-type (r,s) precisely when it is the sum of an
EY9-valued form of ordinary type (r,s) and an E%'-valued form of ordinary
type (s, 7).

Finally, in case F = TM we may use the metric g to identify (p + 1)-
forms with T'M-valued p-forms. Using the musical isomorphism we get a
map

(4) it PTY (M) — QP(M;TM),  i(8)x,..x, = d— x,-x,%.

Note that ¢ € QP (M) are real forms. From we get a third type decom-
position. This has been used by Gauduchon [28, (1.3.2)] in the case p = 2.

Definition 1.4. A (r + s)-form ¢ has real type (r,s)+ (s,r) when the
complexification of ¢ is a sum of a complex (r, s)-form and (its conjugate)
(s,7)-form. We write Q(»*)+(7) (M) for the space of real forms of real type
(r,s) + (s,7).

Lemma 1.5. The map identifies the real type decomposition
Q(r,s+1)+(s+1,r) (M) _ [Qr,s (M, TM) ® Qs+1,r71(M; TM)] N Qerl(M),
with the T M -grading. When p = n, we get Q" (M;TM) N Q" (M) = {0}.

Proof. Since both gradings decompose the entire space, it is enough to show
an inclusion, which is a straightforward direct verification. O
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1.3. Trace

Let ¢ be a real 2-tensor, which corresponds to an endomorphism a €
Endr(T'M) by letting

oxy = g(a(X),Y), VX,Y € TM.

Then ¢ is a 2-form <= a is skew-symmetric. In this case the Lefschetz
trace is defined as

A(¢) = g(¢, F) = tr(—J o a).

The complexification of ¢ will be denoted by the same letter so that the
reals forms are characterized by ¢zw = ¢z for Z, W € TM ® C. In the
notation of [L.1]

A(¢) = _i¢aa'

Recall that the definition of A is extended to forms of higher degrees by
defining A(@) = tpe¢p = *(F A x~1$) where F* is obtained by raising both
indices.

1.4. Norms

Let E be a complex vector bundle on M with Hermitian form (,). General-
izing the case F = C, the norm of an E-valued differential p-form is

1 iy Lo ipj
5) Woluqariey = oy Wy 077) = g G i )

Unless p = 1 we shall not follow [28] in identifying T M-valued p-forms with
(0, p + 1)-tensors, since this leads to different conventions for the norm. We
will only need in the cases E =C and F =TM. When an FE-valued
p-form v is decomposed as a sum of elements then

1

A COS S RE L

(6) W\?)p(M;E) =

In particular, the decomposition into E-type is orthogonal.
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Lemma 1.6. Let ¢ € QUrtDT0+L0) (M) be a real form with associated
T M -valued form v = i(¢) using (). For the Q2" (M;TM)-norm of the pro-

jections we have

RISy N ST T
" e e y Ty L
In particular
(8) 162 = |20 + |pBOFO3 12 yg e 3(M)

When n =2, we have 2|9*°| = |12 for every 3-form v (see also [28,
(1.5.9)]).

1.5. Chern connection

The almost complex structure is parallel for the Levi-Civita connection D9
precisely when M is Kéhler. Therefore one considers other metric connec-
tions that make J parallel.

Definition 1.7. The Chern connection V is the unique Hermitian connec-
tion on T'M whose (0, 1)-part is the canonical Cauchy—Riemann operator

(9) oxZ = [XO1, Z)H0, X €TM,Z € C®(M,T™Y).
(recall that a Hermitian connection is required to satisfy Vg = 0,VJ = 0.)

Equivalently, the Chern connection is the unique Hermitian connection
whose torsion tensor Txy = VxY — Vy X — [X,Y] is J-anti-invariant. The
decomposition of T € Q?(M;TM) into TM-type is then given by (see [28]
p. 272])

(10) T%*=N, TV'=0, 1% =(dF)>*".

Here d°F is a T'M-valued 2-form via and we take the (2,0)-part of its
T M-type.

Remark 1.8. If T'= 0 for the torsion of the Chern connection of an al-
most Hermitian manifold, then V = DY. Hence J is parallel for DY and the
structure is Kéahler.
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1.6. Torsion 1-form

Besides not being integrable, the difficulty in dealing with almost Hermi-
tian manifolds is that the fundamental form is not closed (dF' =0 holds
when M is almost Kdhler). We thus consider the torsion 1-form 6 = A(dF).
Equivalently dF = (dF)o + -250 A F for the trace-free part (dF)o.
Lemma 1.9.
(11) 0 =A(dF) = J§F.
Proof. Let Lo = F N ¢. Using [34, Corollary 1.2.28] we find

d(F"™ ') = (n —1)L"2dF = L"'AdF — AL"'dF = F"" ' n 6.

Combining this with *F*/k! = F"=%/(n — k)! we compute

-1 n—1y\ __
-1

— mJLgu(*Fn_l) = —JL@uF = 6

-1
— T« (A FE
(n—1)! * )

O
The almost Hermitian structure is Gauduchon if $96 = 0, and is balanced

if @ = 0. It is easy to check that the torsion 1-form 0x = tr(Z — Tx ) is the
trace of the torsion tensor of the Chern connection. Thus

(12) 0=T,," =" +T,,

1.7. Ricci forms
Let R be a 2-form with values in skew-Hermitian endomorphisms of T'M,
for example the curvature tensor RY, = [Vx,Vy| — V(x,y] of the Chern

connection. In the integrable case, the 2-form RV is J-invariant. In general,
the complexification of R is not of type (1,1) and has more components

1 5 B 5 -8 1 e B
R:<2Ra[37 2% Nz +R,5, 2¥NZ +§Rdﬂ_'y ZONZT | @27 ® zs.

Following [27], we consider three ways to contract the tensor R:
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Definition 1.10. The first (or Hermitian) Ricci form p of R is the trace

(13) pPxy = trc (JO ny) = —A(RXy).

The complexification of p has components

'R

= NP 4R TN+ IR V5N FP
2 aBy 2

(14) p -

~
aBy

The first Ricci form is always closed and, when J is integrable, is of
type (1,1). Its cohomology class 2mwci (T'M, J) is the first Chern class of M.

Definition 1.11. The second Ricci form of R is rxy = —A(R.. xy), so
(15) r=iR" 2 A,

which is always a (1, 1)-form, but not closed in general.

Definition 1.12. The third Ricci form is

(16) o

1 ) =1 N
= §Rwa/\zA Azt + zRﬁaaAz)‘ NZH — §]~ZL_LO‘O§\2:A NzZH

1.8. Scalar curvatures
The Lefschetz traces of p and r agree. We thus define:
Definition 1.13. The Chern scalar curvature of R is

1
(17) s¢ = A(p) = A(T) = Raa’y’y = _1Re;]8i -Jej

€j

The Hermitian scalar curvature is s = 2-s¢ and coincides with the
Riemannian scalar curvature in the Kahler case.

Definition 1.14. The third scalar curvature is the Lefschetz trace

ERHU

a 1 )
(18) s=Ao)=R,"," = SR =5 R,

of the third Ricci form.Alternatively, s is the trace of the curvature operator.

We shall also consider the Riemannian scalar curvature s9 formed as
usual from the Levi-Civita connection DY.
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Remark 1.15. Suppose J is integrable. Then the three Ricci forms coincide
with those of [27], Section I.4]. Gauduchon uses the notation u for s and v for
s. Liu-Yang define similar scalar curvatures from the Levi-Civita connection.
The third scalar curvature s is like their ‘Riemannian type scalar curvature’
sg in [43] 4.2].

2. Comparison of curvatures

When M is not Kéhler, the three scalar curvatures defined above do not
coincide. In this section, we quantify the differences. This is based on the
following. Recall that the algebraic Bianchi identity for connections on T'M
with torsion asserts

(19) RxyZ+ RzxY + RyzX = (VxT)YZ + (VZT)XY + (VyT)ZX
~T(X,Tyz) = T(Z,Txy) = T(Y,Tzx).

By [27, (2.1.4)] the difference between the Chern and Levi-Civita connection
is

3
(20) g(VXY,Z):g(Dg(Y,Z)+§tXYZ—g(X,TYZ),

for the anti-symmetrization

1

(21) txvz = 3 (9(X, Tyz) +9(Z, Txy) + 9(Y, Tzx))

of the torsion tensorﬂ As a consequence of we note (see also [28|
(2.5.10)])

1
(22) t= —d°F.
3
Proposition 2.1. We haves® — s = (0> + 2690 — 2|t + 3|72
Here, |T|? is given by as a TM-valued 2-form and |#]? and |t|? are

the usual norms for differential 3-forms. The codifferential 49 is taken with
respect to g.

'In fact, as pointed out to us by the referee, holds for any metric connection
V with torsion T" and corresponding ¢ defined by . The formula can be verified
directly, using that the gauge potential Ax = D% — Vx is then skew-symmetric
and TXY = Axy — AyX
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Proof. Choose an orthonormal frame es,_1, €9, = Jea,_1 near p € M with
Vxe; =0 for all X € T,M. Such a frame may be constructed by extending
parallelly an adapted orthonormal basis in p along geodesic rays. We work
in the basis z, = %(ega_l — iegq) of THY.
By evaluating at p we get
1

1 - - _
T (Da2")g = —(Dazg)? = ;T

(Daz’y)B = _(Dazﬁ)’y = _5 B a’ 9

5
We apply this to compute the codifferential at p:
—60 = h°P(D,o8) 5 + 1P (Dsb)5
= hoP (zoﬁg +0,(Daz")5 + 05(Daz7)53) + conjugate term
= 240" — %HWT‘WQ + %%Tﬁaa + conjugate term
= 20" + é|0|2 + conjugate term
= 2o0% + 250% + |6

Since VJ = 0, the Chern connection preserves the type decomposition of
T M-valued forms and so (19) reduces in our frame to

0 6 _ _ 0 0
Rogy” + Bppa” = (VaT)ra ~Thr(r0)

Taking the double trace of this equation gives

s9 = s =R, + R, = (Val), " = T% )1 = (VaT)y™ =T )

C

(the last equation holds since s“ — s is real.) In our frame at p

(VaT), ™ + (VaT)y Y = —2a0% — 256"

Putting the above together
1 1
C 2 e’
—s= (6P +00) - (T
€ 5= S0P +00)
Now apply the easy identities TC“T(ﬂY a)7 = T&T(ﬁ a)V = Targ,yTﬁva and

(23) > — |T|? = 2T, T = T3, T
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Proposition 2.2. For the Riemannian scalar curvature s9 we have
9
(24) 2s — 59 = |T|* — 5\#—259— 6

Proof. This is a similar computation, using normal coordinates e; at p € M.
Thus [e;, e;] =0 and Dgi(ej)\p = 0. The Riemannian scalar curvature at p
is then

s9(p) = eig(DY ej, €i) — ejg(Df e;, €;)

(we omit all summation signs) which, using

3

from , becomes
eig(Ve,ej,e;) + el —ejg(Ve,ej,ei) — Ty
= 23(p) + g<veiei7 vejej) - g(vez'eja vejei) - 26‘771]11

Now 60(p) = —e;T};; and inserting gives

9
s9(p) — 25(p) = TiriTjn; + zt?jk + 3t TR — TjniTig + 260

Now apply and 0% = Ty Tj; to get . O
Combining Propositions and gives (recall s = 2s5%):

Corollary 2.3. sl —s9 = —50 — 21|t|2 + 2|T)2.

Remark 2.4. By and the orthogonal decomposition of 3-forms into
real type

9|t|2 _ |dF|2 _ |dF(2’1)+(1’2)’2 + ‘dF(3’O)+(0’3)|2,
and by and

17202 = |q°F202, = |dF@D+(12)12 |T9212 = |N|?.

(for t and dF("*)*(7) we take the 3-form norm.) We conclude
9|t|2 _ ’T|2 _ |dF(3’O)+(0’3)‘2 _ |N‘2,
9 1 1
5#,2 _ ’T|2 _ —§|dF(1’2)+(2’1)‘2 + §|dF(3’O)+(O’3)‘2 N ‘N’Q
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When J is integrable, dF' is of type (2,1) + (1,2), so these equations re-
duce to 9[t|2 = |T|? and 2|t|? — |T|? = —L|dFV+(1:D)|2, In this case
becomes [27, (32)] and Proposition [2.1| specializes to [27, Corollaire 2]:
1
25 — §9 = 5\dF|2 — 260 — |6,
s? — 25 =10)? + 06,
1
st — 9 = _|dF|? — 66.
2
3. Integrability theorems
In the almost Kéahler case, dF' = 0, Propositions 2.1 and [2.2) immediate imply
vanishing theorems. For in this case, ' = N, 6 = 0, and t = 0 from , ,
and , respectively. The formulas then reduce to

(26) 2s —s9 = |N|?, s —25s=|N|%

Corollary 3.1. [7] On an almost Kdhler manifold we have s9 < 2s < s
with either equality precisely when (J, g, F') is Kdhler.

With some care in dimension four, these conclusions can be extended.
Thus, assuming equality of various scalar curvatures on an almost Hermitian
manifold will guarantee both the integrability af J and the K&hler condition
dF = 0.

Theorem 3.2. Let (M,J,g,F) be a closed almost Hermitian 4 = 2n-
manifold.

In any case, equality holds if and only if the structure is Kdhler.

Proof. Recall from and that

T =N+ (dF)*°,  t=_d°F.
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Since we are in dimension four, ¢ = t?° 4+ t%! by Lemma Also for the
O?(M; TM)-norm defined in , Lemma gives

o7 t22:t2,02+t1,12:3t2,02:} dCF)20)2.
@ 3

Combined with [t|3; = %\t%Q(M.TM) we get

9 1
(28) [ T[6e = 5[t = INT? + 5 1(@°F)*O P,

Putting this into Proposition [2.2] and integrating gives

1 Fm
[ es—srop= [ <1N|2+|<dCF>2’°|2>zo

where we use that the integral over d6 vanishes (since % is the Riemannian
volume form). Of course, the left hand side can only vanish when N = 0 and
(d°F)?9 =0. Then T = N + (d°F)*° = 0 so by Remark we are in the
Kaéhler case. Part ii) is a similar application of Corollary while iii) uses

Proposition 2.1} a

Remark 3.3. When M is a closed Hermitian manifold (the integrable
case), one can deduce Theorem in any dimension (see [27, [43] or ap-
ply the technique above to Remark . On the other hand, Dabkowski—
Lock [17] have examples of non-compact Hermitian with s = s9 which
are not Kahler. Do higher-dimensional closed almost Hermitian non-Kéahler
manifolds with s = s9 exist?

In the conformally almost Kéhler case, we will extend ii) to higher di-
mensions in Theorem below. We now proceed by proving an ‘opposite’
of Corollary [3.1] for nearly Kéhler structures.

Definition 3.4. An almost Hermitian manifold (J, g, F) is nearly Kdahler
if

(D%J)Y + (DYJ) X =0

where DY is the Levi-Civita connection [30, [31].

It follows from the definition that DI9F = %dF. Moreover, dF' is of type
(3,0) 4 (0,3) and N = 1d°F is totally anti-symmetric. In particular, a nearly
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Kahler manifold is balanced. Furthermore, a nearly Kéhler manifold of di-
mension 2n = 4 is Kéhler. Also, if the nearly Kéahler manifold is Hermi-
tian then it is Kéhler. Examples of nearly Kéhler manifolds are S® with
its standard almost-complex structure and metric, S% x S3 equipped with
the bi-invariant almost complex structure and its 3-symmetric almost Her-
mitian structure and the twistor spaces over Einstein self-dual 4-manifolds,
endowed with the anti-tautological almost complex structure (for more de-
tails about nearly Kéahler manifolds see [13), 15, [45] [46] [51]). We deduce from
Propositions and that for any nearly Kahler manifold

1 2
(29) 2s — 57 = fé\ch%g, sH— 25 = f§|dCF]52)3.

Corollary 3.5. On a nearly Kdhler manifold we have s? < 2s < s9 with
either equality precisely when (J, g, F') is Kahler.

Remark 3.6. This does not contradict Theorem because in dimension
4 the notions Kéahler and nearly Kéhler agree.

A feature of nearly Kiahler manifolds is that dF is of constant norm [14]
36]. Moreover, Gray proved [32, Theorem 5.2] that any non-Kéhler nearly
Kaéhler manifold of dimension 6 is Einstein of positive (constant) s9. Further-
more, their first Chern class vanishes. Hence, the Hermitian scalar curvature
st of any closed non-Kéhler nearly Kihler manifold of dimension 6 vanishes.

Corollary 3.7. On a closed non-Kdhler, nearly Kdhler manifold (M, J, g)
of dimension 6, we have s = 0.

Proof. From the discussion above and we know already that s is con-
stant. So we only need to prove that the total integral of s is zero. Now
since ¢1(T'M, J) = 0, the Hermitian Ricci form is p = da for some 1-form a.
Thus

/ sH vol, = 2/ A(p) vol, = 2/ g(da, F) vol,
M M M
:2/ g(a75F)V019:_2/ g(a7J0)VOIQ:0.
M M

since (M, J, g) is balanced. O

For more examples of almost Hermitian manifolds with vanishing Hermitian
scalar curvature, we refer the reader to the work of Di Scala and Vezzoni [19]
20] (see also [52]).
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4. Conformal variations

Let § = e*fg be a conformal variation of the metric along a smooth real-
valued function f. Then (M, J, g, F ) is again an almost Hermitian manifold
and we shall be interested in how the associated Chern connection, Ricci
forms, and scalar curvatures behave under this variation.

We begin by deriving an alternative expression for the Chern connection:

Lemma 4.1. The Chern connection is given by

(30)  h(W,VxZ)=X"hW,2Z)+hW,[X%, Z]) + (W, X*], 2),
where X € TM and W, Z € C*(M, T?).

Proof. is easily seen to define a Hermitian connection whose (0,1)-
part is given by @D The result then follows from the uniqueness of such a
connection. O
Lemma 4.2. VxZ =VxZ+2X"(f)-Z for all X € TM,Z € T'V.

Proof. This is an immediate consequence of Lemma [£.1] O

Proposition 4.3. For the curvature tensors of the Chern connection we
have

(31) RY(Z) = RY(Z) +idd°f - Z.
Proof. Beginning with Lemma [4.2] a straightforward calculation gives
RYyZ = RYyZ +2(X(YY0p) - (X)) - [X,Y]'))- 2. [

Corollary 4.4. The conformal variations of the three Ricci forms are given

by

(32) p=p—mn-ddf,
(33) F=r—A(dd°f) - F,
(34) G =o0—ddf.

Proof. Compute the three Ricci forms of the tensor dd°f ® F. O
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Corollary 4.5. The conformal variations of the scalar curvatures are

(35) e2f5¢ = ¢ — nA(dd°f),
(36) eXs =5 — A(dd°f).

Lemma 4.6. For f € C*°(M) real we have
(37) —A(dd°f) = AI(f) + g(6, df ).
Here, AY denotes the Hodge—de Rham operator AY(f) = d9df .

Proof. Let (e;)i=1,..m by a J-adapted orthonormal frame as in . Then

A(dd°f) = (dd°f) (es, Jei)

N | —
F'Ms

1

e; (d°f(Je:)) — d°f(JDZ e;) — (d°f) (D, T)e;)

i

I

=1

= —AI(f) — g(0,df).

m

In the last equality we have used 6 = J§9F = — Zg(J(Dgi J)ei, ), which
=1

is a straightforward consequence of D9g = 0 and F= g(J-, ). O

Corollary 4.7. For the Hermitian scalar curvature of § = e2f g we have
(38) 251 = " L mAI(f) + mg(0,df).
When J is integrable we recover [27, (23)].

Theorem 4.8. Let (M, J,g,F) be a closed almost Hermitian manifold of
real dimension m = 2n. Assume that g is conformally almost Kdhler. Then

Fn
/ (s7 —s9)— > 0.

Equality holds precisely when J is integrable and (J, g, F) is Kdhler.
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Proof. Suppose (J,§ = €2/ g) is almost Kihler. Then by we have
§ — 59 =2|N|2 = 2¢ "/ |N|
Since F = 2/ F is closed, we have
0=d(e¥F)=e¥ ((dF)o + <2df + n&) A F)
for the trace-free part (dF')y. From this we read off the torsion 1-form
0 =(2—m)df.
Putting this into and combining with the formula for the conformal

variation of the Riemannian scalar curvature (see Besse [12, Theorem 1.159)])
we get

(39) el (37 —39) = (s — %) + (2 = m)Af — (m — 2)|df|*.

Fm Fn Fm
/ Q\Nyg':/ (sH—Sg)‘—(m—2)/ ldfls—

5. Conformally constant Hermitian scalar curvature metrics

Hence

We shall be concerned with the existence of the following type of metrics:

Definition 5.1. An almost Hermitian metric (J, g, F') has conformally con-
stant Hermitian scalar curvature (ccHsc) if for some f € C°°(M) the struc-
ture (J,§, F) = (J,e*f g, €2/ F) has 57 = const.

In Corollary we prove a sufficient criterion for (J, g, F') to have
conformally constant Hermitian scalar curvature (non-positive fundamental
constant). This can be regarded as a generalization of the Chern—Yamabe
problem [I] to the non-integrable case. Thus the problem is divided into the
cases C'(J, [g]) <0 and C(J,[g]) > 0 according to the fundamental constant.
The positive case in the Chern—Yamabe problem is difficult because (38))
looses its nice analytic properties stemming from the maximum principle.
The question remains open in this case. Restricting to symplectic manifolds,
we shall consider instead the following more basic existence problem:
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Existence Problem 5.2. Let (M,w) be a closed symplectic manifold. Does
M admit any w-compatible almost complex structure J such that (J, g,w) has
conformally constant Hermitian scalar curvature?

Remark 5.3. We allow conformal variations because if we fix w the exis-
tence of compatible metrics with s = const is not guaranteed: sometimes
one cannot find an extremal Kahler metric [16] and for instance on toric
manifolds the existence of extremal Kéhler metrics is conjecturally equiv-
alent to the existence of extremal almost-Kéahler metrics (see [22] and also
for example [4], 5], 8, [35] 42], 47, [49]).

Chern—Yamabe Problem 5.4. Given a closed almost Hermitian man-
ifold M, find a conformal structure (J,e*g,e*' F) of constant Hermitian
scalar curvature. In other words, does every (J, g, F) have ccHsc?

As shown in , the Hermitian scalar curvature transforms by the
same formula as in the integrable case. Here we show how to extend the
main results of [I] to the non-integrable case, as well as some results of
independent interest. We mention also the work [18] where a similar problem
for the J-scalar curvature is studied, which is derived from the Riemannian
curvature.

Recall that Gauduchon showed in [26] that every conformal class [g] has
a natural base-point gy = e~ 2fog. It is characterized by having a co-closed
torsion 1-form 6y, once we normalize gy to unit volume. In terms of the
complex Laplacian

L(f) = A9f +g(0,df),

this is equivalent to (L9)*e(2>~™/o = ( and I e_mfo% =1.

Definition 5.5. (J, gy i= e 2fog, Fy := e72/0 F) is the Gauduchon metric in
the conformal class [g]. The fundamental constant is (see [I}, 6, 10, 25])

(40) C(M. 7. [g) = /

c-m)fo i I B3 / s 10
M n! M

n!’

In the Hermitian setting, the fundamental constant plays a central role
in the Plurigenera Theorem [25] and is closely related to the Kodaira dimen-
sion. The different cases in the Chern—Yamabe problem are C' < 0, C = 0,
and C > 0.
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Recall that the Yamabe constant is defined in terms of the Riemannian

structure
gzezfg, / VOlg—l}.
M

We remark that Yamabe, Trudinger, Aubin, and Schoen have shown that
[g] contains metrics of constant Riemannian scalar curvature Y[g] (see [39)
for a full account). From Theorem we immediately get (see [6] in the
integrable case):

Proposition 5.6. In dimension 2n = 4 we have the estimate
Yig) < C(M*, J,[g))

with equality if and only if the Gauduchon metric (J, go, Fo) is Kdhler of
constant scalar curvature.

Proposition 5.7. Let (M™,J,g,F) be a closed almost Hermitian mani-
fold. Then there ezists a conformal metric g € [g] whose Hermitian scalar
curvature has the same sign as C at every point (meaning zero when C = 0).

Proof. The adjoint of the complex Laplacian L9 of the Gauduchon metric
go is A% f — go(6p,df), where we use §9°6y = 0. By the maximum principle
ker(L9)* are the constant functions (for more details, see [26]). Hence the
equation

L f =C(J,[9]) — s

go

is solvable for f, since the right hand side is orthogonal to the constants.
Defining § = ¢/ go, equation shows 57 = e=2/C(J, [g]). O

Remark 5.8. This generalizes [I, Theorem 3.1] to the non-integrable case.
It follows that the Chern—Yamabe problem is solvable when C' = 0. The same
conclusion (and same proof) holds for the third scalar curvature, where C
is replaced by the integral of the third scalar curvature of the Gauduchon
metric gp.

A simple adaption of the argument given by Angella—Calamai—Spotti for
[1, Theorem 4.1] gives the following statement:
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Theorem 5.9 ([1]). Let (M™,J,g,F) be a closed almost Hermitian man-
ifold, and let S: M — R be any strictly negative smooth function (not nec-
essarily the scalar curvature). Then the PDE

(41) mLI(f) + S = \e*/

has a solution (X, f) € R x C*°(M); in fact we must have A < 0. The solu-
tion is unique up to replacing (X, f) by (A\e=%¢, f + ¢) for a constant c. Thus
by scaling we may solve for any given negative .

Proof. This is proven in [I, p. 11] by the continuity method. To apply their
argument it is only important to see that for any solution f of we
have A < 0. In our general setting, this follows since putting the formula
LI(f) = e 2foL9(f) into and integrating gives

FT F F
m [ s g0, By [ sen 8 [ s B
M mn. M n. M

n!

-~

=0 <0 >0
O

Combining this with Proposition and we thus obtain the follow-
ing generalization of [I, Theorem 4.1]:

Corollary 5.10. FEwvery closed almost Hermitian manifold with C'(J, [g]) <0
has ccHsc (see also Remark .

Remark 5.11. We refer also to [11] by Melvyn Berger for a related ques-
tion. When (/J, g) is Kéhler (or more generally when [g¢] is a balanced confor-
mal class) he essentially constructs solutions of where S is the Hermitian
scalar curvature of (J,¢) and A is a given non-positive function.

6. Ruled manifolds

We begin our study of the Existence Problem for positive fundamental
constant with ruled manifolds. On complex manifolds, C'(J, [g]) > 0 implies
Kodaira dimension —oo, by the Gauduchon Plurigenera Theorem [25]. The
Kodaira dimension of ruled manifolds is —oo (conversely, this however does
not imply C(J, [g]) > 0).

Angella—Calamai-Spotti [I, Section 5] have given first simple examples
of Hermitian non-Kéhler manifolds of positive constant Hermitian scalar
curvature (for instance on the Hopf surface or abstractly by deformations
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using the implicit function theorem). In this section, we demonstrate the
existence of almost Hermitian non-Kéhler metrics of positive constant Her-
mitian scalar curvature on ruled manifolds (see [50] in the case of extremal
Kahler metrics). We mention also Hong’s work [33], which is different in that
only the Kéhler class is fixed.

6.1. The generalized Calabi construction

Let us briefly review the construction. The reader may consult [3H5] for more
details and greater generality.

Let (S,wg) be a symplectic manifold. For a torus 7" with Lie algebra t
let 7: @ — S be a principal T-bundle with connection § € Q(Q;t). Assume

(42) dd =p-mwg

for some fixed p € t. Let (V, gy,wy) be a toric almost Kéhler manifold for
the same torus and moment map p: V. — A C t*. Pick ¢ € R with (here (,)
is evaluation)

(43) P(w) == (w,p) +c¢ >0 Yw € A.

Thus P is a positive function on the Delzant polytope A.
Given this data, the generalized Calabi construction determines a sym-
plectic structure wys on the total space of the associated bundle

(44) M=Qxr V55

On the free stratum V? = ;= 1(A?) over the interior of the Delzant polytope
let a: TV? — t be the g-orthogonal projection onto the orbits. The linear
map

T,RxT,V? =t (X,Y) = 0(X)+a(Y)

is invariant under the torus action and thus induces a 1-form 6° on MY =
Q x7 VY. The moment map factors over the projection to pu: M — A. Set

(45) wir = P(p)m*ws + (dp A 6°).

Generally, the g-orthogonal projection « is a map T,V — t/t, up to the
isotropy Lie algebra t,. Since dug vanishes for £ € t, the definition of (du A
6°) naturally extends so that wyy is also defined over all of M. implies
that wy; is closed.
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When S has an almost Kéhler metric (Jg, gs,ws) we get an almost
Kihler metric on M as follows. Let G be the metric on A? C t* that turns
1 into a Riemannian submersion, let H be the dual metric on the cotangent
bundle of AY. Precomposing with y we obtain pairings G,: t* @ t* — R,
H,:t®t— R at each p € M. Then

(46) gy = P(p)m*gs + G(dp ® du) + H(6° @ 6°).

Remark 6.1. The metric on V is determined by G: recall that every metric
G on A subject to appropriate boundary conditions (see [3, Proposition 1]
or , below) compactifies to an wy-compatible almost complex struc-
ture gy . Recall also that, up to symplectomorphism, any metric on V' arises
this way [3, Lemma 3].

6.2. Ruled manifolds

We now restrict to 7= S*. We shall say that a Hermitian line bundle L
with connection has degree p € R if RY = pwg for the curvature.

Remark 6.2. Modifying wg slightly, such line bundles always exist for
closed S. Indeed, an arbitrary small perturbation of wg is a symplectic form
that represents a rational cohomology class, so some qwg with g € Q rep-
resents an integer cohomology class (see [29, Observation 4.3]). The cor-
responding Kostant—Souriau line bundle has the required properties, with
p = 1/q. Another important class of examples is when S is a Riemann sur-
face. Here, holomorphic line bundles are determined by their degree p € Z
with ¢ (L) = plws]. Using the d9-Lemma we find a Hermitian connection
whose curvature 2-form is precisely pwg.

Let V = CP! with Fubini-Study symplectic form wpg and Delzant poly-
tope A =[0,1]. As in choose ¢ with P(z) := px + ¢ positive on [0, 1].

Definition 6.3. The ruled manifold belonging to (L — S,c)is M =P(L &
C) equipped with the symplectic form wpy . from .

Hence M is obtained by compactifying each fiber of L to a sphere. Fol-
lowing [5] we assume also that the base S has constant Hermitian scalar
curvature.
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6.3. Existence problem

Since the scalar curvature is S'-invariant, it is our strategy to consider only
conformal variations u = ¢ o u for ¢: [0,1] — R*.

Theorem 6.4. Let (M™ =P(L& C),wnm,) be a ruled manifold over a
closed Kihler manifold (S™ 2, gs,ws) of constant positive scalar curvature.

Choose a,b >0 and let w=ap+b. Rescaling the volume of S, for c
sufficiently large there existsa compatible S'-invariant Kdhler metric g on
M so that § = u=2g has (positive) constant Hermitian scalar curvature (for
O =u"wpe)-

This solves the Existence Problem [5.2] on ruled manifolds. For n = 2
they are examples of almost Hermitian manifolds of positive fundamental
constant (see Proposition which are not covered by the results of the
previous section. Instead of rescaling the base one may also change the
Fubini-Study form on the fibers by a fixed factor.

Remark 6.5. By Apostolov—Calderbank—Gauduchon—-Tgnnesen-Friedman,
ruled manifolds with ¢ sufficiently large also admit an extremal metric [5],
Theorem 4].

As recalled above in Remark compatible Sl-invariant metrics on
(CP!,wrs) correspond to smooth functions H: [0,1] — R satisfying the
boundary conditions

H(0) =H(1) =0,
(47) H'(0) =2=-H'(1),
(48) H(z) >0 (0<z<1)

Then H and gg determine an wj,;-compatible almost Kéhler metric gp; via
. The metric g we seek will be of the form and is hence determined
by a function G™! := H satisfying , . Let t: VO — S! be the angle
coordinate on the round sphere CP \ {N, S}. Let () be local coordinates
on S over which L is trivialized. The connection then corresponds to a local
I-form A = A;dz’ on the base. We have local coordinates (x, u,t) on M°
in which the induced 1-form can be written #° = A + dt. From we then
get the volume form
Wi,

1
(49) volyy = i EP(;L)”_I volg Adp A dt.
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According to , the local expression for the metric g is:

[P(1)gs + F () Ai (1) Ay ()| da* da?
+ G(p)dpdp + H(p)dtdt + 2H(p) Ay (z)dz'dt

From this we see dufs = H(u)%. Putting this into the formula
d(igradg f VOIM) = —Ag(f) VOIM

we get for the Hodge-de Rham Laplacian of the moment map

(P 'H)'(n)
Pt

Note also the general formula A9(p o p) = ' () A% — go”(,u)|d,u]§.
We shall refer the analytic part of the proof to the next subsection.

Proof of Theorem[6.4]. According to Proposition below with A := b/a we
find unique b1,b2 > 0 and f € C*°([A, 1 + A]) strictly positive on the interior
satisfying , . Rescaling the volume, we assume that by is the scalar
curvature of S.

By [5, Lemma 9] the Hermitian scalar curvature of (M, g, was ) is (omit-
ting the argument p and where the derivatives are taken as functions of

x € 10,1])

(50) AY(p1) = —

b2 (Pn—lH)//
1 H = —-————
(5 ) § P prn—1

Combining , , and we get for § = u2g, where u = @ o
b (Pn—lH)//
“H _ 292 9
s= P ¥ pn—1
If o(x) =ax+b and defining f(x + \) = P(z)" 'H(z) we see from

that we have found a solution H to this equation where §7 = a?b; which

is clearly positive. Condition is and is just the positivity of
f O

(Pn—lH)/

+mp' S m (e - (¢)*)H

Proposition 6.6. Let M = P(L & C) with the Kdhler metric g from The-
orem [6.4. When n = dim¢ M = 2 the fundamental constant is

B 2sg+8c+4p

(52 cQ. 1) = 250
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Proof. The coarea formula applied to the submersion p: M — [0, 1] and
volume form wf,/n! shows that for measurable f: [0,1] = R we have (see
also [5, p. 17])

wn 1
(53) /M<fu>nﬂf= /0 £() vol (=) de.

On p~'(x) the form restricts to P(x)m*wg, hence vol(u=lz) =
P(z)" ! vol(B). Without loss we may suppose vol(B) = 1. The Kihler met-
ric (wpr, g) is Gauduchon and normalizing to unit volume gives

oM, J,[g]) = Vol(lM) /M 51t

Recall P(z) = pr + ¢, n =2, and P(x)H(z) = f(x + A). Evaluate using

w2 1 02— 2
vol(M) = /M Y /0 Plz)dz — O”;p

/ SH% ' — (PH)(2)
v 2! 0 P(z)

vol(p ™ tx)dx

1
— /0 [s§ —(PH)"(2)] dx
=st — e+ N)|;=sl +2(p+c) +2¢

using (47), which corresponds to when P(x)H(x) = f(x + \). O
6.4. Analytic part

We first describe the general method for obtaining the main result of this
section. Let ay,...,a0 € C°(I) and Q,...,Q™ € C°°(I) depending on a
parameter ¢ € R be smooth functions on a fixed interval I. For any fixed ¢
sufficiently large we wish to solve

(54) an(@) [ (@) + - + a1 (2) fD(2) + ao () f ()
=01Qc(2) + -+ + bn Q7' ()

with n + m initial values (which may also depend on c¢) uniquely for f €
C*(I) and b= (b1,...,by) € R™ and to understand the asymptotic be-
haviour in c.

Suppose that for all b, ¢ there exists a particular solution f,: . of .
Since b appears linearly in we may arrange also that fli . is a linear
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function of b. Let fi,..., f, be the n independent solutions of the homoge-
neous ODE corresponding to (54)). Then the linear map

F.: R"™™ — C*(I), (b,d) = fretdifi+ -+ dnfn

parameterizes all solutions of with right-hand side fixed by b, c.

Let the initial values be prescribed by a linear map i: C°(I) — R**™
and a family of vectors v. € R"™™ ¢ € R (so that the initial value problem
becomes with i(f) = v.). The problem above of finding solutions with
given initial values can then be formulated as follows: prove that the endo-
morphism M, = i o F, of R"™ is invertible for ¢ large and understand the
asymptotics of M1 (v.).

This is done with the following lemma. Here O(c™) stands for any Lau-
rent polynomial in ¢ of degree < n with coefficients in C*°(I), i.e. an expres-
sion

(55) on(x)c™ + - - gok(x)ck, n>kelZ, ¢;jeC>().

Remark 6.7. We will use this notation to describe asymptotic behaviour.
Note that it is very restrictive, since it requires the dependence on ¢ to be
a Laurent polynomial. Note also that the z-derivative of an expression
is of the same form. Thus %O(cn) = O(c").

Lemma 6.8. Let M. = (M},...,MY) € RV*N be a matriz whose columns
are functions of ¢ € R having the asymptotic behaviour M} = MZ.c" +
O(c%=Y). Then for My, = (ML, ..., MY)

det(Mc) — det(Moo)cn1+~.~+nN + O(cn1+"'+nN_1)'

In particular, when My is invertible it follows that M. is invertible for c
sufficiently large. Assume this and v. = vooc™ + O(c™ 1) € RN and let z.
and Too be the respective solutions of M.x. = v, and MyoZoo = Voo. Then
for the j-th entry

x) =2l ™ L O(m Y,
In particular, the unique solutions x. are again Laurent polynomials in c.
This follows from elementary properties of the determinant (Cramer’s

rule). The main result of this section is as follows. It completes the proof of
Theorem [6.4l
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Proposition 6.9. For any m =2n €N, A\ >0, and P(z) = px + ¢ with
¢ sufficiently large there exists a unique solution (by,bs, f) € Rsg x Rsg X
C®([A\, 14+ X)) of

(56) 22" (x) — maf (x) + mf(x)
= b - Pz = A" +by-2” Pz — \)"?

with initial values
(57) fN)=f1+N)=0 f)=2""1 fFA+N=-2p+c)""
Moreover, f is strictly positive on |A, 1+ A[.

Care must be taken to prove the positivity since near A the solution
functions f. for ¢ — oo could oscillate around zero into the negative, even if
the limiting function f. is strictly positive on the interior.

Proof. We apply the method above with I=[\1+2], Ql(z)=
—(pr —pA+ )", Q2(z) = 2*(pr — pA+ ¢)" 2 and

i(f) = (FO) FA+X), ), FA+N), ve=(0,0,2""", =2(p+ )" )

First we need to determine the general solution for fixed b, c. The homoge-
neous equation corresponding to has solutions z, ™. Applying ‘reduc-
tion of order’ [48, p. 242] we obtain all solutions of

(58)  Fufbd)(x) = 1 / (pz — pA+ ¢)"!

m—1 2
biz™ [ (pxr —pA+c)" !
B m—1 xm+1
b
-2 et o
box™ —p\+ n—2
+ﬂji1/(px fmlc) + dyz + dox™.

where we fix choices of primitives (say by integrating from A to x).

Let M, =1io0F.: R* -5 R%, regarded as a matrix in the standard basis.
The matrix entries are simple to write down from , but very long and
not informative. Ultimately, we wish to show that M, is invertible for ¢ suf-
ficiently large and according to Lemma it suffices for this to understand
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the asymptotic behaviour. We have

n—1

) s =n (=

+ O(c”—2)>

n—2
+ bo < ¢ + 0(6”3)> 22 + diz + doz™
m— 2

and using Remark [6.7] this implies

f'(x) = b1O(c"2) 4+ bO(c"3)2x

_n—2

+ by < < 4 O(c"3)> 2%+ dy + mdaa™ !
m—2

n—2

5 + O(Cn_3)> +di + mdgl'm_l

= b10(¢"2) + by <

Hence
O SN2 O A A
Mo | TS O S0P+ 0( ) THA (A"
¢ O(c"2) —C X+ O(c" ) 1 mAm~1
O(c"2) 21N +O03) 1 m(L )

Also ve = (0,0,2,—-2)c" 1 + O(c"2). The matrix

m m—2 A AT
_ —(14+)\)2 m
PP = B S C DY
> 0o = 1 mA™
0 A 14 Am?

is invertible. The equation My - oo = (0,0,2, —2)T has the solution
Too = (2mA(1 + N),2(m — 2),2(1 + 2X),0).

Therefore Lemma implies that M, is invertible for ¢ sufficiently large
and also that we have the asymptotic behaviour

by =2mA(1+\) +O(c™h), by = 2(m — 2)c + O(°),
dp =2(1+2\) " 1+ 0(c"?), dy = O(c" ).
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Putting this into shows
folz + ) =2¢"tz(1 — 2) + O(" 7).

Hence
felx +A) _
ZCT:].—Qx—'—O(C 1)
uniformly in .
It follows that for ¢ sufficiently large f. has precisely one extreme point on

[A, 1+ A] (close to 1/2 4+ \). From we see that this must be a maximum

and hence f. is positive on [A, 1+ A]. O
fe(z +A)
2 1
2c" 1z(1 — )
0.5 IR

Figure 1: Plot of the solution f, for p =3, A = %,m =4,¢=3 and of the
‘ideal solution’ at infinity

7. Moment map setup

In this section we give a moment map interpretation of the Existence Prob-
lem inspired by the work of Apostolov and Maschler [9]. This leads to
the familiar existence and uniqueness conjectures formulated in terms of ge-
ometric invariant theory, as well as to a version of the Futaki invariant. Our
method applies to closed symplectic manifolds (M™,w) admitting a sym-
metry given by a Hamiltonian vector field, meaning we assume AC/ (w) # 0
(see Definition [7.2| below). An example is a manifold with Hamiltonian circle
action, as above.
First we recall the general definition (g* gets the coadjoint action):
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Definition 7.1. A symplectic action of a Lie group on a symplectic man-
ifold (S,w) is Hamiltonian if there exists a G-equivariant moment map
w: X — g* with

(60) dpt(X) =w(X, &) Véeg, XeTS.
(write u¢ = p(=)(€) € C>=(S) and let £* € X(9) be the infinitesimal action.)
7.1. The action

For fixed f € C°°(M) with [, fvol =0 let
(61) wi=e", K = grad, u.
Then Lxw = txdw + digw = 0+ ddu = 0.

Definition 7.2. Let K be a Hamiltonian vector field on (M,w) as in ([61)).
By definition AC’ (w) is the Fréchet manifold of w-compatible almost com-
plex structures J satisfying £xJ = 0.

We equip AC/ (w) with the symplectic form [21} 23]

1
(62)  92,(4,B) = /M tr(Jo Ao B)e vol, A, BeT;AC (w).

Proposition 7.3. When non-empty, AC’(w) is contractible. This is the
case if and only if K is a Killing vector field for some metric g on M.

Proof. Letting Met/ (M) denote the space of all K-invariant Riemannian
metrics, the usual map restricts to a retraction

Met/ (M) — ACT (w), g+ J,, where J, = Ag|A,|", g(A,—, —) =w

on the convex space of metrics g satisfying £xg = 0.

To see that J, is an almost complex structure, note that A, is skew-
symmetric and that A, commutes with |44| = (A;Ag)l/ 2 by functional cal-
culus. Thus

T2 = Ag|Agl T A Ay = A2 A2 = A2(A3A,) T = A2(—AY) T = 1.

Conversely, when AC/(w) is non-empty, let J be an element. Then K is a
Killing field for g = w(-, J-) since Lxw =0 and L£xJ = 0. O
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Remark 7.4. As mentioned above, we make the assumption that AC’(w)
is non-empty. According to Bochner, there are no non-trivial Killing fields in
the case of strictly negative Ricci curvature. We have s = 2|N|? + s9 and
so the results of this section mainly concern the case of positive fundamental
constant.

Definition 7.5. Ham/(w) C Symp(w) is the subgroup of Hamiltonian sym-
plectomorphisms ¢ satisfying f o ¢ = f (equivalently ¢, preserves grad,, f).

We recall that by definition the Lie algebra of the Hamiltonian sym-
plectomorphisms are the Hamiltonian vector fields dyp = —txw, where ¢ €
C*°(M). The Lie algebra ham/(w) consists of Hamiltonian vector fields
with [grad,, f, X] = 0. Let C3°(M) be the space of ¢ € C*°(M) with con-
stant Poisson bracket {f,}. Then ham/(w) is canonically identified with
C$°(M)/R. The adjoint action of ¢ € Ham/(w) on ¢ € C3°(M)/R can be
written (¢~1)*p. On C$°(M) consider

(63) (h1, ha)einys :/ h1h26(2+”)f vol .
M

It places C']?O(M )/R in duality with
Cop(M) ={p € CF(M) | (¢, 1)czims = 0}.

We have an isomorphism to Cg% (M) — C3°(M)/R with inverse

: (s ermis Jar et vol
CR(M)/R = C (M), @ G im o — Do leiml |
7 (M)/ or(M), e =0 M lhey = 97 @ vl
For ¢, € C(M) note the formula
(64 (@, ¥)easms = {9, P)easms.

Since €™/ vol is preserved by ¢, the action of Ham/(w) on AC/(w) by
¢« 0 J o ¢! preserves the symplectic form . We will show that it is
Hamiltonian.

7.2. Technical preparations
Lemma 7.6 (see [41, Lemma 1.3]). Let (J,g,w) be almost Kdhler. Sup-

pose the symplectic gradient K = grad,u is a g-Killing field. Then the J-
anti-invariant part (DI.Jdu?)”~ is anti-symmetric.
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Proof. Because £xw = 0 is automatic, the field K = Jdu! is Killing precisely
when it is holomorphic. Therefore, combined with the fact that DY is torsion-
free,

0=¢xJ=D%J—[DIK,J]

So (DYK)’~ = 3J[DIK, J] = LJD%.J = — D%, J which is anti-symmetric.
U

Consider a path .J; € AC(w) representing J = % ’0 Ji. Write gy = w(+, Jy).
The variation of the scalar curvature is given by the Mohsen formula:

Proposition 7.7 (see [24, [44]). %‘Osg = —6J(0J).
In this formula the codifferential of an endomorphism A is defined by
(65) g(0A, X) =0(A, X)+g(A,DIX), XeX(M)

using the evaluation pairing (,). For 1-forms «, 5 we note also the simple
formulas

(66) g(0f, A(X)) = g(A*, a ® X),
d .
17 t &, = - aa‘]‘] )
(67) pr Og( B) = —9( B)

which are used in the proof of our main technical lemma:

Lemma 7.8. For the metrics §; = el w(-, J;-) and any h € C>® (M) we have

(68) d / st ne M vol = / g(J, DIJdht)e™ vol .
0JM M

dt

Proof. Recall u := e~ /. By the scalar curvature of the conformal vari-
ation is

35{ = 2f (sg + mAgt(f)) = u2/"s£ — /LA (u) — 2u2/”_2]du|§t.

Putting this and e+ = 4 =1-2/7 into the left hand side of gives

d

dt

/sghu_lvol—Q/ Agt(u)hu_zvol—Q/ gi(du, du)hu=3 vol .
0/M M M
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Applying Proposition and to the second and third summand we get

—/ 8J(8J)hu~" vol
M
+2 / g(du, JJd(hu2)) vol +2 / g <du, deu> hu=3 vol
M M
which, in view of and becomes
(69) / g (J’, DIJd(hu~YY 4 2du ® Jd(hu~2)f + 2hu"3du ® Jduﬁ) vol.

Now expand using the Leibniz rule:

(70)  DIJd(hu1)? = 2u"3hdu @ Jduf — u2du @ Jdh! — u"2dh @ Jdu?
+u Tt DI(JdRY) — u2hDI Jdu

(71) du® Jd(hu™?)* = v 2du ® Jdh* — 2u~3hdu ® Jdu*

From we see g(J,du® thﬁ) = g(J,dh ® Jdu!). Moreover, Lemma

implies g(J, DY Jdu®) = 0 since J is symmetric and J-anti-invariant, while

the J-anti-invariant part of D9.Jdu! is anti-symmetric. Inserting into
and applying these facts then gives the right hand side of (68]). ([

7.3. Proof of main theorem
We write g7 = e w(-, J-) and gs = go.s-
Theorem 7.9. Let (M,w) be a closed symplectic manifold with Hamil-
tonian vector field K = grad u, u = e, [; fvol =0, and ACf(w) # 0.

The action of Ham/ (w) on ACY (w) with symplectic form is Hamiltonian
with moment map

(1) s ACT(@) X Gy (M) By () = [ sl e vol.
s

Here the Hermitian scalar curvature of gy y is viewed as a functional using

(63).

Identifying ham/ (w) = C3°(M)/R and using we may rewrite

(73) pr ACH(w) = (CR(M)/R)*,  pu(J) = /M §0 peHm)f yol |

9gr,J
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Proof. We must check that for any tangent vector J € T7ACY and h e
Cop(M)

Q(hy, J) = du(J).
Here hy = —£7J € T;ACT for Z = grad,, h denotes the infinitesimal action
of h at the point J. In terms of the adjoint of DYZ € End(T'M) with respect
to g = g, the infinitesimal action can be rewritten as h*J = —J o (DIZ +
(D9Z)*) and so

1 . .
(5. ) = | /M (1x(D9Z 0 J) + 1x(D22)" 0 J)) e vol
:/ tr(DIZ o J)e™ vol.
M

Th1s is the right hand side of (| ., as Z = Jdht, while the left hand side of

is simply du(J). From ¢* Go-0.f = G- f We get ¢*s Jf_SJ¢>f Now
f o ¢ = [ by Definition and so ¢*u(¢-J) = u(J), proving that ( . is

also equivariant. O

The zeros of the moment map u are J € AC/ (w) such that the metric
gy, is of constant Hermitian scalar curvature. The geometric invariant the-
ory formal picture suggests then the existence of a unique almost-Kéhler
metric in AC/(w) conformal to a constant Hermitian scalar curvautre met-
ric, modulo the action of Ham/ (w), in every “stable” “complezified” orbit of
the action of Ham/ (w).

Remark 7.10. In [9, Remark 1] the zeros of the Apostolov-Maschler mo-
ment map are metrics gy, with sj, | + |N ]2 , Is constant, where s7, , is the
Riemannian scalar curvature of gy ;. Our ch01ce of the weights in the volume
form € and in the inner product (63) is motivated by metrics gf s of con-
stant Hermitian scalar curvature. In [9], the chosen weights correspond to
the study of conformally Kéahler Einstein-Maxwell metrics. A very general
setup was studied by Lahdili in [37, B8] (we also refer to [2]).

Corollary 7.11. Minima of ||u||? on AC’(w) are ccHsc metrics.
It may also be of interest to consider critical points of ||u||?.

7.4. Futaki invariant

Moment maps lead very generally to a Futaki invariant. In the context
of Definition this invariant is associated to any Lie subalgebra b C g.
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Letting S" = {pe S | §, =0 V&€ € b} be the h-fixed points, the restriction
p: SY — b* is locally constant. Assuming S is connected, the common value
of uu is called the Futaki invariant F9 € h*.

Applied to our situation h =R -K C ham/(w) corresponding to u €
C$°(M)/R. The b-fixed points are all of AC/ (w). Identify b* = R by evalu-
ating at u.

Definition 7.12. For any J € AC/(w) the Futaki invariant is given by
FI @) = i) = (588 cthenr = [ 58 e vol
M

(n+2)f
./ Sg, V' fM gf]e VOI/ el vol.
M

e(n+2)f vol

The main point of the Futaki invariant, that it is independent of J, is a
consequence of the general moment map setup and Proposition Indeed,
if we consider a path J; in ACY (w) then

dt i) = dt / 591, vol = fM ("+2)f vol dt / K vol,

—/ (5tJt((5tjt>bt vol
M

[y, €% vol : N
- % /M gt(Jt, Dngtd(].)ﬁ) (& f vol = 0.

In the second line, we used Proposition and Equation for h = 1.

Corollary 7.13. Suppose that ACY (w) # 0 and assume the existence of J €
ACT(w) such that g7,; = e*fw(-, J-) has constant Hermitian scalar curvature.
Then, F/(w) = 0.

7.5. The toric case

Let (M?",w) be a closed symplectic manifold equipped with an effective
Hamiltonian action of a n-dimensional torus T'. Let z : M — A C t* be the
moment map, where A is the Delzant polytope in t* the dual of t = Lie(T).
Denote by {ui,...,uq} the normals to the polytope A. The action of the
torus T is generated by a family of Hamiltonian vector fields { K7y, ..., K,}
linearly independent on an open set of the 2n-dimensional symplectic mani-
fold (M, w) with w(K;, Kj) = 0. The symplectic form w and an w-compatible
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T-invariant almost Ké#hler metric g are given on z~! of the interior of A by

n
w= Z dz; N\ dt;,
=1

n
g = Z sz(z)dzl & de + Hij(z)dti X dtj + Pij(z)dzi ® dtj,
ij=1

where G, H are symmetric positive definite matrix-valued functions satisfy-
ing the compatibility conditions GH — P? = Id and HP = P'H (P! is the
transpose of P). The coordinates z; are the moment coordinates and t; are
the angle coordinates.

Denote by H;jj = 88127 etc. It is shown [22] and [40 (4.6)] that the
Hermitian scalar curvature is given by

n
H

ij=1

Let w =aj21 + a222 + - - - + apzn + an41 be a Hamiltonian Killing potential
(a; are real numbers). Then,

n
Jdu = Z a;Pydz; + a; Hydt;.
i,l=1

Hence,

n
dJdu = Z ailedzj ANdz; + aiHil,dej A dt;.

il=1

Recall that A%u = —g(dJdu,w). We obtain

n n
9y — 2 2 _ P
Ady = — g a;Hij j, |dul; = g a;a; Hyj.
i,j=1 i,j=1
Hence, the conformal change equation (38) becomes

n n n
H _ 2 21 TT. . 2_2 o
(74) Sgy, = —Un E Hijij + 2un E a;Hijj —2un E a;a; Hij,
ij=1 ij=1 ij=1
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where sg | is the Hermitian scalar curvature of g5,y = e*/w(-, J-) withe™"/ =

u. It is easy to check since H is symmetric that

n
Z (e"in]) y Z e sz] ij — 2¢2 aZHUJ + 2¢° faiasz-j.
4,j=1 4,j=1

We conclude that is equivalent to

n

(75) A == 3 ()

ij=1 “

Now, when the g-orthogonal distribution to the T-orbits is involutive
(this is the case when P =0), H has to satisfy the boundary conditions
in [3, Proposition 1] and hence we can apply [9, Lemma 2] to get

Proposition 7.14. For any H satisfying the boundary conditions [3, Propo-
sition 1] and any affine function & = &(z1,...,2n),

- /A > (eHy) | v =2 /d e,

i,j=1

where A is the polytope and OA its boundary, dv = dz1 A --- Ndz, and du is
defined by u; A du = —dv for any codimension one face with inward normal
Uy

If we suppose that sg , 18 a constant, then (75) becomes using Proposi-

tion [7.14]

76 9e(n+2)f Jonedn 2y
(76) ety = 22, ()

Define the Donaldson—Futaki invariant [22] for any smooth function ¢ to
be

F -9 nf d 72 fBA / n+2fd
s (@ =2 [ edu-p dBEEh | comitan

It is straightforward from Prop0s1t10n 7.14] to conclude that if there exists a
solution H (satisfying the boundary conditions) of (7€), then Fa 7(£) =0,
for any affine function & = ¢£(z1,...,2,). In fact, the existence of (J, g,w)
such that gy ; is of (positive) constant Hermitian scalar curvature can be
related then to a notion of “stability” (see for instance [9, 22])
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Remark 7.15. Proposition [7.14] implies that for any toric almost Kéahler
manifold (M, J, g,w) with P = 0,

_ Joa "l dp
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