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The present paper is devoted to the conformal geometry of almost Her-
mitian structures, in particular to aspects relating to their scalar curvature.

The necessary background is briefly reviewed in ➜1. In particular, we
recall the Chern connection and its torsion (see [28]) on almost Hermitian
manifolds, which reflects also the almost complex structure. From it one de-
rives three Ricci forms and two scalar curvatures: the Hermitian (or Chern)
scalar curvature sH = 2sC and the third scalar curvature s. From the Levi-
Civita connection we also have the Riemannian scalar curvature sg and all
three evidently coincide in the Kähler case. In ➜2 their precise relationship in
general is established by careful calculation in local coordinates (see Propo-
sitions 2.1, 2.2, 2.3). The formulas generalize those of Gauduchon in the
integrable case [27].

These are applied in ➜3 to prove several new integrability theorems,
which assert that when two scalar curvatures coincide we must already be
in the Kähler case. These holds in any dimension when we have a nearly
Kähler structure (Corollary 3.5). We also have results in any dimension in
the almost Kähler case (see Corollary 3.1 and also Apostolov–Drăghici [7]).
The completely general almost Hermitian case is restricted to dimension
4 (Theorem 3.2). We also obtain an interesting result (Corollary 3.7) on
6-dimensional compact non-Kähler, nearly Kähler manifolds: they all have
sH = 0.

We then compute in ➜4 the behaviour of our Ricci forms and scalar curva-
tures under conformal variations (see Corollaries 4.4 and 4.5). This allows us
to prove another integrability theorem (Theorem 4.8) for conformally almost
Kähler structures, relating the Hermitian and Riemannian scalar curvature.

In ➜5 we state the basic problem that will concern us for the rest of the
paper: find almost Hermitian structures which have conformally constant
Hermitian scalar curvature (ccHsc). We first extend the results of Angella–
Calamai–Spotti [1] on the Chern–Yamabe problem to the non-integrable
case and show some independent results of interest. In Corollary 5.10 we
obtain that every almost Hermitian structure with non-positive fundamen-
tal constant (40) has ccHsc. The remaining case is much more difficult. It is
not even known in general whether one can find any ccHsc almost Hermi-
tian structure. This is our Existence Problem 5.2, where we restrict to the
symplectic case.

In ➜6 we solve this problem for ruled manifolds given by the generalized
Calabi construction (Theorem 6.4). Drawing on the fundamental work by
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Apostolov–Calderbank–Gauduchon–Tønnesen-Friedman [3, 5], the proof is
carried out in ➜6.3 and quickly reduces to an ODE for a metric on the
moment polytope, an interval in our case. The main difficulty is to show
positivity of the solution and this is done by a careful asymptotic analysis
in ➜6.4. The manifolds thus constructed are new examples of non-Kähler
structures of constant Hermitian scalar curvature with positive fundamental
constant.

Finally in ➜7 we give an interpretation of our existence problem in the
framework of moment maps (Theorem 7.9). Here we assume a symmetry on
the manifold, namely a Hamiltonian vector field which is Killing for some
metric.

This leads to the usual existence and uniqueness conjectures in terms of
geometric invariant theory, and also to a Futaki invariant (see ➜7.4). We end
in ➜7.5 with concrete calculations in the toric case.
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1. Preliminaries

Let (M,J, g) be an almost Hermitian manifold of real dimension m = 2n.
Thus J : TM → TM is an almost complex structure J2 = −1 that is or-
thogonal for the Riemannian metric g. The associated fundamental form
is F = g(J ·, ·). We usually do not distinguish between the metric and the
almost complex structure and write gJ := F (·, J ·) for the metric correspond-
ing to J . The volume form is volg = Fn

n! . On the complexification TM ⊗ C =
T 1,0 ⊕ T 0,1 we consider the C-bilinear extension of g, the Hermitian form
h(X ⊗ z, Y ⊗ w) = zwg(X,Y ), and the restriction of h to T 1,0, which we
identify with TM using X 7→ X1,0 = X−iJX

2

1.1. Complex notation

Let zα denote a complex basis of T 1,0. Then z̄ᾱ is the basis of T 0,1 obtained
by conjugation. The dual basis is denoted zα, z̄ᾱ. The components of the
Hermitian form are

hαβ̄ = h(zα, zβ).
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The transposed inverse of hαβ̄ is denoted hαβ̄ . Thus hαγ̄h
βγ̄ = δβα and hαβ̄ =

hβᾱ. The fundamental form is then F = ihαβ̄z
α ∧ z̄β̄ . We shall use the Her-

mitian form to raise and lower tensor indices. Note that for any tensor
(·)αα = (·) ᾱ

ᾱ .
We also get a J-adapted orthonormal frame e1, e2 = Je1, . . . , em−1,

em = Jem−1 of the real tangent bundle TM by decomposing zα into the
real and imaginary part:

(1) zα =
1

2
(e2α−1 − ie2α)

By convention α, β, γ, . . . range over 1, . . . , n while i, j, k, . . . range over
1, . . . ,m.

The twisted exterior differential of a p-form ψ is defined as (see [24,
(1.11.1)])

dcψ = JdJ−1ψ,

where J acts on forms by (J−1)∗ (some authors have a different sign con-
vention).

1.2. Type decomposition

Let E be a vector bundle on M with complex structure JE . Unless E = C

the space Ωp(M ;E) of E-valued differential p-forms has two different type
decompositions.

Definition 1.1. A form ψ ∈ Ωp(M ;E) has E-type (r, s) when p = r + s
and

p
∑

k=1

ψX1···JXk···Xp
= (r − s)JE

(
ψX1···Xp

)
∀Xi ∈ TM.(2)

The subspace of forms of E-type (r, s) is denoted by Ωr,s(M ;E). We write
ψr,s for the projection with respect to this direct sum decomposition of
Ωp(M ;E).

Hence ψ behaves like an ordinary (r, s)-form, except that it is vector-
valued. For example, the Nijenhuis tensor N ∈ Ω2(M ;TM) has TM -type
(0, 2).

Lemma 1.2. For a connection with ∇XJ = 0, ∇Xψ has the same E-type
as ψ.
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To understand the E-type with respect to contractions, let us say that
ψ has ordinary type (r, s) when in a local frame as in Section 1.1 we may
write

ψ =
1

r!s!
ψα1···αr,β̄1···β̄s

zα1 · · · zαr ∧ z̄β̄1 · · · z̄β̄s ,(3)

the coefficients being sections of E, anti-symmetric for α1 · · ·αr and for
β̄1 · · · β̄s. Thus, the ordinary type behaves as expected under contraction
with (1, 0) and (0, 1)-vector fields. Concerning the E-type, we have the fol-
lowing observation:

Lemma 1.3. A form ψ has E-type (r, s) precisely when it is the sum of an
E1,0-valued form of ordinary type (r, s) and an E0,1-valued form of ordinary
type (s, r).

Finally, in case E = TM we may use the metric g to identify (p+ 1)-
forms with TM -valued p-forms. Using the musical isomorphism we get a
map

(4) i : Ωp+1(M) →֒ Ωp(M ;TM), i(ϕ)X1···Xp
= ϕ−,X1···Xp

♯g .

Note that ϕ ∈ Ωp+1(M) are real forms. From (4) we get a third type decom-
position. This has been used by Gauduchon [28, (1.3.2)] in the case p = 2.

Definition 1.4. A (r + s)-form ϕ has real type (r, s) + (s, r) when the
complexification of ϕ is a sum of a complex (r, s)-form and (its conjugate)
(s, r)-form. We write Ω(r,s)+(s,r)(M) for the space of real forms of real type
(r, s) + (s, r).

Lemma 1.5. The map (4) identifies the real type decomposition

Ω(r,s+1)+(s+1,r)(M) =
[
Ωr,s(M ;TM)⊕ Ωs+1,r−1(M ;TM)

]
∩ Ωp+1(M),

with the TM -grading. When p = n, we get Ω0,n(M ;TM) ∩ Ωn+1(M) = {0}.

Proof. Since both gradings decompose the entire space, it is enough to show
an inclusion, which is a straightforward direct verification. □
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1.3. Trace

Let ϕ be a real 2-tensor, which corresponds to an endomorphism a ∈
EndR(TM) by letting

ϕXY = g(a(X), Y ), ∀X,Y ∈ TM.

Then ϕ is a 2-form ⇐⇒ a is skew-symmetric. In this case the Lefschetz
trace is defined as

Λ(ϕ) = g(ϕ, F ) = tr(−J ◦ a).

The complexification of ϕ will be denoted by the same letter so that the
reals forms are characterized by ϕZW = ϕZ̄W̄ for Z,W ∈ TM ⊗ C. In the
notation of 1.1

Λ(ϕ) = −iϕ α
α .

Recall that the definition of Λ is extended to forms of higher degrees by
defining Λ(ϕ) = ιF ♯ϕ = ∗(F ∧ ∗−1ϕ) where F ♯ is obtained by raising both
indices.

1.4. Norms

Let E be a complex vector bundle on M with Hermitian form ⟨, ⟩. General-
izing the case E = C, the norm of an E-valued differential p-form is

|ψ|2Ωp(M ;E) =
1

p!
⟨ψi1···ip , ψ

i1···ip⟩ =
1

p!
gi1j1 · · · gipjp⟨ψi1···ip , ψj1···jp⟩.(5)

Unless p = 1 we shall not follow [28] in identifying TM -valued p-forms with
(0, p+ 1)-tensors, since this leads to different conventions for the norm. We
will only need (5) in the cases E = C and E = TM . When an E-valued
p-form ψ is decomposed as a sum of elements (3) then

|ψ|2Ωp(M ;E) =
1

r!s!
⟨ψα1···αr,β̄1···β̄s

, ψᾱ1···ᾱr,β1···βs⟩.(6)

In particular, the decomposition into E-type is orthogonal.
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Lemma 1.6. Let ϕ ∈ Ω(r,r+1)+(r+1,r)(M) be a real form with associated
TM -valued form ψ = i(ϕ) using (4). For the Ω2r(M ;TM)-norm of the pro-
jections we have

(7)
1

r!r!
|ψr+1,r−1|2 =

1

(r − 1)!(r + 1)!
|ψr,r|2.

In particular

(8) |ϕ|2 = |ψ2,0|2 + |ϕ(3,0)+(0,3)|2 ∀ϕ ∈ Ω3(M)

When n = 2, we have 2|ψ2,0| = |ψ1,1|2 for every 3-form ψ (see also [28,
(1.3.9)]).

1.5. Chern connection

The almost complex structure is parallel for the Levi-Civita connection Dg

precisely when M is Kähler. Therefore one considers other metric connec-
tions that make J parallel.

Definition 1.7. The Chern connection ∇ is the unique Hermitian connec-
tion on TM whose (0, 1)-part is the canonical Cauchy–Riemann operator

∂̄XZ = [X0,1, Z]1,0, X ∈ TM,Z ∈ C∞(M,T 1,0).(9)

(recall that a Hermitian connection is required to satisfy ∇g = 0,∇J = 0.)

Equivalently, the Chern connection is the unique Hermitian connection
whose torsion tensor TXY = ∇XY −∇YX − [X,Y ] is J-anti-invariant. The
decomposition of T ∈ Ω2(M ;TM) into TM -type is then given by (see [28,
p. 272])

T 0,2 = N, T 1,1 = 0, T 2,0 = (dcF )2,0.(10)

Here dcF is a TM -valued 2-form via (4) and we take the (2, 0)-part of its
TM -type.

Remark 1.8. If T = 0 for the torsion of the Chern connection of an al-
most Hermitian manifold, then ∇ = Dg. Hence J is parallel for Dg and the
structure is Kähler.
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1.6. Torsion 1-form

Besides not being integrable, the difficulty in dealing with almost Hermi-
tian manifolds is that the fundamental form is not closed (dF = 0 holds
whenM is almost Kähler). We thus consider the torsion 1-form θ = Λ(dF ).
Equivalently dF = (dF )0 +

1
n−1θ ∧ F for the trace-free part (dF )0.

Lemma 1.9.

θ = Λ(dF ) = JδgF.(11)

Proof. Let Lϕ = F ∧ ϕ. Using [34, Corollary 1.2.28] we find

d(Fn−1) = (n− 1)Ln−2dF = Ln−1ΛdF − ΛLn−1dF = Fn−1 ∧ θ.

Combining this with ∗F k/k! = Fn−k/(n− k)! we compute

JδgF = −J ∗ d ∗ F =
−1

(n− 1)!
J ∗ d(Fn−1) =

−1

(n− 1)!
J ∗ (θ ∧ Fn−1)

=
−1

(n− 1)!
Jιθ♯(∗Fn−1) = −Jιθ♯F = θ.

□

The almost Hermitian structure is Gauduchon if δgθ = 0, and is balanced
if θ = 0. It is easy to check that the torsion 1-form θX = tr(Z 7→ TXZ) is the
trace of the torsion tensor of the Chern connection. Thus

θ = T β
αβ zα + T β̄

ᾱβ̄
z̄ᾱ.(12)

1.7. Ricci forms

Let R be a 2-form with values in skew-Hermitian endomorphisms of TM ,
for example the curvature tensor R∇

XY = [∇X ,∇Y ]−∇[X,Y ] of the Chern
connection. In the integrable case, the 2-form R∇ is J-invariant. In general,
the complexification of R is not of type (1, 1) and has more components

R =

(
1

2
R δ

αβγ zα ∧ zβ +R δ
αβ̄γ zα ∧ z̄β̄ +

1

2
R δ

ᾱβ̄γ z̄ᾱ ∧ z̄β̄
)

⊗ zγ ⊗ zδ.

Following [27], we consider three ways to contract the tensor R:
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Definition 1.10. The first (or Hermitian) Ricci form ρ of R is the trace

ρXY = trC (J ◦RXY ) = −Λ(RXY ).(13)

The complexification of ρ has components

ρ =
i

2
R γ

αβγ zα ∧ zβ + iR γ

αβ̄γ
zα ∧ z̄β̄ +

i

2
R γ

ᾱβ̄γ
z̄ᾱ ∧ z̄β̄ .(14)

The first Ricci form is always closed and, when J is integrable, is of
type (1, 1). Its cohomology class 2πc1(TM, J) is the first Chern class of M .

Definition 1.11. The second Ricci form of R is rXY = −Λ(R ·,·,XY ), so

r = iR γ
γ λµ̄z

λ ∧ z̄µ̄,(15)

which is always a (1, 1)-form, but not closed in general.

Definition 1.12. The third Ricci form is

σ =
i

2
R α

µα λz
λ ∧ zµ + iR α

µ̄α λz
λ ∧ z̄µ̄ −

i

2
R α

µ̄ αλ̄z̄
λ̄ ∧ z̄µ̄(16)

1.8. Scalar curvatures

The Lefschetz traces of ρ and r agree. We thus define:

Definition 1.13. The Chern scalar curvature of R is

sC = Λ(ρ) = Λ(r) = R α γ
α γ = −

1

4
R Jei Jej

ei ej(17)

The Hermitian scalar curvature is sH = 2 · sC and coincides with the
Riemannian scalar curvature in the Kähler case.

Definition 1.14. The third scalar curvature is the Lefschetz trace

s = Λ(σ) = R β α
α β =

1

2
R j i

i j = −
1

2
R ij

ij(18)

of the third Ricci form.Alternatively, s is the trace of the curvature operator.

We shall also consider the Riemannian scalar curvature sg formed as
usual from the Levi-Civita connection Dg.
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Remark 1.15. Suppose J is integrable. Then the three Ricci forms coincide
with those of [27, Section I.4]. Gauduchon uses the notation u for sC and v for
s. Liu–Yang define similar scalar curvatures from the Levi-Civita connection.
The third scalar curvature s is like their ‘Riemannian type scalar curvature’
sR in [43, 4.2].

2. Comparison of curvatures

When M is not Kähler, the three scalar curvatures defined above do not
coincide. In this section, we quantify the differences. This is based on the
following. Recall that the algebraic Bianchi identity for connections on TM
with torsion asserts

RXY Z +RZXY +RY ZX = (∇XT )Y Z + (∇ZT )XY + (∇Y T )ZX(19)

− T (X,TY Z)− T (Z, TXY )− T (Y, TZX).

By [27, (2.1.4)] the difference between the Chern and Levi-Civita connection
is

g(∇XY, Z) = g(Dg
XY, Z) +

3

2
tXY Z − g(X,TY Z),(20)

for the anti-symmetrization

tXY Z =
1

3
(g(X,TY Z) + g(Z, TXY ) + g(Y, TZX))(21)

of the torsion tensor1. As a consequence of (10) we note (see also [28,
(2.5.10)])

t =
1

3
dcF.(22)

Proposition 2.1. We havesC − s = 1
2 |θ|

2 + 1
2δ

gθ − 9
2 |t|

2 + 1
2 |T |

2.

Here, |T |2 is given by (5) as a TM -valued 2-form and |θ|2 and |t|2 are
the usual norms for differential 3-forms. The codifferential δg is taken with
respect to g.

1In fact, as pointed out to us by the referee, (20) holds for any metric connection
∇ with torsion T and corresponding t defined by (21). The formula can be verified
directly, using that the gauge potential AX = Dg

X −∇X is then skew-symmetric
and TXY = AXY −AYX.
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Proof. Choose an orthonormal frame e2α−1, e2α = Je2α−1 near p ∈M with
∇Xei = 0 for all X ∈ TpM . Such a frame may be constructed by extending
parallelly an adapted orthonormal basis in p along geodesic rays. We work
in the basis zα = 1

2(e2α−1 − ie2α) of T
1,0.

By evaluating (20) at p we get

(Dαz
γ)β̄ = −(Dαzβ̄)

γ = −
1

2
T γ

β̄ α
, (Dαz

γ̄)β̄ = −(Dαzβ̄)
γ̄ =

1

2
T γ̄

αβ̄
.

We apply this to compute the codifferential at p:

−δθ = hαβ̄(Dαθ)β̄ + hβᾱ(Dᾱθ)β

= hαβ̄
(
zαθβ̄ + θγ(Dαz

γ)β̄ + θγ̄(Dαz
γ̄)β̄

)
+ conjugate term

= zαθ
α −

1

2
θγT

αγ
α +

1

2
θγ̄T

γ̄ α
α + conjugate term

= zαθ
α +

1

2
|θ|2 + conjugate term

= zαθ
α + zᾱθ

ᾱ + |θ|2

Since ∇J = 0, the Chern connection preserves the type decomposition of
TM -valued forms and so (19) reduces in our frame to

R δ
αβ̄γ +R δ

β̄γα = (∇β̄T )
δ

γα − T δ
β̄,T (γ,α) .

Taking the double trace of this equation gives

sC − s = R α γ
α γ +Rα γ

γα = (∇ᾱT )
ᾱγ

γ − Tα γ
T (γ,α) = (∇αT )

αγ̄
γ̄ − T ᾱ γ̄

T (γ̄,ᾱ) .

(the last equation holds since sC − s is real.) In our frame at p

(∇ᾱT )
ᾱγ

γ + (∇αT )
αγ̄

γ̄ = −zαθ
α − z̄ᾱθ

ᾱ

Putting the above together

sC − s =
1

2
(|θ|2 + δθ)−

1

2

(

Tα γ
T (γ,α) + T ᾱ γ̄

T (γ̄,ᾱ)

)

.

Now apply the easy identities Tα γ
T (γ,α) = T ᾱ γ̄

T (γ̄,ᾱ) = TαβγT
βγα and

(23) 9|t|2 − |T |2 = 2TαβγT
βγα = TijkT

jki.

□
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Proposition 2.2. For the Riemannian scalar curvature sg we have

2s− sg = |T |2 −
9

2
|t|2 − 2δθ − |θ|2(24)

Proof. This is a similar computation, using normal coordinates ei at p ∈M .
Thus [ei, ej ] = 0 and Dg

ei(ej)|p = 0. The Riemannian scalar curvature at p
is then

sg(p) = eig(D
g
ejej , ei)− ejg(D

g
eiej , ei)

(we omit all summation signs) which, using

∇eiej = Dg
ei(ej) +

(
3

2
t k
ij − T k

j i

)

ek(25)

from (20), becomes

eig(∇ejej , ei) + eiTjij − ejg(∇eiej , ei)− ejTjii

= 2s(p) + g(∇eiei,∇ejej)− g(∇eiej ,∇ejei)− 2ejTjii.

Now δθ(p) = −ejTjii and inserting (25) gives

sg(p)− 2s(p) = TikiTjkj +
9

4
t2ijk + 3t k

ij T
k

i j − TjkiTikj + 2δθ

Now apply (23) and |θ|2 = TikiTjkj to get (24). □

Combining Propositions 2.1 and 2.2 gives (recall sH = 2sC):

Corollary 2.3. sH − sg = −δθ − 27
2 |t|

2 + 2|T |2.

Remark 2.4. By (22) and the orthogonal decomposition of 3-forms into
real type

9|t|2 = |dF |2 = |dF (2,1)+(1,2)|2 + |dF (3,0)+(0,3)|2,

and by (8) and (10)

|T 2,0|2 = |dcF 2,0|2Ω2 = |dF (2,1)+(1,2)|2, |T 0,2|2 = |N |2.

(for t and dF (r,s)+(s,r) we take the 3-form norm.) We conclude

9|t|2 − |T |2 = |dF (3,0)+(0,3)|2 − |N |2,

9

2
|t|2 − |T |2 = −

1

2
|dF (1,2)+(2,1)|2 +

1

2
|dF (3,0)+(0,3)|2 − |N |2.
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When J is integrable, dF is of type (2, 1) + (1, 2), so these equations re-
duce to 9|t|2 = |T |2 and 9

2 |t|
2 − |T |2 = −1

2 |dF
(2,1)+(1,2)|2. In this case (24)

becomes [27, (32)] and Proposition 2.1 specializes to [27, Corollaire 2]:

2s− sg =
1

2
|dF |2 − 2δθ − |θ|2,

sH − 2s = |θ|2 + δθ,

sH − sg =
1

2
|dF |2 − δθ.

3. Integrability theorems

In the almost Kähler case, dF = 0, Propositions 2.1 and 2.2 immediate imply
vanishing theorems. For in this case, T = N , θ = 0, and t = 0 from (10), (11),
and (22), respectively. The formulas then reduce to

2s− sg = |N |2, sH − 2s = |N |2.(26)

Corollary 3.1. [7] On an almost Kähler manifold we have sg ≤ 2s ≤ sH

with either equality precisely when (J, g, F ) is Kähler.

With some care in dimension four, these conclusions can be extended.
Thus, assuming equality of various scalar curvatures on an almost Hermitian
manifold will guarantee both the integrability af J and the Kähler condition
dF = 0.

Theorem 3.2. Let (M,J, g, F ) be a closed almost Hermitian 4 = 2n-
manifold.

i

∫

M
(2s− sg + |θ|2)

Fn

n!
≥ 0.

ii

∫

M
(sH − sg)

Fn

n!
≥ 0.

iii

∫

M
(sC − s)

Fn

n!
≥ 0.

In any case, equality holds if and only if the structure is Kähler.

Proof. Recall from (22) and (10) that

T = N + (dcF )2,0, t =
1

3
dcF.
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Since we are in dimension four, t = t2,0 + t1,1 by Lemma 1.5. Also for the
Ω2(M ;TM)-norm defined in (5), Lemma 1.6 gives

(27) |t|2Ω2 = |t2,0|2 + |t1,1|2 = 3|t2,0|2 =
1

3
|(dcF )2,0|2.

Combined with |t|2Ω3 = 1
3 |t|

2
Ω2(M ;TM) we get

(28) |T |2Ω2 −
9

2
|t|2Ω3 = |N |2 +

1

2
|(dcF )2,0|2.

Putting this into Proposition 2.2 and integrating gives

∫

M
(2s− sg + |θ|2) =

∫

M

(

|N |2 +
1

2
|(dcF )2,0|2

)
Fn

n!
≥ 0

where we use that the integral over δθ vanishes (since Fn

n! is the Riemannian
volume form). Of course, the left hand side can only vanish when N = 0 and
(dcF )2,0 = 0. Then T = N + (dcF )2,0 = 0 so by Remark 1.8 we are in the
Kähler case. Part ii) is a similar application of Corollary 2.3, while iii) uses
Proposition 2.1. □

Remark 3.3. When M is a closed Hermitian manifold (the integrable
case), one can deduce Theorem 3.2 in any dimension (see [27, 43] or ap-
ply the technique above to Remark 2.4). On the other hand, Dabkowski–
Lock [17] have examples of non-compact Hermitian with sH = sg which
are not Kähler. Do higher-dimensional closed almost Hermitian non-Kähler
manifolds with sH = sg exist?

In the conformally almost Kähler case, we will extend ii) to higher di-
mensions in Theorem 4.8 below. We now proceed by proving an ‘opposite’
of Corollary 3.1 for nearly Kähler structures.

Definition 3.4. An almost Hermitian manifold (J, g, F ) is nearly Kähler
if

(
Dg

XJ
)
Y +

(
Dg

Y J
)
X = 0

where Dg is the Levi-Civita connection [30, 31].

It follows from the definition that DgF = 1
3dF . Moreover, dF is of type

(3, 0) + (0, 3) andN = 1
3d

cF is totally anti-symmetric. In particular, a nearly
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Kähler manifold is balanced. Furthermore, a nearly Kähler manifold of di-
mension 2n = 4 is Kähler. Also, if the nearly Kähler manifold is Hermi-
tian then it is Kähler. Examples of nearly Kähler manifolds are S6 with
its standard almost-complex structure and metric, S3 × S3 equipped with
the bi-invariant almost complex structure and its 3-symmetric almost Her-
mitian structure and the twistor spaces over Einstein self-dual 4-manifolds,
endowed with the anti-tautological almost complex structure (for more de-
tails about nearly Kähler manifolds see [13, 15, 45, 46, 51]). We deduce from
Propositions 2.1 and 2.2 that for any nearly Kähler manifold

(29) 2s− sg = −
1

6
|dcF |2Ω3 , sH − 2s = −

2

3
|dcF |2Ω3 .

Corollary 3.5. On a nearly Kähler manifold we have sH ≤ 2s ≤ sg with
either equality precisely when (J, g, F ) is Kähler.

Remark 3.6. This does not contradict Theorem 3.2 because in dimension
4 the notions Kähler and nearly Kähler agree.

A feature of nearly Kähler manifolds is that dF is of constant norm [14,
36]. Moreover, Gray proved [32, Theorem 5.2] that any non-Kähler nearly
Kähler manifold of dimension 6 is Einstein of positive (constant) sg. Further-
more, their first Chern class vanishes. Hence, the Hermitian scalar curvature
sH of any closed non-Kähler nearly Kähler manifold of dimension 6 vanishes.

Corollary 3.7. On a closed non-Kähler, nearly Kähler manifold (M,J, g)
of dimension 6, we have sH = 0.

Proof. From the discussion above and (29) we know already that sH is con-
stant. So we only need to prove that the total integral of sH is zero. Now
since c1(TM, J) = 0, the Hermitian Ricci form is ρ = da for some 1-form a.
Thus

∫

M
sH volg = 2

∫

M
Λ(ρ) volg = 2

∫

M
g(da, F ) volg

= 2

∫

M
g(a, δF ) volg = −2

∫

M
g(a, Jθ) volg = 0.

since (M,J, g) is balanced. □

For more examples of almost Hermitian manifolds with vanishing Hermitian
scalar curvature, we refer the reader to the work of Di Scala and Vezzoni [19,
20] (see also [52]).
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4. Conformal variations

Let g̃ = e2fg be a conformal variation of the metric along a smooth real-
valued function f . Then (M,J, g̃, F̃ ) is again an almost Hermitian manifold
and we shall be interested in how the associated Chern connection, Ricci
forms, and scalar curvatures behave under this variation.

We begin by deriving an alternative expression for the Chern connection:

Lemma 4.1. The Chern connection is given by

h(W,∇XZ) = X0,1h(W,Z) + h(W, [X0,1, Z]) + h([W,X0,1], Z),(30)

where X ∈ TM and W,Z ∈ C∞(M,T 1,0).

Proof. (30) is easily seen to define a Hermitian connection whose (0, 1)-
part is given by (9). The result then follows from the uniqueness of such a
connection. □

Lemma 4.2. ∇̃XZ = ∇XZ + 2X1,0(f) · Z for all X ∈ TM,Z ∈ T 1,0.

Proof. This is an immediate consequence of Lemma 4.1. □

Proposition 4.3. For the curvature tensors of the Chern connection we
have

R̃∇̃(Z) = R∇(Z) + iddcf · Z.(31)

Proof. Beginning with Lemma 4.2 a straightforward calculation gives

R̃∇̃
XY Z = R∇

XY Z + 2
(
X(Y 1,0f)− Y (X1,0f)− [X,Y ]1,0f

)
· Z. □

Corollary 4.4. The conformal variations of the three Ricci forms are given
by

ρ̃ = ρ− n · ddcf,(32)

r̃ = r − Λ(ddcf) · F,(33)

σ̃ = σ − ddcf.(34)

Proof. Compute the three Ricci forms of the tensor ddcf ⊗ F . □
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Corollary 4.5. The conformal variations of the scalar curvatures are

e2f s̃C = sC − nΛ(ddcf),(35)

e2f s̃ = s− Λ(ddcf).(36)

Lemma 4.6. For f ∈ C∞(M) real we have

−Λ(ddcf) = ∆g(f) + g(θ, df).(37)

Here, ∆g denotes the Hodge–de Rham operator ∆g(f) = δgdf .

Proof. Let (ei)i=1,...,m by a J-adapted orthonormal frame as in (1). Then

Λ(ddcf) =
1

2

m∑

i=1

(ddcf) (ei, Jei)

=

m∑

i=1

ei (d
cf(Jei))− dcf(JDg

eiei)− (dcf)
(
(Dg

eiJ)ei
)

= −∆g(f)− g(θ, df).

In the last equality we have used θ = JδgF = −
m∑

i=1

g(J(Dg
eiJ)ei, ·), which

is a straightforward consequence of Dgg = 0 and F = g(J ·, ·). □

Corollary 4.7. For the Hermitian scalar curvature of g̃ = e2fg we have

e2f s̃H = sH +m∆g(f) +mg(θ, df).(38)

When J is integrable we recover [27, (23)].

Theorem 4.8. Let (M,J, g, F ) be a closed almost Hermitian manifold of
real dimension m = 2n. Assume that g is conformally almost Kähler. Then

∫

M
(sH − sg)

Fn

n!
≥ 0.

Equality holds precisely when J is integrable and (J, g, F ) is Kähler.
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Proof. Suppose (J, g̃ = e2fg) is almost Kähler. Then by (26) we have

s̃H − s̃g̃ = 2|N |2g̃ = 2e−2f |N |2g

Since F̃ = e2fF is closed, we have

0 = d(e2fF ) = e2f
(

(dF )0 +

(

2df +
θ

n− 1

)

∧ F

)

for the trace-free part (dF )0. From this we read off the torsion 1-form

θ = (2−m)df.

Putting this into (38) and combining with the formula for the conformal
variation of the Riemannian scalar curvature (see Besse [12, Theorem 1.159])
we get

(39) e2f
(
s̃H − s̃g̃

)
= (sH − sg) + (2−m)∆f − (m− 2)|df |2.

Hence
∫

M
2|N |2g

Fn

n!
=

∫

M
(sH − sg)

Fn

n!
− (m− 2)

∫

M
|df |2g

Fn

n!
.

□

5. Conformally constant Hermitian scalar curvature metrics

We shall be concerned with the existence of the following type of metrics:

Definition 5.1. An almost Hermitian metric (J, g, F ) has conformally con-
stant Hermitian scalar curvature (ccHsc) if for some f ∈ C∞(M) the struc-
ture (J, g̃, F̃ ) := (J, e2fg, e2fF ) has s̃H = const.

In Corollary 5.10 we prove a sufficient criterion for (J, g, F ) to have
conformally constant Hermitian scalar curvature (non-positive fundamental
constant). This can be regarded as a generalization of the Chern–Yamabe
problem [1] to the non-integrable case. Thus the problem is divided into the
cases C(J, [g]) ≤ 0 and C(J, [g]) > 0 according to the fundamental constant.
The positive case in the Chern–Yamabe problem is difficult because (38)
looses its nice analytic properties stemming from the maximum principle.
The question remains open in this case. Restricting to symplectic manifolds,
we shall consider instead the following more basic existence problem:
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Existence Problem 5.2. Let (M,ω) be a closed symplectic manifold. Does
M admit any ω-compatible almost complex structure J such that (J, g, ω) has
conformally constant Hermitian scalar curvature?

Remark 5.3. We allow conformal variations because if we fix ω the exis-
tence of compatible metrics with sH = const is not guaranteed: sometimes
one cannot find an extremal Kähler metric [16] and for instance on toric
manifolds the existence of extremal Kähler metrics is conjecturally equiv-
alent to the existence of extremal almost-Kähler metrics (see [22] and also
for example [4, 5, 8, 35, 42, 47, 49]).

Chern–Yamabe Problem 5.4. Given a closed almost Hermitian man-
ifold M , find a conformal structure (J, e2fg, e2fF ) of constant Hermitian
scalar curvature. In other words, does every (J, g, F ) have ccHsc?

As shown in (38), the Hermitian scalar curvature transforms by the
same formula as in the integrable case. Here we show how to extend the
main results of [1] to the non-integrable case, as well as some results of
independent interest. We mention also the work [18] where a similar problem
for the J-scalar curvature is studied, which is derived from the Riemannian
curvature.

Recall that Gauduchon showed in [26] that every conformal class [g] has
a natural base-point g0 = e−2f0g. It is characterized by having a co-closed
torsion 1-form θ0, once we normalize g0 to unit volume. In terms of the
complex Laplacian

Lg(f) := ∆gf + g(θ, df),

this is equivalent to (Lg)∗e(2−m)f0 = 0 and
∫

M e−mf0 F
n

n! = 1.

Definition 5.5. (J, g0 := e−2f0g, F0 := e−2f0F ) is the Gauduchon metric in
the conformal class [g]. The fundamental constant is (see [1, 6, 10, 25])

(40) C(M,J, [g]) :=

∫

M
e(2−m)f0sH

Fn

n!

(38)
=

∫

M
sH0

Fn
0

n!
.

In the Hermitian setting, the fundamental constant plays a central role
in the Plurigenera Theorem [25] and is closely related to the Kodaira dimen-
sion. The different cases in the Chern–Yamabe problem are C < 0, C = 0,
and C > 0.
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Recall that the Yamabe constant is defined in terms of the Riemannian
structure

Y [g] := inf

{∫

M
sg̃ volg̃

∣
∣
∣
∣
g̃ = e2fg,

∫

M
volg̃ = 1

}

.

We remark that Yamabe, Trudinger, Aubin, and Schoen have shown that
[g] contains metrics of constant Riemannian scalar curvature Y [g] (see [39]
for a full account). From Theorem 3.2 we immediately get (see [6] in the
integrable case):

Proposition 5.6. In dimension 2n = 4 we have the estimate

Y [g] ≤ C(M4, J, [g])

with equality if and only if the Gauduchon metric (J, g0, F0) is Kähler of
constant scalar curvature.

Proposition 5.7. Let (Mm, J, g, F ) be a closed almost Hermitian mani-
fold. Then there exists a conformal metric g̃ ∈ [g] whose Hermitian scalar
curvature has the same sign as C at every point (meaning zero when C = 0).

Proof. The adjoint of the complex Laplacian Lg0 of the Gauduchon metric
g0 is ∆g0f − g0(θ0, df), where we use δg0θ0 = 0. By the maximum principle
ker(Lg0)∗ are the constant functions (for more details, see [26]). Hence the
equation

Lg0f = C(J, [g])− sHg0

is solvable for f , since the right hand side is orthogonal to the constants.
Defining g̃ = e2fg0, equation (38) shows s̃H = e−2fC(J, [g]). □

Remark 5.8. This generalizes [1, Theorem 3.1] to the non-integrable case.
It follows that the Chern–Yamabe problem is solvable when C = 0. The same
conclusion (and same proof) holds for the third scalar curvature, where C
is replaced by the integral of the third scalar curvature of the Gauduchon
metric g0.

A simple adaption of the argument given by Angella–Calamai–Spotti for
[1, Theorem 4.1] gives the following statement:
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Theorem 5.9 ([1]). Let (Mm, J, g, F ) be a closed almost Hermitian man-
ifold, and let S : M → R be any strictly negative smooth function (not nec-
essarily the scalar curvature). Then the PDE

(41) mLg(f) + S = λe2f

has a solution (λ, f) ∈ R× C∞(M); in fact we must have λ < 0. The solu-
tion is unique up to replacing (λ, f) by (λe−2c, f + c) for a constant c. Thus
by scaling we may solve (41) for any given negative λ.

Proof. This is proven in [1, p. 11] by the continuity method. To apply their
argument it is only important to see that for any solution f of (41) we
have λ < 0. In our general setting, this follows since putting the formula
Lg(f) = e−2f0Lg0(f) into (41) and integrating gives

m

∫

M
(∆g0f + g0(θ0, df))

Fn
0

n!
︸ ︷︷ ︸

=0

+

∫

M
Se2f0

Fn
0

n!
︸ ︷︷ ︸

<0

= λ

∫

M
e2(f+f0)F

n
0

n!
︸ ︷︷ ︸

>0

.

□

Combining this with Proposition 5.7 and (38) we thus obtain the follow-
ing generalization of [1, Theorem 4.1]:

Corollary 5.10. Every closed almost Hermitian manifold with C(J, [g]) ≤ 0
has ccHsc (see also Remark 5.8).

Remark 5.11. We refer also to [11] by Melvyn Berger for a related ques-
tion. When (J, g) is Kähler (or more generally when [g] is a balanced confor-
mal class) he essentially constructs solutions of (41) where S is the Hermitian
scalar curvature of (J, g) and λ is a given non-positive function.

6. Ruled manifolds

We begin our study of the Existence Problem 5.2 for positive fundamental
constant with ruled manifolds. On complex manifolds, C(J, [g]) > 0 implies
Kodaira dimension −∞, by the Gauduchon Plurigenera Theorem [25]. The
Kodaira dimension of ruled manifolds is −∞ (conversely, this however does
not imply C(J, [g]) > 0).

Angella–Calamai–Spotti [1, Section 5] have given first simple examples
of Hermitian non-Kähler manifolds of positive constant Hermitian scalar
curvature (for instance on the Hopf surface or abstractly by deformations
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using the implicit function theorem). In this section, we demonstrate the
existence of almost Hermitian non-Kähler metrics of positive constant Her-
mitian scalar curvature on ruled manifolds (see [50] in the case of extremal
Kähler metrics). We mention also Hong’s work [33], which is different in that
only the Kähler class is fixed.

6.1. The generalized Calabi construction

Let us briefly review the construction. The reader may consult [3–5] for more
details and greater generality.

Let (S, ωS) be a symplectic manifold. For a torus T with Lie algebra t

let π : Q→ S be a principal T -bundle with connection θ ∈ Ω1(Q; t). Assume

(42) dθ = p · π∗ωS

for some fixed p ∈ t. Let (V, gV , ωV ) be a toric almost Kähler manifold for
the same torus and moment map µ : V → ∆ ⊂ t∗. Pick c ∈ R with (here ⟨, ⟩
is evaluation)

(43) P (w) := ⟨w, p⟩+ c > 0 ∀w ∈ ∆.

Thus P is a positive function on the Delzant polytope ∆.
Given this data, the generalized Calabi construction determines a sym-

plectic structure ωM on the total space of the associated bundle

(44) M := Q×T V
π
−→ S.

On the free stratum V 0 = µ−1(∆0) over the interior of the Delzant polytope
let α : TV 0 → t be the g-orthogonal projection onto the orbits. The linear
map

TpQ× TvV
0 → t, (X,Y ) 7→ θ(X) + α(Y )

is invariant under the torus action and thus induces a 1-form θ0 on M0 :=
Q×T V

0. The moment map factors over the projection to µ : M → ∆. Set

(45) ωM = P (µ)π∗ωS + ⟨dµ ∧ θ0⟩.

Generally, the g-orthogonal projection α is a map TvV → t/tv up to the
isotropy Lie algebra tv. Since dµ

ξ
v vanishes for ξ ∈ tv the definition of ⟨dµ ∧

θ0⟩ naturally extends so that ωM is also defined over all of M . (42) implies
that ωM is closed.



✐

✐

“4-Lejmi” — 2020/10/21 — 23:44 — page 1625 — #23
✐

✐

✐

✐

✐

✐

Conformally almost Hermitian geometry 1625

When S has an almost Kähler metric (JS , gS , ωS) we get an almost
Kähler metric on M as follows. Let G be the metric on ∆0 ⊂ t∗ that turns
µ into a Riemannian submersion, let H be the dual metric on the cotangent
bundle of ∆0. Precomposing with µ we obtain pairings Gp : t

∗ ⊗ t∗ → R,
Hp : t⊗ t → R at each p ∈M . Then

(46) gM := P (µ)π∗gS +G(dµ⊗ dµ) +H(θ0 ⊗ θ0).

Remark 6.1. The metric on V is determined byG: recall that every metric
G on ∆0 subject to appropriate boundary conditions (see [3, Proposition 1]
or (47), (48) below) compactifies to an ωV -compatible almost complex struc-
ture gV . Recall also that, up to symplectomorphism, any metric on V arises
this way [3, Lemma 3].

6.2. Ruled manifolds

We now restrict to T = S1. We shall say that a Hermitian line bundle L
with connection has degree p ∈ R if RL = pωS for the curvature.

Remark 6.2. Modifying ωS slightly, such line bundles always exist for
closed S. Indeed, an arbitrary small perturbation of ωS is a symplectic form
that represents a rational cohomology class, so some qωS with q ∈ Q rep-
resents an integer cohomology class (see [29, Observation 4.3]). The cor-
responding Kostant–Souriau line bundle has the required properties, with
p = 1/q. Another important class of examples is when S is a Riemann sur-
face. Here, holomorphic line bundles are determined by their degree p ∈ Z

with c1(L) = p[ωS ]. Using the ∂∂̄-Lemma we find a Hermitian connection
whose curvature 2-form is precisely pωS .

Let V = CP 1 with Fubini–Study symplectic form ωFS and Delzant poly-
tope ∆ = [0, 1]. As in (43) choose c with P (x) := px+ c positive on [0, 1].

Definition 6.3. The ruled manifold belonging to (L→ S, c) isM := P(L⊕
C) equipped with the symplectic form ωM,c from (45).

Hence M is obtained by compactifying each fiber of L to a sphere. Fol-
lowing [5] we assume also that the base S has constant Hermitian scalar
curvature.
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6.3. Existence problem

Since the scalar curvature is S1-invariant, it is our strategy to consider only
conformal variations u = φ ◦ µ for φ : [0, 1] → R+.

Theorem 6.4. Let (Mm = P(L⊕ C), ωM,c) be a ruled manifold over a
closed Kähler manifold (Sm−2, gS , ωS) of constant positive scalar curvature.

Choose a, b > 0 and let u = aµ+ b. Rescaling the volume of S, for c
sufficiently large there existsa compatible S1-invariant Kähler metric g on
M so that g̃ := u−2g has (positive) constant Hermitian scalar curvature (for
ω̃ = u−2ωM,c).

This solves the Existence Problem 5.2 on ruled manifolds. For n = 2
they are examples of almost Hermitian manifolds of positive fundamental
constant (see Proposition 6.6) which are not covered by the results of the
previous section. Instead of rescaling the base one may also change the
Fubini–Study form on the fibers by a fixed factor.

Remark 6.5. By Apostolov–Calderbank–Gauduchon–Tønnesen-Friedman,
ruled manifolds with c sufficiently large also admit an extremal metric [5,
Theorem 4].

As recalled above in Remark 6.1, compatible S1-invariant metrics on
(CP 1, ωFS) correspond to smooth functions H : [0, 1] → R satisfying the
boundary conditions

H(0) = H(1) = 0,

H′(0) = 2 = −H′(1),
(47)

H(x) > 0 (0 < x < 1).(48)

Then H and gS determine an ωM -compatible almost Kähler metric gM via
(46). The metric g we seek will be of the form (46) and is hence determined
by a function G−1 := H satisfying (47), (48). Let t : V 0 → S1 be the angle
coordinate on the round sphere CP 1 \ {N,S}. Let (xi) be local coordinates
on S over which L is trivialized. The connection then corresponds to a local
1-form A = Aidx

i on the base. We have local coordinates (xi, µ, t) on M0

in which the induced 1-form can be written θ0 = A+ dt. From (45) we then
get the volume form

(49) volM =
ωn
M,c

n!
=

1

n
P (µ)n−1 volS ∧dµ ∧ dt.
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According to (46), the local expression for the metric g is:

[
P (µ)gSij +H(µ)Ai(µ)Aj(µ)

]
dxidxj

+G(µ)dµdµ+H(µ)dtdt+ 2H(µ)Ai(x)dx
idt

From this we see dµ♯g = H(µ) ∂
∂µ . Putting this into the formula

d(igradg f volM ) = −∆g(f) volM

we get for the Hodge–de Rham Laplacian of the moment map

(50) ∆g(µ) = −
(Pn−1H)′(µ)

P (µ)n−1
.

Note also the general formula ∆g(φ ◦ µ) = φ′(µ)∆gµ− φ′′(µ)|dµ|2g.
We shall refer the analytic part of the proof to the next subsection.

Proof of Theorem 6.4. According to Proposition 6.9 below with λ := b/a we
find unique b1, b2 > 0 and f ∈ C∞([λ, 1 + λ]) strictly positive on the interior
satisfying (56), (57). Rescaling the volume, we assume that b2 is the scalar
curvature of S.

By [5, Lemma 9] the Hermitian scalar curvature of (M, g, ωM,c) is (omit-
ting the argument µ and where the derivatives are taken as functions of
x ∈ [0, 1])

(51) sH =
b2
P

−
(Pn−1H)′′

Pn−1
.

Combining (38), (50), and (51) we get for g̃ = u−2g, where u = φ ◦ µ:

s̃H = φ2 b2
P

− φ2 (P
n−1H)′′

Pn−1
+mφφ′ (P

n−1H)′

Pn−1
+m

(
φφ′′ − (φ′)2

)
H

If φ(x) = ax+ b and defining f(x+ λ) = P (x)n−1H(x) we see from (56)
that we have found a solution H to this equation where s̃H = a2b1 which
is clearly positive. Condition (47) is (57) and (48) is just the positivity of
f . □

Proposition 6.6. Let M = P (L⊕ C) with the Kähler metric g from The-
orem 6.4. When n = dimCM = 2 the fundamental constant is

(52) C(M,J, [g]) =
2sHS + 8c+ 4p

2c+ p
.
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Proof. The coarea formula applied to the submersion µ : M → [0, 1] and
volume form ωn

M/n! shows that for measurable f : [0, 1] → R we have (see
also [5, p. 17])

(53)

∫

M
(fµ)

ωn
M

n!
=

∫ 1

0
f(x) vol(µ−1x)dx.

On µ−1(x) the form (45) restricts to P (x)π∗ωS , hence vol(µ−1x) =
P (x)n−1 vol(B). Without loss we may suppose vol(B) = 1. The Kähler met-
ric (ωM , g) is Gauduchon and normalizing (40) to unit volume gives

C(M,J, [g]) =
1

vol(M)

∫

M
sH

ωn
M

n!

Recall P (x) = px+ c, n = 2, and P (x)H(x) = f(x+ λ). Evaluate using (53)

vol(M) =

∫

M

ω2
M

2!
=

∫ 1

0
P (x)dx =

(p+ c)2 − c2

2p
∫

M
sH

ω2
M

2!

(51)
=

∫ 1

0

sHS − (PH)′′(x)

P (x)
vol(µ−1x)dx

=

∫ 1

0

[
sHS − (PH)′′(x)

]
dx

= sHS − f ′(x+ λ)
∣
∣1

0
= sHS + 2(p+ c) + 2c

using (47), which corresponds to (57) when P (x)H(x) = f(x+ λ). □

6.4. Analytic part

We first describe the general method for obtaining the main result of this
section. Let an, . . . , a0 ∈ C∞(I) and Q1

c , . . . , Q
m
c ∈ C∞(I) depending on a

parameter c ∈ R be smooth functions on a fixed interval I. For any fixed c
sufficiently large we wish to solve

an(x)f
(n)(x) + · · ·+ a1(x)f

(1)(x) + a0(x)f(x)(54)

= b1Q
1
c(x) + · · ·+ bmQ

m
c (x)

with n+m initial values (which may also depend on c) uniquely for f ∈
C∞(I) and b = (b1, . . . , bm) ∈ Rm and to understand the asymptotic be-
haviour in c.

Suppose that for all b, c there exists a particular solution f◦b,c of (54).
Since b appears linearly in (54) we may arrange also that f◦b,c is a linear
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function of b. Let f1, . . . , fn be the n independent solutions of the homoge-
neous ODE corresponding to (54). Then the linear map

Fc : R
n+m → C∞(I), (b, d) 7→ f◦b,c + d1f1 + · · ·+ dnfn

parameterizes all solutions of (54) with right-hand side fixed by b, c.
Let the initial values be prescribed by a linear map i : C∞(I) → Rn+m

and a family of vectors vc ∈ Rn+m, c ∈ R (so that the initial value problem
becomes (54) with i(f) = vc). The problem above of finding solutions with
given initial values can then be formulated as follows: prove that the endo-
morphism Mc = i ◦ Fc of Rn+m is invertible for c large and understand the
asymptotics of M−1

c (vc).
This is done with the following lemma. Here O(cn) stands for any Lau-

rent polynomial in c of degree ≤ n with coefficients in C∞(I), i.e. an expres-
sion

(55) φn(x)c
n + · · ·φk(x)c

k, n ≥ k ∈ Z, φj ∈ C∞(I).

Remark 6.7. We will use this notation to describe asymptotic behaviour.
Note that it is very restrictive, since it requires the dependence on c to be
a Laurent polynomial. Note also that the x-derivative of an expression (55)
is of the same form. Thus d

dxO(cn) = O(cn).

Lemma 6.8. LetMc = (M1
c , . . . ,M

N
c ) ∈ RN×N be a matrix whose columns

are functions of c ∈ R having the asymptotic behaviour M j
c =M j

∞cnj +
O(cnj−1). Then for M∞ = (M1

∞, . . . ,M
N
∞)

det(Mc) = det(M∞)cn1+···+nN +O(cn1+···+nN−1).

In particular, when M∞ is invertible it follows that Mc is invertible for c
sufficiently large. Assume this and vc = v∞c

m +O(cm−1) ∈ RN and let xc
and x∞ be the respective solutions of Mcxc = vc and M∞x∞ = v∞. Then
for the j-th entry

xjc = xj∞c
m−nj +O(cm−nj−1).

In particular, the unique solutions xc are again Laurent polynomials in c.

This follows from elementary properties of the determinant (Cramer’s
rule). The main result of this section is as follows. It completes the proof of
Theorem 6.4.
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Proposition 6.9. For any m = 2n ∈ N, λ > 0, and P (x) = px+ c with
c sufficiently large there exists a unique solution (b1, b2, f) ∈ R>0 × R>0 ×
C∞([λ, 1 + λ]) of

x2f ′′(x)−mxf ′(x) +mf(x)(56)

= −b1 · P (x− λ)n−1 + b2 · x
2 · P (x− λ)n−2

with initial values

f(λ) = f(1 + λ) = 0 f ′(λ) = 2cn−1 f ′(1 + λ) = −2(p+ c)n−1.(57)

Moreover, f is strictly positive on ]λ, 1 + λ[.

Care must be taken to prove the positivity since near λ the solution
functions fc for c→ ∞ could oscillate around zero into the negative, even if
the limiting function f∞ is strictly positive on the interior.

Proof. We apply the method above with I = [λ, 1 + λ], Q1
c(x) =

−(px− pλ+ c)n−1, Q2
c(x) = x2(px− pλ+ c)n−2 and

i(f) = (f(λ), f(1 + λ), f ′(λ), f ′(1 + λ)), vc = (0, 0, 2cn−1,−2(p+ c)n−1)

First we need to determine the general solution for fixed b, c. The homoge-
neous equation corresponding to (56) has solutions x, xm. Applying ‘reduc-
tion of order’ [48, p. 242] we obtain all solutions of (56)

Fc(b, d)(x) =
b1x

m− 1

∫
(px− pλ+ c)n−1

x2
(58)

−
b1x

m

m− 1

∫
(px− pλ+ c)n−1

xm+1

−
b2x

m− 1

∫

(px− pλ+ c)n−2

+
b2x

m

m− 1

∫
(px− pλ+ c)n−2

xm−1
+ d1x+ d2x

m.

where we fix choices of primitives (say by integrating from λ to x).
Let Mc = i ◦ Fc : R

4 → R4, regarded as a matrix in the standard basis.
The matrix entries are simple to write down from (58), but very long and
not informative. Ultimately, we wish to show that Mc is invertible for c suf-
ficiently large and according to Lemma 6.8 it suffices for this to understand
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the asymptotic behaviour. We have

f(x) = b1

(
−cn−1

m
+O(cn−2)

)

(59)

+ b2

(
−cn−2

m− 2
+O(cn−3)

)

x2 + d1x+ d2x
m

and using Remark 6.7 this implies

f ′(x) = b1O(cn−2) + b2O(cn−3)2x

+ b2

(
−cn−2

m− 2
+O(cn−3)

)

x2 + d1 +md2x
m−1

= b1O(cn−2) + b2

(
−cn−2

m− 2
+O(cn−3)

)

+ d1 +md2x
m−1

Hence

Mc =








−cn−1

m +O(cn−2) −cn−2

m−2 λ
2 +O(cn−3) λ λm

−cn−1

m +O(cn−2) −cn−2

m−2 (1 + λ)2 +O(cn−3) 1 + λ (1 + λ)m

O(cn−2) −cn−2

n−1 λ+O(cn−3) 1 mλm−1

O(cn−2) −cn−2

n−1 (1 + λ) +O(cn−3) 1 m(1 + λ)m−1







.

Also vc = (0, 0, 2,−2)cn−1 +O(cn−2). The matrix

M∞ =








−1
m

−λ2

m−2 λ λm

−1
m

−(1+λ)2

m−2 1 + λ (1 + λ)m

0 −λ
n−1 1 mλm−1

0 −(1+λ)
n−1 1 m(1 + λ)m−1








is invertible. The equation M∞ · x∞ = (0, 0, 2,−2)T has the solution

x∞ =
(
2mλ(1 + λ), 2(m− 2), 2(1 + 2λ), 0

)
.

Therefore Lemma 6.8 implies that Mc is invertible for c sufficiently large
and also that we have the asymptotic behaviour

b1 = 2mλ(1 + λ) +O(c−1), b2 = 2(m− 2)c+O(c0),

d1 = 2(1 + 2λ)cn−1 +O(cn−2), d2 = O(cn−2).
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Putting this into (59) shows

fc(x+ λ) = 2cn−1x(1− x) +O(cn−2).

Hence
f ′c(x+ λ)

2cn−1
= 1− 2x+O(c−1)

uniformly in x.
It follows that for c sufficiently large fc has precisely one extreme point on

[λ, 1 + λ] (close to 1/2 + λ). From (57) we see that this must be a maximum
and hence fc is positive on [λ, 1 + λ]. □

0.5 1

1

2

fc(x+ λ)

2cn−1x(1− x)

x

Figure 1: Plot of the solution fc for p = 3, λ = 1
2 ,m = 4, c = 3 and of the

‘ideal solution’ at infinity

7. Moment map setup

In this section we give a moment map interpretation of the Existence Prob-
lem 5.2 inspired by the work of Apostolov and Maschler [9]. This leads to
the familiar existence and uniqueness conjectures formulated in terms of ge-
ometric invariant theory, as well as to a version of the Futaki invariant. Our
method applies to closed symplectic manifolds (Mm, ω) admitting a sym-
metry given by a Hamiltonian vector field, meaning we assume ACf (ω) ̸= ∅
(see Definition 7.2 below). An example is a manifold with Hamiltonian circle
action, as above.

First we recall the general definition (g∗ gets the coadjoint action):
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Definition 7.1. A symplectic action of a Lie group on a symplectic man-
ifold (S, ω) is Hamiltonian if there exists a G-equivariant moment map
µ : X → g∗ with

(60) dµξ(X) = ω(X, ξ∗) ∀ξ ∈ g, X ∈ TS.

(write µξ = µ(−)(ξ) ∈ C∞(S) and let ξ∗ ∈ X(S) be the infinitesimal action.)

7.1. The action

For fixed f ∈ C∞(M) with ∫M f vol = 0 let

u := e−nf , K := gradω u.(61)

Then LKω = ιKdω + dιKω = 0 + ddu = 0.

Definition 7.2. Let K be a Hamiltonian vector field on (M,ω) as in (61).
By definition ACf (ω) is the Fréchet manifold of ω-compatible almost com-
plex structures J satisfying LKJ = 0.

We equip ACf (ω) with the symplectic form [21, 23]

ΩJ(A,B) =
1

2

∫

M
tr(J ◦A ◦B)enf vol, A,B ∈ TJACf (ω).(62)

Proposition 7.3. When non-empty, ACf (ω) is contractible. This is the
case if and only if K is a Killing vector field for some metric g on M .

Proof. Letting Metf (M) denote the space of all K-invariant Riemannian
metrics, the usual map restricts to a retraction

Metf (M) → ACf (ω), g 7→ Jg, where Jg := Ag|Ag|
−1, g(Ag−,−) := ω

on the convex space of metrics g satisfying LKg = 0.
To see that Jg is an almost complex structure, note that Ag is skew-

symmetric and that Ag commutes with |Ag| = (A∗
gAg)

1/2 by functional cal-
culus. Thus

J2
g = Ag|Ag|

−1Ag|Ag|
−1 = A2

g|Ag|
−2 = A2

g(A
∗
gAg)

−1 = A2
g(−A

2
g)

−1 = −1.

Conversely, when ACf (ω) is non-empty, let J be an element. Then K is a
Killing field for g = ω(·, J ·) since LKω = 0 and LKJ = 0. □
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Remark 7.4. As mentioned above, we make the assumption that ACf (ω)
is non-empty. According to Bochner, there are no non-trivial Killing fields in
the case of strictly negative Ricci curvature. We have sH = 2|N |2 + sg and
so the results of this section mainly concern the case of positive fundamental
constant.

Definition 7.5. Hamf (ω) ⊂ Symp(ω) is the subgroup of Hamiltonian sym-
plectomorphisms ϕ satisfying f ◦ ϕ = f (equivalently ϕ∗ preserves gradω f).

We recall that by definition the Lie algebra of the Hamiltonian sym-
plectomorphisms are the Hamiltonian vector fields dφ = −ιXω, where φ ∈
C∞(M). The Lie algebra hamf (ω) consists of Hamiltonian vector fields
with [gradω f,X] = 0. Let C∞

f (M) be the space of φ ∈ C∞(M) with con-

stant Poisson bracket {f, φ}. Then hamf (ω) is canonically identified with
C∞
f (M)/R. The adjoint action of ϕ ∈ Hamf (ω) on φ ∈ C∞

f (M)/R can be

written (ϕ−1)∗φ. On C∞
f (M) consider

(63) ⟨h1, h2⟩e(2+n)f =

∫

M
h1h2e

(2+n)f vol .

It places C∞
f (M)/R in duality with

C∞
0,f (M) := {φ ∈ C∞

f (M) | ⟨φ, 1⟩e(2+n)f = 0}.

We have an isomorphism to C∞
0,f (M) → C∞

f (M)/R with inverse

C∞
f (M)/R → C∞

0,f (M), φ 7→ φ̊ := φ−
⟨φ, 1⟩e(2+n)f

⟨1, 1⟩e(2+n)f

= φ−
∫M φe(2+n)f vol

∫M e(2+n)f vol
.

For φ, ψ ∈ C∞
f (M) note the formula

(64) ⟨φ̊, ψ⟩e(2+n)f = ⟨φ, ψ̊⟩e(2+n)f .

Since enf vol is preserved by ϕ, the action of Hamf (ω) on ACf (ω) by
ϕ∗ ◦ J ◦ ϕ−1

∗ preserves the symplectic form (62). We will show that it is
Hamiltonian.

7.2. Technical preparations

Lemma 7.6 (see [41, Lemma 1.3]). Let (J, g, ω) be almost Kähler. Sup-
pose the symplectic gradient K = gradω u is a g-Killing field. Then the J-
anti-invariant part (DgJdu♯)J,− is anti-symmetric.
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Proof. Because LKω = 0 is automatic, the fieldK = Jdu♯ is Killing precisely
when it is holomorphic. Therefore, combined with the fact thatDg is torsion-
free,

0 = LKJ = Dg
KJ − [DgK, J ].

So (DgK)J,− = 1
2J [D

gK, J ] = 1
2JD

g
KJ = −1

2D
g
JKJ which is anti-symmetric.

□

Consider a path Jt ∈ AC(ω) representing J̇ = d
dt

∣
∣
0
Jt. Write gt = ω(·, Jt·).

The variation of the scalar curvature is given by the Mohsen formula:

Proposition 7.7 (see [24, 44]). d
dt

∣
∣
0
sHgt = −δJ(δJ̇)♭.

In this formula the codifferential of an endomorphism A is defined by

g(δA,X) = δ⟨A,X⟩+ g(A,DgX), X ∈ X(M)(65)

using the evaluation pairing ⟨, ⟩. For 1-forms α, β we note also the simple
formulas

g(α♯, A(X)) = g(A∗, α⊗X),(66)

d

dt

∣
∣
∣
∣
0

gt(α, β) = −g(α, J̇Jβ),(67)

which are used in the proof of our main technical lemma:

Lemma 7.8. For the metrics g̃t = e2fω(·, Jt·) and any h ∈ C∞(M) we have

d

dt

∣
∣
∣
∣
0

∫

M
sHg̃the

(2+n)f vol =

∫

M
g(J̇ , DgJdh♯)enf vol .(68)

Proof. Recall u := e−nf . By (38) the scalar curvature of the conformal vari-
ation is

sHg̃t = e−2f
(
sHgt +m∆gt(f)

)
= u2/nsHgt − 2u2/n−1∆gt(u)− 2u2/n−2|du|2gt .

Putting this and e(2+n)f = u−1−2/n into the left hand side of (68) gives

d

dt

∣
∣
∣
∣
0

∫

M
sHgthu

−1 vol−2

∫

M
∆gt(u)hu−2 vol−2

∫

M
gt(du, du)hu

−3 vol .
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Applying Proposition 7.7 and (67) to the second and third summand we get

−

∫

M
δJ(δJ̇)♭hu−1 vol

+ 2

∫

M
g(du, J̇Jd(hu−2)) vol+2

∫

M
g
(

du, J̇Jdu
)

hu−3 vol

which, in view of (65) and (66) becomes

∫

g
(

J̇ , DgJd(hu−1)♯ + 2du⊗ Jd(hu−2)♯ + 2hu−3du⊗ Jdu♯
)

vol .(69)

Now expand using the Leibniz rule:

DgJd(hu−1)♯ = 2u−3hdu⊗ Jdu♯ − u−2du⊗ Jdh♯ − u−2dh⊗ Jdu♯(70)

+ u−1Dg(Jdh♯)− u−2hDgJdu♯

du⊗ Jd(hu−2)♯ = u−2du⊗ Jdh♯ − 2u−3hdu⊗ Jdu♯(71)

From (66) we see g(J̇ , du⊗ Jdh♯) = g(J̇ , dh⊗ Jdu♯). Moreover, Lemma 7.6
implies g(J̇ , DgJdu♯) = 0 since J̇ is symmetric and J-anti-invariant, while
the J-anti-invariant part of DgJdu♯ is anti-symmetric. Inserting (70) into
(69) and applying these facts then gives the right hand side of (68). □

7.3. Proof of main theorem

We write gf,J := e2fω(·, J ·) and gJ := g0,J .

Theorem 7.9. Let (M,ω) be a closed symplectic manifold with Hamil-
tonian vector field K = gradω u, u = e−nf , ∫M f vol = 0, and ACf (ω) ̸= ∅.
The action of Hamf (ω) on ACf (ω) with symplectic form (62) is Hamiltonian
with moment map

µ : ACf (ω)× C∞
0,f (M) → R, µh̊(J) =

∫

M
sHgf,J h̊e

(2+n)f vol .(72)

Here the Hermitian scalar curvature of gf,J is viewed as a functional using
(63).

Identifying hamf (ω) = C∞
f (M)/R and using (64) we may rewrite

(73) µ : ACf (ω) → (C∞
f (M)/R)∗, µ(J) =

∫

M
s̊Hgf,Jhe

(2+n)f vol .
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Proof. We must check that for any tangent vector J̇ ∈ TJACf and h ∈
C∞
0,f (M)

ΩJ(h
∗
J , J̇) = dµh(J̇).

Here h∗J = −LZJ ∈ TJACf for Z = gradω h denotes the infinitesimal action
of h at the point J . In terms of the adjoint of Dg

· Z ∈ End(TM) with respect
to g = gJ , the infinitesimal action can be rewritten as h∗J = −J ◦ (DgZ +
(DgZ)∗) and so

ΩJ(h
∗
J , J̇) =

1

2

∫

M

(

tr(DgZ ◦ J̇) + tr((DgZ)∗ ◦ J̇)
)

enf vol

=

∫

M
tr(DgZ ◦ J̇)enf vol .

This is the right hand side of (68), as Z = Jdh♯, while the left hand side of
(68) is simply dµh(J̇). From ϕ∗gϕ·J,f = gJ,ϕ∗f we get ϕ∗sHϕ·J,f = sHJ,ϕ∗f . Now
f ◦ ϕ = f by Definition 7.5 and so ϕ∗µ(ϕ · J) = µ(J), proving that (72) is
also equivariant. □

The zeros of the moment map µ are J ∈ ACf (ω) such that the metric
gf,J is of constant Hermitian scalar curvature. The geometric invariant the-
ory formal picture suggests then the existence of a unique almost-Kähler
metric in ACf (ω) conformal to a constant Hermitian scalar curvautre met-
ric, modulo the action of Hamf (ω), in every “stable” “complexified” orbit of
the action of Hamf (ω).

Remark 7.10. In [9, Remark 1], the zeros of the Apostolov–Maschler mo-
ment map are metrics gf,J with sggf,J + |N |2gf,J is constant, where sggf,J is the
Riemannian scalar curvature of gf,J . Our choice of the weights in the volume
form Ω and in the inner product (63) is motivated by metrics gf,J of con-
stant Hermitian scalar curvature. In [9], the chosen weights correspond to
the study of conformally Kähler Einstein-Maxwell metrics. A very general
setup was studied by Lahdili in [37, 38] (we also refer to [2]).

Corollary 7.11. Minima of ∥µ∥2 on ACf (ω) are ccHsc metrics.

It may also be of interest to consider critical points of ∥µ∥2.

7.4. Futaki invariant

Moment maps lead very generally to a Futaki invariant. In the context
of Definition 7.1, this invariant is associated to any Lie subalgebra h ⊂ g.
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Letting Sh = {p ∈ S | ξ∗p = 0 ∀ξ ∈ h} be the h-fixed points, the restriction
µ : Sh → h∗ is locally constant. Assuming Sh is connected, the common value
of µ is called the Futaki invariant Fh ∈ h∗.

Applied to our situation h = R ·K ⊂ hamf (ω) corresponding to u ∈
C∞
f (M)/R. The h-fixed points are all of ACf (ω). Identify h∗ = R by evalu-

ating at u.

Definition 7.12. For any J ∈ ACf (ω) the Futaki invariant is given by

Ff (ω) = µu(J) = ⟨̊sHgf,J , u⟩e(2+n)f =

∫

M
s̊Hgf,Je

2f vol

(38)
=

∫

M
sHgJ vol−

∫

M sHgf,Je
(n+2)f vol

∫

M e(n+2)f vol

∫

M
e2f vol .

The main point of the Futaki invariant, that it is independent of J , is a
consequence of the general moment map setup and Proposition 7.3. Indeed,
if we consider a path Jt in ACf (ω) then

d

dt
µu(Jt) =

d

dt

∫

M
sHgJt

vol−

∫

M e2f vol
∫

M e(n+2)f vol

d

dt

∫

M
sHgf,Jt

e(n+2)f vol,

= −

∫

M
δtJt(δtJ̇t)

♭t vol

−

∫

M e2f vol
∫

M e(n+2)f vol

∫

M
gt(J̇t, D

gtJtd (1)
♯) enf vol = 0.

In the second line, we used Proposition 7.7 and Equation (68) for h ≡ 1.

Corollary 7.13. Suppose that ACf (ω) ̸= ∅ and assume the existence of J ∈
ACf (ω) such that gf,J = e2fω(·, J ·) has constant Hermitian scalar curvature.
Then, Ff (ω) = 0.

7.5. The toric case

Let (M2n, ω) be a closed symplectic manifold equipped with an effective
Hamiltonian action of a n-dimensional torus T . Let z :M → ∆ ⊂ t∗ be the
moment map, where ∆ is the Delzant polytope in t∗ the dual of t = Lie(T ).
Denote by {u1, . . . , ud} the normals to the polytope ∆. The action of the
torus T is generated by a family of Hamiltonian vector fields {K1, . . . ,Kn}
linearly independent on an open set of the 2n-dimensional symplectic mani-
fold (M,ω) with ω(Ki,Kj) = 0. The symplectic form ω and an ω-compatible
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T -invariant almost Kähler metric g are given on z−1 of the interior of ∆ by

ω =

n∑

i=1

dzi ∧ dti,

g =

n∑

i,j=1

Gij(z)dzi ⊗ dzj +Hij(z)dti ⊗ dtj + Pij(z)dzi ⊙ dtj ,

where G,H are symmetric positive definite matrix-valued functions satisfy-
ing the compatibility conditions GH − P 2 = Id and HP = P tH (P t is the
transpose of P ). The coordinates zi are the moment coordinates and ti are
the angle coordinates.

Denote by Hij,k = ∂Hij

∂zk
etc. It is shown [22] and [40, (4.6)] that the

Hermitian scalar curvature is given by

sH = −
n∑

i,j=1

Hij,ij .

Let u = a1z1 + a2z2 + · · ·+ anzn + an+1 be a Hamiltonian Killing potential
(ai are real numbers). Then,

Jdu =

n∑

i,l=1

aiPlidzi + aiHildtl.

Hence,

dJdu =

n∑

i,l=1

aiPli,jdzj ∧ dzi + aiHil,jdzj ∧ dtl.

Recall that ∆gu = −g(dJdu, ω). We obtain

∆gu = −
n∑

i,j=1

aiHij,j , |du|2g =

n∑

i,j=1

aiajHij .

Hence, the conformal change equation (38) becomes

(74) sHgf,J = −u
2

n

n∑

i,j=1

Hij,ij + 2u
2

n
−1

n∑

i,j=1

aiHij,j − 2u
2

n
−2

n∑

i,j=1

aiajHij ,
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where sHgf,J is the Hermitian scalar curvature of gf,J = e2fω(·, J ·) with e−nf =
u. It is easy to check since H is symmetric that

n∑

i,j=1

(

enfHij

)

,ij
=

n∑

i,j=1

enfHij,ij − 2e2nfaiHij,j + 2e3nfaiajHij .

We conclude that (74) is equivalent to

(75) e(n+2)fsHgf,J = −
n∑

i,j=1

(

enfHij

)

,ij
.

Now, when the g-orthogonal distribution to the T -orbits is involutive
(this is the case when P = 0), H has to satisfy the boundary conditions
in [3, Proposition 1] and hence we can apply [9, Lemma 2] to get

Proposition 7.14. For any H satisfying the boundary conditions [3, Propo-
sition 1] and any affine function ξ = ξ(z1, . . . , zn),

−

∫

∆





n∑

i,j=1

(

enfHij

)

,ij



 ξdv = 2

∫

∂∆
enfξdµ,

where ∆ is the polytope and ∂∆ its boundary, dv = dz1 ∧ · · · ∧ dzn and dµ is
defined by uj ∧ dµ = −dv for any codimension one face with inward normal
uj

If we suppose that sHgf,J is a constant, then (75) becomes using Proposi-
tion 7.14

(76) 2e(n+2)f

∫

∂∆ e
nfdµ

∫

∆ e
(n+2)fdv

= −
n∑

i,j=1

(

enfHij

)

,ij

Define the Donaldson–Futaki invariant [22] for any smooth function ξ to
be

F∆,f (ξ) = 2

∫

∂∆
enfξdµ− 2

∫

∂∆ e
nfdµ

∫

∆ e
(n+2)fdv

∫

∆
ξe(n+2)fdv.

It is straightforward from Proposition 7.14 to conclude that if there exists a
solution H (satisfying the boundary conditions) of (76), then F∆,f (ξ) = 0,
for any affine function ξ = ξ(z1, . . . , zn). In fact, the existence of (J, g, ω)
such that gf,J is of (positive) constant Hermitian scalar curvature can be
related then to a notion of “stability” (see for instance [9, 22])
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Remark 7.15. Proposition 7.14 implies that for any toric almost Kähler
manifold (M,J, g, ω) with P = 0,

C(M,J, [g]) = 2

∫

∂∆ e
nfdµ

∫

∆ e
(n+2)fdv

> 0.
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Universitätsstrasse 14, 86159 Augsburg, Germany

E-mail address: Markus.Upmeier@math.uni-augsburg.de

Received June 29, 2017

Accepted March 11, 2018



✐

✐

“4-Lejmi” — 2020/10/21 — 23:44 — page 1646 — #44
✐

✐

✐

✐

✐

✐


	Preliminaries
	Comparison of curvatures
	Integrability theorems
	Conformal variations
	Conformally constant Hermitian scalar curvature metrics
	Ruled manifolds
	Moment map setup
	References

