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A slope p/q is a characterizing slope for a knot K in S3 if the
oriented homeomorphism type of p/q-surgery on K determines K
uniquely. We show that for each torus knot its set of characteriz-
ing slopes contains all but finitely many non-integer slopes. This
generalizes work of Ni and Zhang who established such a result for
T5,2. Along the way we show that if two knots K and K ′ in S3

have homeomorphic p/q-surgeries, then for q ≥ 3 and p sufficiently
large we can conclude that K and K ′ have the same genera and
Alexander polynomials. This is achieved by consideration of the
absolute grading on Heegaard Floer homology.
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1. Introduction

Given a knot K ⊆ S3, we say that p/q ∈ Q is a characterizing slope for
K, if the oriented homeomorphism type of the manifold obtained by p/q-
surgery on K determines K uniquely.1 In general determining the set of
characterizing slopes for a given knot is challenging. It was a long-standing
conjecture of Gordon, eventually proven by Kronheimer, Mrowka, Ozsváth

1Throughout the paper, we use Y ′ ∼= Y to denote the existence of an orientation-
preserving homeomorphism between Y and Y ′.
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and Szabó, that every slope is a characterizing slope for the unknot [11].
Ozsváth and Szabó have also shown that every slope is a characterizing slope
for the trefoil and the figure-eight knot [26]. More recently, Ni and Zhang
have studied characterizing slopes for torus knots, showing that T5,2 has
only finitely many non-characterizing slopes which are not negative integers
[20]. The aim of this paper is to establish a similar result for arbitrary torus
knots. We will be primarily interested in non-integer surgery slopes. For
each torus knot, the main result of this paper is to classify the non-integer
non-characterizing slopes outside of a finite set of slopes.

Theorem 1.1. For s > r > 1 and q ≥ 2 let K be a knot such that S3
p/q(K) ∼=

S3
p/q(Tr,s). If p and q satisfy at least one of the following:

(i) p ≤ min{−43
4 (rs− r − s),−32q},

(ii) p ≥ max{43
4 (rs− r − s), 32q + 2q(r − 1)(s− 1)}, or

(iii) q ≥ 9,

then we have either (a) K = Tr,s, or (b) K is a cable of a torus knot, in

which case q = ⌊s/r⌋, p = r2q4−1
q2−1 , s = rq3±1

q2−1 and r > q.

When combined with previously known results about integer character-
izing slopes for torus knots, this yields the following corollary [15, 20].

Corollary 1.2. The knot Tr,s with r, s > 1 has only finitely many non-
characterizing slopes which are not negative integers.

It is well-known that the manifolds obtained by non-integer surgery on
torus knots are Seifert fibred spaces [16]. Conjecturally, the only knots in S3

with non-integer Seifert fibred surgeries are torus knots and cables of torus
knots.

Conjecture 1.3. If S3
p/q(K) is a Seifert fibred space and q ≥ 2, then K is

either a torus knot or a cable of a torus knot.

We can use this to obtain a precise conjecture on which non-integer
slopes are characterizing slopes for torus knots. In particular, it turns out
that conjecturally each torus knot has at most one non-integer non-
characterizing slope, which is precisely the non-characterizing slope occur-
ring in the conclusion of Theorem 1.1.
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Conjecture 1.4. For the torus knot Tr,s with s > r > 1, every non-integer

slope is characterizing with the possible exception of p/q for p = r2q4−1
q2−1 and

q=⌊s/r⌋≥2, which is non-characterizing only if r>q and s= rq3±1
q2−1 . More-

over, for this slope there is a unique knot K ̸= Tr,s with S3
p/q(K) ∼= S3

p/q(Tr,s)
and K is a cable of a torus knot.

One deduces Conjecture 1.4 from Conjecture 1.3 by checking when a
torus knot can share a surgery with a torus knot or a cable of a torus
knot. The classification of when a cable of a torus knot and a cable of a
torus knot have a common non-integer surgery is recorded in the following
proposition. Note that it shows the converse to Conjecture 1.4 is true: for
each Tr,s satisfying the necessary conditions, there is a cable of a torus knot
exhibiting that the required slope is non-characterizing.

Proposition 1.5. For s > r > 1 and q ≥ 2, there exists a non-trivial cable
of a torus knot K such that S3

p/q(K) ∼= S3
p/q(Tr,s) if and only if

s =
rq3 ± 1

q2 − 1
, p =

r2q4 − 1

q2 − 1
, q = ⌊s/r⌋ and r > q,

in which case K is the (q, q
2r2−1
q2−1 )-cable of Tr, rq±1

q2−1

.

Remark 1.6. If one also allows orientation reversing homeomorphisms in
the definition of a characterizing slope, then the list given by Conjecture 1.4
would be incomplete. For example, both S3

29

2

(T2,7) and −S3
29

2

(T3,5) admit

orientation-preserving homeomorphisms to the lens space L(29, 8) [16].

The proof of Theorem 1.1 follows a similar outline to Ni and Zhang’s
work. Given a knot K ⊆ S3 such that S3

p/q(K) ∼= S3
p/q(Tr,s), we consider

the possibilities that K is a hyperbolic knot, a satellite knot or a torus
knot in turn. By applying results from hyperbolic geometry and Heegaard
Floer homology, we will show that for the slopes in Theorem 1.1 the only
possibilities are that K is a cable of a torus knot or K = Tr,s. The bound
q ≥ 9 arises as a result of Lackenby and Meyerhoff’s bound on the distance
between exceptional surgery slopes [13]. The other bounds are a consequence
of combining restrictions on exceptional surgeries coming from the 6-theorem
of Agol [1] and Lackenby [12] with genus bounds onK coming from Heegaard
Floer homology. These genus bounds are the key technical results developed
in this paper. In general, we show that if S3

p/q(K) ∼= S3
p/q(K

′), then under

certain circumstances K and K ′ must have the same genera and Alexander
polynomials. For arbitrary knots in S3, we have the following result.
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Theorem 1.7. Let K,K ′ ⊆ S3 be knots such that S3
p/q(K) ∼= S3

p/q(K
′). If

|p| ≥ 12 + 4q2 − 2q + 4qg(K) and q ≥ 3,

then ∆K(t) = ∆K′(t), g(K) = g(K ′) and K is fibred if and only if K ′ is
fibred.

Here ∆K(t) denotes the Alexander polynomial of K. We obtain stronger
results for L-space knots.2

Theorem 1.8. Suppose that K is an L-space knot. If S3
p/q(K) ∼= S3

p/q(K
′)

for some K ′ ⊆ S3 and either

(i) p ≥ 12 + 4q2 − 2q + 4qg(K) or

(ii) p ≤ min{2q − 12− 4q2,−2qg(K)} and q ≥ 2

holds, then ∆K(t) = ∆K′(t), g(K) = g(K ′) and K ′ is fibred.

Both Theorem 1.7 and Theorem 1.8 are proven by making use of the
absolute grading in Heegaard Floer homology.

Remark 1.9. Baker and Motegi have recently constructed infinite families
of knots {Kn}n∈Z in S3 such that

S3
n(K0) ∼= S3

n(Kn),

for all n ∈ Z and deg∆Kn
(t) → ∞ as |n| → ∞ [2, Section 3]. This shows

that Theorem 1.7 cannot be extended unconditionally to integer surgeries.
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2An L-space knot is one with positive L-space surgeries.
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2. Heegaard Floer homology

Heegaard Floer homology is a package of 3-manifold invariants introduced
by Ozsváth and Szabó [25]. To each closed oriented 3-manifold Y equipped

with a spinc-structure s it associates a family of groups denoted by ĤF (Y, s),
HF±(Y, s) andHF∞(Y, s). Throughout this paper all Heegaard Floer groups
are taken with F = Z/2Z coefficients.

We will be primarily concerned with HF+(Y, s), where Y is a rational
homology sphere. In this case, the group HF+(Y, s) possesses an absolute
Q-grading. There is also a U -action on HF+(Y, s), which gives HF+(Y, s)
the structure of an F[U ]-module. Multiplication by U interacts with the
Q-grading by decreasing it by 2 [21].

In any spinc-structure HF+(Y, s) can be decomposed as a direct sum:

HF+(Y, s) ∼= T + ⊕HFred(Y, s),

where T + = F[U,U−1]/UF[U ] and UNHFred(Y, s) = 0 forN sufficiently large.
The T + summand is sometimes referred to as the tower. The minimal
Q-grading over all elements of the tower is an invariant of (Y, s) called
the d-invariant and is denoted d(Y, s). We say that Y is an L-space if
HFred(Y, s) = 0 for all s ∈ Spinc(Y ).

Heegaard Floer homology is invariant under conjugation of spinc-
structures, in the sense that HF+(Y, s) and HF+(Y, s) are isomorphic as
F[U ]-modules and as Q-graded groups. In particular, the d-invariants satisfy
d(Y, s) = d(Y, s).

2.1. Knot Floer homology

Knot Floer homology was defined independently by Ozsváth and Szabó [24]
and Rasmussen [28]. Given a knot in K ⊆ S3, it takes the form of a finitely-
generated group

ĤFK(K) =
⊕

s∈Z
ĤFK(K, s),

where s is known as the Alexander grading. The knot Floer homology also
possesses a second grading, known as the Maslov grading such that

ĤFK(K, s) =
⊕

d∈Z
ĤFKd(K, s).
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If K has Alexander polynomial

∆K(t) =
∑

s∈Z
ast

s,

normalized so that as = a−s and ∆K(1) = 1, then ∆K(t) can be recovered
by taking the Euler characteristic in each Alexander grading:

as = χ(ĤFK(K, s)) =
∑

d∈Z
(−1)drkĤFKd(K, s).

With this normalization in place, we will take tk(K) to denote the torsion
coefficient

tk(K) =
∑

i≥0

iak+i.

Remark 2.1. The coefficients of ∆K(t) satisfy

ak = tk+1(K)− 2tk(K) + tk−1(K)

for all k. Since the Alexander polynomial is normalized so that ∆K(1) = 1,
this means the Alexander polynomial can be computed from the tk(K) for
k ≥ 0.

One key geometric property detected by knot Floer homology is the
genus [23]:

g(K) = max{s | ĤFK(K, s) ̸= 0}.
The other geometric property of knot Floer homology that we will use is its
ability to detect whether a knot is fibred [8, 18].

Theorem 2.2 (Ni). A knot K of genus g is fibred if and only if

rkĤFK(K, g) = 1.

2.2. The knot Floer chain complex

Related to the knot Floer homology ĤFK(K) is the knot Floer chain com-
plex CFK∞(K), which takes the form of a bifiltered chain complex

CFK∞(K) =
⊕

i,j∈Z
C{(i, j)},

satisfying H∗(C{(i, j)}) ∼= ĤFK∗−2i(K, j − i).
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There is also a natural chain complex isomorphism

U : CFK∞(K) −→ CFK∞(K),

which maps C{(i, j)} isomorphically to C{(i− 1, j − 1)} and lowers the
Maslov grading by 2. This gives CFK∞(K) the structure of a finitely-
generated F[U,U−1]-module.

The chain homotopy type of CFK∞(K) as a bifiltered complex is an
invariant of K. In fact, after a suitable chain homotopy, one can assume that

C{(i, j)} ∼= ĤFK∗−2i(K, j − i).

The knot Floer complex has several important quotient complexes: for
each k ∈ Z, the “hook” complexes

A+
k = C{i ≥ 0 or j ≥ k},

and the complex

B+ = C{i ≥ 0}.
These complexes admit chain maps

vk, hk : A
+
k −→ B+,

where vk is the obvious vertical projection, and hk consists of the composi-
tion of a horizontal projection onto C{j ≥ k}, multiplication by Uk and a
chain homotopy equivalence. We will use A+

k = H∗(A
+
k ) and B+ = H∗(B+)

to denote the homology groups and vk and hk to denote the maps induced
on homology by vk and hk respectively. As we are working with a knot in
S3, we have B+ ∼= HF+(S3) ∼= T +. The group A+

k stabilizes under multi-
plication by large powers of U , allowing us to define AT

k as AT
k = UNA+

k for
N sufficiently large. This always satisfies AT

k
∼= T +. We also define Ared,k

to be the quotient Ared,k = A+
k /A

T
k . When restricted to AT

k the map vk

is modeled on multiplication by UVk for some non-negative integer Vk [19].
Similarly, hk is modelled on multiplication by UHk for some non-negative
integer Hk when restricted to AT

k . These integers Vk and Hk are known to
satisfy

Vk = H−k and Vk − 1 ≤ Vk+1 ≤ Vk,

for all k.
For any n ≥ 0, we will use T (n) to denote the F[U ]-submodule of T +

generated by U1−n. For n = 0, we take T (0) = 0.
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The following proposition shows how the Alexander polynomial, genus
and fiberedness of K are encoded in the Vk and Ared,k.

Proposition 2.3 (Cf. Lemma 3.2 of [20]). For K ⊆ S3 the following
hold:

(i) tk(K) = Vk + χ(Ared,k) for all k;

(ii) g(K) = 1 +max{k |Vk + rkAred,k > 0}; and
(iii) K is fibred if and only if Vg−1 + rkAred,g−1 = 1.

Proof. It follows from the definition of vk and Ared,k that the kernel of vk

admits a splitting as

kervk
∼= T (Vk)⊕Ared,k.

This shows that

χ(kervk) = Vk + χ(Ared,k).

On the other hand we have the long exact sequence of chain complexes

0 −→ C{i < 0, j ≥ k} −→ A+
k

vk−→ B+ −→ 0.

As vk is surjective on homology, the exact triangle induced by this sequence
shows that

kervk
∼= H∗(C{i < 0, j ≥ k}).

Taking the Euler characteristic this shows that

χ(kervk) =
∑

i≤−1,
j≥k

χ(ĤFK(K, j − i)) =
∑

i≥1

iχ(ĤFK(K, k + i)) = tk(K).

This proves (i).
Since C{i < 0, j ≥ g(K)} = 0, we have kervk = 0 for k ≥ g. Further-

more, as

C{i < 0, j = g(K)} = C{−1, g − 1} ∼= ĤFK(K, g),

we have kervg−1
∼= ĤFK(K, g). This shows

g(K)− 1 = max{k |Vk + rkAred,k > 0},

proving (ii). As Theorem 2.2 shows that K is fibred if and only if

rkĤFK(K, g) = 1, this also proves (iii). □
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Let ν+(K) to be the quantity

ν+(K) = min{k |Vk = 0}.

It follows from Proposition 2.3 that ν+(K) exists and is at most g(K). In
fact, it can be shown that ν+(K) ≤ g4(K), where g4(K) is the smooth slice
genus of K [29, Theorem 2.3]. Recall that K is said to be an L-space knot if
S3
p/q(K) is an L-space for some p/q > 0. Equivalently, K is an L-space knot

if and only if Ared,k = 0 for all k. The following proposition summarizes the
properties of L-space knots that we require.

Proposition 2.4. If K is an L-space knot, then

(i) ν+(K) = g(K),

(ii) K is fibred,

(iii) ν+(K) = 0 and

(iv) Ared,k(K) ∼= T (V|k|(K)) for all k.

Proof. As an L-space knot satisfies Ared,k(K) = 0 for all k, it follows from
Proposition 2.3, that Vg(K)−1 > 0 and Vg(K) = 0. This shows that ν+(K) =
g(K). Since Vg(K)−1 ≤ Vg(K) + 1, it follows that Vg(K)−1 = 1 and that K is

fibred by Proposition 2.3. The facts about K follow from Lemma 16 and
Proposition 17 in [7]. □

2.3. The mapping cone formula

Given a knot in K ⊆ S3, one can determine the Heegaard Floer homology of
all manifolds obtained by surgery on it in terms of the knot Floer homology
of K via the homology of a mapping cone [27]. In this section we summarize
the results arising from the mapping cone formula that we will need. More
detailed accounts of the mapping cone formula and its consequences can be
found in [19] or [7], for example.

In order to describe the Heegaard Floer homology of S3
p/q(K), we need

a way to label its spinc-structures. This labeling takes the form of an affine
bijection defined in terms of relative spinc-structures on S3 \ ν(K), [27]:

(2.1) φK,p/q : Z/pZ −→ Spinc(S3
p/q(K)).
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The exact details of this map are not important, however we note that for
any knot K, conjugation of spinc-structures is given by [14, Lemma 2.2]:

(2.2) φK,p/q(q − 1− i mod p) = φK,p/q(i) ∈ Spinc(S3
p/q(K)).

If S3
p/q(K) ∼= S3

p/q(K
′) ∼= Y , then φK,p/q and φK′,p/q will, in general, give

rise to different labellings on Spinc(Y ). However, as long it will not cause
confusion, we will suppress the map φK,p/q from the notation.

When K is the unknot this gives a labelling on the spinc-structures of a
lens space. We will use d(p, q, i) to denote the d-invariant

d(p, q, i) = d(S3
p/q(U), i) for i ∈ Z/pZ.

Now we describe how CFK∞(K) determines HF+(S3
p/q(K)). Consider

the groups

A+
i =

⊕

s∈Z
(s,A+

⌊ ps+i

q
⌋) and B+

i =
⊕

s∈Z
(s,B+),

and the maps

v⌊ ps+i

q
⌋ : (s,A

+
⌊ ps+i

q
⌋) → (s,B+) and h⌊ ps+i

q
⌋ : (s,A

+
⌊ ps+i

q
⌋) → (s+ 1,B+),

where vk and hk are the maps on homology induced by vk and hk as in the
previous section. These maps can be added together to obtain a chain map

D+
i,p/q : A

+
i → B+

i ,

where

D+
i,p/q(s, x) = (s,v⌊ ps+i

q
⌋(x)) + (s+ 1,h⌊ ps+i

q
⌋(x)).

The group HF+(S3
p/q(K), i) is computed in terms of the mapping cone on

D+
i,p/q.

Theorem 2.5 (Ozsváth-Szabó, [27]). For any knot K in S3, let X+
i,p/q

be the mapping cone of D+
i,p/q. Then there is a graded isomorphism of groups

H∗(X
+
i,p/q)

∼= HF+(S3
p/q(K), i).

Remark 2.6. The statement of Theorem 2.5 given here is not quite the one
given in [27]. Ozsváth-Szabó establish an isomorphism between Heegaard
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Floer homology and the mapping cone of a map D+
i,p/q, whose induced map

on homology is D+
i,p/q. For surgeries on S3, both mapping cones compute

the same Heegaard Floer homology groups.

Remark 2.7. The isomorphism in Theorem 2.5 is U -equivariant, so it also
provides an isomorphism of F[U ]-modules.

When p/q > 0, the map D+
i,p/q is surjective, so Theorem 2.5 gives a

graded isomorphismHF+(S3
p/q(K), i) ∼= kerD+

i,p/q. The grading on kerD+
i,p/q

is determined by putting a Q-grading on X+
i,p/q in such a way that D+

i,p/q

decreases the grading by one and the grading on B+
i , which is independent

of K, is fixed to give the correct d-invariants for surgery on the unknot (cf.
[27, Section 7.2]). In practice, this means that for p/q > 0 and 0 ≤ i ≤ p− 1,
the grading on B+

i satisfies [19]

(2.3) gr(0, 1) = d(p, q, i)− 1

and, as

H−k(U) = Vk(U) =

{
0 if k ≥ 0

|k| if k ≤ 0,

the gradings of (s, 1) and (s+ 1, 1) in B+
i are related by [20, Section 3.3]

(2.4) gr(s+ 1, 1) = gr(s, 1) + 2⌊ i+ ps

q
⌋, for any s ∈ Z.

Here, as in [20], gr(s, x) denotes the Q-grading of the element x in the
(s,A+

⌊ ps+i

q
⌋) summand of A+

i .

With these gradings one finds that for any p/q > 0 and any 0 ≤ i ≤
p− 1, the d-invariants S3

p/q(K) can be calculated by [19, Proposition 1.6]

(2.5) d(S3
p/q(K), i) = d(p, q, i)− 2max{V⌊ i

q
⌋, V⌈ p−i

q
⌉}.

One can also compute the reduced Heegaard Floer homology groups. We
require only the special case when p/q ≥ 2ν+(K)− 1. The following propo-
sition can easily be derived from [7, Corollary 12] or [20, Proposition 3.6].
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Proposition 2.8. If p/q ≥ 2ν+(K)− 1, then

HFred(S
3
p/q(K), i) ∼=

⊕

s∈Z
Ared,⌊ i+ps

q
⌋

as Q-graded groups, where the absolute grading on Ared,⌊ i+ps

q
⌋ is determined

by the absolute grading on the summand (s,A+) ⊂ X+
i,p/q.

Remark 2.9. When q > 1, the same group Ared,k can appear as a sum-
mand in HFred(S

3
p/q(K), i) for more than one value of i. Since the grading

on X+
i,p/q depends on i, these summands will, in general, possess different

gradings.

The following lemma shows that under certain circumstances we can
recover information about the knot Floer homology of two knots with the
same surgery. It is a key technical ingredient in the proofs of Theorem 1.7
and Theorem 1.8.

Lemma 2.10. Suppose that S3
p/q(K) ∼= S3

p/q(K
′), for some p/q > 2g(K)−

1, and that φK,p/q = φK′,p/q or φK,p/q = φK′,p/q. If either

(i) S3
p/q(K) is an L-space;

(ii) q ≥ 2 and, for all k, there is Nk ≥ 0 such that Ared,k(K) ∼= T (Nk); or

(iii) q ≥ 3,

then Vk(K) = Vk(K
′) and Ared,k(K) ∼= Ared,k(K

′) for all k ≥ 0.

Proof. Since conjugation induces a grading preserving isomorphism on Hee-
gaard Floer homology, the assumptions on φK,p/q and φK′,p/q, imply that
we have an isomorphism

HF+(S3
p/q(K), i) ∼= HF+(S3

p/q(K
′), i)

as Q-graded groups for all 0 ≤ i ≤ p− 1. By comparing the d-invariants
of these groups and applying (2.5), this shows that Vk(K) = Vk(K

′) for
all 0 ≤ k ≤ ⌊p+q−1

2q ⌋. Since p/q > 2ν+(K)− 1, it follows that V⌊ p+q−1

2q
⌋(K) =

V⌊ p+q−1

2q
⌋(K

′) = 0. This shows that Vk(K) = Vk(K
′) for all k ≥ 0 and also

that ν+(K) = ν+(K ′). If S3
p/q(K) is an L-space, then we necessarily have

Ared,k(K) = Ared,k(K
′) = 0 for all k. Thus we can only need to establish the

proposition under conditions (ii) and (iii). This is done by examining the
absolute grading on the reduced part of HF+(S3

p/q(K)).
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Since p/q > 2g(K)− 1, Proposition 2.8 shows that for any 0 ≤ i ≤ p+q−1
2

the reduced homology group takes the form

HFred(S
3
p/q(K), i) ∼= Ared,⌊ i

q
⌋(K).

In particular, for 0 ≤ k < g(K) ≤ ⌊p+q−1
2q ⌋ we have

HFred(S
3
p/q(K), kq) ∼= · · · ∼= HFred(S

3
p/q(K), kq + q − 1).

Moreover, by (2.3), these isomorphisms preserve the absolute Q-gradings up
to a constant shift. That is, if there is an element of HFred(S

3
p/q(K), kq)

with grading x+ d(p, q, kq), then for any 0 ≤ j ≤ q − 1, there is an element
of HFred(S

3
p/q(K), kq + j) with grading x+ d(p, q, kq + j). It is this constant

grading shift property which we will use to prove the proposition.
Proposition 2.8 shows that for any 0 ≤ i ≤ p+q−1

2 ,

HFred(S
3
p/q(K), i) ∼= Ared,⌊ i

q
⌋(K) ∼= Ared,⌊ i

q
⌋(K

′)⊕
⊕

s ̸=0

Ared,⌊ i+ps

q
⌋(K

′).

Suppose that we do not have Ared,k(K) ∼= Ared,k(K
′) for all k ≥ 0. Let m ≤

g(K)− 1 be maximal such that Ared,m(K) ̸∼= Ared,m(K ′). This means that
there is s′ ̸= 0 such that

Ared,⌊mq+q−1+ps′

q
⌋(K

′) ̸= 0.

The maximality of m implies Ared,m+1(K) ∼= Ared,m+1(K
′). It follows that

we must have

⌊
mq + q − 1 + ps′

q

⌋
<

⌊
mq + q + ps′

q

⌋
,

and hence that q divides ps′. As gcd(p, q) = 1, this shows that s′ takes the
form s = tq for some t ∈ Z.

For any 0 ≤ i ≤ p+q−1
2 , (2.3) and (2.4) show that (s, 1) ∈ (s,AT

⌊ ps+i

q
⌋) ⊆

X+
i,p/q has grading given by

(2.6) gr(s, 1) =




d(p, q, i)− 2V⌊ i+sp

q
⌋ + 2

∑s−1
k=1⌊

i+pk
q ⌋ if s ≥ 1,

d(p, q, i)− 2V⌊ i+sp

q
⌋ − 2

∑0
k=−s⌊

i+pk
q ⌋ if s ≤ 0.
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If Ared,m(K) ∼= T (Nm), then it cannot be decomposed as a non-trivial
direct sum of F[U ]-modules. So if (ii) holds, then we must have

HFred(S
3
p/q(K),mq) ∼= HFred(S

3
p/q(K),mq + 1) ∼= Ared,m+pt(K

′),

for some t ̸= 0. However (2.6) shows that if Ared,m+pt(K
′) is to be endowed

with the correct grading in both X+
mq,p/q and X+

mq+1,p/q, then

tq−1∑

k=1

⌊
mq + pk

q

⌋
=

tq−1∑

k=1

⌊
mq + 1 + pk

q

⌋
if t > 0 and

0∑

k=−tq

⌊
mq + pk

q

⌋
=

0∑

k=−tq

⌊
mq + 1 + pk

q

⌋
if t < 0.

(2.7)

However, for any r ∈ Z such that rp ≡ −1 mod q, we have

⌊
mq + pr

q

⌋
<

⌊
mq + 1 + pr

q

⌋
.

Since we can find such an r in the range 1 ≤ r ≤ q − 1, we see that the equal-
ities in (2.7) cannot hold if t ̸= 0. This completes the proof when condition
(ii) holds.

If q ≥ 3, then consider any t ̸= 0 for which Ared,m+pt(K
′) ̸= 0. By com-

paring the sums in (2.6) for different values of i, we see that if t > 0 and
Ared,m+pt(K

′) contributes a term with grading x+ d(p, q,mq + 1) to
HFred(S

3
p/q(K),mq + 1), then the corresponding term it contributes to

HFred(S
3
p/q(K),mq + 2) has grading strictly greater than x+ d(p, q,mq +

2). Similarly, if t < 0 and Ared,m+pt(K
′) contributes a term with grading

x+ d(p, q,mq + 1) to HFred(S
3
p/q(K),mq + 1), then the term it contributes

to HFred(S
3
p/q(K),mq) has grading strictly greater than x+ d(p, q,mq).

In particular, such an Ared,m+pt(K
′) always produces a grading on

HFred(S
3
p/q(K),mq + 1) which is too small when compared to the grad-

ings on HFred(S
3
p/q(K),mq) and HFred(S

3
p/q(K),mq + 2). This completes

the proof when q ≥ 3. □

2.4. The d-invariants of lens spaces.

In this section, we prove the congruence properties of d-invariants that we
will require. Ozsváth and Szabó have shown that the d-invariants of lens
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spaces can be calculated recursively for 0 ≤ i ≤ p− 1 using

(2.8) d(p, q, i) = −1

4
+

(p+ q − 1− 2i)2

4pq
− d(q, r, i′),

where q ≡ r mod p and i ≡ i′ mod q, and

d(1, 0, 0) = d(S3) = 0.

It will be temporarily convenient to work with a rescaled version of the
d-invariants. Let d̃(p, q, i) = 2pd(p, q, i). By (2.8), these satisfy

(2.9) d̃(p, q, i) =
(p+ q − 1− 2i)2 − pq − 2pd̃(q, r, i′)

2q
.

Lemma 2.11. For all i, j in the range 0 ≤ i, j ≤ p− 1, the quantity
d̃(p, q, i)− d̃(p, q, j) is an integer satisfying

(2.10) d̃(p, q, i)− d̃(p, q, j) ≡ 2(i− j)(p+ 1) mod 4

and

(2.11) q(d̃(p, q, i)− d̃(p, q, j)) ≡ 2(pq + q − 1− i− j)(j − i) mod 4p

Proof. We prove both (2.10) and (2.11) by induction on p. As d̃(1, 0, 0) = 0,
the required identities are clearly true for p = 1. The inductive step is carried
out by performing some elementary but slightly masochistic calculations in
modular arithmetic on (2.9).

From (2.9), we have

q(d̃(p, q, i)− d̃(p, q, j)) = 2(p+ q − 1− (i+ j))(j − i)(2.12)

+ p(d̃(q, r, j′)− d̃(q, r, i′)),

where 0 ≤ i′, j′, r ≤ q − 1 are congruent modulo q to i, j and p respectively.
By the inductive hypothesis and using that q < p we know that

(2.13) d̃(q, r, j′)− d̃(q, r, i′) ≡ 2(j′ − i′)(q + 1) mod 4

and

(2.14) r(d̃(q, r, j′)− d̃(q, r, i′)) ≡ 2(qr + r − 1− i′ − j′)(i′ − j′) mod 4q.
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We first prove (2.11) by reducing (2.12) modulo 4p. If q is odd, then (2.13)
shows that d̃(q, r, j′)− d̃(q, r, i′) ≡ 0 mod 4. Therefore, (2.12) gives

q(d̃(p, q, i)− d̃(p, q, j)) ≡ 2(p+ q − 1− i− j)(j − i) mod 4p,

as required. If q is even, then i− j ≡ i′ − j′ mod 2. So (2.13) shows that

p(d̃(q, r, j′)− d̃(q, r, i′)) ≡ 2(j − i)p mod 4p.

So when q is even, (2.12) gives

q(d̃(p, q, i)− d̃(p, q, j)) ≡ 2(q − 1− i− j)(j − i) mod 4p,

as required.
To prove (2.10), we consider the result of reducing (2.12) modulo 4q. If

we write i = i′ + αq and j = j′ + βq, then we can check that

2(p+ q − 1− i− j)(j − i)

≡ 2(p+ q − 1− i′ − j′ − q(α+ β))(j′ − i′ + q(β − α))) mod 4q

≡ 2(p+ q − 1− i′ − j′)(j′ − i′)

+ 2q(α+ β)(p+ q + 1 + q(α+ β)) mod 4q

≡ 2(p+ q − 1− i′ − j′)(j′ − i′) + 2q(α+ β)(p+ 1) mod 4q,

where the second line is obtained by multiplying out and simplifying using
the fact that terms of the form 2qx depend only on the mod 2 value of x.
The final line is obtained using the observation that (α+ β + 1)(α+ β) ≡
0 mod 2.

In summary, we have obtained

2(p+ q − 1− i− j)(j − i) ≡ 2(p+ q − 1− i′ − j′)(j′ − i′)(2.15)

+ 2q(α+ β)(p+ 1) mod 4q.

On the other hand, by writing p = (p− r) + r and noting that p− r is di-
visible by q, we can use (2.13) and (2.14) to obtain

p(d̃(q, r, j′)− d̃(q, r, i′)) ≡ 2(p− r)(i′ − j′)(q + 1)(2.16)

+ 2(qr + r − 1− i′ − j′)(i′ − j′) mod 4q

≡ 2(i′ − j′)(pq + p− 1− i′ − j′) mod 4q.



✐

✐

“5-McCoy” — 2020/12/6 — 23:45 — page 1663 — #17
✐

✐

✐

✐

✐

✐

Non-integer characterizing slopes for torus knots 1663

By summing (2.15) and (2.16), we obtain

q(d̃(p, q, i)− d̃(p, q, j))(2.17)

≡ 2q(p+ 1)(i′ − j′) + 2q(α+ β)(p+ 1) mod 4q

≡ 2q(p+ 1)(i′ + j′ + α+ β) mod 4q.

Since the right hand side of (2.17) is divisible by q, it follows that
d̃(p, q, i)− d̃(p, q, j) is an integer. If p is odd, then p+ 1 is even, so (2.17)
shows that

q(d̃(p, q, i)− d̃(p, q, j)) ≡ 0 mod 4q.

Thus if p is odd, then d̃(p, q, i)− d̃(p, q, j) ≡ 0 mod 4, as required. If p is even,
then q is necessarily odd. In this case we have i+ j ≡ i′ + j′ + α+ β mod 2.
So (2.17) also implies (2.10) when q is odd. This completes the proof. □

This allows us to prove the congruence result for d-invariants we require.

Corollary 2.12. We have

d(p, q, i)− d(p, q, j) ∈ 2Z

⇔
{
(q − 1− i− j)(j − i) ≡ 0 mod p if p is odd

(q − 1− i− j)(j − i) ≡ 0 mod 2p if p is even.

Proof. We prove this by showing that

d̃(p, q, i)− d̃(p, q, j) ∈ 4pZ

⇔
{
(q − 1− i− j)(j − i) ≡ 0 mod p if p is odd

(q − 1− i− j)(j − i) ≡ 0 mod 2p if p is even.

If p is odd, then Lemma 2.11 shows

d̃(p, q, i)− d̃(p, q, j) ≡ 0 mod 4.

Consequently we see that d̃(p, q, i)− d̃(p, q, j) ≡ 0 mod 4p if and only if
d̃(p, q, i)− d̃(p, q, j) ≡ 0 mod p. From (2.11), we see that

q(d̃(p, q, i)− d̃(p, q, j)) ≡ 2(q − 1− i− j)(j − i) mod p.

Since q is coprime to p, this is congruent to 0 if and only if

(q − 1− i− j)(j − i) ≡ 0 mod p,

as required.
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If p is even, then q is necessarily odd. As an odd q is invertible modulo
4p, it follows from (2.11) that d̃(p, q, i)− d̃(p, q, j) ≡ 0 mod 4p if and only if

(2.18) 2(pq + q − 1− i− j)(j − i) ≡ 0 mod 4p.

However, as p is even, (2.10) shows that d̃(p, q, i)− d̃(p, q, j) ≡ 0 mod 4 only
if i ≡ j mod 2. So, in fact, (2.18) shows that d̃(p, q, i)− d̃(p, q, j) ≡ 0 mod 4p
if and only if

2(q − 1− i− j)(j − i) ≡ 0 mod 4p.

Clearly this is equivalent to

(q − 1− i− j)(j − i) ≡ 0 mod 2p,

which is the required condition. □

One other result we will require is a bound on the absolute value of the
d-invariants of lens spaces.

Lemma 2.13. For any 1 ≤ q ≤ p− 1 and any 0 ≤ i ≤ p− 1, we have

|d(p, q, i)| ≤ p− 1

4
.

Proof. Since the d-invariants of a rational homology sphere satisfy d(−Y, s) =
−d(Y, s) for any s ∈ Spinc(Y ), we see that for any 1 ≤ i ≤ p− 1, there is
0 ≤ j ≤ p− 1 such that d(p, q, i) = −d(p, p− q, j). Therefore, to prove the
lemma, it is sufficient to show that d(p, q, i) ≥ 1−p

4 . Since d(1, 0, 0) = 0, we
can assume p > 1. Suppose that p/q > 1 has a continued fraction expansion

p/q = a1 −
1

a2 −
1

. . . −
1

al

,

where ai ≥ 2 for all i. For such a such a fraction, one has that its length
satisfies l ≤ p− 1.3 If M is the matrix

3This can be easily established by induction on the length. For the inductive step
one notes that if p/q = a1 − r/q, where a1 ≥ 2 and q/r > 1, then p = a1q − r ≥
q + 1. In other words, increasing the length of such a fraction strictly increases the
numerator.
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M =




a1 −1
−1 a2 −1

−1
. . . −1
−1 al


 ,

then there is a 4-manifold obtained by plumbing disk bundles over S2 with
boundary the lens space S3

p/q(U) and intersection form given by M . Ozsváth
and Szabó have shown that such a plumbing determines the d-invariants of
its boundary [22, Corollary 1.5]. For our purposes, this means that for any
i, there is v ∈ Zl such that

4d(p, q, i) = vTM−1v − l.

Since M and, hence M−1, is positive definite, this shows that

4d(p, q, i) ≥ −l ≥ 1− p.

This gives the desired lower bound. □

3. Proving Theorems 1.7 and 1.8

Let Y be a 3-manifold such that Y ∼= S3
p/q(K

′) ∼= S3
p/q(K) for knots K and

K ′ in S3 and some p/q > 0. By (2.5), these two surgery descriptions of Y
give labelings

φK,p/q, φK′,p/q : Z/pZ −→ Spinc(Y ),

such that the following diagram commutes

Spinc(Y )

d

%%

Z/pZ
φK,p/qoo

D
��

Z/pZ

φK′,p/q

OO

D′

// Q,

where

D(i) = d(p, q, i)− 2max{V⌊ i

q
⌋(K), V⌈ p−i

q
⌉(K)}

and

D′(i) = d(p, q, i)− 2max{V⌊ i

q
⌋(K

′), V⌈ p−i

q
⌉(K

′)}

for 0 ≤ i ≤ p− 1.
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Thus if we let φ denote map

φ := φ−1
K,p/q ◦ φK′,p/q : Z/pZ → Z/pZ

and f(i) = min{⌊ i
q ⌋, ⌈

p−i
q ⌉}, then for 0 ≤ i ≤ p− 1, we have

(3.1) 2Vf(i)(K)− 2Vf(φ(i))(K
′) = d(p, q, i)− d(p, q, φ(i)).

Remark 3.1. There are two important consequences of (3.1). Firstly, it
shows

d(p, q, i)− d(p, q, φ(i)) ∈ 2Z.

Secondly, d(p, q, i)− d(p, q, φ(i)) > 0 implies that Vf(i)(K) > 0 and hence
that ν+(K) ≥ f(i) + 1.

There are three possible forms for φ.

Proposition 3.2. The map φ : Z/pZ → Z/pZ takes one of the following
forms:

I: φ(i) = a(i− s) + s mod p, where p is odd, a2 ≡ 1 mod p and s ∈
{ q−1

2 , p+q−1
2 } ∩ Z.

II: φ(i) = a(i− s) + s mod p, where p is even, a2 ≡ 1 mod 2p and s = q−1
2 ;

or

III: φ(i) = a(i− s) + s+ p
2 mod p, where p ≡ 0 mod 8, a2 ≡ p+ 1 mod 2p

and s = q−1
2 .

Proof. Let J : Z/pZ → Z/pZ be the map J(i) = q − 1− i mod p. Since the
d-invariants are invariant under conjugation, (2.2) shows that J ◦ φ = φ ◦ J .
Since φ is an affine bijection, we may assume that it can be written in the
form

φ(i) = a(i− s0) + s1 mod p,

for some s0 ∈ Fix(J) = { q−1
2 , p+q−1

2 } ∩ Z and some a ∈ (Z/pZ)×. Using the
invariance of d-invariants under conjugation, we obtain

J(s1) = J(φ(s0)) = φ(J(s0)) = s1.

This shows that we also have s1 ∈ Fix(J).
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First assume that p is odd. Since |Fix(J)| = 1 in this case, we have
s0 = s1. Since d(p, q, 1 + s0)− d(p, q, φ(1 + s0)) ∈ 2Z, Corollary 2.12 shows
that

0 ≡ (φ(1 + s0) + 1 + s0 − q + 1)(φ(1 + s0)− (1 + s0)) mod p

≡ (a+ s0 + 1 + s0 − (q − 1))(a+ s0 − 1− s0)) mod p

≡ a2 − 1 mod p.

This shows φ takes the form given by type I.
Now assume that p is even and s0 = s1. Since q is necessarily odd, we may

assume that s0 =
q−1
2 . Since d(p, q, 1 + s0)− d(p, q, φ(1 + s0)) ∈ 2Z, Corol-

lary 2.12 shows that

0 ≡ (φ(1 + s0) + 1 + s0 − q + 1)(φ(1 + s0)− (1 + s0)) mod 2p

≡ (a+ s0 + 1 + s0 − (q − 1))(a+ s0 − 1− s0)) mod 2p

≡ a2 − 1 mod 2p.

This shows φ takes the form given by type II.
Finally, assume that p is even and s0 ̸= s1. We may assume that s1 =

p+q−1
2 = s0 +

p
2 . Since d(p, q, s0)− d(p, q, φ(s0)) ∈ 2Z Corollary 2.12 shows

that

0 ≡ (φ(s0) + s0 − q + 1)(φ(s0)− s0) mod 2p

≡ (s0 + s1 − (q − 1))(s1 − s0) mod 2p

≡ p2

4
mod 2p,

which implies that p ≡ 0 mod 8. Similarly, from d(p, q, s0 + 1)− d(p, q, φ(s0 +
1)) ∈ 2Z, we obtain

0 ≡ (φ(1 + s0) + 1 + s0 − q + 1)(φ(1 + s0)− 1− s0) mod 2p

≡ (a+ s1 + 1 + s0 − (q − 1))(a+ s1 − s0 − 1) mod 2p

≡ (a+
p

2
)2 − 1 mod 2p

≡ a2 + p− 1 mod 2p.

This shows φ takes the form given by type III. □

This allows us to put bounds on ν+(K) when φ is not the identity or
the map corresponding to conjugation.
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Lemma 3.3. If φK,p/q ̸= φK′,p/q and φK,p/q ̸= φK′,p/q, then

ν+(K) >
p

4q
+

1

2
− 3

q
− q.

Proof. Consider the map

φ = φ−1
K,p/q ◦ φK′,p/q : Z/pZ → Z/pZ

Proposition 3.2 shows that if φK,p/q ̸= φK′,p/q and φK,p/q ̸= φK′,p/q, then
φ takes the form φ(x) = a(x− s0) + s1 for some a ̸≡ ±1 mod p satisfying
a2 ≡ 1 mod p. Since d-invariants are invariant under conjugation, we can
assume that a lies in the range

√
p < a < p/2.

Since φ satisfies φ(x+ n) ≡ φ(x) + na mod p for all x and n, we see that
for any p+q−1

2 ≥ N ≥ p
a , we can find x in the range N − p

a ≤ x ≤ N such
that

p+ q − 1− a

2
≤ φ(x) ≤ p+ q − 1 + a

2
.

For such an x we have

d(p, q, x)− d(p, q, φ(x)) =
(p+ q − 1− x− φ(x))(φ(x)− x)

pq

− d(q, r, x) + d(q, r, φ(x))

>
(p+ q − 1 + a− 2x)(p+ q − 1− a− 2x)

4pq
− q

2

=
(p+ q − 1− 2x)2 − a2

4pq
− q

2

≥ (p+ q − 1− 2N)2 − a2

4pq
− q

2
,

where we used the bound |d(q, r, φ(x))− d(q, r, x)| < q
2 arising from Lemma

2.13 to obtain the second line, and the final line was obtained by observing
that the quadratic in the preceding line is minimized for x in the range
N − p

a ≤ x ≤ N by taking x = N .
Thus if we take

N =
p+ q − 1−

√
2pq2 + a2

2
,
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then such an x satisfies d(p, q, x)− d(p, q, φ(x)) > 0. And hence we see that
there is k ∈ Z such that Vk > 0 and

(3.2) k ≥
⌊
p+ q − 1−

√
2pq2 + a2

2q
− p

aq

⌋
.

We complete the proof by finding a lower bound for k which is independent
of a.

Consider
√
2pq2+a2

2q + p
aq as a function of a. For a > 0, this has a single

critical value which is a minimum. Thus we see that for a in the range√
p ≤ a ≤ p

2 the minimal value of the right hand side of (3.2) is attained by

a =
√
p or a = p

2 . Therefore, using the bound
√

2pq2 + a2 ≤ a+ pq2

a when
a = p

2 , we obtain

k ≥
⌊
p+ q − 1

2q
−max

{
p+ 4q2 + 8

4q
,

√
p(2 +

√
2q2 + 1)

2q

}⌋
.

However, one can show that4

max

{
p+ 4q2 + 8

4q
,

√
p(2 +

√
2q2 + 1)

2q

}
<

p+ 4q2 + 10

4q
.

This gives the bound

k ≥
⌊
p

4q
+

1

2
− 3

q
− q

⌋
,

showing that

ν+(K) >
p

4q
+

1

2
− 3

q
− q,

as required. □

4When considered as a quadratic in
√
p, the discriminant of

p− 2(2 +
√
2q2 + 1)

√
p+ 4q2 + 10

is
∆ = 4

√
2q2 + 1− 2q2 − 4.

As this satisfies ∆ < 0 for all q, we see that

√
p(2 +

√
2q2 + 1)

2q
<

p+ 4q2 + 10

4q

for all p and q.
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We now have all the pieces to prove our main technical results.

Theorem 1.7. Let K,K ′ ⊆ S3 be knots such that S3
p/q(K) ∼= S3

p/q(K
′). If

|p| ≥ 12 + 4q2 − 2q + 4qg(K) and q ≥ 3,

then ∆K(t) = ∆K′(t), g(K) = g(K ′) and K is fibred if and only if K ′ is
fibred.

Proof. Suppose that S3
p/q(K) ∼= S3

p/q(K
′). Since S3

−p/q(K) ∼= −S3
−p/q(K) for

any K ⊆ S3, we may assume that p/q > 0. By Lemma 3.3, the bound

p ≥ 12 + 4q2 − 2q + 4qg(K)

implies that either φK,p/q = φK′,p/q or φK,p/q = φK′,p/q. In either case, the
assumption q ≥ 3 allows us to apply Lemma 2.10, which shows that Vk(K) =
Vk(K

′) and Ared,k(K) ∼= Ared,k(K
′) for all k ≥ 0. By Proposition 2.3, this is

sufficient information to guarantee that K and K ′ have the same Alexander
polynomial, genera and fibredness. □

Theorem 1.8. Suppose that K is an L-space knot. If S3
p/q(K) ∼= S3

p/q(K
′)

for some K ′ ⊆ S3 and either

(i) p ≥ 12 + 4q2 − 2q + 4qg(K) or

(ii) p ≤ min{2q − 12− 4q2,−2qg(K)} and q ≥ 2

holds, then ∆K(t) = ∆K′(t), g(K) = g(K ′) and K ′ is fibred.

Proof. Suppose that S3
p/q(K) ∼= S3

p/q(K
′), where K is an L-space knot. First

suppose that

p ≥ 4q2 + 12− 2q + 4qg(K).

In this case, S3
p/q(K) is an L-space. Lemma 3.3 implies that either φK,p/q =

φK′,p/q or φK,p/q = φK′,p/q. Thus we can apply Lemma 2.10 which shows
that Vk(K) = Vk(K

′) and Ared,k(K) ∼= Ared,k(K
′) = 0 for all k. By Proposi-

tion 2.3, this is sufficient information to guarantee that K and K ′ have the
same Alexander polynomial and genus. As K is fibred it also shows that K ′

is fibred.
If p ≤ min{2q − 12− 4q2,−2qg(K)} and q ≥ 2, then we use the fact that

S3
−p/q(K) ∼= −S3

p/q(K
′). As ν+(K) = 0, the condition −p ≥ 4q2 + 12− 2q

shows that φK,−p/q = φK′,−p/q or φK,−p/q = φK′,−p/q. As −p/q > 2qg(K)−
1 and Ared,k(K) ∼= T (V|k|(K)) for all k, Lemma 2.10 shows that Vk(K) =
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Vk(K ′) = 0 and Ared,k(K) ∼= Ared,k(K ′) for all k ≥ 0. This shows that K
and K ′ have the same Alexander polynomial and genus. As K is fibred it
also shows that K ′ is fibred. □

4. Surgeries on torus knots

In this section, we prove Theorem 1.1. In order to do this we will need to
understand the manifolds obtained by surgery on torus knots. It is well-
known that, with the exception of a single reducible surgery for each torus
knot, the manifolds obtained by surgery on a torus knot are Seifert fibred
spaces [16]. We will use S2(e; b1

a1
, b2
a2
, b3
a3
) to denote the 3-manifold obtained

by surgery on the link given in Figure 1.5 This is a Seifert fibred space when
ai ̸= 0 for i = 1, 2, 3 and is a lens space only if |ai| = 1 for some i. Recall
that if |ai| > 1 for i = 1, 2, 3, then

S2

(
e;

b1
a1

,
b2
a2

,
b3
a3

)
∼= S2

(
e′;

d1
c1

,
d2
c2

,
d3
c3

)

if and only if

e+
b1
a1

+
b2
a2

+
b3
a3

= e′ +
d1
c1

+
d2
c2

+
d3
c3

and there is a permutation π of {1, 2, 3} such that

bi
ai

≡
cπ(i)

dπ(i)
mod 1 for i = 1, 2, 3 [17].

We can describe surgeries on torus knots as follows.

Proposition 4.1 (cf. Moser [16]). For r, s > 1 and any p/q,

S3
p/q(Tr,s) ∼= S2

(
e;

s′

s
,
r′

r
,

q

p− rsq

)
,

where r′, s′ and e are any integers satisfying rs′ + sr′ + ers = 1.

5In this notation we have

S3
1(T3,2) ∼= S2

(
−2;

1

2
,
2

3
,
4

5

)
∼= P,

where P is the Poincaré sphere oriented so that it bounds the positive-definite
E8-plumbing.
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a1

b1
a2

b2
a3

b3

−e

Figure 1: A surgery presentation for the Seifert fibred space

S2
(
e; b1

a1
, b2
a2
, b3
a3

)
.

Proof. Consider the Seifert fibration of S3 with exceptional fibres of order r
and s for which the regular fibres are isotopic to the torus knot Tr,s. We can
obtain S3

p/q(Tr,s) by surgering a regular fibre K ⊆ S3. Let µ be a meridian
for K and λ a null-homologous longitude. As the linking number between
K and a nearby regular fibre is rs, the surgery slope can be written as

pµ+ qλ = (p− qrs)µ+ qκ,

where κ is a longitude for K given by a regular fibre. This shows that

S3
p/q(Tr,s) ∼= S2

(
e;

s′

s
,
r′

r
,

q

p− rsq

)
,

for some s′, r′, e ∈ Z which are independent of p/q. Considering the order of
the homology group H1(S

3
p/q(Tr,s)) shows that

|p| =
∣∣∣∣rs(p− rsq)

(
e+

s′

s
+

r′

r
+

q

p− rsq

)∣∣∣∣
= |p(rs′ + sr′ + rse)− qrs(rs′ + sr′ + ers− 1)|.

As this holds for any q it follows that we have rs′ + sr′ + ers = 1, as required.
□

We will also use the Casson-Walker invariant [31]. For any rational ho-
mology sphere Y , this is a rational-valued invariant λ(Y ) ∈ Q. For our pur-
poses its most useful property is that it is easily computed for manifolds
obtained by surgery. For any knot K ′ ⊆ S3, the Casson-Walker invariant
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satisfies [3]:

(4.1) λ(S3
p/q(K

′)) = λ(S3
p/q(K)) +

q

2p
∆′′

K′(1).

In particular, this means that if S3
p/q(K) ∼= S3

p/q(Tr,s), then the Alexander
polynomial of K satisfies

(4.2) ∆′′
K(1) = ∆′′

Tr,s
(1) =

(r2 − 1)(s2 − 1)

12
.

Recall also that if K is a satellite knot with pattern P and companion K ′,
then its Alexander polynomial satisfies

∆K(t) = ∆K′(tw)∆P (t),

where w is the winding number of P . In particular, this means that

(4.3) ∆′′
K(1) = ∆′′

P (1) + w2∆′′
K′(1).

Next we consider the possibility that a torus knot and a cable of a torus
knot share a non-integer surgery.

Proposition 1.5. For s > r > 1 and q ≥ 2, there exists a non-trivial cable
of a torus knot K such that S3

p/q(K) ∼= S3
p/q(Tr,s) if and only if

s =
rq3 ± 1

q2 − 1
, p =

r2q4 − 1

q2 − 1
, q = ⌊s/r⌋ and r > q,

in which case K is the (q, q
2r2−1
q2−1 )-cable of Tr, rq±1

q2−1

.

Proof. Suppose that K is the (w, c)-cable of Ta,b, where w > 1 is the winding
number of the pattern and that this satisfies

Y ∼= S3
p/q(K) ∼= S3

p/q(Tr,s).

If Y is reducible, then p/q = wc = rs is an integer. So we can assume from
now on that Y is irreducible. We will temporarily drop the assumption that
s > r and assume for now only that r, s > 1.
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Since Y does not contain an incompressible torus, p/q must take the
form

p

q
= wc± 1

q

and Y ∼= S3
p/(qw2)(Ta,b) [9]. As q > 1 and gcd(w, c) = 1, we have

|qwc± 1− abqw2| = |qw(c− abw)± 1| ≥ |qw| − 1.

This shows that Y is not a lens space if q > 1. Thus we can assume Y is a
Seifert fibred space with base orbifold

S2(r, s, |p− rsq|) = S2(|a|, |b|, |p− abqw2|).

By considering the order of the exceptional fibers, we see we may assume
that a = r. Using the Casson-Walker invariant as in (4.2) and (4.3), we see
that

(a2 − 1)(s2 − 1) = w2(a2 − 1)(b2 − 1) + (c2 − 1)(w2 − 1).

This implies that |b| < s. Thus we must have

ε1s = p− abqw2 and ε2b = p− asq

for some ε1, ε2 ∈ {±1}. Solving these simultaneous equations shows that

(4.4) s =
p(aqw2 − ε2)

(aqw)2 − ε1ε2
and b =

p(aq − ε1)

(aqw)2 − ε1ε2
.

Since a, s > 1 it follows that p > 0 and b > 0.
Using Proposition 4.1 and our two surgery descriptions, we see that Y

can be written in the form

Y ∼= S2

(
−1;

a′

a
,
s′

s
,
ε2q

b

)
∼= S2

(
−1;

a′

a
,
ε1qw

2

s
,
b′

b

)

for some a′, b′, s′ ∈ Z, where 1 ≤ b′ < b and 1 ≤ s′ < s. Comparing these two
descriptions of Y as a Seifert fibred space we see that b′ satisfies

(4.5) b′ ≡ ε2q mod b and b′a ≡ 1 mod b;

s′ satisfies

(4.6) s′ ≡ ε1qw
2 mod s and s′a ≡ 1 mod s;
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and we have

(4.7) − 1 +
a′

a
+

ε2q

b
+

s′

s
= −1 +

a′

a
+

ε1qw
2

s
+

b′

b
.

Claim. We have ε1 = ε2.

Proof of Claim. By (4.7), we see that

s′ − ε1qw
2

s
=

b′ − ε2q

b
.

Equations (4.5) and (4.6) show that both sides of this equation are integers.
Moreover the assumptions that 1 ≤ s′ < s and 1 ≤ b′ < b imply that the
right hand side (respectively left hand side) is strictly greater than 0 if and
only if ε1 = −1 (respectively ε2 = −1). It follows that ε1 = ε2, as required.

□

In light this claim, we will take ε = ε1 = ε2 ∈ {±1} from now on.
Observe that (4.5) and (4.6) imply that b divides aq − ε and s divides

aqw2 − ε. Combining this with (4.4) shows that there is a positive integer k
such that

kb = aq − ε, ks = aqw2 − ε and kp = (aqw)2 − 1.

Since we can write

aqw2 − ε = w2(aq − ε) + ε(w2 − 1),

we also see that k also divides w2 − 1.
Now p takes the form p = qwc+ δ for some δ ∈ {±1}. Therefore we have

kp = qwck + δk = (qwa)2 − 1.

In particular, we have

(4.8) δk = qwN − 1, where N = qwa2 − ck.

Claim. We have qN ∈ {0, 1, w}.

Proof of Claim. Assume that qN is non-zero. Since k divides w2 − 1, (4.8)
shows that qwN − 1 divides w2 − 1. Let α ∈ Z be such that (qwN − 1)α =
w2 − 1. By considering this equation mod w, we see that α takes the form
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α = βw + 1 for some β ∈ Z. Substituting for α and rearranging shows that
β satisfies

(βqN − 1)w = β − qN.

If β ≤ −1 or β ≥ 2, then there are no possible integer choices of qN for which
w = β−qN

βqN−1 ≥ 2 holds. So it remains only to consider are β = 0 and β = 1.
The former implies that qN = w and the latter can only hold if qN = 1,
completing the proof of the claim. □

This gives us three 3 possibilities for qN to consider. If qN = 0, then N = 0
and (4.8) shows that δk = −1. This implies that k = 1 and hence c = qwa2.
This contradict the fact that gcd(w, c) = 1.

As we are assuming q ≥ 2, qN = 1 can’t possibly hold. Thus it remains
only to consider the possibility qN = w. In this case (4.8) shows that

δ = 1, k = w2 − 1 and, c =
w(q2a2 − 1)

q(w2 − 1)
.

As gcd(w, c) = 1, gcd(q2a2 − 1, q) = 1 and gcd(w2 − 1, w) = 1, this shows
that q = w.

It follows that s = rq3−ε
q2−1 , p = r2q4−1

q2−1 , c = q2r2−1
q2−1 and b = rq−ε

q2−1 . This shows
that K must take the required form and that s and p satisfy the required
conditions.

As K is a non-trivial cable we have b = rq−ε
q2−1 > 1. This will allow us to

derive the condition that r > q. If ε = 1, then b > 1 clearly implies r > q.
If ε = −1, then b ∈ Z implies that r ≡ −q mod q2 − 1. Thus we have r ≥
q2 − q − 1, which implies that b ≥ q − 1 with equality only if r = q2 − q − 1.
Thus b > 1 implies that either q > 2 or r ≥ 2q2 − q − 2. In either case this
is sufficient to guarantee that r > q when ε = −1.

Finally, observe that

rq < s = rq +
rq − ε

q2 − 1
≤ rq +

2r + 1

3
< r(q + 1),

which implies that q = ⌊s/r⌋. This completes the proof of one direction.

Conversely, if s = rq3±1
q2−1 ∈ Z, then r ≡ ∓q mod q2 − 1, so we have p =

r2q4−1
q2−1 ∈ Z, b = rq±1

q2−1 ∈ Z and c = q2r2−1
q2−1 ∈ Z. This allows us to take K to

be the (q, c)-cable of Tr,b. Note that r > q implies b > 1, so K is cable of a
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non-trivial torus knot. It is then a straightforward calculation, using Propo-
sition 4.1, that for such a K we have

S3
p/q(Tr,s) ∼= S3

p/q(K) ∼= S3
p/q3(Tr,b) ∼= S2

(
0;

1− q2

r
,
∓q3

s
,
∓q

b

)
,

as required. □

Now we consider the possibility that two torus knots share a surgery.
The following generalizes [20, Proposition 2.4].

Lemma 4.2. If S3
p/q(Tr,s) ∼= S3

p/q(Ta,b), for some p/q ∈ Q, then Tr,s = Ta,b

or p/q ∈ {rs± 1}.

Proof. Suppose that Y ∼= S3
p/q(Tr,s) ∼= S3

p/q(Ta,b). Without loss of generality
we may assume that r, s > 1.

If p/q = rs, then Y is reducible. In this case we must have ab = rs and

Y ∼= S3
r/s(U)#S3

s/r(U) ∼= S3
a/b(U)#S3

b/a(U).

Therefore Tr,s = Ta,b, in this case.
If |p− rsq| > 1, then Y is a Seifert fibred space with base orbifold

S2(r, s, |p− rsq|) ∼= S2(|a|, |b|, |p− abq|).

It follows that we can assume r = a. By applying the Casson-Walker invari-
ant as in (4.2), we have

(a2 − 1)(b2 − 1) = (r2 − 1)(s2 − 1),

which implies that s = |b|. Thus, if Ta,b ̸= Tr,s, then Ta,b = Tr,−s. However,
Ta,b = Tr,−s implies that |p− rsq| = |p+ rsq|, and hence that p = 0. It is
easy to check, using Proposition 4.1, that S3

0(Tr,s) ̸∼= S3
0(T−r,s).

Thus it only remains to consider the case that |p− rsq| = 1 and q > 1.
In this case, we also have |p− abq| = 1 and Y is the lens space [16]

Y ∼= L(p, qr2) ∼= L(p, qa2).

We can assume that 1 < a < b and 1 < r < s. For L(p, qr2) to admit an
orientation preserving homeomorphism to L(p, qa2) we must have either
qr2 ≡ qa2 mod p or q2r2a2 ≡ 1 mod p. As qr2 < p and qa2 < p, we see that
qr2 ≡ qa2 mod p implies that r = a and hence that Tr,s = Ta,b. Thus we can
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assume that q2r2a2 ≡ 1 mod p. Consider the continued fraction expansion
s/r = [a0, . . . , ak]

+, where ak ≥ 2 and ai ≥ 1 for 0 ≤ i ≤ k − 1. Using some
standard identities for continued fractions one can show that6

p

qr2
=

{
[a0, a1, . . . , ak, q − 1, 1, ak − 1, ak−1, . . . , a1]

+ if p = qrs+ (−1)k

[a0, a1, . . . , ak−1, ak − 1, 1, q − 1, ak, . . . , a1]
+ if p = qrs− (−1)k.

Since both of these expansions have odd length, we see that if q2r2a2 ≡
1 mod p, then p

qa2 must have have an expansion of the form7

(4.9)

p

qa2
=

{
[a1, . . . , ak−1, ak − 1, 1, q − 1, ak, . . . , a0]

+ if p = qrs+ (−1)k

[a1, . . . , ak, q − 1, 1, ak − 1, ak−1, . . . , a0]
+ if p = qrs− (−1)k.

However, if we consider the continued fraction expansion b/a = [b0, . . . , bl]
+,

where bl ≥ 2 and bi ≥ 1 for 0 ≤ i ≤ l − 1, then
(4.10)

p

qa2
=

{
[b0, b1, . . . , bl, q − 1, 1, bl − 1, bl−1, . . . , b1]

+ if p = qab+ (−1)l

[b0, b1, . . . , bl−1, bl − 1, 1, q − 1, bl, . . . , b1]
+ if p = qab− (−1)l.

Since p
qa2 admits a unique continued fraction expansion of odd length with

every coefficient strictly positive, we see that the two continued fraction
expansions in (4.9) and (4.10) must be the same. Comparing the lengths of
these two expansions for p

qa2 shows that l = k. Comparing the coefficients
individually and using the assumption that ak, bk > 1 soon shows that s

r =
b
a = [q, . . . , q︸ ︷︷ ︸

k+1

]+. Altogether, this shows that Tr,s = Ta,b unless p = rs± 1. □

Remark 4.3. When combined with the cyclic surgery theorem of Culler,
Gordon, Luecke and Shalen [5], Lemma 4.2 implies that for any q > 1, any
slope of the form p/q = rs± 1

q is a characterizing slope for Tr,s.

6The stated equalities follow from applications of the following identities, all of
which admit straight-forward proofs:

1) qn
qn−1

= [cn, . . . , c1]
+,

2) pnqn−1 − qnpn−1 = (−1)n+1, and
3) for any x ∈ Q, [c0, . . . , cn, x]

+ = pnx+pn−1

qnx+qn−1
,

where pn

qn
= [c0, . . . , cn]

+ denotes the nth convergent of a continued fraction with
ci ≥ 1 for all i.

7Here we are using the fact that if p

q
= [c0, . . . , cn]

+, then p

q′
= [cn, . . . , c0]

+,
where qq′ ≡ (−1)n mod p.
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Using results of Agol [1], Lackenby [12], and Cao and Meyerhoff [4], Ni
and Zhang give a restriction on exceptional slopes of a hyperbolic knot.

Proposition 4.4 (Lemma 2.2, [20]). Let K ⊆ S3 be a hyperbolic knot.
If

|p| ≥ 43

4
(2g(K)− 1)

then S3
p/q(K) is a hyperbolic manifold.

This is the final ingredient we require for the proof of the main theorem.

Theorem 1.1. For s > r > 1 and q ≥ 2 let K be a knot such that S3
p/q(K) ∼=

S3
p/q(Tr,s). If p and q satisfy at least one of the following:

(i) p ≤ min{−43
4 (rs− r − s),−32q},

(ii) p ≥ max{43
4 (rs− r − s), 32q + 2q(r − 1)(s− 1)}, or

(iii) q ≥ 9,

then we have either (a) K = Tr,s, or (b) K is a cable of a torus knot, in

which case q = ⌊s/r⌋, p = r2q4−1
q2−1 , s = rq3±1

q2−1 and r > q.

Proof. LetK be a knot such that S3
p/q(K) ∼= S3

p/q(Tr,s) for some p/q with q ≥
2 such that at least one of conditions (i), (ii) or (iii) are satisfied. Since 4q2 +

12− 2q < 32q for q ≤ 8 and g(Tr,s) =
(r−1)(s−1)

2 , Theorem 1.8 shows that
either (a) q ≥ 9 or (b) K is fibred with g(K) = g(Tr,s) and |p| ≥ 43

4 (2g(K)−
1).

According to Thurston, every knot in S3 is either a hyperbolic knot, a
satellite knot or a torus knot [30]. We consider each of these possibilities in
turn.

Given Proposition 4.4 and the fact that any exceptional surgery on a
hyperbolic knot in S3 must satisfy q ≤ 8 [13], we see that K cannot be a
hyperbolic knot.

If K is a satellite knot, then there is an incompressible torus R ⊆ S3 \K.
This bounds a solid torus V ⊆ S3 which contains K. Let K ′ be the core of
the solid torus V . By choosing R to be innermost, we may assume that K ′ is
not a satellite. This means thatK ′ is either a torus knot or a hyperbolic knot.
Since S3

p/q(Tr,s) is irreducible and does not contain an incompressible tori, it

follows from the work of Gabai that Vp/q(K) is again a solid torus and that
K is either a 1-bridge knot or a torus knot in V and S3

p/q(K) ∼= S3
p/(qw2)(K

′),
where w > 1 is the winding number of K in V [6]. Moreover, as q > 1, it
follows that K is a torus knot in V .
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If q ≥ 9, then the distance bound on exceptional surgeries shows that K ′

is not hyperbolic. If q ≤ 8, then K is fibred, implying that K ′ is also fibred
[10]. It follows, for example by considering the degrees of ∆K(t) and ∆K′(t),
that g(K ′) < g(K). Therefore, if q ≤ 8, then we have |p| > 43

4 (2g(K
′)− 1)

and Proposition 4.4 shows that K ′ is not hyperbolic. Thus we can assume
that K ′ is a torus knot. Thus, we have shown that if K is a satellite, then
it is a cable of a torus knot. In this case Proposition 1.5 applies to give the
desired conclusions on p, q, r and s.

If K is a torus knot, then Lemma 4.2 shows that K = Tr,s, as required.
□

Corollary 1.2. The knot Tr,s with r, s > 1 has only finitely many non-
characterizing slopes which are not negative integers.

Proof. This follows from Theorem 1.1 and the results of [15] which show
that any slope

p

q
≥ 43

4
(rs− r − s)

is a characterizing slope for the torus knot Tr,s with r, s > 1. □
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