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The conformal method is a technique for finding Cauchy data in
general relativity solving the Einstein constraint equations, and
its parameters include a conformal class, a conformal momentum
(as measured by a densitized lapse), and a mean curvature. Al-
though the conformal method is successful in generating constant
mean curvature (CMC) solutions of the constraint equations, it is
unknown how well it applies in the non-CMC setting, and there
have been indications that it encounters difficulties there. We are
therefore motivated to investigate alternative generalizations of the
CMC conformal method.

Introducing a densitized lapse into the ADM Lagrangian, we
find that solutions of the momentum constraint can be described
in terms of three parameters. The first is conformal momentum
as it appears in the standard conformal method. The second is
volumetric momentum, which appears as an explicit parameter in
the CMC conformal method, but not in the non-CMC formula-
tion. We have called the third parameter drift momentum, and it
is the conjugate momentum to infinitesimal motions in superspace
that preserve conformal class and volume form up to independent
diffeomorphisms. This decomposition of solutions of the momen-
tum constraint leads to extensions of the CMC conformal method
where conformal and volumetric momenta both appear as param-
eters. There is more than one way to treat drift momentum, in
part because of an interesting duality that emerges, and we iden-
tify three candidates for incorporating drift into a variation of the
conformal method.
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1. Introduction

An initial data set in general relativity consists of the geometry and matter
distribution of the universe at an instant in time, along with the instanta-
neous rate of change of these quantities. The associated Cauchy problem
is to determine an ambient spacetime for the initial data set that satisfies
the Einstein equations as well as the applicable matter field equations. In
contrast to Newtonian gravity, initial data cannot be freely specified, and
must satisfy certain underdetermined compatibility conditions known as the
Einstein constraint equations. These constraint PDEs admit a wide variety
of solutions, and as a consequence we have enormous flexibility, but not
complete freedom, in specifying initial conditions. One would therefore like
to find intrinsic parameters describing the set of solutions of the constraint
equations.

This problem is already difficult, and not yet understood, for vacuum
spacetimes with a vanishing cosmological constant, in which case an initial
data set consists of a Riemannian manifold (Mn, gab) and a symmetric tensor
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Kab representing the second fundamental form of the embedding of Mn into
its ambient spacetime. Vacuum spacetimes are Ricci flat, and hence the
Gauss and Codazzi equations imply the following relations between gab and
Kab:

Rg − |K|2g + (trg K)2 = 0 [Hamiltonian constraint](1.1a)

divg K − d(trg K) = 0 [momentum constraint](1.1b)

where d is the exterior derivative, Rg is the scalar curvature, divg is the
divergence, and trg is the trace operator of gab. Equations (1.1) are the vac-
uum Einstein constraint equations, and the fact that they are underdeter-
mined reflects the physical property that gravitational waves can propagate
in vacuum, as well as the gauge property that we have freedom to choose
coordinates in spacetime.

There are a number of approaches for finding solutions of the constraint
equations in specific circumstances, and we note in particular the examples
provided by gluing methods [23][24][13] [12][15][14][11] [7], as well as the
density and perturbation techniques of [20][21]. These constructions pro-
vide deep insight into the diversity of solutions of the constraint equations
and their properties, but they do not yield parameterizations. Indeed, as far
as concrete parameterizations are concerned, there is presently only a single
general purpose candidate, the conformal method, and it occurs in the litera-
ture in two principal variations. The original conformal method was initiated
by Lichnerowicz [28] and later extended by York to construct constant-mean
curvature (CMC) solutions [39] and, along with O’Murchadha, to construct
non-CMC solutions of the constraint equations [35]. It provides an essen-
tially ideal parameterization of CMC solutions of the constraint equations
on compact manifolds [22]. Subsequently York developed the Lagrangian
conformal thin-sandwich (CTS) method [40] and then with Pfeiffer pre-
sented the Hamiltonian form of the CTS method [36]. It turns out that
the standard and CTS conformal methods are two different ways to write
down the same parameterization of the constraint equations [33], and we
will refer to all these techniques collectively as the conformal method. Using
the language of [33] that emphasizes the role of conformal geometry, the
Hamiltonian form of the conformal method has four parameters:

• A conformal class g, represented by the choice of a metric gab ∈ g.

• A conformal momentum σ, represented by a pair (gab; σab) where
σab is trace-free and divergence free. Writing q = 2n/(n− 2) for the
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critical Sobolev exponent, if ϕ > 0 is a conformal factor then the pair
(ϕq−2gab; ϕ

−2σab) represents the same conformal momentum σ.

• An arbitrary function τ dictating a mean curvature.

• A so-called densitized lapse represented by a pair (gab; N) where N
is a positive function. If ϕ > 0 is a conformal factor, (ϕq−2gab; ϕ

qN)
represents the same densitized lapse.

The choice of a densitized lapse N allows for a notion of conformal mo-
mentum to be assigned to a solution of the constraint equations, and after
fixing a densitized lapse every solution of the constraint equations uniquely
determines conformal parameters (g,σ, τ,N). The central question for the
conformal method is the extent to which this map is a bijection.

Suppose for concreteness that M is compact. If we restrict our attention
to CMC solutions of the constraint equations (i.e. solutions with τ ≡ τ0 for
some constant τ0) then the map from solutions of the constraint equations
onto conformal parameters is indeed a bijection [22], with the following
caveats based on the sign of the Yamabe invariant Yg of the conformal class
g:

• If Yg > 0, then σ = 0 is impossible.

• If Yg < 0, then τ0 = 0 is impossible.

• If Yg = 0, then σ = 0 is impossible and τ0 = 0 is impossible, except
that there is a homothety family of solutions corresponding to the
case where both σ = 0 and τ0 = 0.

Moreover, these same results largely extend into the near-CMC regime: see,
e.g., [25] and [1] as augmented by [33] for existence and uniqueness theorems,
and see [26] for non-existence results when Yg ≥ 0 and σ = 0. Indeed, the
theory for near-CMC solutions is satisfactory and complete, except that
existence is not understood if g admits nontrivial conformal Killing fields.

On the other hand, the properties of the conformal method when τ is
far-from-CMC are largely unknown. On compact manifolds we have a single
far-from CMC existence theorem [19][30]: given a Yamabe positive conformal
class g and an arbitrary mean curvature τ , if σ ̸= 0 is close to zero (with
closeness depending on τ), there exists at least one associated solution of the
constraint equations. This foray into far-from-CMC territory can, moreover,
be thought of as a perturbation off of a CMC solution with τ0 = 0 [18]. And
although the far-from-CMC existence result is consistent with the possibility



✐

✐

“7-Maxwell” — 2021/2/27 — 18:34 — page 211 — #5
✐

✐

✐

✐

✐

✐

Initial data in general relativity 211

that the good properties of the CMC conformal method extend to far-from-
CMC solutions, subsequent case studies in [31] and [34] show that at least
sometimes they do not.

The work in [31] exhibits a family of symmetric conformal data on the
torus such that in the far-from-CMC regime there are multiple solutions
when σ is small, no solutions with the symmetry of the data when σ is
large, and certain rare cases that lead to exceptional one-parameter families
of non-CMC solutions. The mean curvatures studied in [31] are discontinu-
ous but piecewise smooth. Although it not known if similar difficulties occur
for smooth mean curvatures, the follow-up study in [34] shows that at least
the exceptional one-parameter families of [31] persist for smooth mean cur-
vatures.

The conformal parameters considered in [34] have the form (g, µσ♭, τ,N)
where g is the conformal class of a flat product metric gab on the torus, σ♭

is a particular conformal momentum, µ is a constant, and where τ and
N = (gab; N) are arbitrary, except that τ and N depend on only one factor
of the torus. Writing

(1.2) τ∗ =

∫
M

Nτ ωg∫
M

N ωg

where ωg is the volume form of gab, [34] shows that if µ and τ∗ have the
same sign, then the conformal parameters generate a slice of a flat space-
time (typically a Kasner solution, with certain other spacetimes occurring
non-generically). The case where τ∗ = 0 is special, however: if µ and τ∗ both
vanish, then the conformal parameters construct a one parameter family of
solutions of the constraint equations. Note that if τ = τ0 for some constant
τ0, then τ∗ = τ0 and the CMC one-parameter families occur when τ0 = 0.
But if τ is not constant then the computation of τ∗ involves a particular
choice of representative of g, and the condition τ∗ = 0 is not readily com-
puted in advance. Indeed, τ∗ can be computed with respect to the physical
metric that solves the constraint equations, but to compute τ∗ when working
with some other background metric, one must first conformally transform to
a flat metric, at which point one has all but solved the constraint equations
[34]. Hence we have an example of non-uniqueness for certain non-CMC con-
formal parameters where the non-uniqueness is difficult to detect a priori.

The success of the conformal method in the CMC setting has physi-
cal consequences including, for example, Fischer and Moncrief’s program of
Hamiltonian reduction [17]. In contrast, failures of the conformal method
for non-CMC conformal parameters may not imply anything in particular
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about general relativity. The set of solutions of the constraint equations has,
when given a suitable topology, a manifold structure [12][5] at generic points,
and there are many possible choices of charts for this manifold. Although
the conformal method provides a useful and successful chart in a neighbor-
hood of CMC solutions, we interpret the evidence to date as suggesting that
this chart simply breaks down outside of this neighborhood. If this is indeed
the case, the details of this breakdown may be meaningful facts about the
conformal method, but perhaps not about the constraint equations.

In this article we examine the possibility that the CMC conformal
method admits an extension, other than the standard conformal method,
that potentially has better properties for non-CMC solutions of the con-
straint equations. In particular, we identify geometrically and physically
motivated alternatives that replace the mean curvature parameter τ with
two independent quantities: the constant τ∗ from equation (1.2) along with
a second parameter, described below, that we will call a drift. The guid-
ing principle leading to these alternatives is to treat the densitized lapse
as a fundamental object, and to apply it uniformly to both conformal and
volumetric degrees of freedom.

Densitized lapses first appeared in the context of the constraint equations
in York’s development of the conformal thin sandwich method [40], where
they occur as lapses that conformally transform according to N 7→ ϕqN
when we change gab 7→ ϕq−2gab. Although densitized lapses arrived some-
what late in the development of the conformal method, because the original
conformal method and the CTS methods are equivalent, densitized lapses
have been a part of the conformal method all along. In this work we repre-
sent a densitized lapse by a choice of volume form α on M . To every metric
gab we then assign a lapse according to

(1.3) Ng,α =
ωg

α

where ωg is the volume form of gab. Since volume forms conformally trans-
form according to ωg 7→ ϕqωg we recover York’s transformation law, and in
terms of our earlier notation the volume form α corresponds to the den-
sitized lapse N represented by (gab;ωg/α). Note that if we interpret α as
‘coordinate area’, then equation (1.3) expresses the lapse as the ratio of
physical to coordinate area in addition to its standard interpretation as the
ratio of physical to coordinate time. Using equation (1.3) to rewrite the
usual Arnowitt-Deser-Misner (ADM) Lagrangian[3] so that it depends on α
instead of the standard lapse, we find that the following features emerge.



✐

✐

“7-Maxwell” — 2021/2/27 — 18:34 — page 213 — #7
✐

✐

✐

✐

✐

✐

Initial data in general relativity 213

• The densitized lapse assigns each pair (gab,Kab), regardless of whether
it solves the constraint equations or not, a conformal velocity and a
conformal momentum of motion in C/D0, where C is the set of confor-
mal classes on M and D0 is the connected component of the identity of
the diffeomorphism group. These dynamical quantities are associated
with their standard ADM counterparts as described in diagram (4.2),
but doing so requires a densitized lapse rather than the standard ADM
lapse. For CMC solutions of the constraints, the measurement of con-
formal momentum is independent of the choice of densitized lapse, but
this is not true for non-CMC solutions. The conformal method uses
conformal velocity or conformal momentum as one of its parameters
depending on whether we use the Lagrangian or the Hamiltonian for-
mulation, and these quantities are connected to each via a Legendre
transformation associated with a Lagrangian (conformal kinetic en-
ergy) on the tangent bundle T C/D0. Sections 3 and 4 describe these
results.

• The densitized lapse assigns each pair (gab,Kab) a volumetric veloc-
ity and momentum of motion in V/D0, where V is the set of volume
forms. Volumetric velocity and momentum are associated with ADM
velocity and momentum as described in diagram 7.2, and again this
relationship uses a densitized lapse. Volumetric momentum is a single
number, and if gabKab = τ0 for some constant τ0, the volumetric mo-
mentum is −2κτ0 where κ = (n− 1)/n. For non-constant mean curva-
ture the measurement of conformal momentum depends on the choice
of densitized lapse and equals −2κτ∗ where τ∗ is the quantity (1.2)
identified previously in [34]. In the CMC conformal method, the vol-
umetric momentum is one of the explicit parameters, but this is not
the case for the non-CMC conformal method. Volumetric velocity and
momentum are connected to each via a Legendre transformation asso-
ciated with a Lagrangian (volumetric kinetic energy) on the tangent
bundle T V/D0. Sections 6 and 7 describe these results, and we see in
these sections that the volumetric parameters have a structure that
completely parallels that of the conformal parameters, but that is ig-
nored in the standard conformal method where the mean curvature is
specified explicitly.
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• Conformal momentum at a metric gab is related to the York decom-
position of trace-free tensors Aab

(1.4) Aab = σab +
1

2Ng,α
(Lg W )ab

where σab is transverse traceless, Lg is the conformal Killing operator
of gab, and W a is a vector field. Volumetric momentum is associated
with a York-like splitting of mean curvature functions τ :

(1.5) τ = τ∗ +
1

Ng,α
div V

where τ∗ is a constant and V a is a vector field. In this way, τ∗ plays
the same role for volumetric degrees of freedom that σab plays for
conformal degrees of freedom.

• Let M be the space of metrics. Instantaneous motion in M/D0 can be
decomposed into three components: conformal, volumetric, and drift.
The decomposition depends on the choice of a densitized lapse, and
the conformal and volumetric components of this decomposition agree
with the notions of conformal and volumetric velocity just discussed.
A drift is an instantaneous motion in M/D0 that preserves both con-
formal class (modulo diffeomorphisms) and volume form (modulo dif-
feomorphisms). Although a metric is uniquely determined by its con-
formal class and volume form, there are nontrivial drifts, and indeed
the drifts at a metric gab can be identified with the space of vector
fields on M , modulo the divergence-free vector fields and conformal
Killing fields of gab. Section 9 contains basic results concerning drifts.

• It is well known that solutions of the momentum constraint correspond
to the momenta of motion in M/D0. In Section 10 we show that after
selection of a densitized lapse, such momenta can be decomposed into
three components: conformal, volumetric, and drift. The conformal
and volumetric momenta are the quantities identified previously, and
a drift momentum at gab can be described by a pair of linked drifts
(W,V). The drifts W and V can be represented by vector fields W a

and V a solving the drift equation

(1.6) divg

[
1

2Ng,α
Lg W

]
= κ d

[
1

Ng,α
divg V

]
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where Lg is the conformal Killing operator of gab. Equation (1.6) has a
remarkable symmetry between the conformal and volumetric parame-
ters W a and V a. We can specify V a and solve for W a, in which case
we can add an arbitrary divergence-free vector field to V a, but equa-
tion (1.6) is only solvable after adding a specific choice of conformal
Killing field to V a. Conversely, we can specify W a and solve for V a,
in which case we can add an arbitrary conformal Killing field to W a

and we must additionally add a particular divergence-free vector field
to ensure that equation (1.6) is solvable. So a pair (W,V) represent-
ing a drift momentum is uniquely determined by either its conformal
drift W or its volumetric drift V. Section 10 describes these results in
detail.

• The CMC solutions of the constraint equations are the solutions with
zero drift momentum.

• Although solutions of the momentum constraint correspond to mo-
menta in M/D0, solutions of the constraint equations are not well de-
scribed in terms of velocities inM/D0. There exist distinct solutions of
the vacuum constraint equations, generating distinct spacetimes, that
nevertheless have identical geometries and velocities in M/D0. This
phenomenon occurs because the drift momentum of a pair (W,V)
corresponds to a velocity V −W in M/D0, and this can vanish even
if W and V do not. Either the conformal drift W or the volumetric
drift V can be taken as a parameter of motion that determines the
other, but using the difference V −W leads to non-uniqueness. Sec-
tion 11 describes how we can take either factor W or V to be the
drift velocity corresponding to drift momentum, and that in either
case we can construct a Lagrangian (conformal or volumetric drift ki-
netic energy) whose Legendre transformation connects drift velocity
and momentum.

• The kinetic energy term of the ADM Lagrangian, when restricted to
solutions of the momentum constraint, decomposes into three indepen-
dent terms corresponding to conformal, volumetric, and drift kinetic
energy.

These main results effectively comprise a study of the interaction of
densitized lapses with the momentum constraint. In Section 12 we then pro-
pose variations of the conformal method where the parameters include a
conformal class, a conformal momentum, a volumetric momentum, and a
vector field determining a drift momentum. There is more than one way
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to do this, however, and we present three candidates that each include the
CMC conformal method as a special case. The resulting equations are tech-
nically more challenging than those of the standard conformal method, and
we therefore postpone their analysis for future work. Although we hope that
features of the momentum constraint documented here will assist those ef-
forts, it remains to be seen the extent to which these drift parameterizations,
or perhaps some variation, outperform the conformal method. Regardless,
drifts have the potential to play a role in understanding any variation of the
CMC conformal method. For example, the one-parameter families discov-
ered for the standard conformal method in [34] all have the property that
they have zero conformal momentum and zero volumetric momentum, but
not-necessarily zero drift momentum. Moreover, drifts are related to past dif-
ficulties in applying the standard conformal method to construct non-CMC
solutions of the constraints with metrics having nontrivial conformal Killing
fields, and we discuss in Section 12 how the standard conformal method
might be adjusted to account for conformal Killing fields.

Our main goal is to find well-motivated alternatives to the conformal
method, and in order minimize distraction we work under hypotheses that
reduce the number of technical details. In particular, we work only on ori-
ented compact manifolds, and we work only in the smooth category. Smooth-
ness comes with the attendant complexity of Fréchet manifolds, and we have
emphasized linear algebra over topology when working with their tangent
spaces. For example, direct sums and isomorphisms are always meant in
the sense of linear algebra, although in many cases it is obvious that the
subspaces involved are closed and the maps involved are at least continu-
ous. We adopt an intuitive (but precise) approach to working with tangent
and cotangent spaces to infinite dimensional spaces such as C and C/D0.
Sections 1.1, 3 and 6 contain the related definitions and details, and it is im-
portant to note that the simplicity of our approach comes with the penalty
that objects such as T ∗C/D0 appearing in the theorems are to be understood
rather formally. We also adopt some helpful but non-standard notations re-
garding the trace/trace-free decomposition of TM and its interaction with
the numerous quotient spaces we work with. Again, Sections 1.1, 3 and 6
contain the details.

1.1. Notation and conventions

Throughout we assume that M is a smooth, compact, connected, oriented
n-manifold with n ≥ 3. The set of smooth functions on M is C∞(M) and if
E is a smooth bundle over M , then C∞(M,E) is the set of smooth sections
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of E. We write TM and T ∗M for the tangent and cotangent bundles of M ,
S2M and S2M for the bundles of symmetric (2, 0) and (0, 2) tensors, and
ΛnM for the bundle of n-forms. All tensors are assumed to be smooth unless
otherwise noted; in Section 10 we work with L2 Sobolev spaces W k,2 where
k ∈ Z denotes the order of differentiability.

We have the following sets of interest:

M, the smooth metrics on M ,

C, the conformal classes of smooth metrics,

V, the smooth volume forms (i.e., the positively oriented elements of
C∞(M,Λn)),

K, the space C∞(M,S2M) of second fundamental forms.

Three constants derived from the dimension n arise sufficiently fre-
quently that we use the notation

(1.7) q =
2n

n− 2
κ =

n− 1

n
a = 2κq =

4(n− 1)

n− 2
.

We also use the symbol a as an abstract index, but there should be no
confusion since the constant a defined above is never used as an exponent.

1.1.1. The space M of metrics. The set M of smooth metrics over M
is the open subset of positive definite elements of the Fréchet vector space
C∞(M,S2M). Hence M is a Fréchet manifold, and if gab ∈ M, then TgM =
C∞(M,S2M). Note that we use abstract index notation in this paper with
the understanding that indices can be dropped freely if they clutter notation
or are otherwise intrusive.

Let gab ∈ M. The dual space (TgM)∗ contains a wide variety of distri-
butions, and it will be convenient to work with a smaller subspace. Recalling
that M is oriented, we define

(1.8) T ∗
gM = C∞(M,S2M ⊗ ΛnM).

If hab ∈ Tg(M) and F abω ∈ T ∗
gM, then F ab acts on hab via

(1.9)
〈
F abω, hab

〉
=

∫

M

F abhab ω.

One readily verifies that with this action, T ∗
gM ⊆ (TgM)∗.
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There is a natural L2 metric G on M defined by

G(hab, ĥab) =

∫

M

〈
h, ĥ

〉
g
ωg

for all hab and ĥab ∈ TgM. Here and elsewhere ωg is the oriented volume
form of gab. The metric G determines a map from TgM to (TgM)∗ defined
by

(1.10) hab 7→ G(hab, ·)

and it is easy to see that T ∗
gM is the image of TgM under this map. Thus

we have a natural identification of TgM with T ∗
gM.

The trace-free and pure-trace subspaces of TgM play an important role
in this paper and it will be helpful to have special notation to work with
them. Suppose β is a function and uab is symmetric and trace-free with
respect to gab, We define

(1.11) (gab; uab, β) = uab +
2

n
β gab ∈ TgM.

It is easy to see that any hab ∈ TgM admits a unique decomposition of the
form (1.11). Similarly, if f is a function and Aab is symmetric and trace-free
with respect to gab we define

(1.12) (gab; A
ab, f)∗ = (Aab +

1

2
fgab)ωg ∈ T ∗

gM.

Note that

(1.13)
〈
(gab; A

ab, f)∗, (gab; uab, β)
〉
=

∫ [
Aabuab + fβ

]
ωg.

It is sometimes convenient to work with elements of T ∗
gM represented by

covariant tensors, so if Bab is symmetric and trace-free with respect to gab
we define

(1.14) (gab; Bab, f)
∗ = (gab; g

acgbdBbd, f)
∗.

1.1.2. The space M/D0 of geometries. Let D0 be connected com-
ponent of the identity e in the group of smooth diffeomorphisms from M
to M . Then M/D0 is the set of equivalence classes of metrics where gab is
related to ĝab if there exists Φ ∈ D0 with ĝab = Φ∗gab. We write {gab} for the
equivalence class of gab in M/D0.
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Recall that D0 is a Fréchet manifold and TeD0 = C∞(M,TM) [27]. Sup-
pose Φt is a path of diffeomorphisms with Φ0 = e, and let Xa be its in-
finitesimal generator. Given a metric gab, the path of metrics γab(t) = Φ∗

t gab
remains in {gab} and satisfies

(1.15) γ′ab(0) = (Lieg X)ab = ∇aXb +∇bXa

where ∇ is the Levi-Civita connection of gab. Since γab is stationary in
M/D0, the directions ImLieg ⊆ TgM become null directions in M/D0,
which motivates the formal definition

(1.16) TgM/D0 = TgM/ ImLieg .

By working formally and infinistesimally, we avoid details concerning the
structure of M/D0 as a stratified space. One can often think of TgM/D0

as a proxy for an actual tangent space T{g}M/D0 that we have not defined
[16]; doing so requires demonstrating that ImLieg is a closed subspace.

Let (gab; uab, β) ∈ TgM. We continue the practice of denoting quotients
by D0 using curly braces and define

(1.17) {gab; uab, β} = (gab; uab, β) + ImLieg ∈ TgM/D0.

It is helpful to think of the projection

(1.18) (gab; uab, β) 7→ {gab; uab, β}

as the pushforward from TgM to TgM/D0.
The conformal Killing operator of a metric gab acts on vector fields

Xa by

(1.19) (Lg X)ab = (Lieg X)ab −
2

n
divg X

where divg X = ∇aX
a. An element of the kernel of Lg is a conformal

Killing field. Note that in trace/trace-free notation

(1.20) (Lieg X)ab = (gab; (Lg X)ab, divg X)

and hence

(1.21) {gab; (Lg X)ab, divg X} = 0.
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Since TgM/D0 is a quotient of TgM by ImLieg we formally define

(1.22) T ∗
gM/D0 = (ImLieg)

⊥ =
{
A ∈ T ∗

gM : A|ImLieg = 0
}
.

Consequently, T ∗
gM/D0 ⊆ T ∗

gM and an integration by parts exercise shows

that F abωg ∈ T ∗
gM/D0 if and only if

(divg F )b = ∇aF
ab = 0.

If (gab; A
ab, f)∗ ∈ TgM, then the divergence-free condition is

(1.23) ∇aA
ab +

1

2
∇bf = 0

and we write

(1.24) {gab; A
ab, f}∗

for any (gab; A
ab, f)∗ ∈ T ∗

gM that satisfies equation (1.23). Elements F ∈
T ∗
gM/D0 are functionals on TgM/D0 according to to the rule

(1.25) ⟨F, {h}⟩ = ⟨F,h⟩ ,

and we see that the natural embedding T ∗
gM/D0 →֒ T ∗

gM is the pullback
associated with the pushforward (1.18).

2. The ADM Lagrangian with densitized lapse

In the traditional approach to the ADM n+ 1 decomposition of general rela-
tivity, on each slice of constant coordinate time we select a positive function
N (the lapse) and a vector field Xa (the shift) that describe the layout of
a coordinate system in spacetime. A metric and second fundamental form
(gab,Kab) ∈ M×K determine the ADM momentum

(2.1) Πab =
[
Kab − trg Kgab

]
ωg ∈ T ∗

gM

and also determine, in conjunction with the lapse and shift, the ADM ve-
locity

(2.2) ġab = 2NKab + (Lieg X)ab ∈ TgM.
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From these maps we obtain an isomorphism iN,Xa : TM → T ∗M

(2.3)

M×K
ee

%%

99
(N,Xa)

yy

T M oo

iN,Xa

// T ∗ M

where the notation (N,Xa) denotes a nameless function that depends on
the lapse and shift. Recalling the definition of a Legendre transformation
from, e.g., [29] that relates velocities and momenta, the map iN,Xa is the
Legendre transformation associated with the ADM Lagrangian

LADM(gab, ġab; N,Xa)(2.4)

=

∫

M

N

(
Rg +

1

4N2
|ġ − Lieg X|2g −

1

4N2
(trg ġ − 2 divg X)2

)
ωg.

Writing ġab = (gab; uab, β) in trace/trace-free notation we have

LADM(gab, uab, β; N,Xa)(2.5)

=

∫

M

N

(
Rg +

1

4N2
|u− Lg X|2g −

κ

N2
(β − divg X)2

)
ωg

and the Legendre transformation can be written
(2.6)

iN,Xa(gab; uab, β) =

(
gab;

1

2N
(uab − (Lg X)ab) ,−2κ

1

N
(β − divg X)

)∗

with inverse

(2.7) i−1
N,Xa((gab; Aab, f)

∗) =

(
gab; 2NAab + (Lg X)ab,−

N

2κ
f + divg X

)
.

It will also be helpful to have trace/trace-free expressions for the conversion
from a second fundamental form to ADM velocity or momentum. If Kab =
Aab + (τ/n)gab where Aab is trace-free, then the ADM velocity is

(2.8) (gab; 2NAab + (Lg X)ab, Nτ + divg X)

and the ADM momentum is

(2.9) (gab; Aab,−2κτ)∗.
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We will work with a modified form of the ADM Lagrangian where the
lapse is prescribed indirectly using a construct called a densitized lapse.
Densitized lapses appear in various contexts in general relativity [10] [2] [38]
and were introduced to the constraint equations in York’s conformal thin
sandwich method [40]. As mentioned in the introduction, we will represent
a densitized lapse by a choice of volume form α, and given a metric gab, the
lapse associated with gab and α is

(2.10) Ng,α =
ωg

α
.

Note that if ĝab = ϕq−2gab for some conformal factor ϕ then

(2.11) Nĝ,α = ϕqNg,α.

We will call α a lapse form.
Replacing N with Ng,α and using equation (2.10) to rewrite ωg in terms

of α, the Lagrangian (2.5) becomes

LADM′(gab, uab, β; α,X
a)(2.12)

=

∫

M

(
N2

g,αRg +
1

4
|u− Lg X|2g − κ(β − divg X)2

)
α.

For the remainder of this paper we work with the densitized-lapse ADM
Lagrangian (2.12). The Legendre transformation associated with this La-
grangian is the standard transformation (2.6) with the substitution N =
Ng,α and we have the commutative diagram

(2.13)

M×K
ee

%%

99
(α,Xa)

yy

T M oo

iα,Xa

// T ∗ M.

The distinction between the standard and densitized-lapse Legendre trans-
formations is perhaps subtle. Given a metric gab and a lapse form α, there
always exists a lapse N such that the maps iN,Xa and iα,Xa agree as maps
from TgM to T ∗

gM. But if we consider a second metric ĝab with volume
form ωĝ different from ωg, then the two Legendre transformations as maps
from TĝM to T ∗

ĝM are no longer the same. This difference is important
when thinking of the Legendre transformation as a map between the total
bundles TM and T ∗M, and we will find that the densitized lapse is par-
ticularly compatible with the product structure M = C × V. For example,
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given a lapse form α, we will be able to assign a notion of conformal ve-
locity, momentum, and kinetic energy measured by α to each curve in M
in such a way that if two curves in M descend to the same curve in C or
even C/D0, then these conformal quantities are preserved. The next several
sections make these ideas precise, and we start by recalling the definitions
of tangent and cotangent spaces of C and C/D0 from [33].

3. Conformal tangent and cotangent spaces

If gab ∈ M, we write [gab] for its conformal class, and we use bold type to
denote a conformal class when we do not wish to emphasize any particular
representative. So [gab] = g ∈ C if and only if gab ∈ g. By convention we
use conformal transformations of the form ĝab = ϕq−2gab since the exponent
q − 2 leads to a simple conformal transformation law for scalar curvature:

(3.1) Rĝ = ϕ1−q(−a∆g ϕ+Rgϕ).

Following [33], if g ∈ C we define TgC to be the set of equivalence classes
of pairs (gab; uab) where gab ∈ g, uab is trace-free with respect to gab, and
where

(3.2) (gab; uab) ∼ (ϕq−2gab; ϕ
q−2uab).

The trace-free condition arises because we identify C with the set of metrics
with a fixed volume form, and the equivalence relation reflects the arbitrary
choice of volume form. We will write

(3.3) [gab; uab]

for the element of TgC determined by (gab; uab), and we will write u for a
conformal tangent vector when we do not wish to emphasize a particular
representative. At g ∈ C, we define the conformal killing operator Lg acting
on a vector field Xa

(3.4) Lg X
a = [gab; (Lg X)ab]

where gab is any representative of g; the conformal transformation law Lĝ =
ϕq−2 Lg if ĝab = ϕq−2gab ensures that Lg is well-defined.

The cotangent space T ∗
gC is also defined as a set of equivalence classes

of pairs (gab; Aab) where gab ∈ g, gabAab = 0, but the equivalence relation
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differs. Now

(3.5) (gab; Aab) ∼ (ϕq−2gab; ϕ
−2Aab).

and we write

(3.6) [gab; Aab]
∗

for the element of T ∗
[g]C determined by (gab; Aab). As before, we use bold

face when no representative is preferred. If u ∈ TgC and A ∈ T ∗
gC we define

(3.7) ⟨A,u⟩ =

∫

M

⟨A, u⟩g ωg

where gab is any representative of g and where uab and Aab are the repre-
sentatives such that

(3.8) A = [gab; Aab]
∗ and u = [gab; uab].

The equivalence relations for conformal tangent and cotangent vectors en-
sures that this action is well defined.

We have a natural map from TgM to T[g]C given by

(3.9) (gab; uab, β) 7→ [gab; uab]

that can be thought of as the pushforward. From equation (3.7) we have the
corresponding pullback T ∗

[g]C → T ∗
gM which can be written in the notation

of equation (1.14) as

(3.10) A 7→ (gab; Aab, 0)
∗

if A = [gab; Aab]
∗.

Sitting below the space of conformal classes is the space C/D0 of confor-
mal geometries. Two conformal classes g and ĝ are equivalent at the level of
conformal geometries if there is a diffeomorphism Φ ∈ D0 such that Φ∗g = ĝ.
Concretely, two metrics gab and ĝab determine the same conformal geometry
if there is a diffeomorphism Φ ∈ D0 and a smooth positive function ϕ such
that ĝab = ϕq−2Φ∗gab. We write {g} for the conformal geometry determined
by the conformal class g.

In defining the tangent spaces to M/D0 we quotiented by the directions
ImLieg. The pushforward of ImLieg into T[g]C is ImL[g] and we therefore
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formally define for any g ∈ C

(3.11) TgC/D0 = (TgC)/ ImLg .

We write {u} for the equivalence class u+ ImLg ∈ Tg C/D0. Correspond-
ingly, we define

(3.12) T ∗
gC/D0 = (ImLg)

⊥ = {A ∈ T ∗
gC : A|ImLg

= 0}

and elements σ ∈ T ∗C/D0 are then well-defined functionals on T C/D0 ac-
cording to

(3.13) ⟨σ, {u}⟩ = ⟨σ,u⟩ .

An integration by parts exercise shows that [gab; σab]
∗ ∈ T ∗

gC if and only if
σab is divergence-free with respect to gab. Since σab is trace-free as well, it is
a so-called transverse traceless (TT) tensor. We will write {gab; σab}

∗ if we
wish to emphasize that [gab; σab]

∗ belongs to T ∗C/D0.
We define the pushforward TgC → TgC/D0 by

(3.14) u 7→ {u} = u+ ImLg .

Its corresponding pullback is the natural embedding T ∗
gC/D0 →֒ T ∗

gC.

4. Conformal velocity, momentum and kinetic energy

Let g be a conformal class and let gab be any representative. Given a lapse
form α and a shift Xa we can combine diagram (2.13) with the pushforward
and pullback maps described in the previous section to obtain the following
diagram at the fixed metric gab:

(4.1)

K cc

##

;;

(α,Xa)

{{

Tg M oo

iα,Xa

// T ∗
g M

TgC/D0

��

T ∗
gC/D0.

OO

The principal goal of this section is to show that the Legendre transformation
iα,Xa descends to an isomorphism jCα : TgC/D0 → T ∗

gC/D0 that such that for
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every gab ∈ g, the diagram

(4.2)

K cc

##

;;

(α,Xa)

{{

TgM
oo

iα,Xa

// T ∗
gM

TgC/D0

��
oo

jCα

// T ∗
gC/D0

OO

nearly commutes. The failure of commutativity comes from the fact that
the projection TgM → TgC/D0 loses information that cannot be recovered.
Instead, we will see that traversing the lower loop of diagram (4.2) when
starting from the middle row is a projection.

With the isomorphism jCα in hand, we assign to a pair (gab,Kab) ∈ M×
K a conformal velocity and momentum as follows. The conformal velocity is
obtained by forming diagram (4.2) for gab and then mapping Kab through
the left-hand side of the diagram starting from K to obtain a velocity in
T[g]C/D0. Note that this is a velocity modulo diffeomorphsims, and strictly
speaking it is a ‘conformal geometric velocity’. The conformal momentum
is constructed from the conformal velocity by applying jCα. In this sense, jCα
behaves like a Legendre transformation, and we show in Proposition 4.9 that
it arises from a Lagrangian on T C/D0 that we will call conformal kinetic
energy.

To construct jCα it turns out that it is easiest to construct (jCα)
−1 first.

Diagram (4.1) defines a map from T ∗
gC/D0 to TgC/D0 given by traveling

from the lower-right corner to the lower left corner. In principle this map
depends on α, Xa, and the choice gab ∈ g, and we provisionally call this map
j−1
α,Xa,g. The first order of business is to show that this map is independent
of Xa (because we are reducing to a quotient modulo D0) and gab (because
we are using a densitized lapse) to obtain a map j−1

α . We then show that
j−1
α is, as the notation suggests, the inverse of a map jCα.

Lemma 4.1. Let g ∈ C and let α be a fixed lapse form. For any pair of
shifts Xa and X̂a, and any pair of representatives gab and ĝab of g,

(4.3) j−1
α,Xa,g = j−1

α,X̂,ĝ
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and we call the common map j−1
α . Moreover, for all σ ∈ T ∗

gC/M,

(4.4) j−1
α (σ) = {gab; 2Ng,ασab}

where σab is the representative of σ with respect to gab.

Proof. Let σ ∈ T ∗
gC/D0. To compute j−1

α,Xa,g(σ), let σab be the represen-
tative of σ with respect to gab. From equation (3.10) the pullback of σ
to TgM is (gab; σab, 0)

∗. Applying i−1
α,Xa from equation (2.7) we arrive at

(gab; 2Nα,gσab + (Lg X)ab, 0). Finally, we apply the pushforward from equa-
tion (3.9) to conclude

(4.5) j−1
α,Xa,g(σ) = {gab; 2Nα,gσab + (Lg X)ab} = {gab; 2Nα,gσab}

since {gab; (Lg X)ab} = 0.
At this stage, it is clear that j−1

α,g,Xa is independent of the shift Xa.

Now suppose ĝab is another representative of g with ĝab = ϕq−2gab for some
conformal factor ϕ. The representative of σ with respect to ĝab is σ̂ab =
ϕ−2σab and we have Nα,ĝ = ϕqNα,g. Recalling equation (3.2) we find

j−1
α,ĝ,Xa(σ) = {ĝab; 2Nα,ĝσ̂ab}(4.6)

= {ϕq−2gab; ϕ
q−22Nα,gσab}

= {gab; 2Nα,gσab}

= j−1
α,g,Xa(σ).

Hence j−1
α,Xa,g = j−1

α,Xa,ĝ as claimed, and equation (4.4) follows from equation
(4.5). □

To show j−1
α is the inverse of a function jCα we require York splitting [39],

which we use in the following form.

Proposition 4.2 (York Splitting). Let gab ∈ M and let N > 0 be a lapse.
If Aab is symmetric and trace-free, then there is a gab-TT tensor σab and

a vector field W a such that

(4.7) Aab = σab +
1

2N
(Lg W )ab.

This decomposition is unique up to addition of a conformal Killing field
to W a.
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Equivalently, if uab is symmetric and trace-free, there is a unique gab-
TT tensor σab and a vector field W a, unique up to addition of a conformal
Killing field, such that

(4.8) uab = 2Nσab + (Lg W )ab.

When N ≡ 1/2, Proposition 4.2 is classical York splitting, and the result
for arbitrary lapses is equivalent to classical York splitting [33]; see also [36].
The decomposition from Proposition 4.2 defines a projection from symmet-
ric trace-free tensors to transverse-traceless tensors and we introduce the
following notation for it.

Definition 4.3. Let gab be a metric and let α be a lapse form. Given a
symmetric, trace-free tensor Aab, its York projection is

(4.9) Yg,α(Aab) = σab

where σab is the unique gab-TT tensor such that equation (4.7) holds with
N = Ng,α.

We now show that the formal notation j−1
α is justified by constructing

an inverse jCα.

Lemma 4.4. For all g ∈ C, j−1
α : T ∗

gC/D0 → TgC/D0 is a linear isomor-

phism. If {u} ∈ TgC/D0 then jCα({u}) is computed as follows. Pick any
gab ∈ g and pick any uab such that

(4.10) {u} = {gab; uab}.

Let σab = Yg,α(1/(2Ng,α)uab), so σab is the unique gab-TT tensor such that

(4.11) uab = 2Ng,ασab + (Lg W )ab

for some vector field W a. Then

(4.12) jCα({u}) = {gab; σab}
∗.
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Proof. To see that j−1
α is injective, suppose j−1

α (σ) = 0 for some σ =
{gab; σab}

∗. From Lemma 4.1 it follows that

(4.13) 0 = j−1
α (σ) = {gab; 2Nα,gσab}

and consequently 2Nα,gσab + (Lg W )ab = 0 for some vector field W a. But 0
also admits the decomposition 0 = 2Nα,g0 + Lg 0 and the uniqueness clause
of Proposition 4.2 implies σab = 0. Therefore σ = 0.

To show j−1
α is surjective, consider {u} ∈ TgC/D0. Let gab ∈ g and pick

any uab such that

(4.14) u = {gab; uab}.

Let σab be the unique gab-transverse traceless tensor given by Proposition 4.2
such that

(4.15) uab = 2Ng,ασab + (Lg W )ab.

for some vector field W a. From Lemma 4.1 it follows that

j−1
α ({gab; σab}) = {gab; 2Nα,gσab}(4.16)

= {gab; 2Nα,gσab + (Lg W )ab} = {gab; uab} = {u}.

This establishes the claimed surjectivity, so j−1
α has an inverse jCα. Equa-

tion (4.12) follows from applying jCα to both sides of equation (4.16). □

Having constructed the isomorphism jCα, we obtain diagram (4.2), which
commutes except perhaps when going around the lower loop. A straight
forward exercise using Lemma 4.4 shows that traversing the loop starting at
the level of C/D0 is the identity, but traversing the loop starting at the level
of M is a projection. In particular, if we start at T ∗

gM, then the projection
is

(4.17) (gab; Aab, f)
∗ 7→ (gab; Yg,α(Aab), 0)

∗.

As mentioned previously, we assign a conformal velocity in T[g]C/D0

to (gab,Kab) ∈ M×K by descending the left-hand side of diagram (4.2).
In principle the velocity depends on both the lapse form α and the shift
Xa, but in fact it is independent of the shift. To see this, let Kab be a
second-fundamental form which we write in trace/trace-free form as Kab =
Aab + (τ/n)gab. Proceeding down the left-hand side of diagram (4.2), we
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first obtain (gab; 2Ng,αAab + (Lg X)ab, Ng,ατ + divX) ∈ TgM and then ar-
rive at {gab; 2Nα,gAab + (Lg X)ab} ∈ T[g]C/D0. But {gab; (Lg X)ab} = 0 and
therefore the final result is {gab; 2Nα,gAab}, which is independent of Xa.

Definition 4.5. Let (gab,Kab) ∈ M×K, and let α be a lapse form. The
conformal velocity of (gab,Kab), as measured by α, is

(4.18) vCα(gab,Kab) = {gab; 2Nα,gAab}

where Aab is the gab-trace-free part of Kab.

To obtain the corresponding conformal momentum, we convert the ve-
locity to a momentum via jCα. Starting with {gab; 2Nα,gAab} ∈ T[g]C/D0, let
σab = Yg,α(Aab) be the York projection, so

(4.19) 2Nα,gAab = 2Nα,gσab + (Lg W )ab

for some vector field W a. Lemma 4.4 then implies

(4.20) jCα({gab; 2Nα,gAab}) = {gab; σab}
∗.

Definition 4.6. Let (gab,Kab) ∈ M×K, and let α be a lapse form. Let
Aab be the gab-trace-free part of Kab and let σab = Yg,α(Aab) be its York
projection. The conformal momentum of (gab,Kab), as measured by α, is

(4.21) mC
α(gab,Kab) = {gab; σab}

∗.

From the maps vCα and mC
α we obtain the diagram

(4.22)

M×K
vC

α

yy

mC

α

%%

T C/D0
oo

jCα

// T ∗C/D0

which should be compared with diagram (2.13). Note in particular that
although the ADM momentum is computed without reference to the lapse
or shift, both the conformal velocity and conformal momentum depend in
general the choice of a lapse form. The CMC solutions of the constraint
equations are an exception to this observation, however. If (gab,Kab) is a
CMC solution of the constraint equations, then Kab = σab + (τ0/n)gab for
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some transverse traceless tensor σab and some constant τ0. Hence the York
projection of Kab is σab regardless of the choice of lapse form.

The map jCα appeared previously in [33], where it was denoted jα and
where it was derived from purely geometric considerations. The approach
taken here suggests that jCα is a Legendre transformation, and our next task
is to identify a Lagrangian on T C/D0 for which jCα is the associated Legendre
transformation.

Consider the kinetic energy term of the densitized-lapse ADM Lagran-
gian:

(4.23) K(gab, uab, β;X
a, α) =

∫ [
1

4
|u− Lg X|2g − κ(β − divg X)2

]
α.

The first term on the right-hand side involves the kinetic energy due to
conformal deformation. Let σab be the gab-TT tensor such that

(4.24) jCα({gab; uab}) = {gab; σab}
∗.

So there is a vector field W a such that

(4.25) uab = 2Nα,gσab + (Lg(W +X))ab.

Then
∫

1

4
|u− Lg X|2gα =

∫ [
N2

α,g|σ|
2
g +

N

2
⟨σ,Lg(W )⟩g +

1

4
|Lg(W )|2g

]
α

=

∫ [
N2

α,g|σ|
2
g +

1

4
|Lg(W )|2gα+

1

2

∫
⟨σ,Lg(W )⟩g

]
ωg

=

∫ [
N2

α,g|σ|
2
g +

1

4
|Lg(W )|2g

]
α(4.26)

where we have used the fact that Nα,gα = ωg as well as the L
2-orthogonality

of σab and Lg(W ) with respect to gab. The conformal kinetic energy is the
first term on the right-hand side of the final expression of equation (4.26).

Definition 4.7. Let α be a lapse form. The conformal kinetic energy
of (gab; uab, β) ∈ TgM, as measured by α, is

(4.27) KC
α(gab, uab) =

∫
N2

α,g|σ|
2
gα

where σab is the gab-TT tensor such that jCα({gab; uab}) = {gab; σab}
∗.
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The following lemma shows conformal kinetic energy descends to a well
defined function on T C/D0.

Lemma 4.8. Suppose {gab; uab} = {ĝab; ûab}. Then

KC
α(gab, uab) = KC

α(ĝab, ûab).

Proof. Suppose {gab, uab} = {ĝab, ûab}, and let ϕ be the conformal factor
such that ĝab = ϕq−2gab. Since {gab, uab} = {ĝab, ûab}, the corresponding con-
formal momenta {gab; σab}

∗ and {ĝab; σ̂ab}
∗ are the same. So σ̂ab = ϕ−2σab.

Since Nĝ,α = ωĝ/α = ϕqωg/α = ϕqNg,α we conclude

KC
α(ĝab, ûab) =

∫

M

N2
ĝ,α|σ̂|

2
ĝ α =

∫

M

ϕ2qN2
g,αϕ

4−2q|ϕ−2σ|2g α(4.28)

=

∫

M

N2
g,α|σ|

2
g α = KC

α(gab, uab).

□

We will use the same notation KC
α to denote a function on T C/D0 rather

than TM. Thinking of it as a Lagrangian, the following proposition shows
that jCα is its Legendre transformation.

Proposition 4.9. Suppose gab ∈ M is a metric and uab(t) is a smooth path
of gab-trace-free tensors. Then

(4.29)
d

dt

∣∣∣∣
t=0

KC
α({gab, uab(t)}) =

〈
jCα({gab; uab(0)}), {gab, u

′
ab(0)}

〉
.

Proof. For each t, let σab(t) be the transverse-traceless tensor with

(4.30) jCα({gab; uab(t)}) = {gab; σab(t)}
∗;

since σab(t) = Yg,α(uab(t)/(2Ng,α)), the curve σab(t) is smooth. For each t
let W a(t) be a vector field such that

(4.31) uab(t) = 2Ng,ασab(t) + (Lg W )ab(t).

Then

(4.32) KC
α({gab, uab(t)}) =

∫

M

N2
g,α|σ(t)|

2
g α =

∫

M

Ng,α|σ(t)|
2
g ωg
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and

d

dt

∣∣∣∣
t=0

KC
α({gab, uab(t)}) =

∫

M

2Ng,α

〈
σ(0), σ′(0)

〉
g
ωg(4.33)

=

∫

M

〈
σ(0), u′(0)− (Lg W )′(0)

〉
g
ωg

=

∫

M

〈
σ(0), u′(0)

〉
g
ωg.

since σab is transverse traceless. But from equations (3.7) and (3.13) this
last expression is precisely

(4.34)
〈
[gab; σab(0)], {gab; u

′
ab(0)}

〉
=

〈
jCα({gab, uab(0)}), {gab; u

′
ab(0)}

〉
.

□

5. The conformal method

As presented in [33], the conformal method can be understood in terms of
the conformal parameters discussed in the previous section. We have the
following two formulations.

Problem 5.1 (Lagrangian conformal method). Let g be a conformal
class, let α be a lapse form, let {u} ∈ TgC/M be a conformal velocity, and let
τ be a mean curvature. Find all solutions (gab,Kab) of the vacuum constraint
equations (1.1) such that

(5.1)

[gab] = g

vCα(gab,Kab) = {u}

gabKab = τ.

Problem 5.2 (Hamiltonian conformal method). Let g be a conformal
class, let α be a lapse form, let σ ∈ T ∗

gC/M be a conformal momentum,

and let τ be a mean curvature. Find all solutions (gab,Kab) of the vacuum
constraint equations (1.1) such that

(5.2)

[gab] = g

mC
α(gab,Kab) = σ

gabKab = τ.

The two problems differ only in whether the conformal velocity or mo-
mentum is prescribed, and they are equivalent: (gab,Kab) is a solution of
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Problem 5.1 for parameters (g, {u}, τ, α) if and only if it is a solution of
Problem 5.2 for parameters (g,σ, τ, α) with σ = jCα({u}).

In order to write down PDEs corresponding to these problems we choose
representative tensors of the conformal parameters. In the Hamiltonian case,
we can take conformal parameters to be a metric gab, a transverse traceless
tensor σab, a mean curvature τ , and a lapse N . These prescribe Hamiltonian
conformal parameters

(5.3)

g = [gab]

σ = {gab; σab}
∗

τ = τ

α = ωg/N

and the constraint equations become the CTS-H equations

(5.4)

− a∆g ϕ+Rgϕ−

∣∣∣∣σ +
1

2N
Lg W

∣∣∣∣
2

g

ϕ−q−1 + κτ2ϕq−1 = 0

[CTS-H Hamiltonian constraint]

divg

(
1

2N
Lg W

)
− κϕq d τ = 0

[CTS-H momentum constraint]

which first appeared, in a slightly different form, in [37]. These equations
are to be solved for a conformal factor ϕ and a vector field W a, and if a
solution exists then

(5.5)

gab = ϕq−2gab

Kab = ϕ−2

(
σab +

1

2N
(Lg W )ab

)
+

τ

n
gab

solve the vacuum constraint equations. Note that in York’s original formu-
lation of the conformal method, there are three parameters (gab, σab, τ) and
N is implicitly 1/2. This is not an essential restriction since one can control
the lapse form α by moving gab within its conformal class while suitably
adjusting σab, but the requirement of tying the conformal class representa-
tive to α leads to some inflexibility. Hence we prefer the CTS-H equations
to those of York’s original conformal method. In the Lagrangian case, the
parameter σab is replaced with an arbitrary symmetric, trace-free tensor uab
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which determines a conformal velocity

(5.6) {u} = {gab; uab} = [gab; uab] + ImLg .

and the CTS-H equations become the CTS-L equations for ϕ and W a

(5.7)

− a∆g ϕ+Rgϕ−

∣∣∣∣
1

2N
(u+ Lg W )

∣∣∣∣
2

g

ϕ−q−1 + κτ2ϕq−1 = 0

[CTS-L Hamiltonian constraint]

divg

(
1

2N
Lg W

)
− κϕq d τ = − divg

[
1

2N
u

]
.

[CTS-L momentum constraint]

Since the conformal method specifies a conformal velocity or momen-
tum (modulo diffeomorphisms), we would like to understand how the mean
curvature is related to volumetric velocity or momentum (modulo diffeo-
morphisms). We have seen that if Kab has trace/trace-free decomposition
Kab = Aab + (τ/n)gab, then the conformal momentum is obtained from a
lapse-dependent York projection of Aab. It turns out that volumetric momen-
tum is a single number, and is obtained from an analogous lapse-dependent
York-like projection of τ . Indeed, there is a way to treat the volumetric de-
grees of freedom in a fashion completely in parallel to the manner in which
the conformal method treats the conformal degrees of freedom, and we de-
scribed this in the next two sections.

6. Volumetric tangent spaces

The space V of volume forms is an open subset of C∞(M,ΛnM), so the
tangent space at ω ∈ V is

(6.1) TωV = C∞(M,ΛnM).

We define

(6.2) T ∗
ωV = C∞(M)

and identify T ∗
ωV as a subset of (TωV)

∗ by defining the action of f ∈ T ∗
ωV

on η ∈ TωV by

(6.3) ⟨f, η⟩ =

∫

M

f η.
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Suppose γ(t) is a path of metrics with γ(0) = gab and γ′(0) = (gab; uab, β).
A standard computation shows that the associated path of volume forms
ω(t) satisfies

(6.4) ω′(0) = βωg.

Hence the pushforward TgM → Tωg
V is

(6.5) (gab;uab, β) 7→ βωg.

To compute the pullback we note that if f ∈ T ∗
ωg
V, equation (1.13) implies

(6.6) ⟨f, βωg⟩ =

∫

M

fβ ωg = ⟨(gab; 0, f)
∗, (gab; uab, β)⟩

and hence the pullback T ∗
ωg
V → T ∗

gM is

(6.7) f 7→ (gab; 0, f)
∗ =

f

2
gabωg.

We now consider volume forms modulo diffeomorphisms, V/D0. Suppose
Φt is a path of diffeomorphisms starting at the identity with infinitesimal
generator Xa. If ω is a volume form and γ(t) = Φ∗

tω, then

(6.8) γ′(0) = Divω(X)

where the divergence operator Divω applied to Xa is the Lie derivative LXω.
Note that if gab is a metric then

(6.9) Divωg
(X) = divg(X)ωg.

Since γ is stationary in V/D0, the directions Divωg
X are null directions in

V/D0 and we make the formal definition

(6.10) TωV/D0 = TωV/ ImDivω .

The space TωV/ ImDivω is much simpler than its conformal counterpart,
and indeed is one dimensional.

Lemma 6.1. The map V̇ol : TωV/D0 → R given by

(6.11) V̇ol(η + ImDivω) =

∫

M

η

is well defined and is an isomorphism.
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Proof. We claim that if η is an n-form, then
∫
M

η = 0 if and only if η ∈
ImDivω.

To see this, let gab be any metric such that ωg = ω. Now if η ∈ ImDivω,
then there is a vector field Xa such that η = divg Xωg and hence

∫
η = 0.

Conversely, suppose
∫
M

η = 0. Then η = fωg for some zero-mean func-
tion. Since M is connected, there exists a unique zero-mean solution u of
∆gu = f . Setting Xa = ∇au we find that η = divg(X)ωg = Divω(X).

Since the kernel of η 7→
∫
M

η is ImDivω, we conclude that integration

descends to a map V̇ol on the quotient space TωV/ ImDivω = TωV/D0. And
since V̇ol is surjective, the claimed isomorphism holds. □

We will henceforth identify TωV/D0 with R using V̇ol. Note that with
this identification, the pushforward TωV → TωV/D0 is

(6.12) η 7→

∫

M

η.

Since R is naturally identified with its dual vector space we define T ∗
ωV/D0 =

R. The pullback T ∗
ωV/D0 → T ∗

ωV takes the constant c ∈ R to the constant
function c ∈ C∞(M) since

(6.13) c

∫

M

η =

∫

M

cη = ⟨c, η⟩ .

Note that the constant functions in T ∗
ωV are the annihilator of ImDivω,

and hence we could have equivalently defined T ∗
ωV/D0 = (ImDivω)

⊥ in an
approach analogous to that of Section 3.

It will be helpful to have notation for the composite pushforward TgM →
Tωg

V/D0. If gab ∈ M and β ∈ C∞(M) we define

(6.14) {gab; β} =

∫

M

βωg.

From composition we obtain the following pushforwards and pullbacks as-
sociated with the projection M → V/D0.

Lemma 6.2. The pushforward TgM → Tωg
V/D0 is the map

(6.15) (gab; uab, β) 7→ {gab; β}.

The pullback T ∗
ωg
V/D0 → T ∗

gM is

(6.16) c 7→ (gab; 0, c)
∗.
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Proof. Equation (6.15) is a consequence of equations (6.7), (6.5) and (6.14).
Equation (6.16) follows from the formula c 7→ c for the pullback T ∗

ωV/D0 →
T ∗
ωV and equation (6.7). □

7. Volumetric velocity, momentum, and kinetic energy

Let ω be a volume form, and let gab be any metric with ωg = ω. Starting
from the diagram (2.13) and the pushforward/pullback maps from Lemma
6.2 we have the following diagram:

(7.1)

K dd

$$

;;

(α,Xa)

{{

Tg M oo

iα,Xa

// T ∗
g M

TωV/D0

��

T ∗
ωV/D0.

OO

We wish to construct an isomorphism jVα : TωV/D0 → T ∗
ωV/D0, analogous

to jCα, such that for every metric gab with ωg = ω, the diagram

(7.2)

K cc

##

;;

(α,Xa)

{{

TgM
oo

iα,Xa

// T ∗
gM

TωV/D0

��
oo

jVα

// T ∗
ωV/D0

OO

commutes (with the exception that traversal of the bottom loop starting at
the middle row is a projection).

Recalling Lemma 6.1 and our identification of TωV/D0 and T ∗
ωV/D0 with

R, we claim that

(7.3) jVα (v) = −

(
2κ∫

M
Ng,αωg

)
v

is the desired isomorphism. Evidently, jVα is invertible, and

(7.4) (jVα )
−1(p) = −

(
1

2κ

∫

M

Ng,αωg

)
p.
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So to establish diagram (7.2) we need only show that traveling from the
lower-right corner to the lower-left corner of diagram (7.1) is the same map
as (jVα )

−1, regardless of the choice of gab with ωg = ω. To this end, let p ∈
T ∗
ωV/D0. From equation (6.7) its pullback is (gab; 0, p)

∗ ∈ T ∗
gM, and we ap-

ply i−1
α,Xa from equation (2.7) to obtain (gab; LgXab,−pNα,g/(2κ) + divg X).

Finally, applying the pushforward from equations (6.15) and (6.14) we arrive
at

(7.5)

∫

M

[−(Nα,g/(2κ)p+ divg X]ωg = −

(
1

2κ

∫

M

Ng,αωg

)
p = (jVα )

−1(p)

as desired. This establishes diagram (7.2), which evidently commutes except
possibly when traversing the lower loop starting at the middle row. As in the
conformal case, such a traversal is a projection, and to describe concisely it
we introduce the volumetric equivalent of York splitting.

Lemma 7.1 (Volumetric York splitting). Let gab ∈ M and let N be a
positive function.

If τ ∈ C∞(M), there is constant τ∗ and a smooth vector field V a such
that

(7.6) τ = τ∗ +
1

N
divg V.

The constant τ∗ is uniquely given by

(7.7) τ∗ =

∫
M

Nτωg∫
M

Nωg

and V a is unique up to addition of a (smooth) divergence-free vector field.
Equivalently, if β ∈ C∞(M), there is a unique constant

(7.8) τ∗ =

∫
M

βωg∫
M

Nωg

and a smooth vector field V a, unique up to addition of a (smooth) divergence-
free vector field, such that

(7.9) β = Nτ∗ + divg V
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Proof. Let τ ∈ C∞ and let τ∗ be given by equation (7.7). So

(7.10)

∫

M

[Nτ −Nτ∗]ωg = 0

and Lemma 6.1 implies there is a smooth vector field V a such that

(7.11) Nτ −Nτ∗ = divg V.

This establishes equation (7.6).
The uniqueness of τ∗ follows from multiplying equation (7.6) by Nωg

and integrating. Moreover, we see that we can write τ = τ∗ + (1/N) divg V̂

for some other smooth vector field V̂ a if and only if the difference V a − V̂ a

is smooth and divergence free. Finally, we note that the decomposition (7.9)
is a trivial (but useful) rephrasing of equation (7.6). □

Definition 7.2. Let gab be a metric and let τ ∈ C∞(M). The volumetric
York projection of τ is

(7.12) Yg,α(τ) =

∫
M

Ng,ατωg∫
M

Ng,αωg
.

Equivalently, Yg,α(τ) is the unique constant τ∗ given by Lemma 7.1 such
that

(7.13) τ = τ∗ +
1

Ng,α
divg V

for some vector field V a. Note that we use the same notation Yg,α as con-
formal York projection, with the difference being that the argument is a
function rather than a symmetric (0, 2)-tensor.

Using the notation of Definition 7.2, a short computation shows that the
projection obtained by traversing the lower loop of diagram (7.2) starting
from T ∗

gM is the map

(7.14) (gab; Aab, f)
∗ 7→ (gab; 0, Yg,α(f))

∗.

We can also express jVα in terms of volumetric York projection.
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Lemma 7.3. Suppose {gab; β} ∈ Tωg
V/D0. Then

(7.15) jVα ({gab; β}) = −2κτ∗

where τ∗ = Yg,α(β/Ng,α), or equivalently where τ∗ is the unique constant
such that

(7.16) β = Ng,ατ
∗ + divg V

for some vector field V a.

Proof. Let {gab; β} ∈ Tωg
V/D0. From equations (7.3) and (6.14) we find

(7.17) jVα ({gab; β}) = −
2κ∫

M
Ng,α ωg

{gab; β} = −2κ

∫
M

βωg∫
M

Ng,αωg
.

Now let τ∗ = Yg,α(β/N). Equation (7.13) implies equation (7.16) and inte-
grating with respect to ωg we find

(7.18) τ∗ =

∫
M

βωg∫
M

Ng,αωg
.

Equation (7.15) now follows from equations (7.17) and (7.18). □

Given (gab,Kab) ∈ M×K, the volumetric velocity and momentum mea-
sured with respect to a lapse form α are defined analogously to their con-
formal counterparts. For the velocity we send Kab down the left-hand side
of diagram (7.2) starting at K, and we convert the velocity into a momen-
tum by applying jVα in the form of Lemma 7.3. This leads to the following
definitions.

Definition 7.4. Let (gab,Kab) ∈ M×K, and let α be a lapse form. Writing
τ = gabKab, the volumetric velocity of (gab,Kab), as measured by α, is

(7.19) vVα (gab,Kab) = {gab; Ng,ατ} =

∫

M

Ng,ατωg.

The volumetric momentum of (gab,Kab), as measured by α, is

(7.20) mV
α(gab,Kab) = −2κτ∗

where τ∗ = Yg,α(τ).
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Note that the volumetric velocity is the rate of change of slice volume,
as measured with respect to coordinate time. We also note that if τ ≡ τ0 for
some constant τ0, then equation (7.12) shows that the volumetric momentum
is simply −2κτ0.

The volumetric kinetic energy is derived in a parallel fashion to confor-
mal kinetic energy. Consider the kinetic energy terms of the densitized-lapse
ADM Lagrangian:

(7.21) K(gab, uab, β;X
a, α) =

∫ [
1

4
|u− Lg X|2g − κ(β − divg X)2

]
α.

The second term on the right-hand side involves the kinetic energy due to
expansion. Define τ∗ by

(7.22) − 2κτ∗ = jVα ({gab; β}).

From Lemma 7.3 we see that we can write

(7.23) β = Ng,ατ
∗ + divg(V +X)

for some vector field V a. Then, since Ng,αα = ωg, we find

−κ

∫

M

(β − divg X)2α = −κ

∫

M

(Nτ∗ + divg V )2α(7.24)

= −κ

∫

M

[
N2

g,α(τ
∗)2 + (divg V )2

]
α

− 2κ

∫

M

τ∗ divg V ωg

= −κ

∫

M

[
N2

g,α(τ
∗)2 + (divg V )2

]
α.

The volumetric kinetic energy, as measured by α, is the first term on the
final right-hand side of equation (7.24).

Definition 7.5. Let α be a lapse form. The volumetric kinetic energy
of (gab; uab, β) ∈ TgM, as measured by α, is

(7.25) KV
α (gab, β) = −κ

∫

M

N2
g,α(τ

∗)2α

where

(7.26) − 2κτ∗ = jVα ({gab; β}).
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From equation (7.26) and the definition of jVα we see that

(7.27) τ∗ =
1∫

M
Ng,αωg

{gab; β} =
1∫

M
N2

g,αα
{gab; β}

and hence we can also write

(7.28) KV
α (gab, β) = −

κ∫
M

N2
g,αα

({gab; β})
2 = −

κ∫
M

Ng,αωg
({gab; β})

2 .

So KV
α descends to a Lagrangian on T V/D0 (which we also call KV

α ), and
the associated Legendre transformation of {gab; β} is the linearization

(7.29) (KV
α )

′({gab; β}) = −
2κ∫

M
Ng,α ωg

{gab; β} = jVα ({gab; β}).

8. Volumetric momentum and the standard

conformal method

Consider Hamiltonian conformal method parameters (g,σ, τ, α) and sup-
pose (gab,Kab) is a solution of the vacuum Einstein constraint equations
generated by it. So

(8.1)

[gab] = g

mC
α(gab,Kab) = σ

gabKab = τ.

The conformal momentum of the solution, as measured by α, is specified di-
rectly via σ. But there is only an indirect connection between the conformal
data and the volumetric momentum measured by α. Indeed, suppose gab is
a representative of g and let σab be the representative of σ with respect to
gab. Equation (8.1) is equivalent to the existence of a conformal factor ϕ and
a vector field W a such that

(8.2)

gab = ϕq−2gab

Kab = ϕ−2

(
σab +

1

2Nα,g
(Lg W )ab

)
+

τ

n
gab.

and such that ϕ and W a solve the CTS-H equations (5.4). The volumetric
momentum of (gab,Kab) measured by α is −2κτ∗ where

(8.3) τ∗ =

∫
M

Ng,ατωg∫
M

Ng,αωg
=

∫
M

ϕ2qNg,ατωg∫
M

ϕ2qNg,αωg
.



✐

✐

“7-Maxwell” — 2021/2/27 — 18:34 — page 244 — #38
✐

✐

✐

✐

✐

✐

244 David Maxwell

Notice from the right-hand side of equation (8.3) that the computation of
τ∗ from (gab, σab, τ, α) appears to involve the unknown conformal factor ϕ in
an essential way. Although we need not know ϕ exactly (one can compute τ∗

from cϕ for any positive constant c), it seems unlikely that one can compute
τ∗ without at least determining at least cϕ and thereby effectively solving
the CTS-H equations. Moreover, if the conformal data generates more than
one solution of the constraints, as happens at least in some cases involving
an L∞ mean curvature that changes sign [31], there is no reason to believe
that the volumetric momenta of the two solutions will agree.

Hence the conformal method treats the conformal and volumetric de-
grees of freedom differently, with the conformal degrees respecting a kind
of diffeomorphism invariance, but not the volumetric degrees. On its face,
this need not be problematic. But the discrepancy seems to negatively im-
pact the effectiveness of the conformal method as a parameterization in the
far-from-CMC setting. As mentioned in the introduction, the recent study
in [34] presented a family F of smooth, non-CMC conformal data sets that
generate certain Un−1-symmetric slices of flat Kasner spacetimes. Given
(g,σ, τ, α) ∈ F , it either generates a single Un−1-symmetric slice of a flat
Kasner spacetime, or it generates a homothety family of Un−1-symmetric
slices. The homothety families appear precisely when τ∗ = 0, as computed
with respect to one (and consequently any) of the generated Un−1-symmetric
solutions of the Einstein constraint equations. So the quantity τ∗ that we
seem to be unable to control directly from the conformal parameters deter-
mines, in the setting of [34], the multiplicity of solutions generated by the
conformal parameters.

From the evidence of the role of τ∗ from [34], along with the naturality of
treating the conformal and volumetric degrees of freedom in the parallel ways
discussed in Sections 4 and 7, we are therefore lead to consider conformal-like
methods where the parameters include

1) a conformal class g,

2) a lapse form α,

3) either a conformal velocity {u} or a conformal momentum σ, with
σ = jCα({u}), and

4) either a volumetric velocity v ∈ R or a volumetric momentum −2κτ∗ ∈
R with −2κτ∗ = jVα (v).

This list is evidently not comprehensive; the standard conformal method
is successful in the near-CMC case but we have now replaced a function τ
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with a scalar τ∗. In the remainder of the paper we examine alternatives for
augmenting this list with geometrically natural degrees of freedom.

9. Drifts

Consider a path of metrics gab(t) such that the conformal class of gab(t) is
constant along the curve up to diffeomorphism, and such that the volume
form of gab(t) is also constant up to potentially unrelated diffeomorphisms
along the curve. By applying an appropriate path of diffeomorphisms, we
could ensure that either the conformal class or the volume form is constant
along the curve, but in general we cannot ensure both are constant. For
example, suppose we apply diffeomorphisms to fix the conformal class. Since
the diffeomorphism class of the volume form is constant, the volume will also
remain constant along the curve, but we are free to smoothly reallocate the
fixed volume by some flow. So although the conformal geometry and volume
are constant, the conformal class and volume form can move relative to one
another. Since the conformal class is a more rigid object than the volume
form (e.g., the space of conformal Killing fields is finite dimensional, but the
space of divergence-free vector fields is not), we visualize the volume form as
drifting relative to the landmarks provided by the fixed conformal geometry.
With this intuition in mind, we call an infinitesimal motion in M/D0 that
preserves conformal geometry and volume a drift.

To formalize these ideas, we first observe that the pushforwards from
TgM to T[g]C/D0 and Tωg

V/D0 can be factored through TgM/D0 to obtain
the maps πC

∗ and πV
∗ in the diagram

(9.1)

TgM

��

�� ��

TgM/D0

πV

∗ &&πC

∗xx

T[g]C/D0 Tωg
V/D0.

Indeed, we claim that

(9.2) πC
∗ ({gab; uab, β}) = {gab; uab}.
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First, note that the map πC is well defined, for ifXa is a vector field, Lieg X =
(gab; (Lg X)ab, divg X) and

(9.3) πC
∗ ({gab; Lg X, divg X}) = {gab; (Lg X)ab} = 0.

Moreover, from equations (1.18) and (3.14) we see that equation (9.2) is
exactly the statement that the left-hand triangle of diagram 9.1 commutes.
Similar considerations show that

(9.4) πV
∗ ({gab; uab, β}) = {gab; β} =

∫

M

βωg.

Definition 9.1. Let gab ∈ M. A drift at gab is an element U ∈ TgM/D0

such that πC
∗ (U) = 0 and πV

∗ (U) = 0. We denote the collection of drifts at
gab by Driftg.

Lemma 9.2. Suppose U ∈ TgM/D0. Then U ∈ Driftg if and only if there
is a vector field Ra such that

(9.5) U = {gab; 0, divg R}.

Moreover, if R̂a is another vector field, then

(9.6) {gab; 0, divg R} = {gab; 0, divg R̂}

if and only if there is a divergence-free vector field Ea and a conformal
Killing field Qa such that

(9.7) R̂a = Ra + Ea +Qa.

Proof. Suppose U = {gab; uab, β} ∈ TgM/D0. From equation (9.2) we see
that πC

∗ (U) = 0 if and only if uab ∈ ImLg. Hence there is a vector field W a

such that uab = (Lg W )ab. Similarly, from equation (9.4) and Lemma 6.1
we see that πV

∗ (U) = 0 if and only if there is a vector field V a such that
β = divg V . Thus U is a drift if and only if there are vector fields W a and
V a such that

(9.8) U = {gab; (Lg W )ab, divg V }.
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Moreover,

{gab; (Lg W )ab, divg V } = {gab; (Lg W )ab, divg V } − Lieg W(9.9)

= {gab; (Lg W )ab, divg V }

− {gab; (Lg W )ab, divg W}

= {gab; 0, divg(V −W )}.

Setting Ra = V a −W a we see that U is a drift if and only if there is a vector
field Ra such that equation (9.5) holds.

Now suppose Ra and R̂a are vector fields such that

(9.10) {gab; 0, divg R} = {gab; 0, divg R̂}.

Hence

(9.11) (gab; 0, divg(R̂−R)) ∈ ImLieg .

and there is a vector field Qa such that

(9.12) (gab; 0, divg(R̂−R)) = Lieg Q = (gab; (Lg Q)ab, divg Q)

Equation (9.12) implies (Lg Q)ab = 0 and hence Qa is a conformal Killing

field. Defining Ea = R̂a −Ra −Qq, equation (9.12) also implies that Ea is
divergence free. Since

(9.13) R̂a = Ra +Qa + Ea

we see that if equation (9.6) holds then so does equation (9.7). Conversely,
if Ra and R̂a are related via (9.7) we can reverse the previous argument to
conclude (9.10). □

Given a metric gab, let Qg be the subgroup of D0 that preserves the
conformal class of gab and let Eg be the subgroup that preserves the volume
form of gab. We define TeQg to be the set of conformal Killing fields of gab
and TeEg to be the set of ωg-divergence free vector fields. Lemma 9.2 provides
an isomorphism

(9.14) Driftg ≈ TeD0/(TeQg ⊕ TeEg).

We wish to show that motion in M/D0 can be completely described
in terms of volume expansion, conformal deformation, and drift. If U ∈
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TgM/D0, assigning a conformal velocity and volumetric velocity is straight-
forward: simply apply πC

∗ and πV
∗ . Assigning a drift to U requires, however,

a choice of projection

(9.15) TgM/D0 → Driftg

and we now construct a family of such projections that depend on the choice
of a lapse form α.

Consider the lower loop of diagram (4.2) where we additionally factor
the pushforward TgM → T[g]C/D0 through TgM/D0:

(9.16)

TgM
oo

iα,Xa

//

��

T ∗
gM

TgM/D0

T[g]C/D0

��

πC

∗

oo

jCα

// T ∗
[g]C/D0

OO

Let ιC : T[g]C/D0 → TgM/D0 be the map obtained by nearly completing the
loop in diagram (9.16). From Lemma 4.4 and equations (2.7) and (1.18) we
find

(9.17) ιCα({gab; uab}) = {gab; 2Ng,ασab, 0}

where σab is the unique gab-TT tensor such that

(9.18) uab = 2Ng,ασab + (Lg W )ab

for some vector field W a. The following lemma shows that ιCα selects an α-
dependent representative in TgM/D0 of each conformal motion in T[g]C/D0.

Lemma 9.3. The map ιCα satisfies

(9.19)
πC
∗ ◦ ιCα = id

πV
∗ ◦ ιCα = 0.

Proof. Note that πC
∗ ◦ ιCα is the map obtained by traversing the bottom loop

of diagram 4.2 starting at T[g]C/D0. In Section 4 we showed that this map
is the identity. On the other hand, from equations (9.17) and (9.4) we see
that πV

∗ ◦ ιCα = 0. □
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Similarly, from the diagram

(9.20)

TgM
oo

iα,Xa

//

��

T ∗
gM

TgM/D0

Tωg
V/D0

��

πV

∗

oo

jVα

// T ∗
ωg
V/D0

OO

we obtain a map ιVα : Tωg
V/D0 → TgM/D0 given by

(9.21) ιVα({gab; β}) = {gab; 0, Ng,ατ
∗}

where τ∗ is the unique constant given by volumetric York splitting (Lemma
7.1) such that

(9.22) β = Ng,ατ
∗ + divg V

for some vector field V a. We have an analogue of Lemma 9.3 that shows
that ιVα selects an α-dependent representative in TgM/D0 of each volumetric
motion in Tωg

V/D0; we omit the proof.

Lemma 9.4. The map ιVα satisfies

(9.23)
πC
∗ ◦ ιVα = 0

πV
∗ ◦ ιVα = id .

Writing

(9.24) ιDrift : Driftg → TgM/D0

for the natural embedding we define

(9.25) ια : T[g]C/D0 ⊕ Tωg
V/D0 ⊕Driftg → TgM/D0

by

(9.26) ια = ιCα ⊕ ιVα ⊕ ιDrift.
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Proposition 9.5. Let gab be a metric and let α be a lapse form. Then ια
is an isomorphism and the following diagram commutes:

(9.27)

T[g]V/D0

T[g]C/D0 ⊕ Tωg
V/D0 ⊕Driftg

ια //

))

55

oo

))

TgM/D0

πV

∗

OO

πC

∗

��

T[g]C/D0.

Moreover, if R is a drift,

(9.28) ι−1
α (R) = (0, 0,R).

Proof. Note that Driftg = KerπC
∗ ∩KerπV

∗ , so π
C
∗ ◦ ιDrift = 0 and πV

∗ ◦ ιDrift =
0. Using this fact and Lemmas 9.3 and 9.4 we conclude

(9.29) πC
∗ ◦ ια = πC

∗ ◦ ιCα + πC
∗ ◦ ιVα + πC

∗ ◦ ιDrift = id+0 + 0.

This establishes the lower triangle of diagram (9.27) up to showing ια has an
inverse. The upper triangle is established similarly, and we turn our attention
to the invertibility of ια.

To see that ια is injective, notice that from the facts established thus
far for diagram (9.27) that anything in the kernel of ια must be of the form
(0, 0,R) for some drift R. But ια(0, 0,R) = R, so ια has trivial kernel.

To show that ια is surjective, let {gab; uab, β} ∈ TgM/D0. Let σab be
the gab-TT tensor such that

(9.30) uab = 2Ng,ασab + (Lg W )ab

for some vector field W a, and let τ∗ be the constant such that

(9.31) β = Ng,ατ
∗ + divg V

for some vector field V a. Let

(9.32) R = {gab; (Lg W )ab, divg V }
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and observe that R is a drift. Then

(9.33)

ιCα({gab; uab}) = {gab; 2Ng,ασab, 0}

ιVα({gab; β}) = {gab; 0, Ng,ατ
∗}

ιDrift(R) = {gab; (Lg W )ab, divg V }

so

ια({gab; uab}, {gab; β},R)(9.34)

= {gab; 2Ng,ασab, 0}+ {gab; 0, Ng,ατ
∗}+ {gab; (Lg W )ab, divg V }

= {gab; 2Ng,ασab + (Lg W )ab, Ng,ατ
∗ + divg V }

= {gab; uab, β}

as desired.
Finally, we note that equation (9.28) follows from the invertibility of ια

and the fact that ια(0, 0,R) = R for any drift R. □

Proposition 9.5 is the formal assertion that motion inM/D0 is character-
ized by conformal deformation, volume expansion, and drift. The conformal
and volumetric velocities are unambiguously associated with U ∈ TgM/D0

via πC
∗ and πV

∗ , and Proposition 9.5 provides a lapse-form-dependent map
from TgM/D0 to Driftg: compute ι−1

α , and extract the drift component. Let
us call this map πDrift

α .

Proposition 9.6. The map πDrift
α : TgM/D0 → Driftg is a projection and

(9.35) πDrift
α ({gab; uab, β}) = {gab; (Lg W )ab, divg V }

where W a and V a are any vector fields obtained from York splitting

(9.36)
uab = 2Ng,ασab + Lg W

β = 2Ng,ατ
∗ + divg V

for some gab-TT tensor σab and some constant τ∗.
Moreover,

(9.37) ι−1
α = πC

α ⊕ πV
α ⊕ πDrift

α .

Proof. That ια is a projection follows from equation (9.28), and formula
(9.35) was established in the body of the proof of Proposition 9.5. Equation
(9.37) follows from Proposition 9.5 and the definition of πDrift

α . □
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10. Drifts and the momentum constraint

Consider a metric gab and a lapse form α. From diagram (2.13) and the
pushforwards and pullbacks described in Section 1 we obtain the diagram

(10.1)

K dd

$$

::

(α,Xa)

zz

Tg M oo

iα,Xa

// T ∗
g M

TgM/D0

��

T ∗
gM/D0.

OO

which is the analog of the conformal and volumetric equivalents (4.1) and
(7.1). In the conformal and volumetric cases, the Legendre transforma-
tion iα,Xa descended to a Legendre transformation after quotienting by dif-
feomorphisms. This is not the case for diagram (10.1), however. There is
certainly a map kα : T ∗

gM/D0 → TgM/D0 obtained by traveling from the
lower-right to the lower-left of diagram (10.1):

(10.2)

K dd

$$

::

(α,Xa)

zz

Tg M oo

iα,Xa

// T ∗
g M

TgM/D0

��

T ∗
gM/D0.

OO

kα

oo

But it turns out that kα can fail to be an isomorphism, and this gives some
insight about the configuration space for the Einstein equations. The ele-
ments of T ∗

gM/D0 are precisely the solutions of the momentum constraint,
but is is not quite correct to think of these as momenta corresponding to the
velocity of the system in TgM/D0, and the notion of drifts seems to play a
key role here.

An arbitrary element of T ∗
gM/D0 can be written as

(10.3) (gab; Aab,−2κτ)∗



✐

✐

“7-Maxwell” — 2021/2/27 — 18:34 — page 253 — #47
✐

✐

✐

✐

✐

✐

Initial data in general relativity 253

for some trace-free Aab and some function τ that satisfy the momentum
constraint

(10.4) ∇aAab = κ∇bτ.

From equations (2.7) and (1.18) we find

kα((gab; Aab,−2κτ)∗)(10.5)

= {gab, 2Ng,αAab + (Lg X)ab, Ng,ατ + divg X}

= {gab, 2Ng,αAab, Ng,ατ}.

Applying York splitting we can write

(10.6)

Aab = σab +
1

2Ng,α
(Lg W )ab

τ = τ∗ +
1

Ng,α
divg V

for a gab-TT tensor σab, a constant τ∗, and vector fields W a and V a. Writing
U for kα((gab; Aab,−2κτ)∗) equation (10.5) becomes

(10.7) U = {gab, 2Ng,ασab, 0}+ {gab, 0, Ng,ατ
∗}+ {gab; (Lg W )ab, divg V },

so in the language of Proposition 9.6

(10.8)

πC
α(U) = {gab; 2Ng,ασab}

πV
α (U) = {gab; Ng,ατ

∗}

πDrift
α (U) = {gab; (Lg W )ab, divg V } = {gab; 0, divg(V −W )}.

The potential for difficulty lies in the cancellation in πDrift
α (U): although W a

and V a might not be zero, it might be that πDrift
α (U) is zero (and hence kα

may have nontrivial kernel).
The momentum constraint (10.4) can be written in terms of the York-

projected variables as

(10.9) divg

(
σ +

1

2Ng,α
Lg W

)
= κ d

(
τ∗ +

1

Ng,α
divg V

)

or more simply

(10.10) divg

(
1

2N
Lg W

)
= κ d

(
1

N
divg V

)
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whereN = Ng,α. So σab and τ∗ are not involved in the momentum constraint,
and we have only the relationship (10.10) between W a and V a that, for
reasons explained below, we call the drift equation. One might hope that
equation (10.10) prevents cancellation in πDrift

α (U), but this is not always
the case.

Suppose Mn is the torus (S1)n equipped with the flat product metric
gab, and let s be the coordinate of the first factor of the torus. Consider
vector fields W a = (w(s), 0, . . . , 0) and V a = (v(s), 0, . . . , 0), and suppose N
is a lapse that depends only on s. A brief computation shows that equation
(10.10) can be written

(10.11) κ

(
1

2N
2w′

)′

= κ

(
1

N
v′
)′

where primes denote differentiation with respect to s. Since (10.11) is an
equation on the circle, w(s) and v(s) solve equation (10.11) if and only if
w = v + c for some constant c. Hence W a = V a +Ka for some Killing field
Ka and the associated drift from equation (10.8) vanishes identically. Thus,
in this case, kα has nontrivial kernel and is not an isomorphism.

The thin-sandwich conjecture [4] states that initial data is characterized
by a metric gab and the projection of its ADM velocity into TgM/D0. It is
not expected to hold in general [6], and the observation from the preced-
ing paragraph appears to be another facet of its failure. Indeed, from [34]
Proposition 6.2 and the discussion above it follows that there exist distinct
solutions of the constraint equations, that generate distinct spacetimes, that
nevertheless have the same metric and such that for some lapse form α

• the conformal velocities measured by α for both solutions are the same,

• the volumetric velocities measured by α for both solutions are the
same, and

• the complementary drifts for both solutions are zero.

Hence the projections of the ADM velocities in to TM/D0 for these distinct
solutions of the constraint equations are identical.

Although kα is not an isomorphism, it turns out that solutions of the
momentum constraint can nevertheless be parameterized in terms of a con-
formal momentum, a volumetric momentum, and a drift. The key idea is to
identify equation (10.10) as representing a relationship between two drifts,
and we start by looking at the role of V a .
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Theorem 10.1. Suppose gab is a metric, α is a lapse form, and V ∈ Driftg.
Let V a be any vector field such that

(10.12) V = {gab; 0, divg V }.

Then there is a conformal Killing field Qa, unique up to addition of a proper
Killing field, such that

(10.13) divg

(
1

2Ng,α
Lg W

)
= κ d

(
1

Ng,α
divg(V +Q)

)

admits a solution W a. The solution W a is unique up to addition of a con-
formal Killing field, and the set of solutions does not depend on the choice
of V a representing V or on the subsequent choice of conformal Killing field
Qa such that equation (10.13) is solvable.

Proof. Let V a be any representative ofV and for brevity let N = Ng,α. From
elliptic theory the equation

(10.14) divg

(
1

2N
Lg W

)
= κ d

(
1

N
divg(V )

)

admits a solution W a if and only if

(10.15)

∫

M

1

N
divg(V ) divg(Q)ωg = 0

for all conformal Killing fields Qa, in which case the solution W a is unique
up to addition of a conformal Killing field. Although V a need not satisfy
condition (10.15), we claim that there is a conformal Killing field Q̂a such
that

(10.16)

∫

M

1

N
divg(V + Q̂) divg(Q)ωg = 0

for all conformal Killing fields Qa, and that Q̂a is unique up to addition of a
proper Killing field. Since proper Killing fields are divergence-free, the right-
hand side of (10.10) is independent of the choice of admissible conformal
Killing fields, as is the set of solutions of (10.10).
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Consider the functional

(10.17) F (Qa) =

∫

M

1

N
divg(V +Q)2ωg

on the finite-dimensional space TeQg of conformal Killing fields, and observe

that Q̂a is stationary for F if and only if equation (10.16) holds. Moreover,
since the highest order term of F is quadratic and non-negative definite, the
stationary points of F correspond with its minimizers.

First suppose that gab does not admit any (nontrivial) proper Killing
fields. Then every nontrivial conformal Killing field satisfies divQ ̸≡ 0 and
the quadratic term of F is positive definite. Hence F admits a unique min-
imizer. On the other hand, if gab admits a nontrivial space X of proper
Killing fields, then F descends to a functional on the quotient TeQ/X and
its quadratic order term is again positive definite. Hence we pick up a mini-
mizer of F over the conformal Killing fields, and it is unique up to addition
of a proper Killing field.

This establishes the main result up to independence of the solution set
with respect to the choice of representative of V. Let V a and Ṽ a be two
representatives, so Lemma 9.2 implies that

(10.18) V a = Ṽ a + Q̃a + Ẽa

for some conformal Killing field Q̃a and some divergence-free vector field Ẽa.
Let Qa be a conformal Killing field and let W a be a vector field such that

(10.19) divg

(
1

2N
Lg W

)
= κ d

(
1

N
divg(V +Q)

)
.

We wish to show that there is a conformal Killing field Q
a
such that

(10.20) divg

(
1

2N
Lg W

)
= κ d

(
1

N
divg(Ṽ +Q)

)

as well. Since

(10.21) divg(V +Q) = divg(Ṽ + Ẽ + Q̃+Q) = divg(Ṽ + Q̃+ Q̂)

we conclude that equation (10.20) holds with Q
a
= Q̃a +Qa. □

Theorem 10.1 provides a map jDrift
α from Driftg to T ∗

gM/D0 as follows.
Given a driftV, let V a be a representative and letQa andW a be a conformal
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Killing field and vector field respectively solving (10.10). We define

(10.22) jDrift
α (V) =

(
gab;

1

2Ng,α
(Lg W )ab,−

2κ

Ng,α
divg(V +Q)

)∗

.

Note that jDrift
α is well defined since divg(V +Q) and (Lg W )ab are uniquely

determined by {g; 0, divg V } even though V a, Qa and W a need not be, and
that equation (10.10) ensures that jDrift

α maps into T ∗
gM/D0, not just T

∗
gM.

The map jDrift
α is injective for if

(10.23)

(
gab;

1

2Ng,α
(Lg W )ab,−

2κ

Ng,α
divg(V +Q)

)∗

= 0

then divg(V +Q) = 0 and hence the source drift V = {gab; 0, divg V } sat-
isfies

{gab; 0, divg V } = {gab; Lg Q, divg(V +Q)}(10.24)

= {gab; 0, divg(V +Q)} = 0.

So Im jDrift
α is isomorphic to Driftg. The following result shows that Im jDrift

α

complements the conformal and volumetric momenta, which formalizes our
earlier claim that solutions of the momentum constraint can be parameter-
ized by the selection of a conformal momentum, a volumetric momentum,
and a drift.

Proposition 10.2.

T ∗
gM/D0 = T ∗

[g]C/D0 ⊕ T ∗
ωg
V/D0 ⊕ Im(jDrift

α ).

Proof. Suppose (gab; Aab,−2κτ)∗ ∈ T ∗
gM/D0. From York splitting there are

vector fields W a and V a solving equation (10.10) as well as a TT-tensor σab
and a constant τ∗ such that

(10.25)

Aab = σab +
1

2Ng,α
(Lg W )ab

τ = τ∗ +
1

Ng,α
divg V.

So

(gab; Aab,−2κτ)∗ = (gab; σab, 0)
∗ + (gab; 0, τ

∗)∗(10.26)

+ (gab; (1/2Ng,α)(Lg W )ab, (1/Ng,α) divg V )∗.
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Since (gab; Aab,−2κτ)∗ solves the momentum constraint (10.4), W a and V a

solve equation (10.10) and hence

(10.27) (gab; (1/2Ng,α)(Lg W )ab, (1/Ng,α) divg V )∗ ∈ Im jDrift
α .

Equation (10.26) therefore exhibits (gab; Aab,−2κτ)∗ as the sum of a con-
formal momentum, a volumetric momentum, and term in the image of jDrift

α .
To establish the direct sum decomposition (10.2) we need only show that

the summands are mutually transverse. Now if W a and V a solve equation
(10.10) and either of (Lg W )ab or divg V vanishes, an integration by parts ex-
ercise shows the other must as well. Hence Im jDrift

α is transverse to T ∗
[g]C/D0

and T ∗
ωg
V/D0, which are obviously transverse to each other. □

We now show that Theorem 10.1 can be understood as describing a map
Rα from drifts to drifts. Given a drift V, let V a be any representative and
let W a be a solution of equation (10.13). We define

(10.28) Rα(V) = {gab; (Lg W )ab, 0} = {gab; 0,− divg W} ∈ Driftg

and note that Rα is well-defined since W a is uniquely determined up to
adding a conformal Killing field. Proposition 10.2 shows that solutions of
the momentum constraint are parameterized by a conformal momentum, a
volumetric momentum, and a pair (W,V) of drifts that are joined at the
hip by W = Rα(V).

It turns out that Rα is invertible, and W determines V as well. The
reverse process proceeds as follows: let W a be a vector field such that W =
{gab; (Lg W )ab, 0} and attempt to solve

(10.29) κ d

(
1

Ng,α
divg V

)
= divg

(
1

2Ng,α
Lg W

)

for V a. Now if equation (10.29) admits a solution, we can multiply the
equation by an arbitrary divergence free vector field Ea and integrate by
parts to find

(10.30)

∫

M

1

2Ng,α
⟨Lg W,Lg E⟩ωg = 0,

which poses a compatibility condition on W a. We will show that equation
(10.29) admits a solution V a if and only if the compatibility equation is
satisfied, and the solution is unique up to adding a divergence free vector
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field. Hence divg V and the drift

(10.31) V = {gab; 0, divg V }

are uniquely determined by W once the compatibility condition (10.30) is
met. In general an arbitrary representative W a of W will fail the com-
patibility condition, but we will show that we can adjust W a by adding a
divergence-free vector field to remedy this deficiency. Note that adding a
divergence-free vector field does not change the drift represented by W a.
The following three propositions contain the technical tools needed to carry
out this procedure; we start by showing that equation (10.29) is solvable if
the compatibility condition is met.

Proposition 10.3. Suppose gab is a metric, N is a positive function and
ηa is a 1-form. The equation

(10.32) κ d

(
1

2N
divg V

)
= η

admits a smooth solution V a if and only if

(10.33)

∫

M

⟨η,E⟩ωg = 0

for all g-divergence-free vector fields Ea, in which case V a is determined up
to addition of a (smooth) divergence-free vector field.

Proof. Multiplying equation (10.33) by a divergence free vector field and
integrating by parts shows that equation (10.33) is necessary for a solution
to exist, and we henceforth assume ηa satisfies this condition. Applying the
Helmholtz-Hodge decomposition we can write

(10.34) ηa = ∇af + µa

where f is a function, µa is divergence-free, and both are smooth. Mul-
tiplying equation (10.34) by µa, integrating, and using the compatibility
condition we find that µa ≡ 0 and hence

(10.35) ηa = ∇af.

Since η = d f , to solve equation (10.32) it suffices to find a smooth vector
field V a and a constant c such that

(10.36) divg V =
2N

κ
(f + c).
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We pick c so that

(10.37)

∫

M

2N

κ
(f + c)ωg = 0

and find a function u so that

(10.38) ∆gu =
2N

κ
(f + c).

Equation (10.36) is then solved taking V a = ∇au, and we see that V a is
smooth. If we add a smooth divergence-free vector field to V a we obtain
another solution, and we now show that all smooth solutions are obtained
this way.

Suppose that V a and V̂ a are two solutions. It follows that

(10.39) d

(
1

N
divg(V − V a)

)
= 0

and hence

(10.40) divg(V − V̂ ) = cN

for some constant c. Integrating over the manifold we conclude c = 0 and
hence V a and V̂ a differ by a divergence-free vector field. And if V a and V̂ a

are both smooth, so is the difference. □

Adjusting the right-hand of equation (10.29) to meet the compatibility
condition involves adding a suitable divergence-free vector field Ea, and we
will see that Ea is the solution of a certain Stokes-like PDE. Let Lieg be the
Killing operator of gab, so (Lieg X)ab = ∇aXb +∇bXa, let Lie

∗
g = −2 divg be

its adjoint, and let

(10.41) Lg,N = Lie∗g 1/(2N) Lieg .

Given forcing terms ηa and h we form the Stokes equations

Lg,NE = η + d p(10.42a)

divg E = h(10.42b)

where the unknowns are Ea and the pressure p. In practice we will usually
take h = 0 so that Ea is divergence-free, but it will aid a regularity bootstrap
to consider a non-homogeneous term here.
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Each of ηa and h must satisfy a compatibility condition in order for sys-
tem (10.42) to be solvable. Multiplying the first equation of system (10.42)
by a Killing field Ka we find

(10.43)

∫

M

ηaK
aωg = 0,

and integrating the second equation of system (10.42) we have

(10.44)

∫

M

hωg = 0.

These compatibility conditions are sufficient for there to exist a solution of
the Stokes system.

Proposition 10.4. Let gab be a smooth metric and let N be a smooth
positive function. Let ηa be a 1-form in W−1,2 that is L2 orthogonal to the
proper Killing fields and let h be a function in L2 that is L2 orthogonal to
the constants. Then there exists a vector field Ea ∈ W 1,2 and a function
p ∈ L2 solving the Stokes system (10.42) in the sense of distributions, and
the solution is unique up to adding a Killing field to Ea and a constant to
p.

Proof. We can reduce to the case where h = 0 by solving

(10.45) ∆ f = h

for a function f ∈ W 2,2, which is possible since h is orthogonal to the con-
stants, and writing Ea = Êa +∇af where Êa is an unknown divergence-free
function. Since ∇f ∈ W 1,2 we have Lg,N∇f ∈ W−1,2 and we see that (Ea, p)

solves the original system if and only if (Êa, p) solves the system with η
replaced with η − Lg,N∇f and h replaced with 0. Henceforth we assume
h = 0, and we seek a divergence-free vector field Ea and a pressure p solving
(10.42a).

First suppose gab has no nontrivial proper Killing fields, and let J1,2 be
subspace of divergence-free W 1,2 vector fields. For Ea and F a ∈ J1,2, define

(10.46) A(Ea, F a) =

∫

M

1

2N
⟨Lieg E,Lieg F ⟩g ωg.

We claim that there is a constant c such that A(Ea, Ea) ≥ c
∫
M

|E|2gωg for
all Ea ∈ J1,2. Suppose not. Then we can find a sequence of divergence-free
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vector fields {Ea
(k)}k such that A(Ea

(k), E
a
(k)) → 0 and such that each Ea

(k)

has norm 1 in in L2. Recall Korn’s inequality [8], which implies that there
is a constant C such that

(10.47) ||E||2W 1,2 ≤ C

[∫

M

⟨Lieg E,Lieg E⟩g ωg + ||E||2L2

]
.

Since N is bounded above, a similar inequality holds replacing
∫

M

⟨Lieg ·,Lieg ·⟩g ωg

with A and hence the sequence {Ea
(k)}k is bounded in W 1,2. So a subse-

quence converges weakly in W 1,2 and strongly in L2 to a limit Ẽa. The
quadratic form E 7→ A(E,E) is non-negative definite, so it is weakly lower
semicontinuous. Hence the weak limit satisfies A(Ẽ, Ẽ) = 0 and is a Killing
field. Since ||Ẽ||L2 = 1 as well, gab admits a nontrivial Killing field, which is
a contradiction.

We have now established that ||E||2L2 is controlled by A(E,E), and it
then follows from inequality (10.47) that there is a constant c such that

(10.48) A(Ea, Ea) ≥ c||E||2W 1,2

for all E ∈ J1,2. So A is coercive over J1,2 and the Lax-Milgram theorem
implies there is a unique Ea ∈ J1,2 such that

(10.49)

∫

M

1

2N
⟨DE,DF ⟩g ωg =

∫

M

⟨η, F ⟩ωg

for all F a ∈ J1,2. Now

(10.50) F a 7→

∫

M

1

2N
⟨DE,DF ⟩g ωg −

∫

M

⟨η, F ⟩ωg

is a continuous functional onW 1,2 that vanishes on J1,2. From the Helmholtz-
Hodge decomposition of W−1,2 there is a unique weakly divergence free Ga

in W−1,2 and function p in L2, uniquely determined up to a constant, such
that functional (10.50) is equal to

(10.51) Ga +∇ap.

But since this functional vanishes on J1,2 we conclude that Ga = 0 and hence

(10.52)

∫

M

1

2Ng,α
⟨DE,DF ⟩g ωg −

∫

M

⟨η, F ⟩ωg =

∫

M

p divg Fωg
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for all F a ∈ W 1,2, which proves existence if gab admits no nontrivial Killing
fields. Moreover, if (Êa, p̂) is any solution of the Stokes system, we see that
Êa also satisfies (10.49) and therefore equals Ea. But then p̂ satisfies the
equation (10.52) for the pressure and is therefore equal to p plus a constant.

If gab admits nontrivial Killing fields, we replace the space J1,2 in the
proof above with the L2 orthogonal complement in J1,2 of the Killing fields;
call this new space Ĵ1,2. The proof above then finds Ea ∈ Ĵ1,2 such that
equation (10.49) holds for all F a in Ĵ1,2. Since ηa is L2 orthogonal to the
proper Killing fields, equation (10.49) holds for all F a ∈ J1,2 and the re-
mainder of the proof continues without change. □

Proposition 10.4 establishes existence of weak solutions of the Stokes sys-
tem, and we now show that when the forcing terms are smooth, so are the
solutions.

Proposition 10.5. In Proposition 10.4, if (ηa, h) ∈ W k−2,2 ×W k−1,2 for
some integer k ≥ 2, then (Ea, p) ∈ W k,2 ×W k+1,2. In particular, if ηa and
h are smooth, so are Ea and p.

Proof. Suppose (ηa, h) ∈ L2 ×W 1,2. Applying the divergence to equation
(10.42a) we find that p is a weak solution of

(10.53)
∆ p = [divg,Lg,N ]E + Lg,N divg E − divg η

= [divg,Lg,N ]E + Lg,Nh− divg η.

Since [divg,Lg,N ] is a second-order operator and since Ea ∈ W 1,2, the first
term on the right-hand side of equation (10.53) belongs to W−1,2. It is easy
to see that the remaining terms on the right-hand side of equation (10.53)
also belong to W−1,2 as well and hence p ∈ W 1,2. But then the right-hand
side of equation (10.42a) is in L2 and since Lg,N is elliptic, we conclude that
Ea ∈ W 2,2.

To obtain higher regularity, we proceed by a bootstrap. For example,
suppose ηa ∈ W 1,2 and h ∈ W 2,2. Let ∂ be a first order operator. Then
Êa = ∂Ea and p̂ = ∂p belong to W 1,2 and L2 respectively and satisfy

(10.54)
Lg,N Ê = ∂η + [Lg,N , ∂]E − [d, ∂] p+ d p̂

divg Ê = [divg, ∂]E + ∂h

where [·, ·] is the commutator. Since (Ea, p) ∈ W 2,2 ×W 1,2, and since (η, h) ∈
W 1,2 ×W 2,2, we see that the right-hand sides of equations (10.54) belong
to L2 and W 1,2 respectively. Hence by our previous result, (∂Ea, ∂p) ∈



✐

✐

“7-Maxwell” — 2021/2/27 — 18:34 — page 264 — #58
✐

✐

✐

✐

✐

✐

264 David Maxwell

W 2,2 ×W 1,2. So (Ea, p) ∈ W 3,2 ×W 2,2, and the remainder of the bootstrap
continues similarly. □

From Propositions 10.3 and 10.4 we obtain the following analogue of
Theorem 10.1.

Theorem 10.6. Suppose gab is a metric, α is a lapse form, and W ∈
Driftg. Let W

a be any vector field such that

(10.55) W = {gab; (Lg W )ab, 0} = {gab; 0,− divg W}.

Then there is a divergence-free vector field Ea, unique up to addition of a
proper Killing field, such that

(10.56) κ d

(
1

Ng,α
divg(V )

)
= divg

(
1

2Ng,α
[Lg(W + E)]

)
.

admits a solution V a. The solution V a is unique up to addition of a
divergence-free vector field, and this space of solutions does not depend on
the choice of W a or on the choice of divergence free vector field Ea such that
equation (10.56) is solvable.

Proof. From Proposition 10.3 we know that equation (10.56) admits a solu-
tion so long as

(10.57)

∫

M

〈
divg

(
1

2N
Lg(W + E)

)
, F

〉

g

ωg = 0

for all divergence-free vector fields F a. Thinking of W a as fixed and Ea as
an unknown vector field we see that Ea satisfies

(10.58)

∫

M

〈
divg

(
1

2N
Lg E

)
, F

〉

g

ωg = −

∫

M

〈
divg

(
1

2N
Lg W

)
, F

〉

g

ωg

for all divergence-free vector fields. Since Ea is divergence-free, (Lg E)ab =
Lieg E and Ea is a weak solution of the Stokes equation

(10.59) D∗
g

(
1

2N
Lieg E

)
= − divg

(
1

2N
Lg W

)
+∇p

for some function p. Proposition 10.4 shows that there is a solution of
(10.59), and that it is unique up to addition of a proper Killing field.
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Thus we have shown there is a divergence-free vector field Ea, unique
up to addition of a proper Killing field, such that equation (10.56) admits
a solution V a, and Proposition 10.3 shows that the solution is unique up
to addition of a divergence-free vector field. The proof that this space of
solutions is independent of the choice of W a is analogous to the same step
of Theorem 10.1. □

11. Drift velocity, drift momentum, and drift kinetic energy

We saw in Section 10 that the map kα : T ∗
gM/D0 → TgM/D0 described in

diagram 10.1 can fail to be an isomorphism. In terms of the decompositions

(11.1) T ∗
gM/D0 = T ∗

[g]C/D0 ⊕ T ∗
ωg
V/D0 ⊕ Im(jDrift

α )

and

(11.2) TgM/D0 ≈ T[g]C/D0 ⊕ Tωg
V/D0 ⊕Driftg .

given by Propositions 10.2 and 9.5 respectively, a computation shows

(11.3) kα(σ,−2κτ∗, jDrift
α (V)) = ((jCα)

−1(σ), (jVα )
−1(−2κτ∗),V −W)

where W = Rα(V) and Rα is the map described in equation (10.28). Since
the Legendre transformations jCα and jVα are isomorphisms, we see that kα
fails to be an isomorphism precisely when V 7→ V −Rα(V) fails to be an
isomorphism. We address this difficulty by treating the pair (W,V), linked
by the equation W = Rα(V), as the drift component of motion rather than
the difference V −W. Since Rα is invertible, we can parameterize the pairs
(W,V) in terms of either component, and we will refer to W as conformal
drift and V as volumetric drift.

Suppose that we parameterize drift pairs in terms of their volumetric
component. To this end, given a lapse form α and a shift Xa we define a
projection

(11.4) πDrift
α,Xa : TgM → Driftg

as follows. Given (gab; uab, β) ∈ TgM we apply volumetric York decomposi-
tion to write

(11.5) β = Ng,ατ
∗ + divg(V +X)
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for a unique constant τ∗ and a vector field V a that is unique up to adding
a divergence-free vector field. Then

(11.6) πDrift
α,Xa((gab; uab, β)) = {gab; 0, divg V }.

We claim that the diagram

(11.7)

K dd

$$

<<

(α,Xa)

||

TgM
oo

iα,Xa

// T ∗
gM

Driftg
��

πDrift

α,Xa

oo

jDrift

α

// Im(jDrift
α )

OO

commutes, except that traversing the bottom loop starting from the middle
row is a projection. It is enough to establish the following.

Proposition 11.1. The map obtained from diagram (11.7) starting at
Driftg and traversing the bottom loop back to Driftg is the identity.

Proof. Let V = {gab; 0, divg V } ∈ Driftg. From the definition of jDrift
α in

equation (10.22) we find

(11.8) jDrift
α (V) =

(
gab;

1

2Ng,α
(Lg W )ab,−

2κ

Ng,α
divg(V +Q)

)∗

where the vector field W a and the conformal Killing field Qa are determined
by Theorem 10.1. Applying i−1

α,Xa from equation (2.7) we arrive at

(11.9) (gab; (Lg(W +X))ab, divg(V +Q+X))

and applying πDrift
α,Xa we complete the loop at

(11.10) {gab; 0, divg(V +Q)}.

Since Qa is a conformal Killing field,

(11.11) {gab; 0, divg(Q)} = {gab; Lg Q, divg(Q)} = 0

and hence

(11.12) {gab; 0, divg(V +Q)} = {gab; 0, divg(V )} = V.
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Thus traversing the loop is the identity. □

Drift velocity and momentum are defined following the pattern seen
previously for conformal and volumetric quantities. Given (gab,Kab) ∈ M×
K we form diagram (11.7) and descend the left hand side from K to Driftg.
If Kab has mean curvature τ , we apply volumetric York splitting to write

(11.13) τ = τ∗ +
1

Ng,α
div V,

and equations (2.9), (11.5) and (11) show that the drift velocity is

(11.14) {gab; 0, divg V }.

Note that although both maps on the left-hand side of diagram (11.7) depend
on the shift Xa, their composition does not and only depends on the lapse
form α. Drift momentum is obtained from drift velocity by applying jDrift

α .

Definition 11.2. Let (gab,Kab) ∈ M×K and let α be a lapse form. The
drift velocity of (gab,Kab), as measured by α, is

(11.15) vDrift
α (gab,Kab) = {gab; 0, divg V }

where V a is obtained by the splitting (11.13) of τ = gabKab. The drift mo-
mentum of (gab,Kab), as measured by α, is

(11.16) mDrift
α (gab,Kab) =

{
gab;

1

2Ng,α
(Lg W )ab,−

2κ

Ng,α
divg(V +Q)

}∗

where W a and Qa are the vector field and conformal Killing field obtained
from Theorem 10.1.

Since Driftg ⊆ TgM/D0, every element of T ∗
gM/D0 defines a functional

on Driftg. Since jDrift
α : Driftg → T ∗

gM/D0, we can therefore consider jDrift
α

as a map into (Driftg)
∗ and it is then natural to identify a Lagrangian such

that jDrift
α is its Legendre transformation.

Definition 11.3. Given V ∈ Driftg the drift kinetic energy of V, as
measured by α, is

(11.17) KDrift
α (V) = −

∫
κ(divg V )2α



✐

✐

“7-Maxwell” — 2021/2/27 — 18:34 — page 268 — #62
✐

✐

✐

✐

✐

✐

268 David Maxwell

where V a is any representative of V such that

(11.18)

∫
divg(V ) divg Qα = 0

for all conformal Killing fields Qa; note that Theorem 10.1 ensures that
divg V (and hence drift kinetic energy) is uniquely determined by V.

To show that KDrift
α is a Lagrangian, one ought to demonstrate a config-

uration space such that KDrift
α is a function on its tangent bundle. Clearly

each tangent space must be isomorphic to Driftg, but the right choice of
base space is not clear. So we content ourselves by restricting our atten-
tion to each fibre Driftg of the presumed total space and show that jDrift

α

is the Legendre transformation of KDrift
α on that fibre. Consider a path

V(t) = {gab; 0, divg V (t)} of drifts where V a(t) is a path of vector fields sat-
isfying condition (11.18). Since V a(t) satisfies the compatibility condition,
there exists a path of vector fields W a(t) with

(11.19) divg

(
1

2Ng,α
Lg W

)
= κ d

(
1

Ng,α
divg V

)
.

Then, recalling equations (1.25) and (1.13), we find

d

dt
KDrift

α (V) = −2κ

∫

M

divg V divg V̇ α(11.20)

=

∫

M

(
−2κ

Ng,α
divg V

)
divg V̇ ωg

=

〈{
gab;

1

2Ng,α
(Lg W )ab,−2κ

1

Ng,α
divg V

}∗

, {gab; 0, divg V̇ }

〉

=
〈
jDrift
α (V), V̇

〉

where the various dependencies on t in equation (11.20) have been sup-
pressed. Thus KDrift

α is the desired Lagrangian.
The preceding discussion was based on parameterizing pairs (W,V)

with W = Rα(V) in terms of volumetric drift V. If we use conformal drift
W instead we obtain a dual notion of drift velocity and kinetic energy which
we now summarize briefly. The drift velocity of (gab,Kab) is

(11.21) v̂Drift
α (gab,Kab) = {gab; (Lg W )ab, 0}
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where W a is any vector field arising from the conformal York decomposition
of the trace free part Aab of Kab:

(11.22) Aab = σab +
1

2Ng,α
(Lg W )ab.

The drift momentum is

(11.23) m̂Drift
α (gab,Kab) =

{
gab;

1

2Ng,α
[Lg(W + E)]ab,−

2κ

Ng,α
divg(V )

}∗

where the vector field V a and the divergence-free vector field Ea are provided
by Theorem 10.6. The drift kinetic energy of W is

(11.24) K̂Drift
α (W) =

∫

M

1

4
|Lg W |2α.

where W a is any representative of W satisfying the compatibility condition
(10.30) It is easy to see that

(11.25) mDrift
α (gab,Kab) = m̂Drift

α (gab,Kab)

if and only if the pair (gab,Kab) satisfies the momentum constraint, so the
drift momentum of a solution of the constraint equations is well-defined
regardless of which factor W or V we use to parameterize drift velocity.
The choice of using W or V is one of emphasis between conformal and
volumetric motion: we can apparently measure drift of the conformal class
relative to the normal direction, or we can measure drift of the volume form
relative to the normal direction, but these two motions are linked by the
momentum constraint and are not independent. This class of linked motion
can be parameterized in terms of Driftg, but we have two distinct natural
parameterizations.

Continuing with our choice to parameterize drift motion by its volumet-
ric component we have the following.

Theorem 11.4. Let gab ∈ M, let α be a lapse form, and let Xa be a shift.
The map

(11.26) jα : T[g]C/D0 ⊕ Tωg
V/D0 ⊕Driftg → T ∗

gM/D0

defined by

(11.27) jα = jCα ⊕ jVα ⊕ jDrift
α
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is an isomorphism. Moreover, consider the diagram

(11.28)

K hh

((

55

(α,Xa)

uu

TgM

π∗

��

oo

iα,Xa

// T ∗
gM

T[g]C/D0 ⊕ Tωg
V/D0 ⊕Driftg

oo

jα
// T ∗

gM/D0

OO

where the first two components of π∗ are the natural pushforwards and the
third component is πDrift

α,Xa. Traversing the bottom loop of diagram (11.28)
starting on the bottom row is the identity, and traversing the outermost loop
starting at K is a projection onto second fundamental forms Kab such that
(gab,Kab) solves the momentum constraint.

Proof. That jα is an isomorphism follows from the fact that jCα, j
V
α , and

jDrift
α are isomorphisms, along with Proposition 10.2. That traversing the
bottom loop starting from the bottom row is the identity follows from the
same fact for diagrams (4.2), (7.2) and (11.7). As a consequence, traversing
the bottom loop starting from the middle row must be a projection. Since
the maps i−1

α,Xa , π∗, and jα are surjective, the image of T ∗
gM after traversing

the bottom loop is the image of T ∗
gM/D0 under the natural pullback, i.e.,

the divergence-free elements. Hence traversing the outermost loop starting
at K is a projection onto the second fundamental forms with divergence-free
ADM momenta, i.e., the solutions of the momentum constraint. □

Note that although Proposition 9.5 implies

(11.29) TgM/D0 ≈ T[g]C/D0 ⊕ Tωg
V/D0 ⊕Driftg,

the map π∗ from Theorem 11.4 is not the pushforward from TgM to TgM/D0.
Indeed, if W a and V a are vector fields, the pushforward of

(gab; (Lg W )ab, divg V )

is the drift {gab; 0, divg(V −W )}, but the drift component of

π∗((gab; (Lg W )ab, divg V ))

is {gab; 0, divg(V )}. This is the key distinction between diagrams (10.1) and
(11.7) and is what ensures that jα is always an isomorphism even though kα
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from diagram (10.1) can fail to be one. As always, the choice to make the drift
component of π∗((gab; (Lg W )ab, divg V )) equal to {gab; 0, divg(V )} rather
than {gab; Lg W, 0} = {gab; 0,− divg W} is arbitrary, and a result analogous
to Theorem 11.4 holds when using conformal drift.

On the other hand, if we do identify T[g]C/D0 ⊕ Tωg
V/D0 ⊕ Driftg with

TgM/D0 (thinking of π∗ as a projection into TgM/D0 that is not the push-
forward), we can interpret jα as being the Legendre transformation of the
total kinetic energy

(11.30) Kα(u, v,V) = KC
α(u) +KV

α(v) +KDrift
α (V)

where (u, v,V)∈T[g]C/D0 ⊕ Tωg
V/D0 ⊕Driftg≈TgM/D0. Equation (11.30)

can be obtained from the ADM kinetic energy, but we must account for the
fact that we are representing drift velocity in terms of V not W. Recall that
if (gab; uab, β) ∈ TgM, the ADM kinetic energy is

(11.31)

∫
1

4
|u− Lg X|2g − κ(β − divg X)2α

Decomposing uab and β according to equations (4.25) and (7.23) we can
rewrite the kinetic energy as

(11.32)

∫
N2

g,α|σ|
2
g −N2

g,α(τ
∗)2 + κ

1

4
|Lg W |2g − κ(divg V )2α

The first two terms are the conformal and volumetric kinetic energies. If
the momentum constraint is satisfied, then V a will satisfy the compatibility
condition (11.18) and hence the term involving divg V in expression (11.32)
is the drift kinetic energy. So the total kinetic energy (11.30) is obtained from
the ADM kinetic energy by dropping the Lg W term. In the dual treatment
of drift velocity, the total kinetic energy would be obtained by keeping the
Lg W term and dropping the divg V term instead.

12. Drifts and the conformal method

Theorem 11.4 and Proposition 10.2 show that given a choice of lapse form
α, solutions of the momentum constraint can be parameterized in terms
of their conformal, volumetric, and drift momenta. Hence drift momentum
naturally complements the candidate parameters for conformal-like methods
discussed at the end of Section 8, and we consider in this section variations
of the conformal method that incorporate drift as a parameter.
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Suppose (gab,Kab) is a solution of the momentum constraint with con-
formal momentum σ = {gab; σab}

∗, volumetric momentum −2κτ∗, and drift
momentum

(12.1)

{
gab;

1

2Ng
Lg Wab,−

2κ

Ng,α
divg V

}∗

where W a and V a are vector fields solving the drift equation

(12.2) divg

[
1

2Ng,α
Lg W

]
= κ d

[
1

Ng,α
divg V

]
.

Then

(12.3) Kab = σab +
1

2Ng,α
Lg W +

1

n

(
τ∗ +

1

Ng,α
divg V

)
gab

and Kab has mean curvature

(12.4) τ = gabKab = τ∗ +
1

Ng,α
divg V.

Now suppose gab = ϕq−2gab for some conformally related metric gab. The
conformal momentum σ is represented at gab by σab = ϕ2σab and the vol-
umetric momentum is still −2κτ∗. Using the transformation law Ng,α =
ϕqNg,α and the conformal transformation laws for divergences and for the
conformal Killing operator, equation (12.2) can be written in terms of gab
as

(12.5) divg

[
1

2Ng,α
Lg W

]
= κϕq d

[
ϕ−2q

Ng,α
divg(ϕ

qV )

]
.

Note that since

(12.6) τ = τ∗ +
ϕ−2q

Ng,α
divg(ϕ

qV ),

equation (12.5) is simply the CTS-H momentum constraint after substitut-
ing equation (12.6). The Hamiltonian constraint for (gab,Kab) can also be
written in terms of gab making this same substitution and we arrive at two
conformal methods depending on whether we specify V a or W a in equation
(12.5). First, using Theorem 10.1 we can specify V a up to a conformal Killing
field Qa and we obtain the following modification of the CTS-H method.
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Problem 12.1 (CTS-H with Volumetric Drift). Let gab be a metric,
σab a transverse traceless tensor with respect to gab, τ∗ a constant, V a a
vector field, and α a lapse form. Setting N = ωg/α, find a conformal factor
ϕ, a vector field W a and a conformal Killing field Qa such that

(12.7)

− a∆g ϕ+Rgϕ−

∣∣∣∣σ +
1

2N
Lg W

∣∣∣∣
2

g

ϕ−q−1

+ κ

(
τ∗ +

ϕ−2q

N
div(ϕq(V +Q))

)2

ϕq−1 = 0,

divg

(
1

2N
Lg W

)
− κϕq d

(
ϕ−2q

N
divg(ϕ

q(V +Q))

)
= 0.

Alternatively, we can apply Theorem 10.6 and specify W a up to a gab
divergence-free vector field. Since ϕ−qEa is divergence-free with respect to
gab if and only if Ea is divergence-free with respect to gab we obtain the
following.

Problem 12.2 (CTS-H with Conformal Drift). Let gab be a metric,
σab a transverse traceless tensor with respect to gab, τ

∗ a constant, W a a
vector field, and α a lapse form. Setting N = ωg/α, find a conformal factor
ϕ, a vector field V a and a divergence-free vector field Ea such that

(12.8)

− a∆g ϕ+Rgϕ−

∣∣∣∣σ +
1

2N
Lg(W + ϕ−qE)

∣∣∣∣
2

g

ϕ−q−1

+ κ

(
τ∗ +

ϕ−2q

N
divg(ϕ

qV )

)2

ϕq−1 = 0,

divg

(
1

2N
Lg(W + ϕ−qE)

)
− κϕq d

(
ϕ−2q

N
divg(ϕ

q(V ))

)
= 0.

The drift parameterizations in systems (12.7) and (12.8) pose significant
analytical challenges beyond those of the standard conformal method. For
example, both equations of both systems are second order in ϕ, and the
Hamiltonian constraint is no longer semilinear in ϕ. Although the equations
for the standard conformal method are technically simpler, and therefore
more attractive at first glance, it may be that more sophisticated equations
are required to effectively parameterize non-CMC solutions of the constraint
equations. We will return to the analysis systems (12.7) and (12.8) in future
work. For now, we make some observations to suggest that these systems are
not intractable. First, for fixed ϕ, the problem for the momentum constraint
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is equivalent to solving one of the variations (10.13) or (10.29) of the drift
equation (10.10) with respect to the metric ϕq−2gab. These are well-posed
problems and hence it is natural to consider iteration schemes, not unlike
those for the standard conformal method, that alternate between solving the
Hamiltonian and momentum constraints. Semilinearity of the Hamiltonian
constraint could be restored in such an iteration scheme by constructing a
sequence of mean curvatures according to equation (12.4). Moreover, since
the CMC conformal method arises as the special case V a = 0 in system
(12.7) or W a = 0 in system (12.8), a natural first step is to consider the
near-CMC case where V a or W a is small. It seems likely that near-CMC
results similar to those of the standard conformal method are feasible, and
the harder work will be determining the extent to which the geometric and
physical structures that motivate the drift parameterizations are sufficient to
address the shortcomings of the standard conformal method for non-constant
mean curvature.

There is also the possibility that Problems 12.1 and 12.2 require fur-
ther refinement. We are representing drifts by vector fields, and this in-
troduces a degeneracy not present in the standard conformal method. A
solution of the constraint equations uniquely determines a conformal class
and, after selecting a lapse form, a conformal, volumetric and drift mo-
mentum. But the drift momentum determines a subspace of vector fields:
if (gab, σab, τ

∗, V a, α) is a tuple of conformal parameters for system (12.7)
generating a solution (gab,Kab) of the constraints, this same solution will
be generated by (gab, σab, τ

∗, V a + E
a
+Q

a
, α) whenever Q

a
is a conformal

Killing field for gab and E
a
is divergence-free with respect to gab. The confor-

mal Killing field is not problematic since the set of conformal Killing fields
is a conformal invariant, but the divergence-free vector fields for gab are not
known a priori, and this poses a difficulty in determining if two tuples of
conformal parameters determine the same solution of the constraints. A suc-
cessful analysis system (12.7) should exhibit an identifiable subset of vector
fields V a such that solutions of the constraint equations determine only one
vector field from the subset, with a similar requirement holding for system
(12.8). The main difficulty is that of uniquely representing drifts at gab us-
ing the conformally related metric gab, but without knowing the connecting
conformal factor.

If gab does not admit nontrivial conformal Killing fields, there is a way
to uniquely identify the drifts at gab with the drifts the conformally related
metric ĝab = ϕq−2gab, and this leads to third, alternative, parameterization.
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Let V ∈ Driftg and let V a be any representative. We then send V to

(12.9) V̂ = {ĝab; 0, divĝ(ϕ
−qV )} ∈ Driftĝ .

The map is well defined, for if Ua is another representative of V, there
is a divergence-free vector field Ea such that Ua = V a + Ea; this uses the
fact that there are no nonzero conformal Killing fields. But then ϕ−qUa =
ϕ−qV a + ϕ−qEa, and since ϕ−qEa is divergence-free with respect to ĝab,

(12.10) {ĝab; 0, divĝ ϕ
−qU} = {ĝab; 0, divĝ ϕ

−qV }.

Hence the map is well defined, and since it has an analogous inverse we have
established an identification of Driftg with Driftĝ. Using this identification
we make the substitution V a 7→ ϕ−qV a into equation (12.4) to obtain

(12.11) τ = τ∗ +
ϕ−2q

Ng,α
divg V

and then substitute this mean curvature into the CTS-H equations. Note,
however, that divg V is a zero-mean function with respect to gab and one
can dispense with the vector field entirely.

Problem 12.3 (CTS-H with lapse-scaled mean curvature). Let gab
be a metric with no nontrivial conformal Killing fields, σab a transverse
traceless tensor with respect to gab, τ

∗ a constant, ξ a zero-mean function,
and α a lapse form. Setting N = ωg/α, find a conformal factor ϕ and a
vector field W a such that

(12.12)

− a∆g ϕ+Rgϕ−

∣∣∣∣σ +
1

2N
Lg W

∣∣∣∣
2

g

ϕ−q−1

+ κ

(
τ∗ +

ϕ−2q

N
ξ

)2

ϕq−1 = 0,

divg

(
1

2N
Lg W

)
− κϕqd

(
ϕ−2q

N
ξ

)
= 0.

One could also work with the substitution W a 7→ ϕ−qW a in system
(12.8) and obtain an analogous version of system (12.12), but this seems
somewhat unnatural.

The drift parameterization also has the potential to inform the standard
conformal method when the background metric has nontrivial conformal
Killing fields. Very little is known in this case: we have near-CMC existence
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under the very strong restriction that the mean curvature is constant along
each flow line of every conformal Killing field [9], and we have near-CMC
nonexistence on Yamabe-non-negative manifolds if the conformal momen-
tum is zero[26]. Moreover, one can show that conformal Killing fields pose
a genuine obstacle for some near-CMC seed data, but not others [32]. The
difficulty with conformal Killing fields arises since the CTS-H momentum
constraint is not always solvable when conformal Killing fields are present.
Using the ideas that led to system (12.1) one can adjust the standard con-
formal method to include a correction term involving a conformal Killing
field to restore solvability of the momentum constraint, and we will address
this modification of the CTS-H equations in future work.

13. Conclusion

In hindsight, York’s original CMC conformal method can be thought of as
having three parameters:

• a conformal class g in C,
• a conformal momentum σ in T ∗C/D0, and
• a volumetric momentum −2κτ0 in T ∗V/D0.

CMC data sets are special, however: their conformal and volumetric mo-
menta are unambiguously defined, intrinsic properties. The extension of the
conformal method to non-CMC initial data sets employs a fourth parameter,
a densitized lapse, which is used to measure conformal momentum in a way
that only depends on conformal properties of the solution. The conformal
momentum is compatible with the ADM Lagrangian, as seen in diagram
(4.2), and the resulting non-CMC conformal method has four parameters:

• a conformal class g in C,
• a densitized lapse, represented by a lapse form α,
• a conformal momentum σ in T ∗C/D0 as measured by α, and
• a mean curvature τ .

In this formulation the mean curvature no longer directly controls the vol-
umetric momentum of the solution. We saw in Section 8, however, that the
mechanism used by the standard conformal method to interpret conformal
momentum can be applied to the volumetric degrees of freedom, and volu-
metric momentum, as measured by a densitized lapse, emerges as a property
of a non-CMC initial data set. The parallels between conformal and volu-
metric momenta are striking, and indeed the volumetric theory described
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in Section 7 is completely analogous to the conformal theory of Section 4.
We have therefore considered alternatives to the conformal method where
the mean curvature is determined indirectly by specification of a volumet-
ric momentum and some other ingredient, and we have identified drifts as
playing a role in understanding these alternatives.

Indeed, every solution of the momentum constraint is a sum of a confor-
mal momentum, a volumetric momentum, and a drift momentum, which is
represented by a pair of vector fields W a and V a solving the drift equation

(13.1) divg

(
1

2Ng,α
Lg W

)
= κ d

(
1

Ng,α
divg V

)
.

Section 10 showed that equation (13.1) is not really a relationship between
vector fields, but is a relationship between a pair of drifts (W,V). More-
over, the relationship is symmetric: either of W or V determines the other,
and each of W or V can be taken as the velocity representing drift mo-
tion. Section 11 described dual theories, depending on the choice of using
W or V, in which the ADM kinetic energy descends to a kinetic energy
Lagrangian without constraints on a tangent space decomposed into con-
formal, volumetric, and drift motion. We were obligated, however, to pick
either conformal or volumetric drift as representing drift velocity because
the difference V −W, which is the drift component of ADM velocity pro-
jected into TM/D0, is not always sufficient to detect distinct solutions of
the constraint equations.

These results show that the introduction of a densitized lapse into the
ADM Lagrangian leads to a rich structure. Although some of this struc-
ture is employed by the standard conformal method, some of it is ignored,
and in Section 12 we saw that there are alternative extensions of the CMC
conformal method that incorporate volumetric momentum and drift as pa-
rameters instead of mean curvature. Indeed there are a number of ways to
do this, and it is not yet clear how to best work with drift. Nevertheless,
future progress in applying the conformal method, or some variation, in the
non-CMC setting will require new ideas. An improved understanding of the
geometry of the conformal method, of the type sought here, may well assist
with these efforts.



✐

✐

“7-Maxwell” — 2021/2/27 — 18:34 — page 278 — #72
✐

✐

✐

✐

✐

✐

278 David Maxwell

Acknowledgment

This work was supported by NSF grant 0932078 000 while I was a resident
at the Mathematical Sciences Research Institute in Berkeley, California, and
was additionally supported by NSF grant 1263544.

References

[1] P. T. Allen, A. Clausen, and J. Isenberg, Near-constant mean curvature
solutions of the Einstein constraint equations with non-negative Yam-
abe metrics, Classical and Quantum Gravity 25 (2008), no. 7, 075009–
075015.

[2] A. Anderson and J. W. York, Hamiltonian time evolution for general
relativity, Physical Review Letters 81 (1998), no. 6, 1154–1157.

[3] R. Arnowitt, S. Deser, and C. W. Misner, The dynamics of general
relativity, in L. Witten, editor, Gravitation: An Introduction to Current
Research, pp. 227–265, John Wiley & Sons, New York, London (1962).

[4] R. F. Baierlein, D. H. Sharp, and J. A. Wheeler, Three-dimensional ge-
ometry as carrier of information about time, Phys. Rev. (2) 126 (1962),
1864–1866.

[5] R. Bartnik, Phase space for the Einstein equations, Communications in
Analysis and Geometry 13 (2005), no. 5, 845–885.

[6] R. Bartnik and G. Fodor, On the restricted validity of the thin sandwich
conjecture, Physical Review. D. Third Series 48 (1993), no. 8, 3596–
3599.

[7] A. Carlotto and R. Schoen, Localizing solutions of the Einstein con-
straint equations, preprint (2014).

[8] W. Chen and J. Jost, A Riemannian version of Korn’s inequality, Cal-
culus of Variations and Partial Differential Equations 14 (2002), no. 4,
517–530.

[9] Y. Choquet-Bruhat, J. Isenberg, and V. Moncrief, Solution of con-
straints for Einstein equations, C. R. Acad. Sci. Paris, Sér. I 315 (1991),
349–355.

[10] Y. Choquet-Bruhat and T. Ruggeri, Hyperbolicity of the 3 + 1 system
of Einstein equations, Communications in Mathematical Physics 89
(1983), no. 2, 269–275.



✐

✐

“7-Maxwell” — 2021/2/27 — 18:34 — page 279 — #73
✐

✐

✐

✐

✐

✐

Initial data in general relativity 279
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Série (2003), no. 94, vi–103.
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[25] J. Isenberg and V. Moncrief, A set of nonconstant mean curvature solu-
tions of the Einstein constraint equations on closed manifolds, Classical
and Quantum Gravity 13 (1996), no. 7, 1819–1847.
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