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This paper presents an investigation of the relation between some
positivity of the curvature and the finiteness of fundamental groups
in semi-Riemannian geometry. We consider semi-Riemannian sub-
mersions π : (E, g) → (B,−gB) under the condition with (B, gB)
Riemannian, the fiber closed Riemannian, and the horizontal dis-
tribution integrable. Then we prove that, if the lightlike geodesi-
cally complete or timelike geodesically complete semi-Riemannian
manifold E has some positivity of curvature, then the fundamen-
tal group of the fiber is finite. Moreover we construct an example
of semi-Riemannian submersions with some positivity of curva-
ture, non-integrable horizontal distribution, and the finiteness of
the fundamental group of the fiber.

1. Introduction

This paper discusses our study of the fundamental group of semi-Riemannian
manifolds with positive curvature tensor. In the case of positive constant
curvature, Calabi–Markus and Wolf proved the following theorem:

Theorem 1.1 (Calabi–Markus [CM62] (q = 1), Wolf [Wol62]). Let

M be an n-dimensional geodesically complete semi-Riemannian manifold

of index q with constant positive curvature, where n ≥ 2q > 0. Then the

fundamental group π1(M) is finite.

Kobayashi considered whether the finiteness of the fundamental group
would continue to hold if we perturb the metric of positive constant curva-
ture. Kobayashi proposed the following conjecture:
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Conjecture (Kobayashi [Kob01]). Let n and q be positive integers with

n ≥ 2q. Assume that (M, g) is an n-dimensional geodesically complete semi-

Riemannian manifold of index q. Suppose that we have a positive lower bound

on the sectional curvature of (M, g). Then,

1) M is never compact;

2) if n ≥ 3, the fundamental group of M is always finite.

In the previous paper [Muk15] we remarked that the conjecture is true
by using Kulkarni’s theorem [Kul79] that states that the one-sided bound
on the sectional curvature leads to constant curvature. Therefore, we replace
the curvature condition of the conjecture by another condition.

We study the following curvature condition of Andersson and Howard
[AH98]:

(1.1) g(R(u, v)v, u) ≥ k(g(u, u)g(v, v)− g(u, v)2)

for any tangent vectors u, v, where R is the curvature tensor. Following
Andersson–Howard [AH98], we denote this condition by R ≥ k. Reversing
the inequality (1.1), we write the condition as R ≤ k. These conditions are
extensions of the curvature conditions of Riemannian geometry that the sec-
tional curvature is bounded above or below. Alexander–Bishop [AB08] found
that these conditions geometrically means a signed local triangle compari-
son condition. Under the curvature conditions of Andersson–Howard, sev-
eral analogues of Riemannian comparison theory have been obtained, for
instance, gap rigidity theorem (Andersson–Howard [AH98]), volume com-
parison theorem (Dı́az-Ramos–Garćıa-Ŕıo–Hervella [DRGRH05]), and local
triangle comparison theorem (Alexander–Bishop [AB08]).

Our previous paper [Muk15] presents our study of an analogy of the
Myers theorem in Lorentzian geometry. In the current paper, we investigate
an analogy of the Myers theorem in semi-Riemannian geometry. A semi-
Riemannian manifold E is said to be lightlike geodesically complete (resp.
timelike geodesically complete) if any inextensible lightlike (resp. timelike )
geodesic is defined on the real line. We obtain the following theorem:

Theorem 1.2. Let (E, g) be an either lightlike geodesically complete or

timelike geodesically complete semi-Riemannian manifold with R ≥ k > 0,
and (B, gB) a complete Riemannian manifold of dimension greater than

or equal to 2. Suppose that there exists a semi-Riemannian submersion

π : (E, g) → (B, −gB) such that the fibers are closed Riemannian mani-

folds, that the dimension of the fibers is greater than or equal to 2, and that
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the horizontal distribution is integrable. Then the induced homomorphism

π∗ : π1(E) → π1(B) is surjective and has a finite kernel. Moreover, the fun-

damental group of the fibers is finite.

We should remark that the theorem includes not only warped products
but also non-warped products. In fact, the semi-Riemannian product (Hl ×
Sm,−gHl + gSm) satisfies the assumptions of the theorem, where (Hl, gHl)
is the l-dimensional hyperbolic space, and (Sm, gSm) is the l-dimensional
sphere. By the stability of the lightlike geodesic completeness by Beem–
Ehrlich [BE87], we can perturb the fiber metric (Sm, gSm) of the product
(Hl × Sm,−gHl + gSm) with the assumption satisfied.

Note that the base manifold (B, gB) has negative curvature bounded
above by −k by Lemma 3.1 of the paper. Hence, the theorem leads us to
the following corollary:

Corollary 1.1. Assume that, in addition to the hypotheses of the theorem,

E is a closed semi-Riemannian manifold. Then the fundamental group π1(E)
has exponential growth.

The theorem gives a sufficient condition of geodesic incompleteness by
its contraposition:

Theorem 1.2. Let (E, g) be semi-Riemannian manifold with R ≥ k > 0,
and (B, gB) a complete Riemannian manifold of dimension greater than

or equal to 2. Assume that there exists a semi-Riemannian submersion

π : (E, g) → (B, −gB) such that the fibers are closed Riemannian mani-

folds, that the dimension of the fibers is greater than or equal to 2, that the
fundamental group of the fibers is infinite, and that the horizontal distribu-

tion is integrable. Then (E, g) is neither lightlike geodesically complete nor

timelike geodesically complete.

Let (B, gB) be a Riemannian manifold with negative curvature bounded
above by −k, F a closed manifold of which the fundamental group is infinite,
and let g∗F = {gbF }b∈B be a smooth family of Riemannian metrics of F . By
the theorem we see that (B × F,−gB + g∗F ) is never geodesically complete,
satisfying R ≥ k > 0. In fact, (Hl × Tm,−gHl + e2bgTm), which is a special
case of Alexander–Bishop [AB08, Example7.5 (c)], satisfies R ≥ 1 > 0, but
is not geodesically complete, where b is a Busemann function of Hl.

Note that there exists a semi-Riemannian submersion with R ≥ k > 0
and without the integrability of horizontal distribution. In fact, we construct
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a semi-Riemannian example π : SU(2, 1)/S1 → SU(2, 1)/U(2), which satis-
fies R ≥ k > 0 and of which the horizontal distribution is not integrable and
fiber U(2)/S1 has a finite fundamental group. This construction is motivated
by the previously reported construction of the positively curved Riemannian
manifold SU(3)/S1 [AW75]. It would be interesting to determine whether
we can construct new semi-Riemannian manifolds with R ≥ k > 0 by us-
ing the construction methods of curved Riemannian manifolds. In respect
of Theorem 1.2, in general we do not know whether the theorem can be
extended to semi-Riemannian submersions without the integrability of the
horizontal distribution. We conjecture that we expect it to be possible to
remove the integrability of the horizontal distribution from the theorem.

Organization of the paper

In Section 2, we introduce some notions and propositions on semi-
Riemannian submersions needed for proving Theorem 1.2. In Section 3, we
prove Theorem 1.2. In Section 4, we construct a semi-Riemannian submer-
sion with R ≥ k > 0 and non-integrable horizontal distribution.
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2. Preliminary

A semi-Riemannian metric g of a manifoldM is a symmetric non-degenerate
(0, 2) tensor. If a manifold M is equipped with a semi-Riemannian metric
g, (M, g) is said to be a semi-Riemannian manifold. In this section, we
recall some terminology and results of semi-Riemannian geometry, which can
mainly be found in the papers by O’Neill [O’N66, O’N67, O’N83]. Note that,
although O’Neill [O’N66, O’N67] considered the Riemannian case, many
results are generalized to semi-Riemannian cases.

Definition 2.1 (O’Neill [O’N83, Definition 44]). Let (E, g) and (B, gB)
be semi-Riemannian manifolds. A map π : E → B is a semi-Riemannian

submersion if π is a submersion satisfying the following conditions:

• The fibers π−1(x) are semi-Riemannian manifolds for any x ∈ B;
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• differential map π∗p : (Tpπ
−1(π(p))⊥ → Tπ(p)B is isometric for any

p ∈ E.

Especially, this research only considers the case in which the fiber and
(B,−gB) are Riemannian. Tangent vectors normal (resp. tangent ) to fibers
are known as horizontal (resp. vertical) vectors. A distribution H (resp. V)
over E is horizontal (resp. vertical) if Hp (resp. Vp) is a tangent subspace
in E of which the elements are horizontal (resp. vertical). Note that TpE =
Hp ⊕ Vp. Then for any tangent vector v ∈ TpE, vH ∈ Hp and vV ∈ Vp are
given by v = vH + vV . For a tangent vector X of the base B, a tangent
vector X̂ on E is termed a lift of X if X̂ is horizontal and π∗X̂ = X. We
often identify vectors or vector fields on B with their lifts. A vector field X
is said to be basic if X is horizontal and π∗X̂ is independent of any points of
fibers. Every vector field on B has a unique horizontal and basic lift on E.

We denote by ∇̂ (resp. ∇B) the Levi-Civita connection of (E, g) (resp.
(B, gB)). O’Neill [O’N66] defined the following important tensors:

Definition 2.2 (O’Neill [O’N66]). (2, 1) tensor fields T and A on E are
defined by satisfying that, for any tangent vectors v, w of E,

Tvw = (∇̂vVwV)H + (∇̂vVwH)V ;

Avw = (∇̂vHwH)V + (∇̂vHwV)H.

Note that for vertical tangent vectors V , W the tensor TV W is the
second fundamental form of the fiber. It is well known that the horizontal
distribution is integrable if and only if A = 0. Therefore, the case we consider
in this work is A = 0. The following formulas of the curvature by the tensors
T and A hold:

Proposition 2.1 (O’Neill [O’N66, Corollary 1]). Let K̂, K∗ and K⊥

be the sectional curvatures of E and B, a fiber, respectively. Let X, Y be

horizontal vectors, and let V , W be vertical vectors. Then we have

K̂(X,Y ) = K∗(π∗X,π∗Y )− 3g(AXY,AXY )

g(X,X)g(Y, Y )− g(X,Y )2
;(2.1)

K̂(V,W ) = K⊥(V,W )− g(TV V, TWW )− g(TV W,TV W )

g(V, V )g(W,W )− g(V,W )2
.(2.2)

Let c(t) be a curve in E and Z(t) a vector field along c(t). We consider the
covariant derivative of Z(t). Throughout this paper, the covariant derivative
of the vector field along a curve is denoted by ′. Then we have
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Proposition 2.2 (O’Neill [O’N67, Theorem 1]). Let c(t) and Z(t) be

as above. The following equation holds:

(Z ′(t))H = ̂(π∗(Z))′(t) +AZ(t)H(c
′(t)V)(2.3)

+Ac′(t)H(Z(t)V) + Tc′(t)V (Z
V(t)).

O’Neill proved that Proposition 2.2 implies the following proposition,
which means that any geodesic in B lifts to a unique horizontal geodesic
in E:

Proposition 2.3 (O’Neill [O’N67, Corollary 2]). Let π : E → B be a

semi-Riemannian submersion. If the initial velocity of a geodesic is horizon-

tal, any velocity of the geodesic is also horizontal at any time.

Recall warped products and their generalization, i.e., twisted products,
as important examples of semi-Riemannian submersions. Let (B, gB) and
(F, gF ) be Riemannian manifolds and α a smooth function of B × F . A semi-
Riemannian manifold (B × F, −gB + e2αgF ), is known as a semi-Riemannian

twisted product, and especially, if α does not depend on B, it is known as a
semi-Riemannian warped product. Note that the natural projection π : (B ×
F, −gB + e2αgF ) → (B,−gB) is a semi-Riemannian submersion. We denote
by ∇̂, ∇B, and ∇F the Levi-Civita connections of (B × F, −gB + e2αgF ),
(B, gB), and (F, gF ), respectively. The natural projection from B × F to
F is denoted by πF . For a vector field Z on B (resp. F ), a vector field Ẑ
on the product manifold B × F is a lift of Z if πF ∗(Ẑ) = 0 and π∗(Ẑ) = Z
(resp. π∗(Ẑ) = 0 and πF ∗(Ẑ) = Z). We have the following formula of the
mean curvature vector of the fibers in warped products:

Proposition 2.4 (O’Neill [O’N83, Chapter 7, Prop. 35] (warped
products case), Chen [Che81, Chapter VII, Prop. 1.2] (twisted
product cases)). For any lifts Û , V̂ of vector fields U , V on F in (B ×
F, −gB + e2αgF ),

(2.4) TÛ V̂ = e2αgF (U, V )∇B logα.

We use the following equations on geodesics in warped products later:

Proposition 2.5 (O’Neill [O’N83, Chapter 7, Prop. 38]). Any geodesic

γ(t) = (γB(t), γF (t)) in the warped product (B × F, −gB + e2αgF ) satisfies
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the following two conditions:

∇B
∂/∂tγ

′
B(t) = −e2αgF (γ

′
F (t), γF

′(t))∇Bα;

∇F
∂/∂tγ

′
F (t) = −2

dα(γB(t))

dt
γF

′(t).

3. Proof of Theorem 1.2

Proof of Theorem 1.2. First, we prove the following lemma:

Lemma 3.1. (B, gB) has negative curvature bounded above by −k.

Proof. We assume that A = 0. By using the equation (2.1) of Proposi-
tion 2.1, we have K(X,Y ) = K∗(π∗X,π∗Y ). The curvature condition R ≥
k > 0 implies K∗(π∗X,π∗Y ). Let KB be the curvature of (B, gB). Since
K∗(π∗X,π∗Y ) = −KB(π∗X,π∗Y ), the curvature of (B, gB) is bounded above
by −k. □

Let b0 be a fixed point of B, and F the fiber π−1(b0). It follows that the uni-
versal covering space of B is contractible by the Hadamard–Cartan theorem.
By the following exact sequence of the homotopy group

1 → π1(F ) → π1(E)
π∗−→ π1(B) → 1,

we see that π∗ is surjective and that the kernel of π∗ is isomorphic to π1(F ).
Therefore, it is sufficient to prove that the fundamental group of F is finite.
Moreover, we assume that B is simply connected and contractible through-
out the proof. In fact, this is because, for the universal covering cov : B̃ → B,
the fiber of the induced submersion cov∗E → B̃ is the same as the original
fiber of π : E → B.

Here we investigate the metric structure of the entire space E. We can
define the projective map πF : E → F by the following: For any p ∈ E, we
have a unique geodesic γ in B from π(p) to b0. Let γ̂ be the horizontal lift of
γ. Then πF (p) is given by the end point of γ̂. Note that πF is surjective and
smooth since geodesics smoothly depend on initial points. As the horizontal
distribution is integrable, a horizontal manifold π−1(f) is diffeomorphic to
B under π. Then we see that φ = (π, πF ) : E → B × F is a diffeomorphism.
By the construction of πF , the fiber π−1

F (f) diffeomorphic to B × {f} is a
horizontal manifold. The definition of semi-Riemannian submersion deter-
mines that π : π−1

F (f) → B is isometric. Therefore, we obtain the following
lemma:
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Lemma 3.2. Set gbF = g|π−1(b) and a smooth family of the Riemannian

metric g∗F = {gbF }b∈B of F with respect to the points of B. Then (E, g) is

isometric to (B × F,−gB + g∗F ).

Throughout the proof, (E, g) is regarded as (B × F,−gB + g∗F ). This
metric structure leads us to define lifts of any vector field on fibers in E as
well as warped products and twisted products. Any horizontal lift of vector
fields on the base space does not depend on the fibers.

Next, we investigate the curvature of the fiber. Parallel vector fields
along horizontal geodesics preserve verticality.

Lemma 3.3. Let c : R → E be a horizontal curve and V (t) a parallel vector

field along c(t) with V (0) vertical. Then V (t) is a vertical vector field.

Proof. Since A = 0 and c(t) is a horizontal curve, the equation (2.3) gives

(V ′(t))H = ̂(π∗(V (t)))′. As V (t) is parallel, V ′(t) = 0. It follows that
(π∗(V (t)))′ = 0. Since π∗V (0) = 0, we have π∗V (t) = 0. Therefore, V (t) is
vertical. □

Place any point p0 ∈ E and unit vertical vector V0 ∈ Vp0
. Set x0 = π(p0).

Let u0 be any unit tangent vector at x0 and γ the geodesic in B starting
from x0 with initial velocity u0. Further, let N be the C1 gradient vector
field of the Busemann function bγ of B associated to γ. Note that the flow
of N is a geodesic in B. Then the Busemann function bγ is extended to
the entire space E = B × F by B × F ∋ (b, f) 7→ bγ(b) ∈ R. This extended

Busemann function is denoted by b̂γ . We write the gradient vector of b̂γ as

N̂ , which is the horizontal lift of N . Then for any p ∈ E we define a map
S : Vp → TpE by S(V0) = ∇̂V0

N̂ for any vertical vector V0 ∈ Vp. Then we
have

Lemma 3.4. S(V0) is vertical. Moreover, S(V0) has no term of differentials

of N .

Proof. For p = (b, f), take a coordinate (x1, x2, . . . , xi, . . . , xdimB) of B ×
{f} and a coordinate (y1, y2, . . . , yk, . . . , ydimE−dimB) of {b} × F around p.
Then we have

V0 =
∑

k

V k
0

∂

∂yk
, N̂ =

∑

i

N̂ i ∂

∂xi
.
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Note that ∂N̂ i/∂yk = 0 since N̂ is a horizontal lift and E is the product
manifold B × F . Therefore,

S(V0) = ∇̂V0
N̂ =

∑

k

V k
0 ∇̂ ∂

∂yk

(∑

i

N̂ i ∂

∂xi

)
=
∑

k,i

N̂ iV k
0 ∇̂ ∂

∂yk

∂

∂xi
.

Moreover, we have

∇̂ ∂

∂yk

∂

∂xi
=
∑

l,m

glm

2

∂gkl
∂xi

∂

∂ym
,

where l, m are the index of the coordinate of the fiber. Hence, S(V0) is
vertical and S(V0) has no term of differentials of N . □

We can extend the vertical vector V0 to a vertical vector field on E by
using partitions of unity, and restrict this vector field to the C2-submanifold

b̂γ
−1

(b̂γ(p0)). The restricted vector field stands for V0 by abuse of nota-

tion. We consider the differential equation ∇̂N̂V = 0 with the initial value

V (p) = V0(p) for any p ∈ b̂γ
−1

(b̂γ(p0)). Take any flow τ(t) of N̂ with τ(0) ∈
b̂γ

−1
(b̂γ(p0)) and τ(0) = V0(τ(0)). Then ∇̂N̂V = ∇̂τ ′(t)V (τ(t)) = 0 on the

geodesic τ(t). Then V (τ(t)) is solved and vertical by Lemma 3.3. By col-

lecting V (τ(t)), we see that V is C2 vertical vector fields on E. Let γ̂(t)
be the horizontal lift of γ(t) starting from p0. We denote the tangent vector
S(V )(γ̂(t)) at γ̂(t) by St(V ). Set h(t) = g(St(V ), V ). We should remark that

g(St(V ), V ) = g(∇̂V N̂ , V ) = −g(N̂ , ∇̂V V ).

We have

d

dt
h(t) = −N̂g(N̂ , ∇̂V V )

= −g(∇̂N̂ N̂ , ∇̂V V )− g(N̂ , ∇̂N̂∇̂V V )

= −g(N̂ , ∇̂N̂∇̂V V )

= −g(N̂ , R(N̂ , V )V )− g(N̂ , ∇̂V ∇̂N̂V )− g(N̂ , ∇̂[N̂,V ]V )

= −g(N̂ , R(N̂ , V )V ) + g(N̂ , ∇̂∇̂V N̂V )

= −g(N̂ , R(N̂ , V )V ) + g(N̂ , [∇̂V N̂ , V ] + ∇̂V ∇̂V N̂)
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= −g(N̂ , R(N̂ , V )V ) + g(N̂ , ∇̂V ∇̂V N̂)

= −g(R(V, N̂)N̂ , V )− g(∇̂V N̂ , ∇̂V N̂)

≤ −kg(V, V )g(N̂ , N̂)− g(∇̂V N̂ , V )2

≤ k − h(t)2.

By Ricatti’s argument, we obtain |h(t)| ≤
√
k. We should remark that

|h(t)| = |g(N̂ , ∇̂V V )| = |g(N̂ , TV V )| = |g(N̂ , TV V )|

as h(t) is defined on R. Since |h(0)| = |g(u0, TV0
V0)|. Here |V | represents√

|g(V, V )|. If |TV0
V0| ≠ 0, we take u0 as

TV0
V0

|TV0
V0| . Then we obtain |TV0

V0| ≤√
k. Therefore, we have confirmed the following lemma:

Lemma 3.5. |TV V | ≤
√
k for any vertical unit tangent vector V .

Hereafter, we calculate the curvature of the fiber.

Proposition 3.1. The curvature of fibers is non-negative.

Proof. Equation (2.2) of Proposition 2.1 implies that for any unit vertical
vector U and V ,

K̂(U, V ) = K⊥(U, V )− g(TUU, TV V )− g(TUV, TUV )

g(U,U)g(V, V )− g(U, V )2

≤ K⊥(U, V )− g(TUU, TV V )

g(U,U)g(V, V )− g(U, V )2

≤ K⊥(U, V ) +
|TUU ||TV V |

g(U,U)g(V, V )− g(U, V )2
.

Since K̂(U, V ) ≥ k, we have

K⊥(U, V ) ≥ k − |TUU ||TV V |
g(U,U)g(V, V )− g(U, V )2

≥ k − (
√
k)2 = 0.

□

Therefore, the following structural theorem for the fundamental group
of a closed Riemannian manifold of non-negative curvature leads us to the
restriction of the topology of the fibers:
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Theorem 3.1 (Toponogov [Top59], Cheeger–Gromoll [CG72, Theo-
rem 3]). Let M be a closed Riemannian manifold of non-negative sectional

curvature. Then, the universal covering Riemannian manifold M̃ of M can

be split isometrically as Rl × Ñ , where Ñ is a closed Riemannian manifold.

Moreover, the fundamental group π1(M) includes a free abelian subgroup Zl

of finite index that acts properly discontinuously and co-compactly as a deck

transformation on the Euclidean factor.

From Theorem 3.1, it follows that the universal covering Riemannian
manifold of the fiber is the Riemannian product manifold of the Euclidean
space and some closed Riemannian manifold. It is sufficient to prove that the
dimension of the Euclidean factor is zero. Suppose, by way of contradiction,
that this dimension is not zero. Then, the fundamental group of the fiber
has a free abelian normal subgroup Zl of finite index for some l > 0. In the
previous paper [Muk15], which considered the Lorentzian case, we used the
Penrose singularity theorem. However, we are aware of few semi-Riemannian
analogies of the Penrose singularity theorem. Therefore, we need another
strategy. First we show the following proposition:

Proposition 3.2. If l > 0, the entire space E admits a structure of warped

products.

Proof of Proposition 3.2. To prove the proposition, we prove several lem-
mas. First, we check that the fibers are totally umbilical.

Lemma 3.6. For any b ∈ B, the fiber π−1(b) is a totally umbilical subman-

ifold with constant mean curvature.

Proof. Let ∇⊥ be the Levi-Civita connection of the fibers π−1(b) with the
induced metric and K⊥ the sectional curvature of ∇⊥. Theorem 3.1 implies
that there exists a closed Riemannian manifold S such that the univer-
sal covering of π−1(b) is isometric to S × Rl. Take p ∈ π−1(x). We have
Tpπ

−1(x) ≃ Tp̃S + Tp̃R
l, where p̃ is a lift of p. Hence, we identify Tpπ

−1(b)
with Tp̃S + Tp̃R

l. For any unit tangent vector U1 ∈ Tp̃S, U2 ∈ Tp̃R
l with

g(U1, U2) = 0, we have

K⊥(U1, U2) = 0.
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By the equation (2.2), we obtain

0 = K⊥(U1, U2)

= K̂(U1, U2) + g(TU1
U1, TU2

U2)− g(TU1
U2, TU1

U2)

≥ k + g(TU1
U1, TU2

U2)

≥ k − |TU1
U1||TU2

U2|.

Lemma 3.5 implies that the right-hand side is non-negative. Therefore,
we have k − |TU1

U1||TU2
U2| = 0. Since the equality of the Cauchy–Schwartz

inequality holds, TU1
U1 = TU2

U2 =
√
kν(U1, U2), where ν(U1, U2) is a hori-

zontal unit vector. Moreover, TU1
U2 = 0 holds. We see that ν = ν(U1, U2) is

independent of the choice of U1 ∈ Tp̃S, U2 ∈ Tp̃R
l. For any U = U1 + U2 ∈

Tpπ
−1(b),

TUU = TU1
U1 + 2TU1

U2 + TU2
U2

=
√
k(g(U1, U1) + g(U2, U2))ν =

√
k(g(U,U))ν.

For any U, V ∈ Tpπ
−1(b) with g(U, V ) = 0,

TUV =
TU+V (U + V )− TUU − TV V

2

=

√
k

2
(g(U + V,U + V )− g(U,U)− g(V, V ))ν = 0.

Therefore, we obtain TUV =
√
kg(U, V )ν such that g(ν, ν) = −1. □

We prove the following lemma:

Lemma 3.7. E has the structure of twisted product (B × F,−gB + e2αgF ),
where α is a function on E and gF is some Riemannian metric of F .

Proof. Note that ν is a unit horizontal vector field. Recall that E = (B ×
F,−gB + g∗F ). For any point p = (b, f) ∈ B × F = E, let U be any tangent

vector in TfF and let Û be the vertical lift of U to E. Note that Û is the
vertical vector field along the horizontal submanifold B × {f}. For fixed
f ∈ F , we can define hU (b) = gbF (f)(Û , Û). Let X be any vector field on B
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and let X̂ be its lift. Then we have

XhU (b) = XgbF (Û , Û) = X̂g(Û , Û) = 2g(Û , ∇̂X̂ Û) = 2g(Û , ∇̂ÛX̂)

= 2(Ûg(Û , X̂)− g(∇̂Û Û , X̂)) = −2g(∇̂Û Û , X̂)

= −2g(TÛ Û , X̂) = −2
√
kg(Û , Û)g(ν, X̂) = −2

√
kg(ν, X̂)hU (b).

Set

HU (b) =
log hU (b)

2
√
k

.

Then we obtain

gB(X,∇BHU ) = gB(X, ν).

Therefore, on any B × {f}, we have ∇BHU = ν. It follows that ∇BHU does
not depend on U .

Take a fixed point b0 ∈ B. Since the fibers have torus factors, there exists
a unit vector field along π−1(b0), denoted by U ′. Let Û ′ be the vertical lift

of U ′ to E. Note that Û ′ is the vertical vector field on the entire space E.
We know that ∇B(HU −HU ′) = 0. Hence, HU −HU ′ does not depend on
B. It follows that HU (b)−HU ′(b) = HU (b0)−HU ′(b0) for any b ∈ B. Then
we have

gbF (f)(Û , Û) = hU (b) =
hU ′(b)

hU ′(b0)
hU (b0) =

hU ′(b)

hU ′(b0)
gb0F (f)(Û , Û).

We denote by α(b, f) the function 1
2 log

hU′ (b)
hU′ (b0)

, by F the fiber π−1(b0), and

by gF the metric gb0F (f) of F . We obtain gbF (f)(Û , Û) = e2αgF (Û , Û). We
have proved that E is a twisted product. □

Note that F = Tl × S by the splitting theorem, where S is a closed Rie-
mannian manifold. It follows that E = (B × Tl × S,−gB + e2αgTl + e2αgS),
where S is some closed manifold without torus factors and gTl is the flat
metric of the torus. First, we consider the case l ≥ 2. Then we have

Lemma 3.8. The submanifold (Tl, e2αgTl) has non-negative curvature.

Proof. Let Π be the fundamental form of (Tl, e2αgTl) in the fiber (Tl ×
S, e2αgTl + e2αgS). Note that the fiber has non-negative curvature. Take any
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tangent vectors U, V of Tl. Then

(3.1) Π(U, V ) = −gTl(U, V )(∇Fα)⊥,

where ∇F is the Levi-Civita connection of (F, gF ) and (∇Fα)⊥ is the com-
ponent of ∇Fα perpendicular to the torus. By using the Gaussian equation
of the torus in the fiber, we see that the sectional curvature of (Tl, e2αgTl)
is non-negative. □

Lemma implies the following lemma:

Lemma 3.9. α does not depend on the torus.

Proof. Note that the scalar curvatures Scal(Tl,g
Tl )

and Scal(Tl,e2αg
Tl )

of

(Tl, gTl) and (Tl, e2αgTl) are zero and non-negative, respectively. Moreover,
we have the following formula on scalar curvature:

Scal(Tl,e2αg
Tl )

= e−2α( Scal(Tl,g
Tl )

+2(l − 1)∆(Tl,g
Tl )
α(3.2)

− (l − 2)(l − 1)|dα|2),

where ∆(Tl,g
Tl )

is the Laplacian of (Tl, gTl). First, we consider the case l = 2.
From the equation (3.2) it follows that

Scal(Tl,e2αg
Tl )

= 2e−2α∆(Tl,g
Tl )
α.

Since Scal(Tl,e2αg
Tl )

is non-negative, ∆(Tl,g
Tl )
α ≥ 0 on the torus. By the max-

imal principle, α is constant on the torus. Next, we consider the remaining
case l ≥ 3. Then, by equation (3.2) we obtain the following inequality

2∆(Tl,g
Tl )
α ≥ (l − 2)|dα|2 ≥ 0.

The maximal principle implies that α is constant on the torus. The proof is
complete. □

Therefore, we have

Lemma 3.10. α does not depend on the fiber.

Proof. Lemma 3.9 implies that the sectional curvature of (Tl, e2αgTl) is
zero. Therefore, by equation (3.1) and the Gaussian equation, we obtain
(∇Fα)⊥ = 0. Since α does not depend on the torus by Lemma 3.9, we have
∇Fα = 0. The lemma has been proved. □



✐

✐

“8-Mukuno” — 2021/11/29 — 17:47 — page 1269 — #15
✐

✐

✐

✐

✐

✐

Semi-Riemannian manifolds with positive curvature tensor 1269

Next, we consider the case of l = 1, namely F0 = T1 × S, where S is a
closed Riemannian manifold. Since S is closed, there exists a closed geodesic
S1 in (S, gS). Therefore, we have the natural immersion ι : T1 × S1 = T2 →
T1 × S. Let the curvature of (T2, e2α◦ιgT2) be S. Then

S = 2e−2α∆(T2,g
T2

)(α ◦ ι).

Since the fiber has non-negative curvature, S ≥ 0 by using the Gauss equa-
tion. The maximal principle implies that α does not depend on the image of
(T1 × S1) under the immersion ι. We denote by U the unit vector field on
(T1, gT1) in the fiber. Let Ric(F,e2αgF ) and Ric(F,gF ) be the Ricci curvatures
of (F, e2αgF ) and (F, gF ), respectively. Then we have

Ric(F,e2αgF )(U,U) =Ric(F,gF )(U,U)− (dimF − 2)(Hessα(U,U)− |dα(U)|)
+ ∆(F,gF )α− (dimF − 2)|dα|2

=∆(F,gF )α− (dimF − 2)|dα|2,

where ∆(F,gF ) is the Laplacian of (F, gF ). Since the left-hand side is positive,

∆(F,gF )α ≥ (dimF − 2)|dα|2 ≥ 0.

Therefore, by the maximal principle, α is constant on the fiber. We have
proved the case of l = 1. Therefore, Proposition 3.2 has been proved. □

It is sufficient to prove Theorem 1.2 for only warped products. From
equation (2.4) it follows that for any lifts Û , V̂ of vector fields U , V on F ,

TÛ V̂ = e2αgF (U, V )∇Bα.

It follows that

ν =
1√
k
∇Bα.

Since g(ν, ν) = −1, we have

gB(∇Bα,∇Bα) = k.

Consider a function

H =
1√
k
α : B → R.

Then H is a signed distance function as gB(∇BH,∇BH) = 1. It follows that
B is diffeomorphic to R×H−1(0) since (B, gB) is complete. Let γ0 be the
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geodesic with γ′0(s) = −∇BH(γ0(s)) in (B, gB). We can construct incom-
plete lightlike and timelike geodesics γ(t) = (γB(t), γF (t)) in E by using the
geodesic γ0 in B. First we consider lightlike geodesics. By using Proposi-
tion 2.5, lightlike geodesics satisfy the following equations

∇B
∂/∂tγ

′
B(t) = −e2αgF (γ

′
F (t), γF

′(t))∇Bα

= −gB(γ
′
B(t), γ

′
B(t))∇Bα;

∇F
∂/∂tγ

′
F (t) = −2

dα(γB(t))

dt
γF

′(t),

since gB(γ
′
B(t), γ

′
B(t)) = e2αgF (γ

′
F (t), γ

′
F (t)). Take a solution s(t) of

(3.3)
d2s(t)

dt2
=

√
k

(
ds(t)

dt

)2

.

Set γB(t) = γ0(s(t)). Since γ
′
B(t) = γ′0(s(t))s

′(t), we have gB(γ′B(t), γ
′
B(t)) =

s′(t)2. Therefore, we obtain

∇∂/∂tγ
′
B(t) = s′′(t)γ′0(s(t)) +∇∂/∂sγ

′
0(s(t))(s

′(t))2

= s′′(t)γ′0(s(t))

= −
√
k(s′(t))2∇BH

= −gB(γ
′
B(s), γ

′
B(s))∇Bα

Thus, we have γB(t), which means we can also obtain γF (t). We have con-
structed a lightlike geodesic (γB(t), γF (t)).

We solve a solution s(t) of the differential equation (3.3). The solution
is

s(t) = − 1√
k
log |

√
kt+ C1|+ C2,

where C1 and C2 are integral constants. Then s((− C1√
k
,∞)) = R, and

lim
t→−C1√

k
+0

s(t) = ∞.

Therefore, the geodesic (γB(t), γF (t)) is not defined on R. We see that the
entire semi-Riemannian manifold is not lightlike geodesically complete.

Next we consider timelike geodesics. By using Proposition 2.5, timelike
geodesics γ(t) = (γB(t), γF (t)) with g(γ′(t), γ′(t)) = −1 satisfy the following
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equations

∇B
∂/∂tγ

′
B(t) = −e2αgF (γ

′
F (t), γF

′(t))∇Bα

= (1− gB(γ
′
B(t), γ

′
B(t)))∇Bα;

∇F
∂/∂tγ

′
F (t) = −2

dα(γB(t))

dt
γF

′(t),

since

−gB(γ
′
B(t), γ

′
B(t)) + e2αgF (γ

′
F (t), γ

′
F (t)) = −1.

Assume that gB(γ
′
B(t), γ

′
B(t)) ̸= 1, that is γ′F (t) ̸= 0. Take a solution s(t) of

(3.4)
d2s(t)

dt2
=

√
k

{(
ds(t)

dt

)2

− 1

}
,

where ds(t)
dt > 1. Set γB(t) = γ0(s(t)). In the same manner as for the case of

lightlike geodesics, we have

∇∂/∂tγ
′
B(t) = (1− gB(γ

′
B(s), γ

′
B(s)))∇Bα.

Thus, we obtain γB(t) and γF (t), which means we have constructed a time-
like geodesic (γB(t), γF (t)). We obtain the solution s(t) of the differential
equation (3.4). The solution is

s(t) = − 1√
k
log |C1e

2
√
kt − 1|+ t+ C2,

where C1 > 0 and C2 are integral constants. Note that C1 > 0 follows from
ds(t)
dt > 1. Then s((−∞, 1

2
√
k
log 1

C1

)) = R, and

lim
t→ 1

2
√

k
log 1

C1

−0
s(t) = ∞.

Therefore, the geodesic (γB(t), γF (t)) is not defined on R. We see that the
entire semi-Riemannian manifold is not timelike geodesically complete. This
is a contradiction.

Hence, we have proved that the fiber never includes tori. It follows that
the fundamental group of the fiber is finite. The proof of Theorem 1.2 is
complete. □
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4. Semi-Riemannian example with non-integrable

horizontal distribution

In this section, we construct a semi-Riemannian submersion such that the
entire space satisfies the curvature condition R ≥ k > 0 and that the hori-
zontal distribution is not integrable. Set

G = SU(2, 1) =
{
g ∈ SL(3,C) :t gI2,1g = I2,1

}
,

where I2,1 =



1 0 0
0 1 0
0 0 −1


. Let g be the Lie algebra of G. The indefinite

inner product B(−,−) on g is given by

B(X,Y ) = −ℜTr(XY ).

This inner product is invariant under the adjoint action Ad(g) for g ∈ G.
We write K for a maximal compact subgroup

{(
A 0
0 (detA)−1

)
: A ∈ U(2)

}
.

Let k be the Lie algebra of K. Then B is positive definite on k and negative
definite on k⊥. Note that the homogeneous space G/K with the induced
metric from −B is a complex hyperbolic plane CH2. Write

H =







e2πti 0 0
0 e2πti 0
0 0 e−4πti


 : t ∈ R



 ⊂ K.

Note that H is the circle S1. Let h0 be the Lie algebra of H. We denote
h⊥0 ∩ k and k⊥ by h1 and h2, respectively. Then we have g = h0 ⊕ h1 ⊕ h2.
We write the projection of a vector X ∈ g onto the subspace hj as Xj for
each j. Let us take the following basis of g:

e1 =



i 0 0
0 i 0
0 0 −2i


 , e2 =



i 0 0
0 −i 0
0 0 0


 , e3 =




0 1 0
−1 0 0
0 0 0


 , e4 =



0 i 0
i 0 0
0 0 0


 ,

f1 =



0 0 1
0 0 0
1 0 0


 , f2 =



0 0 0
0 0 1
0 1 0


 , f3 =




0 0 i
0 0 0
−i 0 0


 , f4 =



0 0 0
0 0 i
0 −i 0


 .
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Then h0 is spanned by e1, h1 is spanned by e2, e3, e4, and h2 is spanned by
f1, f2, f3, f4. Let M be a homogeneous space G/H. We define the indefinite
inner metric (−,−) on g/h0 by (X,Y ) = (1 + t)B(X1, Y1) +B(X2, Y2) for
X,Y ∈ g/h0 and can also define the semi-Riemannian metric (−,−) onG/H,
which is left-invariant under G. We see that the projective map π : M →
CH2 is a semi-Riemannian submersion.

We will show that M satisfies the curvature condition R ≥ k > 0. We
denote the curvature tensor of (M, (−,−)) by R. Note that [h1, h1] ⊂ h1,
[h2, h2] ⊂ h0 ⊕ h1, and [h1, h2] ⊂ h2. Then we have

(R(X,Y )Y,X) =
1− 3t

4
B([X,Y ]1, [X,Y ]1) + (t− t2)B([X1, Y1], [X,Y ])

+ t2B([X1, Y1], [X1, Y1]) +
(1 + t)2

4
B([X,Y ]2, [X,Y ]2)

+B([X,Y ]0, [X,Y ]0)

=
1 + t

4
B([X1, Y1], [X1, Y1]) +

1− 3t

4
B([X2, Y2]1, [X2, Y2]1)

+
1− t− 2t2

2
B([X1, Y1], [X2, Y2]1)

+
(1 + t)2

4
B([X,Y ]2, [X,Y ]2)

+B([X,Y ]0, [X,Y ]0).

Set X = a2e2 + a3e3 + a4e4 + b1f1 + b2f2 + b3f3 + b4f4, Y = c2e2 + c3e3 +
c4e4 + d1f1 + d2f2 + d3f3 + d4f4. Then, straightforward computation implies

B([X,Y ]2, [X,Y ]2) = −2

{(
det

(
a3 c3
b2 d2

)
− det

(
a2 c2
b3 d3

)
− det

(
a4 c4
b4 d4

))2

+

(
det

(
a2 c2
b4 d4

)
− det

(
a3 c3
b1 d1

)
− det

(
a4 c4
b3 d3

))2

+

(
det

(
a2 c2
b1 d1

)
+ det

(
a3 c3
b4 d4

)
+ det

(
a4 c4
b2 d2

))2

+

(
det

(
a2 c2
b2 d2

)
+ det

(
a3 c3
b3 d3

)
− det

(
a4 c4
b1 d1

))2}

= −2
∑

i,j

(
det

(
ai ci
bj dj

))2

+B([X1, Y1], [X2, Y2]1).
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By the Cauchy–Schwarz inequality, we have

B([X1, Y1], [X2, Y2]1) ≤
√

B([X1, Y1], [X1, Y1])B([X2, Y2]1, [X2, Y2]1).

Set

x =

√√√√∑

i<j

(
det

(
ai ci
aj cj

))2

, y =

√√√√∑

i<j

(
det

(
bi di
bj dj

))2

,

z =

√√√√∑

i,j

(
det

(
ai ci
bj dj

))2

.

We should remark that

B([X1, Y1], [X1, Y1]) = 8x2, B([X2, Y2]1, [X2, Y2]1) = 2y2.

Then we have

(R(X,Y )Y,X) ≥ 2(1 + t)x2 +
1− 3t

2
y2 − (1 + t)2

2
z2

−
∣∣∣∣
1− t− 2t2

2
+

(1 + t)2

4

∣∣∣∣
√

16x2y2

= 2(1 + t)x2 − 3|1− t2|xy + 1− 3t

2
y2 − (1 + t)2

2
z2.

Note that

(X,X)(Y, Y )− (X,Y )2 = 4(1 + t)2x2 + 4y2 − 4(1 + t)z2.

Therefore, we obtain

(R(X,Y )Y,X)− k((X,X)(Y, Y )− (X,Y )2)

≥ {2(1 + t)− 4k(1 + t)2}x2 − 3|1− t2|xy

+

{
1− 3t

2
− 4k

}
y2 +

(
4k(1 + t)− (1 + t)2

2

)
z2.

Hence, it is sufficient to prove that there exists k > 0 and t > −1 such that

{2(1 + t)− 4k(1 + t)2}x2 − 3|1− t2|xy

+

{
1− 3t

2
− 4k

}
y2 +

{
4k(1 + t)− (1 + t)2

2

}
z2 > 0.
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Therefore, our search is reduced to finding k > 0 and t > −1 satisfying the
following four inequalities:

k >
1 + t

8
,(4.1)

k <
1

2(1 + t)
,(4.2)

k <
1− 3t

8
,(4.3)

{2(1 + t)− 4k(1 + t)2}
(
1− 3t

2
− 4k

)
− 9

4
(1− t2)2 > 0.(4.4)

From the inequalities (4.1), (4.2), and (4.3), we see that

1 + t

8
< k <

1− 3t

8
<

1

2(1 + t)
,

for −1 < t < 0. The inequality (4.4) is

(t+ 1)

{
16(1 + t)k2 + 2(3t2 + 2t− 5)k − 1

4
(9t3 − 9t2 + 3t+ 5)

}
> 0.

Set

η(t) =
−3t2 − 2t+ 5−

√
45t4 + 12t3 − 50t2 + 12t+ 45

16(t+ 1)
.

We note that η(t) is a solution of the equation with respect to k that the
left-hand side of the inequality (4.4) is zero. Then the inequalities (4.1),
(4.2), (4.3), and (4.4) hold for −1 < t < −3

5 and 1+t
8 < k < η(t).

We will prove thatM is geodesically complete. Since a natural projection
G → M is a semi-Riemannian submersion, we consider only geodesics γ(u) in
G from the identity element of which the initial velocity belongs to h1 ⊕ h2.
Let Γ(u) be a curve γ(u)−1γ′(u) in h1 ⊕ h2. We denote by Γj(u) the hj-
component of Γ(u). Set a linear operator φ : g → g such that φ(X0 +X1 +
X2) = X0 + (1 + t)X1 +X2 for any Xj ∈ hj . Note that we have (X,Y ) =
B(φ(X), Y ). Then γ(u) satisfies the following Euler–Arnold equation:

φ(Γ′(u)) = [φ(Γ(u)),Γ(u)]

(for instance see [GL95]). Therefore, we have

(1 + t)Γ′
1(u) = 0,(4.5)

Γ′
2(u) = t[Γ1(u),Γ2(u)].(4.6)
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The equation (4.5) implies Γ1(u) is constant, denoted by v1. Then, the equa-
tion (4.6) means Γ′

2(u) = t[v1,Γ2(u)], which is a system of first-order linear
differential equations with a constant coefficient. It follows that γ(u) is de-
fined in the real line R. Hence, the semi-Riemannian manifold M we have
constructed is the desired solution.
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