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We establish a boundary maximum principle for free boundary
minimal submanifolds in a Riemannian manifold with boundary,
in any dimension and codimension. Our result holds more generally
in the context of varifolds.

1. Introduction

Let N∗ be a smooth (n+ 1)-dimensional Riemannian manifold with smooth
boundary ∂N∗ ̸= ∅, whose inward unit normal (relative to N∗) is denoted by
ν∂N∗ . The metric and the Levi-Civita connection on N∗ will be denoted by
⟨·, ·⟩ and ∇ respectively. We fixm to be any positive integer with 1 ≤ m ≤ n.

Suppose N ⊂ N∗ is a compact domain whose topological boundary S :=
∂N is a smooth properly embedded hypersurface in N∗. In other words, S
is a smooth embedded hypersurface with boundary ∂S = S ∩ ∂N∗. Let νS
denote the unit normal of S = ∂N pointing into N . Recall that a point p ∈ S
is said to be strongly m-convex provided that

κ1 + κ2 + · · ·+ κm > 0

where κ1 ≤ κ2 ≤ · · · ≤ κn are the principal curvatures 1 of S at p with re-
spect to νS . We will often denote T := N ∩ ∂N∗ with inward unit normal νT
pointing into N . Note that any of the hypersurfaces S, T and their common
boundary S ∩ T could be disconnected. See Figure 1.

1The principal curvatures of a hypersurface S (possibly with smooth boundary)
at a point p ∈ S are defined to be the eigenvalues of the second fundamental form
AS as a self-adjoint operator on TpS given by AS(u) := −∇uνS where νS is a fixed
unit normal to S.

1509
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Figure 1: A compact domain N ⊂ N∗ whose topological boundary S := ∂N
is a properly embedded hypersurface meeting ∂N∗ orthogonally.

Consider the following space of “tangential” vector fields

X(N∗) :=

{

compactly supported C1 vector field X on N∗

such that ⟨X, ν∂N∗⟩ = 0 along ∂N∗

}

,

anyX ∈ X(N∗) generates a one-parameter family of diffeomorphisms {ϕt}t∈R
of N∗ such that ϕ0 is the identity map of N∗ and ϕt(∂N

∗) = ∂N∗ for all
t. If V is a C1 submanifold of N∗ with boundary ∂V ⊂ ∂N∗ such that V
has locally finite area, then we denote the first variation of area of V with
respect to X by (see [8, §9] for more details):

(1.1) δV (X) :=
d

dt

∣

∣

∣

∣

t=0

area(ϕt(V )) =

∫

V
divV X.

If V is a C2 submanifold, one can further express (1.1) as (see [8, (7.6)])

δV (X) = −
∫

V
⟨X,H⟩ −

∫

∂V
⟨X, η⟩

where H is the (inward pointing) mean curvature vector of V and η is the
inward unit co-normal of ∂V . Note that (1.1) makes sense even when V has
infinite total area as the vector field X (hence ϕt) is compactly supported.
In fact, the same discussion holds for any varifold V . We refer the readers to
the appendix of [9] for a quick introduction to varifolds. We will be following
the notations in [9] closely. Readers who are not familiar with the notion
of varifolds may simply replace any varifold V by a C1 submanifold with
boundary lying inside ∂N∗.
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Definition 1.1. An m-dimensional varifold V is said to be stationary with
free boundary if δV (X) = 0 for all X ∈ X(N∗).

Note that any C2 submanifoldM of N∗ with boundary ∂M =M ∩ ∂N∗

is stationary with free boundary if and only if M is a minimal submanifold
in N∗ meeting ∂N∗ orthogonally along ∂M . These are commonly called
properly embedded 2 free boundary minimal submanifolds.

The goal of this paper is to prove the following result, which generalizes
the main result of [10] to the free boundary setting.

Theorem 1.2 (Boundary maximum principle for stationary var-
ifolds with free boundary). Let N ⊂ N∗ be a compact domain whose
topological boundary S := ∂N is a properly embedded hypersurface meeting
∂N∗ orthogonally. Suppose S is strongly m-convex at a point p ∈ ∂S. Then,
p is not contained in the support of any m-dimensional varifold V which is
supported in N and stationary with free boundary.

Theorem 1 of [10] establishes the maximum principle at any interior
point of S which is strongly m-convex. Our result above shows that any
stationary varifold with free boundary cannot touch S from inside of N at
a strongly m-convex point on the boundary of S either. In case the varifold
V is a C2 hypersurface (i.e. m = n) with free boundary lying inside T , our
theorem follows from the classical boundary Hopf lemma [1, Lemma 3.4] as
follows. Suppose p is a boundary point 3 of the C2 hypersurface V . Using
the Fermi coordinate system relative to T centered at p (see [2, Section 7] for
example), one can locally express S and V as graphs of functions fS and fV
respectively over an n-dimensional half-ball B+

r0 = {x21 + · · ·+ x2n < r20, x1 ≥
0, xn+1 = 0} such that fV ≥ fS because V lies completely on one side of S.
Then, the difference u := fV − fS is a C2 function on B+

r0 satisfying Lu ≤ 0
in the interior of B+

r0 for some uniformly elliptic second order differential
operator L. Moreover, since S is orthogonal to T and V is a free boundary
hypersurface, the function u satisfies the following homogeneous Neumann
boundary condition along {x1 = 0}:

(1.2)
∂u

∂x1
= 0.

2See [5] and [6] for a more detailed discussion on properness.
3Note that p cannot be an interior point. Otherwise, V would have non-empty

support outside N by transversality.
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Since u ≥ 0 everywhere in B+
r0 and attains zero as its minimum value at the

origin, (1.2) violates the boundary Hopf lemma [1, Lemma 3.4]. Our main
theorem (Theorem 1.2) shows that the same result holds in any codimension
and in the context of varifolds as well.

The interior maximum principle for minimal submanifolds without
boundary has been proved in various context. The case for C2 hypersur-
faces follows directly from Hopf’s classical interior maximum principle [1,
Theorem 3.5]. Jorge and Tomi [3] generalized the result to C2 submanifolds
in any codimension. Later, White [10] proved that the maximum principle
holds in the context of varifolds, which has important consequences as for ex-
ample in the Almgren-Pitts min-max theory on the existence and regularity
of minimal hypersurfaces in Riemannian manifolds (see [7, Proposition 2.5]
for example). Similarly, our boundary maximum principle (Theorem 1.2) is a
key ingredient in the regularity part of the min-max theory for free boundary
minimal hypersurfaces in compact Riemannian manifolds with non-empty
boundary, which is developed in [6] by the authors. We expect to see more
applications of Theorem 1.2 to other situations related to the study of free
boundary minimal submanifolds.

Our method of proof of Theorem 1.2 is mostly inspired by the argu-
ments in [10] (also in [7, Proposition 2.5]). The key point is to construct a
suitable test vector field X which is compactly supported locally near the
point p and is universally area-decreasing for any varifold V contained in-
side N (see [10, Theorem 2]). However, the situation is somewhat trickier
in the free boundary setting as the test vector field X constructed has to
be tangential, i.e. X ∈ X(N∗). In the interior setting of [10], the vector field
X is constructed as the gradient of the distance function from a perturbed
hypersurface which touches the boundary of N up to second order at p. Un-
fortunately, the distance function from a free boundary hypersurface does
not behave well near the free boundary for at least two reasons. First of all,
the distance function may fail to be C2 near the boundary. Second, even if
it is smooth, its gradient may not be tangential and thus cannot be used as
a test vector field. We overcome these difficulties by constructing a pair of
mutually orthogonal foliations near p, one of which consists of free boundary
hypersurfaces for each leaf of the foliation. We then define our test vector
field X to be the unit normal to the foliation consisting of free boundary
hypersurfaces and show that it is universally area-decreasing as in [10]. We
would like to point out that the same argument also applies to varifolds
which only minimize area to first order in N in the sense of [10] and to free
boundary varieties with bounded mean curvature in a weak sense.
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The paper is organized as follows. In Section 2, we give a detailed local
construction (Lemma 2.1) of orthogonal foliations near a boundary point
p ∈ ∂N∗ where a hypersurface S meets ∂N∗ orthogonally. We can then
choose a local orthonormal frame adapted to such foliation which gives a
nice decomposition of the second fundamental form (Lemma 2.2). We give
the proof of our main result (Theorem 1.2) in Section 3. All functions and
hypersurfaces are assumed to be smooth (i.e. C∞) unless otherwise stated.

Acknowledgements. The authors would like to thank Prof. Richard
Schoen for his continuous encouragement. They also want to thank Prof.
Shing Tung Yau, Prof. Tobias Colding and Prof. Bill Minicozzi for their
interest in this work. The first author is partially supported by a research
grant from the Research Grants Council of the Hong Kong Special Admin-
istrative Region, China [Project No.: CUHK 24305115] and CUHK Direct
Grant [Project No.: 3132705]. The second author is partially supported by
NSF grant DMS-1704393. The authors also want to express their gratitude
to the anonymous referee for carefully reading the manuscript and providing
various useful comments which help improve the exposition of the paper.

2. Orthogonal foliations

Throughout this section, letN∗ be an (n+ 1)-dimensional Riemannian man-
ifold with boundary ∂N∗ ̸= ∅ as in Section 1. Let p ∈ ∂N∗ be a point on the
boundary of N∗. Suppose S is a hypersurface in N∗ which meets ∂N∗ or-
thogonally along its boundary ∂S = S ∩ ∂N∗ containing the point p. We
first show that one can extend S and ∂N∗ locally near p to foliations whose
leaves are mutually orthogonal to each other.

Lemma 2.1. There exists a constant δ > 0, a neighborhood U ⊂ N∗ con-
taining p and foliations 4 {Ss}, {Tt}, with s ∈ (−δ, δ) and t ∈ [0, δ), of U
such that S0 = S ∩ U , T0 = ∂N∗ ∩ U ; and Ss intersect Tt orthogonally for
every s and t. In particular, each hypersurface Ss meets ∂N∗ orthogonally.
(See Figure 2.)

Proof. We first extend S locally near p to a foliation {Ss} such that each
Ss meets ∂N∗ orthogonally. This can be done in a rather straightforward

4See for example [4] for a precise definition of a foliation. When U possess a
boundary, one requires one of the following: (i) all the leaves are transversal to the
boundary; or (ii) every leaf is either contained in the boundary or is completely
disjoint from it.
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manner as follows. Let (x1, . . . , xn+1) be a local Fermi coordinate system
of N∗ centered at p such that x1 = distN∗(·, ∂N∗). Furthermore, we can
assume that (x2, . . . , xn+1) is a local Fermi coordinate system of ∂N∗ relative
to the hypersurface S ∩ ∂N∗, i.e. xn+1 is the signed distance in ∂N∗ from
S ∩ ∂N∗. As in Section 1 we can express S in such local coordinates as
the graph xn+1 = f(x1, . . . , xn) of a function f defined on a half ball B+

r0

such that f = 0 = ∂f
∂x1

along B+
r0 ∩ {x1 = 0}. The translated graphs xn+1 =

f(x1, . . . , xn) + s then gives a local foliation {Ss} near p such that each leaf
Ss is a hypersurface in N

∗ which meets ∂N∗ orthogonally along its boundary
∂Ss = Ss ∩ ∂N∗. Note that ∂Ss gives a local foliation of ∂N∗ near p obtained
from the equidistant hypersurfaces of ∂S ⊂ ∂N∗.

Next, we construct another foliation {Tt} which is orthogonal to every
leaf of the foliation {Ss} defined above. Let q ∈ N∗ be a point near p which
lies on the leaf Ss. We define ν(q) to be a unit vector normal to the hyper-
surface Ss. By a continuous choice of ν it gives a smooth unit vector field in
a neighborhood of p such that ν(q′) ∈ Tq′∂N

∗ for each q′ ∈ ∂N∗ since each
Ss meets ∂N∗ orthogonally. As ν is nowhere vanishing near p, the integral
curves of ν gives a local 1-dimensional foliation of N∗ near p. We can put
together these integral curves to form our desired foliation {Tt} as follows.
Let Γt ⊂ S be the parallel hypersurface in S which is of distance t > 0 away
from S ∩ ∂N∗ (measured with respect to the intrinsic distance in S). Define
Tt to be the union of all the integral curves of ν which passes through Γt.
It is clear that {Tt} gives a local foliation near p. Since ν(q′′) is tangent to
the leaf Tt which contains q′′, the leaves Ss and Tt must be orthogonal to
each other for every s and t. By continuity, one can restrict the range of s
and t such that |s| and t are less than some δ > 0 for which all the above
discussions hold. This proves the lemma. □

Figure 2: A local orthogonal foliation near a boundary point p ∈ S ∩ ∂N∗.
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Next, we make use of the local orthogonal foliation in Lemma 2.1 to give
a decomposition of the second fundamental form of the leaves of {Ss} under
a suitable orthonormal frame.

Lemma 2.2. Let {e1, . . . , en+1} be a local orthonormal frame of N∗ near p
such that at each q ∈ Ss ∩ Tt, e1(q) and en+1(q) is normal to Ss ∩ Tt inside
Ss and Tt respectively. Then, we have ⟨ASs(e1), ei⟩ = −⟨ATt(ei), en+1⟩ for
each i = 2, . . . , n, where ASs and ATt are the second fundamental forms of
the hypersurfaces Ss and Tt in N

∗ with respect to the unit normals en+1 and
e1 respectively.

Proof. By definition of ASs and ATt (see Section 1), we have

⟨ASs(e1), ei⟩ = ⟨−∇e1en+1, ei⟩ = ⟨en+1,∇eie1⟩ = −⟨ATt(ei), en+1⟩,

where we used the fact that [e1, ei] is tangent to Ss in the second equality. □

3. Proof of Theorem 1.2

The proof is by a contradiction argument motivated by some of the ideas
in [10]. Note that we will continue to adopt the notations in Section 1.
Suppose on the contrary that there exists a point p ∈ ∂S = S ∩ T which lies
in the support of an m-dimensional varifold V in N which is stationary with
free boundary. Our goal is to construct a tangential vector field X ∈ X(N∗)
which is compactly supported near p such that δV (X) < 0 (recall (1.1)),
which contradicts the stationarity of V .

For every ϵ > 0 small, we can define

Γ :=
{

x ∈ ∂N∗ : dist∂N∗(x, ∂S) = ϵ dist4∂N∗(x, p)
}

,

which is an (n− 1)-dimensional hypersurface in ∂N∗ that is smooth in a
neighborhood of p.

Claim 1: Γ touches ∂S from outside T up to second order at p.

Proof of Claim 1. Let (y1, . . . , yn−1, t) be the Fermi coordinate system of
∂N∗ centered at p adapted to the hypersurface ∂S, i.e. (y1, . . . , yn−1) is
the geodesic normal coordinates of ∂S centered at p and t is the signed
distance function from ∂S in ∂N∗ (taken to be negative in T ). In such a
Fermi coordinate system, locally near p we have ∂S = {t = 0}, T = {t ≤ 0}
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and

Γ = {t = ϵφ(y1, . . . , yn−1, t)}

for some function φ which is smooth defined near the origin. Using the
definition of Fermi coordinates, we have φ vanishes up to second order at
the origin since the metric components gij of ∂N∗ in Fermi coordinates has
C2 bound only in terms of the geometry of ∂S and ∂N∗. This proves the
claim. □

Next we want to extend Γ to a hypersurface S′ in N∗ which meets ∂N∗

orthogonally along Γ such that S′ touches N from outside at p up to second
order. The construction of such an S′ can be done locally as follows. As in
the proof of Lemma 2.1, let (x1, . . . , xn+1) be a Fermi coordinate system
around p such that

• {x1 ≥ 0} ⊂ N∗,

• {xn+1 = f(x1, . . . , xn)} ⊂ S,

• {xn+1 ≥ f(x1, . . . , xn)} ⊂ N ,

• {x1 = xn+1 = 0} ⊂ Γ.

Note that this f could be slightly different from that as in the proof of
Lemma 2.1 as we further require that xn+1 to agree with the signed distance
function from Γ in ∂N∗. By Claim 1, we have f(0, x2, . . . , xn) ≥ 0 with equal-
ity holds only at the origin. Moreover, we have ∂f

∂x1
= 0 along {x1 = 0} since

S meets ∂N∗ orthogonally. Take S′ to be the graph xn+1 = u(x1, . . . , xn) of
the smooth function

u(x1, . . . , xn) :=
x21
2

∂2f

∂2x1
(0) +

x31
6

(

∂3f

∂3x1
(0)− ϵ

)

.

Since u = ∂u
∂x1

= 0 along {x1 = 0}, S′ is indeed an extension of Γ meeting
∂N∗ orthogonally. By Claim 1 we know that all the partial derivatives (with
respect to the coordinates x1, . . . , xn) of u and f at 0 agree up to second
order, therefore the Hessian of u and f agrees at the origin. For ϵ sufficiently
small, f ≥ u everywhere in a neighborhood of p with equality holds only at
the origin where f and u agrees up to second order. In order words, S′

touches N from outside up to second order at p.
Since S′ meets ∂N∗ orthogonally, we can apply all the results in Section 2

to S′ to obtain local foliations {S′

s} and {Tt} as in Lemma 2.1. We will use
the same notations as in the proof of Lemma 2.1 in what follows (with S
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replaced by S′). Define a smooth function s in a neighborhood of p such
that s(q) is the unique s such that q ∈ S′

s. Recall that s ≥ 0 on N .

Lemma 3.1. ∇s = ψν for some function ψ which is smooth in a neighbor-
hood of p such that ψ = 1 along ∂N∗.

Proof. Since s is constant on each leaf S′

s by definition, ∇s is normal to
the hypersurface S′

s and thus ∇s = ψν for some smooth function ψ in a
neighborhood of p. The last assertion follows from our construction that
∂S′

s are parallel hypersurfaces from ∂S′ in ∂N∗. □

Now, we define a vector field X on N∗ by

X(q) := ϕ(s(q))ν(q),

where ϕ(s) is the cutoff function defined by

ϕ(s) =

{

e1/(s−ϵ) if 0 ≤ s < ϵ,

0 if s ≥ ϵ.

As S′ touches N at p from outside, we see that X is compactly supported in
a neighborhood of p. Moreover, since ν(q) ∈ Tq∂N

∗ at all points q ∈ ∂N∗, we
have X ∈ X(N∗). To finish the proof, we just have to show that X decreases
the area of V up to first order, i.e. δV (X) < 0.

At each q in a neighborhood of p, we consider the bilinear form on TqN
∗

defined by

Q(u, v) := ⟨∇uX, v⟩(q).

Let {e1, . . . , en+1} be an orthonormal frame as in Lemma 2.2 (note that
en+1 = ν). By Lemma 3.1, when u = ei, v = ej , i, j = 1, . . . , n, we have

Q(ei, ej) = ⟨∇ei(ϕν), ej⟩ = −ϕ⟨AS′

s(ei), ej⟩.

Moreover, since ⟨ν, ν⟩ ≡ 1 and ∇eis ≡ 0, we have for i = 1, . . . , n,

Q(ei, en+1) = ⟨∇ei(ϕν), en+1⟩ = ϕ⟨∇eiν, ν⟩ = 0.

On the other hand, when u = en+1 = ν, we have

Q(en+1, e1) = ⟨∇en+1
(ϕν), e1⟩ = ϕ⟨∇νν, e1⟩ = ϕ⟨ATt(ν), ν⟩.
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Since ⟨ν, ej⟩ ≡ 0, we have for j = 2, . . . , n,

Q(en+1, ej) = ⟨∇en+1
(ϕν), ej⟩ = ϕ⟨∇νν, ej⟩.

Finally, when u = v = en+1 = ν, using Lemma 3.1 and ⟨ν, ν⟩ ≡ 1,

Q(en+1, en+1) = ⟨(∇νϕ)ν, ν⟩+ ϕ⟨∇νν, ν⟩ = ϕ′ψ.

Therefore, we can express Q in this frame as the following n+ 1 by n+ 1
matrix:

(3.1) Q =







−ϕAS′

s

11 ϕATt

n+1,j 0

ϕATt

i,n+1 −ϕAS′

s

ij 0

ϕATt

n+1,n+1 ϕ⟨∇νν, ej⟩ ϕ′ψ







where i, j = 2, . . . , n, and q ∈ Ss ∩ Tt.

Lemma 3.2. When ϵ > 0 is small enough, trP Q < 0 for all m-dimensional
subspaces P ⊂ TqN

∗.

Proof. If P ⊂ TqS
′

s, then trP Q < 0 since S′

s is strongly m-convex in a neigh-
borhood of p. Therefore, we focus on the case P ̸⊂ TqS

′

s. In this case, one
can fix an orthonormal basis {v1, . . . , vm} for P such that {v1, . . . , vm−1} ⊂
Tq(S

′

s ∩ Tt). As P ̸⊂ TqS
′

s, there exists some unit vector v0 ∈ TqS
′

s with
v0 ⊥ vi for i = 1, . . . ,m− 1 and θ ∈ (0, π) such that

vm = (cos θ) v0 + (sin θ) en+1.

Denote P ′ = span{v0, v1, . . . , vm−1} ⊂ TqS
′

s. On the other hand, since v0 ∈
TqS

′

s, one can write

v0 = a1e1 + · · ·+ anen,

where a21 + · · ·+ a2n = 1. Therefore, using (3.1) and that ϕ′ ≤ − 1
ϵ2ϕ, by possi-

bly shrinking the neighborhood of p we have ψ ≥ 1/2, |ATt | ≤ K, |AS′

s | ≤ K
and |⟨∇νν, ej⟩| ≤ K for some constant K > 0 (depending on the chosen or-
thogonal foliation in Lemma 2.1 but independent of ϵ), one then obtains
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trP Q =

m−1
∑

i=1

Q(vi, vi) +Q(vm, vm)

=

m−1
∑

i=1

Q(vi, vi) + cos2 θ Q(v0, v0) + sin θ cos θ Q(en+1, v0)

+ sin2 θ Q(en+1, en+1)

= −ϕ trP ′ AS′

s + sin2 θ
(

ϕ′ψ + ϕAS′

s(v0, v0)
)

+ a1ϕ sin θ cos θ A
Tt

n+1,n+1

+

n
∑

j=2

ajϕ sin θ cos θ ⟨∇νν, ej⟩

≤ −ϕ trP ′ AS′

s + ϕ

((

K − 1

2ϵ2

)

sin2 θ +
√
nK| sin θ cos θ|

)

Lemma 3.3. As ϵ→ 0, we have

max
θ∈[0,π]

[(

K − 1

2ϵ2

)

sin2 θ +
√
nK| sin θ cos θ|

]

→ 0.

Proof. Define the function F : [0, π] → R by

F (θ) :=

(

K − 1

2ϵ2

)

sin2 θ +
√
nK| sin θ cos θ|.

Notice that F (θ) = F (π − θ) for all θ ∈ [0, π/2] and that F (0) = 0, F (π/2) =
K − 1

2ϵ
−2 which is negative as long as ϵ < 1/

√
2K. Moreover, if F ′(θ0) = 0

at some θ0 ∈ (0, π/2), then we have

(3.2) tan 2θ0 =

√
nK

1
2ϵ

−2 −K
.

Note that such a θ0 is unique and θ0 → 0 as ϵ→ 0. Using (3.2) and
L’Hospital’s rule, F (θ0) → 0 as ϵ→ 0. This proves Lemma 3.3. □

Using Lemma 3.3 and that S′

s is strongly m-convex in a small neighbor-
hood of p when ϵ is sufficiently small, we have trP Q < 0. This finishes the
proof of Lemma 3.2. □
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To finish the proof, recall that the first variation formula [8, 39.2] says

δV (X) =

∫

divP X(q) dV (q, P )

=

∫

trP Q(q) dV (q, P ) < 0,

where the last inequality follows from Lemma 3.2 and that the support of
the vector field X inside N is contained in a very small neighborhood of p.
This gives a contradiction to the assumption that V is stationary with free
boundary. This finishes the proof of Theorem 1.2.
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