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The level set flow of a hypersurface in R
4

of low entropy does not disconnect

Jacob Bernstein and Shengwen Wang

We show that if Σ ⊂ R
4 is a closed, connected hypersurface with

entropy λ(Σ) ≤ λ(S2 × R), then the level set flow of Σ never dis-
connects. We also obtain a sharp version of the forward clearing
out lemma for non-fattening flows in R

4 of low entropy.

1. Introduction

A family of hypersurfaces Σt ⊂ Rn+1 evolves by mean curvature flow (MCF)
if it satisfies

(1.1)

(

∂

∂t
xΣt

)⊥

= HΣt

here a hypersurface is a smooth submanifold of codimension one and xΣt
is

the position vector,HΣt
is the mean curvature vector and ⊥ is the projection

onto the normal of Σt. A fundamental property of MCF is that the flow
of a closed hypersurface must develop a singularity in finite time. If one
considers the level set flow (see Chen-Giga-Goto [5] and Evans-Spruck [6–
9]), then one obtains a canonical set theoretic weak mean curvature flow
that persists through singularities and, for closed initial data, vanishes in
finite time. By definition, as long as the flow is smooth, then the topology
of the hypersurfaces does not change, however this need not be the case for
the level set flow after the first singularity.

When n = 1, it follows from Gage-Hamilton [10] and Grayson [11] that
the flow disappears when it becomes singular. In particular, the flow remains
connected until it disappears. In contrast, when n > 1, non-degenerate neck-
pinch examples show that there are flows that become singular without
disappearing. In these examples, the level set flow disconnects after the
neck-pinch singularity. In [2], the first author and L. Wang showed that,
when n = 2 and the initial entropy is small (see (2.1) below), then the flow
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disappears at its first singularity. This result makes use of a classification
of singularity models in R3 of low entropy from [2] and whether such a
classification exists in higher dimension is unknown. In the present note we
show that when n = 3 and the initial hypersurface is closed, connected and
of low entropy, then even if the flow forms a singularity before it disappears,
its level set flow remains connected until its extinction time.

Theorem 1.1. Let Σ ⊂ R4 be a closed, connected hypersurface and let
{Γt}t∈[0,T ] be the level set flow with initial condition Γ0 = Σ and extinction
time T . If λ(Σ) ≤ λ(S2 × R), then, for all t ∈ [0, T ], Γt is connected. More-
over, if W [t] = R4 \ Γt, then W [t] has at most two connected components
for all t ∈ [0, T ].

A technical feature of the level set flow is that it may “fatten”, i.e.,
develop non-empty interior. If this occurs in Theorem 1.1, then there will
be a T0 ∈ [0, T ) so that W [t] has two components for t ∈ [0, T0) and one
component for t ∈ [T0, T ] – see Theorem 4.1 for a proof of this fact. Roughly
speaking, the idea is that if the flow fattens, then there are two natural flows
starting from Σ, the innermost flow and the outermost flow and the level
set flow lies between these two flows. In this situation, T0 is the extinction
time of the inner flow and T is the extinction time of the outer flow.

In [17], the second author showed, for flows of low entropy, a forward in
time analog of the clearing out lemma. Specifically he showed that if such
a flow reaches the point x0 at time t0, then the flow remains near x0 after
t0 until it disappears. This is a forward in time analog of the standard,
unconditional, clearing out lemma – e.g., [8, Theorem 3.1] – that says that if
the flow reaches x0 at time t0, then the flow must be near x0 at earlier times.
Theorem 1.1 allows us to sharpen the result from [17] and prove the forward
clearing out lemma in R4 with the optimal upper bound on the entropy.

Corollary 1.2. Given ϵ > 0, there exist uniform constants C = C(ϵ) > 0
and η = η(ϵ) > 0, so that if {Mt}t∈[0,T ] is a a non-fattening level set flow
in R4 that starts from a smooth closed hypersurface M0 ⊂ R4 with λ(M0) ≤
λ(S2 × R)− ϵ, x0 ∈ Mt0 and Mt0+R2 ̸= ∅, then for all ρ ∈ (0, R

2C ),

H3(Bρ(x0) ∩Mt0+C2ρ2) ≥ ηρ3.

Here H3 denotes three-dimensional Hausdorff measure.

Remark 1.3. The entropy assumption can be seen to be sharp by consid-
ering the translating bowl soliton in R4 of larger and larger speed, and, in
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The level set flow of a low entropy hypersurface 1525

the closed setting, by considering a sequence of unit spheres at increasing
distance from one another and joined by a thin tube.

2. Notation and backgound

Let BR(x0) be the open ball in Rn+1 centered at x0 and, for a set K ⊂ Rn+1,
let

Tr(K) =
⋃

x∈K

Br(x)

be the r-tubular neighborhood of K. For any ρ > 0, x0 ∈ Rn+1 and subset
Ω ⊂ Rn+1, set

Ω + x0 = {x+ x0 ∈ R
n+1 : x ∈ Ω} and ρΩ = {ρx : x ∈ Ω}.

Following [4], the entropy of a closed hypersurface, Σ, is defined by

(2.1) λ(Σ) = sup
(y,ρ)∈Rn+1×R

F (ρΣ+ y)

where F is the Gaussian area of Σ given by

(2.2) F (Σ) = (4π)−
n

2

∫

Σ
e−

|x|2

4 dHn.

The entropy and Gaussian area readily extend to the less regular objects
studied in geometric measure theory. Clearly, λ(Rn) = 1. If Sn is the unit
n-sphere in Rn+1, then

Λk = λ(Sk) = λ(Sk × R
n−k) = F (

√
2kSk)

and so, by a computation of Stone [16],

(2.3) 2 > Λ1 >
3

2
> Λ2 > . . . > Λn > . . . →

√
2.

Let us now briefly recall some background results in the theory of (weak)
mean curvature flow – our primary sources are [6–9] and [13]. We begin with
the level set flow, whose mathematical theory was developed by Chen-Giga-
Goto [5] and Evans-Spruck [6–9].

Let Γ be a non-empty compact subset of Rn+1. Select a Lipschitz func-
tion u0 so that Γ = {x : u0(x) = 0} and so that u0(x) = −C when |x| ≥ R

for some constants C,R > 0. For such a u0, {u0 ≥ a > −C} is compact.
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In [6], Evans-Spruck established the existence and uniqueness of viscosity
solutions to the initial value problem:

(2.4)

{

ut = Σn+1
i,j=1(δij − uxi

uxj
|Du|−2)uxixj

on Rn+1 × (0,∞)

u = u0 on Rn+1 × {0}.

Setting Γt = {x : u(x, t) = 0}, define {Γt}t≥0 to be the level set flow of Γ =
Γ0. As shown in [6], the Γt depend only on Γ and are independent of the
choice of u0. The level set flow has a uniqueness property and satisfies an
avoidance principle. As such, for any closed initial set, the level set flow
vanishes after a finite amount of time. Furthermore, as long as the initial set
is a closed hypersurface, the level set flow agrees with the classical solution
to (1.1) as long as the latter exists. A technical feature of the level set flow is
that some time slices may develop non-trivial interior – a phenomena called
“fattening”. Importantly, initial sets are generically non-fattening – see for
instance [13, Theorem 11.3]

In addition to the level set flow, we will also need to consider the measure
theoretic version of MCF introduced by Brakke. An n-dimensional Brakke
flow (or Brakke motion), K, in Rn+1 is a family of Radon measures K =
{µt}t∈I , that satisfies (1.1) in the sense of being a negative gradient flow,
see [13] for the precise definition. The Brakke flow is integral if for almost
every t ∈ I, µt ∈ IMn(R

n+1), that is, µt is an integer n-rectifiable Radon
measure. The Hausdorff n-measure, Hn restricted to any classical solution
of (1.1) is an integral Brakke flow.

Denote the parabolic rescaling and translation of a Brakke flow K = {µt}
by

DρK =
{

µ
ρ,0
ρ−2t

}

and K − (x0, t0) =
{

µ
1,x0

t+t0

}

where

µρ,x0(A) = ρnµ(ρ−1A+ x0).

It follows from the Brakke’s compactness theorem [13, 7.1] and the Huisken
monotonicity formula [12, 14] that given an integral Brakke flow K = {µt}t∈I
with uniformly bounded area ratios, for any t0 > inf I and x0 ∈ Rn+1 and
any sequence ρi → ∞ there exists a subsequence ρij → ∞ so that Dρij

(K −
(x0, t0)) converges (in the sense of Brakke flows – see [13]) to a Brakke
flow T = {νt}t∈R. We call such a flow a tangent flow to K at (x0, t0) and
denote the set of all possible limits (for different sequences of scalings) by
Tan(x0,t0)K. By Huisken’s monotonicity formula, T ∈ Tan(x0,t0)K is back-
wardly self-similar. If ν−1 = Hn ¬

Υ for a smooth hypersurface Υ, then Υ
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satisfies the equation

(2.5) HΥ +
x⊥

2
= 0.

Any hypersurface, Υ, that satisfies (2.5) is called a self-shrinker and is
asymptotically conical if limρ→0 ρΥ = C in C∞

loc(R
n+1\ {0}) for some regular

cone C. For instance, any hyperplane through the origin is an asymptotically
conical self-shrinker.

A feature of Brakke flows is that they may suddenly vanish. In order to
handle technical issues that arise from this possibility we will need Ilmanen’s
enhanced motions [13, 8.1][18]. Following the formulation in [18], a pair
(τ,K) is an enhanced motion, if τ ∈ Ilocn+1(R

n+1 × R) is a locally (n+ 1)-
dimensional integral current in space-time and K = {µt}t∈R is a Brakke flow
that together satisfy

1) ∂τ = 0 and ∂(τt≥s) = τs and τt ∈ In(R
n+1) for each time slice t

2) ∂τt = 0 for all t

3) t 7→ τt is continuous in the flat topology

4) µτt ≤ µt for all t

5) Vµt
= Vτt + 2Wt for some integral varifold Wt for a.e. t. In other words,

they are compatible for a.e. t as defined in [18].

Here τ is the called the undercurrent and K is the overflow. Likewise (τ,K) is
an enhanced motion with initial condition τ0 ∈ In(R

n+1 × {t0}) if the above
holds for all t ≥ t0 and ∂τ = τ0. An enhanced motion (τ,K) is a matching
motion if µτt = µt for a.e. t for which this makes sense.

Associated to each E ⊂ Rn+1 × R of locally finite perimeter, there is
a unique (n+ 2)-dimensional integral current [E] ∈ Ilocn+2(R

n+1 × R). Simi-
larly, given an oriented dimension-k submanifold Σ ⊂ Rn+1 × R there is a
unique [Σ] ∈ Ilock (Rn+1 × R). If ∂∗E is the reduced boundary of E,
then [∂∗E] = ∂[E] ∈ Ilocn+1(R

n+1 × R). As such, there is an integer (n+ 1)-
rectifiable Radon measure Hn ¬

∂∗E – see [13] for details. In what follows
when we refer to a set of finite perimeter, we mean a specific set, E, that
has finite perimeter, not an equivalence class of sets. In particular, we may
a priori have ∂∗E ̸= ∂E.

We extend the notion of canonical boundary motion from [1] – see also
[3, 13]. These flows are special cases of flows introduced by Ilmanen in [13]
that synthesize the level set flow and Brakke flow in a natural way and are
key to our approach.
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Definition 2.1. A canonical boundary motion is a triple (E0, E,K) con-
sisting of an open bounded set E0 ⊂ Rn+1 × {0} with ∂E0 a smooth closed
hypersurface, an open bounded set E ⊂ Rn+1 × [0,∞) of finite perimeter
and a Brakke flow K = {µt}t≥0 so:

1) E = {(x, t) : u(x, t) > 0}, where u solves equation (2.4) with u0 chosen
so E0 = {x : u0(x) > 0} and ∂E0 = {x : u0(x) = 0};

2) The level set flow of ∂E0 is non-fattening;

3) For t ≥ 0, each Et = {x : (x, t) ∈ E} is of finite perimeter and µt =
Hn ¬

∂∗Et.

If, in addition,

4) {u = 0} = ∂∗E in Rn+1 × (0,∞),

where u is from Item (1), then (E0, E,K) is a strong canonical boundary
motion.

Remark 2.2. Observe, {u > 0} = E ⊂ Ē ⊂ {u ≥ 0} for a canonical bound-
ary motion and Ē = {u ≥ 0} for a strong canonical boundary motion. If
Γt = {x ∈ Rn+1|u(x, t) = 0}, then {Γt}t≥0 is the level set flow of Γ0 = Σ
and is non-fattening. Clearly, ∂Et ⊂ Γt, but equality need not hold – even
for strong canonical boundary motions. For instance, at the extinction time
of any compact flow one does not have equality.

By [13, 11.4], for a E0 with the property that the level set flow of ∂E0

is non-fattening, there are E and K so (E0, E,K) is a canonical boundary
motion. In general, the non-fattening condition is not enough to ensure the
existence of a strong canonical boundary motion, however, in [13, 12.11],
Ilmanen shows such existence for “generic” E0.

Finally, we introduce the following notation for a level set flow {Γt}t≥0

in Rn+1, n ≥ 1,

W [t] = R
n+1 \ Γt

W [s, r] = {(x, t)|x ∈ (Rn+1 \ Γt), s ≤ t ≤ r} =
⋃

t∈[s,r]

W [t]

n(t) = #{connected components of W [t]} ∈ N ∪ {∞} .
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As Γt is compact and n ≥ 1, there is exactly one unbounded component of
W [t], denoted by W−[t]. Let W+[t] = W [t]\W−[t] be the bounded compo-
nents and set

W±[s, r] =
⋃

t∈[s,r]

W±[t].

3. Proof of Theorem 1.1 for strong canonical boundary

motions

In this section we show Theorem 1.1 for flows that are strong canonical
boundary motions. We begin with several preliminary results. The first is
an elementary topological result – we include a proof for the sake of com-
pleteness.

Lemma 3.1. Let Γ ⊂ Rn+1 be a compact set. If Rn+1\Γ has exactly two
components, W±, and Γ = ∂W±, then Γ is connected.

Proof. Suppose that Γ is not connected. Let K be one component of Γ and
K ′ = Γ\K ̸= ∅. Observe that both K and K ′ are compact and so there
is a r > 0 so that Tr(K) ∩ Tr(K

′) = ∅ and, hence, Tr(Γ) is not connected.
Let Ŵ± = W± ∪ Tr(Γ). Clearly, Ŵ

± are open sets with Ŵ+ ∩ Ŵ− = Tr(Γ).
For each x ∈ Γ, W± ∩Br(x) ̸= ∅ as Γ = ∂W±. As the union of intersecting
connected sets is connected,W± ∪Br(x) is connected. It readily follows that
both Ŵ− and Ŵ+ are connected. Finally, by the Mayer-Vietoris long exact
sequence for reduced homology, as Rn+1 = Ŵ+ ∪ Ŵ− is simply connected
and both Ŵ± are connected, Tr(Γ) = Ŵ+ ∩ Ŵ− must be connected. This
contradicts our choice of r and proves the lemma. □

Another elementary fact is that the level set flow remains connected up to
and including its first disconnection time.

Lemma 3.2. Let {Γt}t∈[0,T ] be a level set flow of compact sets in Rn+1. If
Γt is connected for t ∈ [0, t0), then Γt0 is connected.

Proof. By the definition and basic properties of level set flow limt→t−0
Γt =

Γt0 in Hausdorff distance. Indeed, on the one hand, by the avoidance prin-
ciple,

Γt0 ⊂ T√
4n(t0−t)

(Γt).

On the other, as the space-time track of the level set flow, Rn+1 × [0, T ]\
W [0, T ], is closed and Γt0 is compact, for every ϵ > 0, there is a δ > 0 so
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that if 0 < t0 − t < δ, then Γt ⊂ Tϵ(Γt0). Hence, if Γt0 is disconnected, then
for t < t0 close enough to t0, Γt is disconnected, proving the claim. □

The next result summarizes and extends [3] and provides a description of
the regularity properties of strong canonical boundary motions flows in R4

of low entropy.

Proposition 3.3. Let
(

E0, E,K = {µt}t≥0

)

be a strong canonical boundary

motion in R4. Suppose the flow has extinction time T and Σ0 = ∂E0 satisfies
λ(Σ0) < Λ2.

1) For each t ∈ [0, T ), there are a finite, possibly empty, set of points
x1, . . . , xm(t) ∈ R4 so that µt = H3 ¬

Σt where Σt is a hypersurface in
R4\ {x1, . . . , xm}.

2) For an open dense subset I ⊂ [0, T ], if t ∈ I, then µt = H3 ¬
Σt where

Σt is a closed hypersurface. That is, m(t) = 0.

3) Let (x0, t0) ∈ R4 × (0, T ] be a point at which K has positive Gaussian
density. If {νt}t∈R = T ∈ Tan(x0,t0)K, then ν−1 = H3 ¬

Υ where Υ is
a smooth self-shrinker and either Υ is closed or it is asymptotically
conical. Moreover, whichever holds depends only on (x0, t0) and not
on the choice of tangent flow.

4) For each (x0, t0) ∈ R4 × (0, T ] for which Tan(x0,t0)K contains an asymp-
totically conical shrinker, there is an R0 = R0(x0, t0, ∂E0) > 0 so that
for all R ∈ (0, R0]

Σt0(x0, R) = spt(µt0) ∩B∗
R(x0) = Σt0 ∩B∗

R(x0)

= ∂Et0 ∩B∗
R(x0) = ∂∗Et0 ∩B∗

R(x0),

is a connected hypersurface that divides B∗
R(x0) into two components,

one contained in Et and one disjoint from it. Here

B∗
R(x0) = BR(x0)\ {x0} .

Proof. Note first that as (E0, E,K) is a strong canonical boundary motion,
(E,K) is a canonical boundary motion in the sense of [3] – see Theorem
2.3 and the discussion at the beginning of Section 4 of [3]. As such, Items
(1) and (2) are both immediate consequences of [3, Theorem 4.3] – see [3,
Corollary 4.4] and the proof of [3, Theorem 4.5] for details. Item (3) follows
from [3, Proposition 4.1 and Lemma 4.2].
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It remains to show Item (4). First, set ϵ0 = Λ2 − λ(∂E0) > 0. Next ob-
serve that if (x0, t0) is a singular point of K, then, by hypothesis, it is a non-
compact singularity and so, by [3, Theorem 4.2(2)], there is a α = α(ϵ0) > 0
and a ρ0 = ρ0(x0, t0) > 0 so that for all (ρ, t) ∈ (0, ρ0)× (t0 − ρ2, t0 + ρ2),

At(x0, t0, ρ) = Σt ∩
(

B2αρ(x0)\B̄ 1

2
αρ(x0)

)

= spt(µt) ∩
(

B2αρ(x0)\B̄ 1

2
αρ(x0)

)

is a connected non-empty hypersurface that is proper in B2αρ(x0)\B̄ 1

2
αρ(x0).

The same is true if (x0, t0) is not a singular point as then Tan(x0,t0)K consists
of a static hyperplane. For ρ ∈ (0, ρ0), let

A(x0, t0, ρ) =
⋃

t∈(t0−ρ2,t0+ρ2)

At(x0, t0, ρ)× {t} ⊂ R
4 × R = R

5

this is a connected non-empty hypersurface that is proper in the hollow
space-time cylinder

C(x0, t0, ρ) =
(

B2αρ(x0)\B̄ 1

2
αρ(x0)

)

× (t0 − ρ2, t0 + ρ2).

Clearly, At(xt, t0, ρ)× {t} = A(x0, t0, ρ) ∩
(

R4 × {t}
)

and this intersection is
transverse.

By Item (3) of the definition of canonical boundary motion, spt(µt) =
∂∗Et, and so

A(x0, t0, ρ) = ∂∗E ∩ C(x0, t0, ρ).

As A(x0, t0, ρ) is smooth, every point is in the reduced boundary and so

A(x0, t0, ρ) = ∂∗E ∩ C(x0, t0, ρ).

Hence, by Item (4) of the definition of a strong canonical boundary motion,

A(x0, t0, ρ) = ∂∗E ∩ C(x0, t0, ρ) = ∂∗E ∩ C(x0, t0, ρ) = ∂E ∩ C(x0, t0, ρ).

Together with the fact that that A(x0, t0, ρ) meets R4 × {t0} transversally,
this means

At0(x0, t0, ρ) = ∂∗Et0 ∩
(

B2αρ(x0)\B̄ 1

2
αρ(x0)

)

= ∂Et0 ∩
(

B2αρ(x0)\B̄ 1

2
αρ(x0)

)

.
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Set R0 = 2αρ0 and, for any R ∈ (0, R0), let

Σt0(x0, R) =

∞
⋃

i=0

At0(x0, t0, 2
−iR).

By the above, Σt0(x0, R) is a connected non-empty hypersurface proper in
B∗

R(x0) and, moreover,

Σt0(x0, R) = ∂∗Et0 ∩B∗
R(x0) = ∂Et0 ∩B∗

R(x0)

= spt(µt0) ∩B∗
R(x0) = Σt0 ∩B∗

R(x0).

Finally, as Σt0(x0, R) is connected, non-empty and proper in B∗
R(x0),

B∗
R(x0)\Σt0(x0, R) has two components. On the one hand, Σt0(x0, R) ⊂ ∂Et0

implies at least one of these is a subset of Et. On the other, Σt0(x0, R) ⊂
∂∗Et0 means the other is disjoint from Et0 . □

Next we use the above regularity properties to relate the level set flow
and its interior for strong canonical boundary motions of low entropy –
compare with Remark 2.2.

Proposition 3.4. Let (E0, E,K = {µt}t≥0) be a strong canonical boundary

motion in R4 with λ(∂E0) < Λ2 and let {Γt}t∈[0,T ] be the level set flow with
Γ0 = ∂E0. For any s ∈ (0, T ] there are a finite, possible empty, set of isolated
points of Γs, p1, . . . , pM(s), so that K has a closed singularity at (pi, s) and

Γs \
{

p1, . . . , pM(s)

}

= spt(µs) = ∂Es \
{

p1, . . . , pM(s)

}

= ∂(R4\Ēs).

If, in addition, Γs is connected and not a point, then Es = W+[s] and Γs =
∂W±[s].

Proof. As the level set flow is the biggest flow, spt(µt) ⊂ Γt – see [13, 10.7].
Pick a s ∈ (0, T ], the entropy assumption ensures that there are at most a
finite set of points p1, . . . , pM(s) ∈ R4 so K has a closed singularity at (pi, s)
– see [3, Theorem 4.3 and Corollary 4.4]. Moreover, there are radii ri > 0 so
that the Gaussian density of K at any (p, s) with p ∈ Bri(pi) \ {pi} is zero.
Hence, pi ̸∈ spt(µs) and so spt(µs) ⊂ Γs \

{

p1, . . . , pM(s)

}

.
Now pick a x0 ∈ Γs\

{

p1, . . . , pM(s)

}

. Let T ∈ Tan(x0,s)K be a tangent
flow to K at the point (x0, s). By Item (4) of the definition of strong canoni-
cal boundary motion, (x0, s) ∈ ∂∗E. Hence, there is a sequence (xi, si) ∈ ∂∗E

with si > 0 and limi→∞(xi, si) = (x0, s). As (xi, si) ∈ ∂∗E, the Gaussian
density of K at (xi, si) is at least 1 and so, by the upper semicontinuity
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property of Gaussian density, the Gaussian density of K at (x0, s) is positive
and so T is non-trivial. Hence, by Item (3) of Proposition 3.3 and the fact
that x0 ̸= pi for any 1 ≤ i ≤ M(s), T = {νt}t∈R is asymptotically conical. A
further consequence is that the pi are isolated points of Γs.

Thus, Item (4) of Proposition 3.3 implies that there is a R0 > 0 so for all
R ∈ (0, R0), spt(µs) ∩B∗

R(x0) is non-trivial. As spt(µs) is closed, this means
that x0 ∈ spt(µs) and hence, spt(µs) = Γt \

{

p1, . . . , pM(s)

}

for all s ∈ (0, T ]
proving the first equality. To see the second equality, first note that, by
definition, ∂Es ⊂ Γs. Now suppose that x0 ∈ Γs \

{

p1, . . . , pM(s)

}

. By what
we have already shown, x0 ∈ spt(µs) and Item (4) of Proposition 3.3 both
hold at (x0, s). Hence, there is a R0 > 0 so for all R ∈ (0, R0),

spt(µs) ∩B∗
R(x0) = ∂Es ∩B∗

R(x0)

and this intersection is non-empty. As the topological boundary of a set is
closed, x0 ∈ ∂Es and so Γs \

{

p1, . . . , pM(s)

}

⊂ ∂Es, completing the proof of
the second equality. As spt(µs) = ∂Es \

{

p1, . . . , pM(s)

}

, Item (4) of Propo-
sition 3.3 and the above argument implies that ∂Es \

{

p1, . . . , pM(s)

}

⊂
∂(R4 \ Ēs). Clearly, any pi ∈ Ēs is an interior point and so pi ̸∈ ∂Ēs. Hence,
as ∂(R4 \ Ēs) = ∂Ēs ⊂ ∂Es, the third equality follows.

To complete the proof, first observe that, if Γs is connected and not
a single point, then M(s) = 0 – i.e., there are no closed singularities at
time s and Γs = ∂Es. By definition, Es ⊂ W+[s] and ∂Es ⊂ ∂W+[s] ⊂ Γs.
As ∂Es = Γs, this immediately implies Γs = ∂W+[s]. Similarly, by definition
∂W−[s] ⊂ Γs and so, for any x ∈ ∂W−[s], Item (4) of Proposition 3.3 implies
that there is an R > 0 so that B∗

R(x) ∩ Γs divides B∗
R(x) into exactly two

components, U±(x), with ∂U±(x) ∩B∗
R(x) = Γs ∩B∗

R(x) .
Moreover, up to relabeling, U+(x) ⊂ Es and U−(x) ∩ Es = ∅. As x ∈

∂W−[s] and W−[s] ∩ Es = ∅, U−(x) ⊂ W−[s] and so ∂W−[s] ∩B∗
R(x) =

Γs ∩B∗
R(x). Hence, as x ∈ ∂W−[s] ⊂ Γs, BR(x) ∩ Γs ⊂ ∂W−[s] and so

∂W−[s] is an open non-empty subset of Γs. As ∂W
−[s] is also closed and Γs

is assumed to be connected, Γs = ∂W−[s].
Finally, let Ω = W+[s]\Es. As ∂Es = Γs = ∂W+[s], ∂Ω ⊂ Γs. For each

x ∈ Γs, Item (4) of Proposition 3.3, implies that, for R sufficiently small,
BR(x)\Γs consists of two components one disjoint from Es and one contained
in Es. As BR(x) ∩W−[s] ̸= ∅ the component disjoint from Es is contained
in W−[s] and so is disjoint from Ω. Likewise, the component contained in
Es is disjoint from Ω by construction. Hence, Ω ∩BR(x) = ∅ and so x ̸∈ ∂Ω.
As x was arbitrary, this means ∂Ω = ∅ which implies Ω = ∅. That is, Es =
W+[s]. □
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We use the preceding results and ideas from [19] to show that strong
canonical boundary motions remain connected until they disappear. That
is, we show Theorem 1.1 for strong canonical boundary motions.

Proposition 3.5. Let (E0, E,K = {µt}t≥0) be a strong canonical boundary

motion in R4 with ∂E0 connected and λ[∂E0] < Λ2. If {Γt}t∈[0,T ] is the level
set flow with Γ0 = ∂E0 and extinction time T , then Γt is connected and
n(t) = 2 for all t ∈ [0, T ).

Proof. As ∂E0 is connected, bounded and ∂E0 = Σ is compact,W+[0] = E0.
As Σ is a connected hypersurface, there is a δ > 0 so that Γt is a smooth flow
for t ∈ [0, δ] and so Γt is connected, n(t) = 2 and W+[t] = Et for t ∈ [0, δ].
Let

tdis = sup{t ∈ (0, T )|n(s) = 2 and Γs is connected for all 0 ≤ s < t}

be the first possible disconnection time. Clearly, tdis > δ and if tdis = T , then
we are done. In what follows we suppose tdis < T and derive a contradiction.

First, observe that, by construction, tdis must be a singular time, but
not the extinction time of the flow. As such, for any (x, t0) ∈ R4 × (0, tdis],
for which K has positive Gaussian density all tangent flows to K at (x, t0)
are asymptotically conical. Indeed, by Proposition 3.3, if a tangent flow at
(x, t0) was closed, then, as Γt was connected for t < t0 ≤ tdis, for t < t0 and
t close enough to t0, spt(µt) would also be a closed connected hypersurface.
This would imply that the whole flow becomes extinct at t0, contradicting
the fact that tdis < T is not the extinction time.

By Lemma 3.2 and the definition of tdis, Γt is connected for all t ∈
[0, tdis]. Hence, by Proposition 3.4, for all t ∈ [0, tdis], Γt = spt(µt) = ∂W±[t]
and W+[t] = Et. We conclude that n(tdis) = 2. Indeed, if n(tdis) ≥ 3, then,
as W−[tdis] is connected, there is a component, Ω, of W+[tdis] so Ω′ =
W+[tdis]\Ω is non-empty. As Etdis = W+[tdis] = Ω ∪ Ω′, Ω ∩ Ω′ = ∅ and Ω,Ω′

are both open, Γtdis = ∂Etdis = ∂Ω ∪ ∂Ω′. Hence, as Γtdis is connected, there
is an x ∈ ∂Ω ∩ ∂Ω′. By Item (4) of Proposition 3.3, there is an R > 0 so that
B∗

R(x) ∩ Etdis has exactly one non-empty component, namely, B∗
R(x) ∩ Ω =

B∗
R(x) ∩ Ω′. This contradicts Ω ∩ Ω′ = ∅ and implies n(tdis) = 2.
We claim there is a t1 ∈ (tdis, T ) so n(t1) > 2. If not, then, for all t ∈

(tdis, T ), n(t) = 2 and there would be no compact singularities at time t as
otherwise the flow would become extinct at t < T . Moreover, W+[t] = Et

for all t ∈ (tdis, T ). This is because there is always exactly one unbounded
component, W−[t], and so Et would have to be the unique component of
W+[t]. As there are no compact singularities in [0, T ), Proposition 3.4 implies
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Γt = ∂Et = ∂W+[t] and Γt = ∂(R4 \ Ēt) = ∂W−[t] and so Γt is connected
by Lemma 3.1. That is, tdis = T which contradicts our assumption.

For each t ∈ [0, T ], let C[t] be the set of components of W [t]. By [19, The-
orem 5.2], for any 0 ≤ t < s ≤ T , there is a well-defined map πs,t : C[s] → C[t]
given by πs,t(Ωs) = Ωt if and only if there is a time-like continuous path in
W [t, s], connecting a point in Ωs × {s} to a point in Ωt × {t}. As already ob-
served, n(t1) > 2, while n(tdis) = 2. Hence, the pigeonhole principle implies
that there are two distinct components Ω1,Ω2 ∈ C[t1] so that πt1,tdis(Ω1) =
πt1,tdis(Ω2) = Ω0 ∈ C[tdis] As n(tdis) = 2, either Ω0 = W+[tdis] = Etdis or Ω0 =
W−[tdis]. In the former case, Ω1,Ω2 ⊂ Et1 and in the latter Ω1 and Ω2 are
both disjoint from Et1 .

Pick x1 ∈ Ω1 and x2 ∈ Ω2. By definition, (x1, t1), (x2, t1) are each con-
nected via time-like paths in W [tdis, t1] to the same component, Ω0, of
W [tdis]× {tdis}. Label the two paths, p1(s), p2(s), so that p1(1) = (x1, t1),
p2(1) = (x2, t1). As p1(0), p2(0) are in the same component of W [tdis]×
{tdis}, there is a path p3 inW [tdis] so that (p3(0), tdis) = p1(0), (p3(1), tdis) =
p2(0). By the avoidance principle, there is a universal constant C > 0 so
that if Br(y) ∩ Γtdis = ∅, then (y, t) ⊂ W [t] for any t ∈ [tdis, tdis + Cr2]. As
p3([0, 1]) is compact, we can choose 0 < r0 < dist(p3[0, 1],Γtdis). Hence,

p3([0, 1])× [tdis, tdis + Cr20] ⊂ W [tdis, tdis + Cr20]

As such, if δ1 = min
{

t1−tdis
2 , Cr20

}

, then for any t ∈ (tdis, tdis + δ1), (x1, t1),
(x2, t1) can also be connected via time-like paths in W [t, t′] to the same
components of W [t]. That is, πt1,t(Ω1) = πt1,t(Ω2).

Now let

I = {s ∈ [tdis, t1] : πt1,s(Ω1) ̸= πt1,s(Ω2)} .
Clearly, t1 ∈ I and, by what we just established [tdis, tdis + δ1) ∩ I = ∅. Let
t∗ = inf(I). So tdis + δ1 ≤ t∗ ≤ t1 and t∗ is a singular time of the flow. More-
over, by the openness argument of the previous paragraph, t∗ ∈ I.

Let Ω∗
1 = πt1,t∗(Ω1) and Ω∗

2 = πt1,t∗(Ω2) be distinct components of W [t∗].
If C∗ = π−1

t∗,tdis
(Ω0), then Ω∗

1 and Ω∗
2 are elements of this set and all elements

of C∗ are either subsets of Et∗ or all are disjoint from Et∗ . In fact, as n(tdis) =
2, either

Et∗ =
⋃

Ω∗∈C∗

Ω∗ or W [t∗] \ Et∗ =
⋃

Ω∗∈C∗

Ω∗.

As there is only one unbounded component of W [t∗], we may, by relabeling,
assume that Ω∗

1 is bounded.
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Claim 3.6. There is a point p ∈ ∂Ω∗
1 so that, for any R > 0, there exists

an element Ω∗ ∈ C∗ distinct from Ω∗
1 so that BR(p) ∩ Ω∗ ̸= ∅. Observe, it is

possible Ω∗ ̸= Ω∗
2.

To prove the claim, we only need to prove for the case both Ω∗
1,Ω

∗
2 ⊂ Et∗ ,

the case that they are both disjoint from Et∗ follows from the same argument.
If the claim is false, then for any p ∈ ∂Ω∗

1, there is Rp > 0 such that for any
Ω∗ ∈ C∗,Ω∗ ̸= Ω∗

1, one has BRp
(p) ∩ Ω∗ = ∅. As Ω∗

1 is assumed bounded,
∂Ω∗

1 is compact, and so there is a uniform R0 such that

dist(∂Ω∗
1,∪Ω∗∈C∗,Ω∗ ̸=Ω∗

1
∂Ω∗) > R0 > 0.

As Et∗ =
⋃

Ω∗∈C∗ Ω∗,

ZR0
=

{

x :
1

4
R0 ≤ dist(x,Ω∗

1) ≤
3

4
R0

}

∩ Ēt∗ = ∅.

Here ZR0
is compact. By Proposition 3.4, as Γt∗ \ Ēt∗ consists of a finite set

of isolated points, one may shrink R0 so

ZR0
∩
(

Ēt∗ ∪ Γt∗

)

= ∅.(3.1)

As we are considering a strong canonical boundary motion, this implies

ZR0
× {t∗} ∩ Ē = ∅.

Hence, as Ē is a closed set and ZR0
is a compact set, there is a δ∗ > 0 so

(3.2) ZR0
× [t∗ − δ∗, t∗] ∩ Ē = ∅

An immediate consequence of this is that, πt∗,s(Ω
∗
1) is disjoint from πt∗,s(Ω

∗)
for any Ω∗ ∈ C∗ not equal to Ω∗

1 and all s ∈ [t∗ − δ∗, t∗]. Indeed, otherwise
there would be a continuous space-time curve connecting Ω∗

1 and some dis-
tinct component, Ω∗, of C∗ that lies entirely in E ∩W [t∗ − δ∗, t∗]. How-
ever, such a curve would have to intersect ZR0

, contradicting (3.2). Hence,
πt1,s(Ω1) ̸= πt1,s(Ω2) for all s ∈ [t∗ − δ∗, t∗], contradicting the definition of
t∗.

To complete the proof, observe that, for the point p given by the claim,
one has that, for any small R, either:

1) B∗
R(p)\∂Et∗ contains at least three components;

2) B∗
R(p)\∂Et∗ contains two components of Et∗ ;
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3) B∗
R(p)\∂Et∗ contains two components both disjoint from Et∗ .

In any case, take a tangent flow at P = (p, t∗). The point P cannot be a
compact singularity by the choice of p and so the tangent flow is asymptot-
ically conical. By Item (4) of Proposition 3.3, for small enough R > 0, the
ball B∗

R(p) \ ∂Et∗ has only two connected components, one contained in Et∗

and one disjoint from Et∗ , so none of the above three situations can happen.
This contradiction completes the proof. □

4. Proof of Theorem 1.1

In this section, we will show Theorem 1.1. In fact, we will show a stronger
result from which Theorem 1.1 is an immediate consequence.

Theorem 4.1. Let Σ be a smooth closed connected hypersurface in R4 with
λ[Σ] ≤ Λ2. If {Γt}t∈[0,T ] is the level set flow with Γ0 = Σ and extinction time
T , then, for all t ∈ [0, T ], Γt is connected and n(t) ≤ 2. Moreover, if

E+ = W+[0, T ] and E− = W−[0, T ] ∪
(

R
4 × (T,∞)

)

,

then E± are both sets of locally finite perimeter in R4 × [0,∞) and there are
Brakke flows K± so that

(τ± = ±
(

∂[E±] + [W±[0]× {0}]
)

,K±)

are both matching motions with initial condition [Σ× {0}]. Finally,

∂∗E± = ∂E±

in R4 × (0,∞).

Proof. First observe that we may assume λ(Σ) < Λ2. Indeed, suppose that
λ(Σ) = Λ2 and consider, {Σt}t∈[0,δ], the classical solution to (1.1) with Σ0 =

Σ. As Σ is closed, λ(Σ) = F [ρ−1(Σ− x)] for some ρ > 0 and x ∈ Rn+1.
Hence, by the Huisken monotonicity formula, either λ[Σδ] < Λ2 or Σ =
ρΥ+ x where Υ is a closed self-shrinker. In the latter case, the theorem
is immediate (as the flow will remain smooth until disappearing), while in
the former, one can prove the result for Σδ and then use the fact that the
flow was smooth to conclude it also for Σ.

As Σ is a closed connected hypersurface in R4, standard topological
results, e.g., [15], imply that there is a connected bounded domain E0 ⊂ R4
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with ∂E0 = Σ. Let n be the unit normal to Σ that points into E0. As Σ is
smooth, there is an ϵ > 0 so for |s| < ϵ

Σs = {p+ sn(p)|p ∈ Σ}

is a foliation of Tϵ(Σ) by hypersurfaces . By shrinking ϵ, if needed, we can also
ensure that λ(Σs) < Λ2 for |s| < ϵ. Pick a Lipschitz function u0 : R

4 → R

with the property that

1) {u0 = s} = Σs for |s| < ϵ,

2) {u0 ≤ −ϵ} is the unbounded component of R4\Tϵ(Σ); and

3) {u0 ≥ ϵ} is the bounded component of R4\Tϵ(Σ).

Let u be the solution to 2.4 with initial data u0. As such, if Γ
s
t ={x|u(t, x)=s},

then for |s| < ϵ, {Γs
t}t≥0 is the level set flow with Γs

0 = Σs. For each i ≥ 1,
pick s±i ∈ (−ϵ, ϵ) so that s−i < s−i−1 < 0 < si+1 < si and limi→±∞ si = 0.
Let Ei

0 = {u0 > si} and Ei = {u > si}. By [13, 12.11], one can choose the
si so that for i ̸= 0, there are Brakke flows Ki so that

(

Ei
0, E

i,Ki
)

are all
strong canonical boundary motion.

By Proposition 3.5, each Γi
t = Γsi

t = {u = si} is connected and for t ∈
[0, Ti), where Ti is the extinction time of the flow, divides R4 into two compo-
nents W±

i [t] which satisfy Γi
t = ∂W±

i [t] and W+
i [t] = Ei

t = {x|u(t, x) > si}.
Consider the open sets

U+[t] =

∞
⋃

i=1

W+
i [t] = {x|u(x, t) > 0} and

U−[t] =

∞
⋃

i=1

W−
−i[t] = {x|u(x, t) < 0} .

As each W±
i [t] is connected and U±[t] is their nested union, it follows that

both the U±[t] are also connected. Moreover, as

Γt = {x|u(x, t) = 0} = R
4\

(

U+[t] ∪ U−[t]
)

,

W±[t] = U±[t]. For i ≥ 1 let,

Gi[t] = R
4\

(

W+
i [t] ∪W−

−i[t]
)

= {x|s−i ≤ u(x, t) ≤ si}

and observe that each Gi[t] is a compact set, Gi+1[t] ⊂ Gi[t] and
⋂∞

i=1Gi[t] =
Γt. For t ∈ [0, T ], each Gi[t] is connected. Indeed, T−i, the extinction time
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of
{

Γ−i
t

}

t≥0
must satisfy T−i > T and so, when t ≤ T , Γ−i

t and W±
−i[t] are

both non-empty and connected. In particular, there is exactly one compo-
nent, G−

i [t], of Gi[t] that contains Γ−i
t = ∂W±

−i[t]. Let G+
i [t] = Gi[t]\G−

i [t],
so G+

i [t] is closed and disjoint from G−
i [t]. Observe that W−

−i[t] ∪G−
i [t] is a

closed non-empty subset of W−
i [t] = W−

i [t] ∪ Γi
t = {u ≤ si} that is disjoint

from G+
i [t]. As G+

i [t] is also a closed subset of W−
i [t], W−

i [t] = W−
−i[t] ∪

G−
i [t] ∪G+

i [t] and the closure of a connected set is connected, G+
i [t] = ∅,

and so Gi[t] is connected. As the nested intersection of compact connected
sets is connected, it follows that Γt is connected and so we’ve proved the
first part of the theorem.

To prove the second part of the theorem we observe that for i ≥ 1,
Ei = W+

i [0, T ] is a set of finite perimeter while

F−i = {u < s−i} = R
4 × [0,∞)\Ē−i = W−

−i[0, T ] ∪ (Rn+1 × (T,∞)),

is a set of locally finite perimeter. Moreover, there are matching motions

(

τ i = ∂[Ei] + [W+
i [0]],Ki

)

and
(

τ−i = −
(

∂[F−i] + [W−
−i[0]]

)

,K−i
)

with initial conditions [Σs±i
× {0}]. As λ(Σs±i

) < Λ2 < 2, [17, Theorem 3.4]
implies that, up to passing to a subsequence, the two sequences of matching
motions converge to matching motions (τ+,K+) and (τ−,K−) both with
initial condition [Σ× {0}]. It further follows, from standard compactness
results for sets of locally finite perimeter, that the Ei converge, as sets of
finite perimeter, to

E+ = W+[0, T ] =
⋃

t∈[0,T ]

U+[t] = {u > 0}

which is also a set of finite perimeter. Likewise, the F−i converge, as sets of
locally finite perimeter, to F− where

F− = W−[0, T ] ∪
(

R
4 × (T,∞)

)

=





⋃

t∈[0,T ]

U−[t]



 ∪
(

R
4 × (T,∞)

)

= {u < 0} .

Set E− = F− and observe that τ± = ± (∂[E±] + [W±[0]]) follows from the
continuity of the boundary operator.
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It remains only to verify the claim about the reduced boundary. To that
end observe that in R4 × (0,∞)

∂∗E+ ⊂ ∂E+.

We now suppose that (x, t) ∈ ∂E+ and t > 0. By definition, for any r > 0,
Br(x, t) ∩ E+ ̸= ∅. In particular, for i sufficiently large Br(x, t) ∩W+

i [0, T ] ̸=
∅. As x ∈ Γt, we have x ̸∈ W+

i [0, T ] and so there is some point (yr, tr) ∈
Br(x, t) ∩ ∂W+

i [0, T ]. As
(

Ei
0, E

i,Ki
)

is a strong canonical boundary motion,
it has only one compact singularity (at the terminal time Ti < T ) and we can
assume tr < Ti. Hence, by Proposition 3.4 that yr ∈ spt(µi

tr) and so (yr, tr)
has positive Gaussian density for Ki. As Ki converges to K+, the upper
semicontinuity of Gaussian density implies that (x, t) is a point of positive
Gaussian density for K+. As (τ+,K+) is a matching motion starting from Σ
and τ+ is the reduced boundary of a set of finite perimeter, (x, t) ∈ ∂∗E+.
That is, ∂∗E = ∂E+ in R4 × (0,∞). Arguing in exactly the same way shows
that ∂∗E− = ∂E− in R4 × (0,∞). □

Corollary 4.2. Let Σ be a smooth closed connected hypersurface in R4

with λ[Σ] ≤ Λ2. If {Γt}t∈[0,T ], the level set flow of Σ with extinction time T ,
is non-fattening, then there is a unique strong canonical boundary motion
(E0, E,K), with ∂E0 = Σ.

5. Forward clearing out

In this section we apply Theorem 1.1 to prove Corollary 1.2.

Proof of Corollary 1.2. If the Corollary is not true, then there exist Ci →
0, ηi > 0, Ri > 0, 0 < ρi <

Ri

2Ci
satisfying ηi

C3
i

→ 0 and a sequence of non-

fattening level set flows {Mi,t}t≥0 with Mi,0, closed hypersurfaces with

λ(Mi,0) ≤ Λ2 − ϵ, Mi,t ̸= ∅ for t ∈ (t0, t0 +R2
i ) and so that the flows reach

the space-time point (x0, t0), but satisfy

H3(Bρi
(x0) ∩Mt0+C2

i ρ
2
i
) < ηiρ

3
i .

By Theorem 4.1 and Corollary 4.2, the Mi,t agree with the slices of a strong
canonical boundary motion (Ei,0, Ei,Ki = {µi,t}) for t ∈ (t0, t0 +R2

i ). In
particular, in this time interval, by Proposition 3.4,

µi,t = H3 ¬
Mi,t

and so µi,t(Bρi
(x0)) < ηiρ

3
i .
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Rescale the flows to get a new flow K̃i = D 1

Ciρi

(Ki − (x0, t0)) and let

{M̃i,t} be the corresponding rescaling of the level set flow {Mt}. By Brakke’s
compactness theorem [13, 7.1], up to passing to a subsequence, K̃i converges
to a limit flow K̃ = {µ̃t}, and moreover, by [17, Theorem 3.5], (Ti,Ki) con-
verge to a matching motion (T̃ , K̃). Clearly, λ[µ̃t] ≤ Λ2 − ϵ. We also have

µ̃i,1

(

B 1

Ci

(0)
)

<
ηi

(Ci)3
→ 0

That is, µ̃1(R
4) = 0 and so the limit flow K̃ must be extinct before t = 1.

As (T̃ , K̃) is a matching motion, this means that K̃ must develop a col-
lapsed singularity at some te ≤ 1. The entropy bound and the classification
of singularities given in Proposition 3.3 imply that this singularity has com-
pact support. Hence, by Brakke’s regularity theorem, for large enough i,
the flow {M̃i,t} must develop a compact singularity at some time t̃i < 2, and
hence {Mi,t} develops a compact singularity at some time ti < t0 + 2C2

i ρ
2
i <

t0 +
2R2

i

4 < t0 +R2
i . As Mi,t0+R2

i
̸= ∅ and there is a compact singularity be-

fore the extinction time, the flow must disconnect before time t0 +R2
i , con-

tradicting Theorem 1.1. □
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