On an open problem of characterizing the birationality of 4 K

Meng Chen and Yong Hu

Abstract

We answer an open problem raised by Chen-Zhang in 2008 and prove that, for any minimal projective 3 -fold X of general type with the geometric genus $p_{g}(X) \geq 5$, the 4 -canonical map $\varphi_{4, X}$ is non-birational if and only if X is birationally equivalent to a fibration, onto a curve, of which the general fiber is a minimal surface of general type with $\left(c_{1}^{2}, p_{g}\right)=(1,2)$. The statement does not hold for those with the geometric genus $p_{g}(X) \leq 4$ according to our examples.

1. Introduction

Throughout we work over an algebraically closed field of characteristic 0 .
In this note, a $(1,2)$-surface means a nonsingular projective surface of general type whose minimal model has the invariants: $c_{1}^{2}=1$ and $p_{g}=2$.

We mean a fibration by a surjective projective morphism with connected fibers. Let $f: Y \rightarrow T$ be a fibration from a smooth projective 3 -fold Y onto a smooth projective curve T. Denote by F a general fiber of f. When the general fiber F is a $(1,2)$-surface, we say that f is a pencil of $(1,2)$-surfaces. For a projective 3 -fold Z, we say that Z is birationally fibred by a pencil of $(1,2)$-surfaces if Z is birationally equivalent to a nonsingular projective 3 -fold which admits a pencil of $(1,2)$-surfaces.

A famous theorem of Bombieri says that, for any nonsingular projective surface S of general type, $\varphi_{4, S}$ is non-birational if and only if S is a $(1,2)$ surface. A direct corollary is that any nonsingular projective 3 -fold of general type, admitting a pencil of (1,2)-surfaces, necessarily has non-birational

[^0]4-canonical map. A very natural question (raised in Chen-Zhang CZ08, $6.4(1)])$ is whether the converse is true!

The purpose of this paper is to prove the following theorem which answers the above question:

Theorem 1.1. Let X be a minimal projective 3 -fold of general type with $p_{g}(X) \geq 5$. Then $\varphi_{4, X}$ is non-birational if and only if X is birationally fibred by a pencil of $(1,2)$-surfaces.

One has the following example:
Example 1.2. (see Fletcher [Flet]) The general hypersurface of degree 10:

$$
X=X_{10} \subset \mathbb{P}(1,1,1,1,5)
$$

is a smooth canonical 3-fold with $p_{g}=4$ and non-birational 4-canonical map $\varphi_{4, X}$. Since X is a double cover onto \mathbb{P}^{3}, X admits no genus 2 curve class of canonical degree 1 . Hence X admits no pencil of $(1,2)$-surfaces (by the same argument as in [CZ08, Example 6.3]).

Example 1.2 , together with Example 3.1 and Example 3.2 in the last section, shows that the condition " $p_{g}(X) \geq 5$ " in Theorem 1.1 is sharp.

Throughout we use the following symbols:
$\diamond " \sim$ " denotes linear equivalence or \mathbb{Q}-linear equivalence (subject to the context);
$\diamond " \equiv$ " denotes numerical equivalence;
\diamond " $D_{1}|\succcurlyeq| D_{2} \mid$ " (or, equivalently, " $\left|D_{2}\right| \preccurlyeq\left|D_{1}\right|$ ") means, for linear systems $\left|D_{1}\right|$ and $\left|D_{2}\right|$ of divisors on a variety,
$\left|D_{1}\right| \supseteq\left|D_{2}\right|+$ certain fixed effective divisor.

2. Proof of Theorem 1.1

Throughout this section, X denotes a minimal projective \mathbb{Q} FT 3-fold of general type with $p_{g}(X) \geq 5$. Let K_{X} be a canonical divisor of X and denote by $\operatorname{Sing}(X)$ the singular locus of X. Since 3-dimensional terminal singularities are isolated, $\operatorname{Sing}(X)$ consists of only finitely many points.

2.1. Fixed notation and the standard resolution for $\operatorname{Mov}\left|K_{X}\right|$

First of all, we take a resolution of singularities of X, say: $\alpha: X_{0} \longrightarrow$ X where X_{0} is projective. In particular, we may choose α such that α is an isomorphism over the smooth locus of X. As X is minimal, we have $p_{g}\left(X_{0}\right)=p_{g}(X) \geq 5$. We may write

$$
\alpha^{*}\left(K_{X}\right)=M_{0}+Z_{0}^{\prime}
$$

where $\left|M_{0}\right|=\operatorname{Mov}\left|K_{X_{0}}\right|$ and Z_{0}^{\prime} is an effective \mathbb{Q}-divisor.
By Hironaka's big theorem, we may resolve the base locus $\mathrm{Bs}\left|M_{0}\right|$ by taking successive blowups, say:

$$
\beta: X^{\prime}=X_{n+1} \xrightarrow{\pi_{n}} X_{n} \rightarrow \cdots \rightarrow X_{i+1} \xrightarrow{\pi_{2}} X_{i} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\pi_{0}} X_{0}
$$

where each π_{i} is a blow-up along a nonsingular center $W_{i}\left(W_{i}\right.$ is contained in the base locus of the movable part $\operatorname{Mov}\left|\left(\pi_{0} \circ \pi_{1} \circ \cdots \circ \pi_{i-1}\right)^{*}\left(M_{0}\right)\right|$. Moreover, the morphism $\beta=\pi_{n} \circ \cdots \circ \pi_{0}$ satisfies the following properties:

1) The linear system $|M|=\operatorname{Mov}\left|\beta^{*}\left(M_{0}\right)\right|$ is base point free.
2) One may write

$$
\begin{align*}
K_{X^{\prime}} & =\beta^{*}\left(K_{X_{0}}\right)+\sum_{i=0}^{n} a_{i} E_{i}, \tag{2.1}\\
\beta^{*}\left(M_{0}\right) & =M+\sum_{i=0}^{n} b_{i} E_{i}, \tag{2.2}
\end{align*}
$$

where each E_{i} is the strict transform of the exceptional divisor of π_{i} for $0 \leq i \leq n, a_{i}$ and b_{i} are positive integers.

For any positive integer m, denote by $\left|M_{m}\right|$ the moving part of $\left|m K_{X^{\prime}}\right|$. By our notation, $M=M_{1}$.

Lemma 2.1. (see Ch04, Lemma 4.2]) In the above setting, the following properties hold:
(i) For any $i, a_{i} \leq 2 b_{i}$.
(ii) If $a_{k}=b_{k}=1$ for some k with $0 \leq k \leq n$, then W_{k} is a smooth curve contained in X_{k}.
(iii) If $a_{k}=2 b_{k}$ for some k such that $0 \leq k \leq n$, then W_{k} is a closed point of X_{k}.

Let $\pi=\alpha \circ \beta: X^{\prime} \longrightarrow X$ be the composition. We may write

$$
\begin{equation*}
K_{X^{\prime}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)+E_{\pi}, \quad \pi^{*}\left(K_{X}\right) \sim_{\mathbb{Q}} M+E_{\pi}^{\prime}, \tag{2.3}
\end{equation*}
$$

where E_{π} is an effective π-exceptional \mathbb{Q}-divisor and E_{π}^{\prime} is an effective \mathbb{Q} divisor. Let $g=\varphi_{1, X} \circ \pi$ and set $\Sigma=g\left(X^{\prime}\right)$. Take the Stein factorization of g, say $X^{\prime} \xrightarrow{f} B \xrightarrow{s} \Sigma$. We have the following commutative diagram:

where B is a normal projective variety.

2.2. The case of $\operatorname{dim}(B)=1$ and 3

This is a known case since we have the following theorem:
Theorem 2.2. (see Chen-Zhang [CZ08, 4.2, 4.8, 4.9]) Let X be a minimal 3 -fold of general type with $p_{g}(X) \geq 5$. Keep the notation in 2.1. The following statements hold:
(i) Assume $\operatorname{dim}(B)=1$. Then $\varphi_{4, X}$ is non-birational if and only if the general fiber of f is a $(1,2)$-surface.
(ii) Assume $\operatorname{dim}(B)=3$. Then $\varphi_{4, X}$ is birational onto its image.

2.3. The case of $\operatorname{dim}(B)=2$

Let C be a general fiber of f. The following result was proved by ChenZhang as well:

Theorem 2.3. (see [CZ08, 4.3]) Let X be a minimal 3-fold of general type with $p_{g}(X) \geq 5$. Keep the notation in 2.1. Assume $\operatorname{dim}(B)=2$. Then $\varphi_{4, X}$ is non-birational if and only if $g(C)=2$ and $\left(\pi^{*}\left(K_{X}\right) \cdot C\right)=1$.

(\ddagger) From now on, we always assume:

$$
g(C)=2 \text { and }\left(\pi^{*}\left(K_{X}\right) \cdot C\right)=1
$$

Pick a general member S in $|M|$. By Chen-Zhang [CZ16, Theorem 2.4], one has

$$
\left|2 n K_{X^{\prime}}\right| \|\left._{S} \succcurlyeq\left|n\left(K_{X^{\prime}}+S\right)\right|\right|_{S}=\left|n K_{S}\right|
$$

for any sufficiently large and divisible integer n. Noting that

$$
2 n \pi^{*}\left(K_{X}\right) \geq M_{2 n}
$$

and that $\left|n \sigma^{*}\left(K_{S_{0}}\right)\right|$ is base point free, we have

$$
\begin{equation*}
\left.\pi^{*}\left(K_{X}\right)\right|_{S} \sim_{\mathbb{Q}} \frac{1}{2} \sigma^{*}\left(K_{S_{0}}\right)+H_{S} \tag{2.4}
\end{equation*}
$$

where H_{S} is an effective \mathbb{Q}-divisor on S. We may write

$$
\begin{equation*}
\left.\left.\pi^{*}\left(K_{X}\right)\right|_{S} \sim_{\mathbb{Q}} S\right|_{S}+\left.E_{\pi}^{\prime}\right|_{S} \text { and }\left.S\right|_{S} \equiv a C \tag{2.5}
\end{equation*}
$$

where $a \geq p_{g}(X)-2 \geq 3$.
Lemma 2.4. Let X be a minimal 3 -fold of general type with $p_{g}(X) \geq 5$. Keep the notation in 2.1. Assume that $\operatorname{dim}(B)=2$ and that $\varphi_{4, X}$ is nonbirational. Then there exists exactly one exceptional divisor $E \subset \operatorname{Supp}\left(E_{\pi}\right)$ such that $(E \cdot C)=1$.

Proof. By Theorem 2.3 and Relation (2.5), we have $\left(\left.E_{\pi}^{\prime}\right|_{S} \cdot C\right)=1$. By 2.3) and the assumption, we have $\left(\left.E_{\pi}\right|_{S} \cdot C\right)=1$.

First we prove that the horizontal part of $\operatorname{Supp}\left(\left.E_{\pi}^{\prime}\right|_{S}\right)$ is an integral curve Γ. Take a general member K_{1} in $\left|K_{X}\right|$, we have $\left.\pi^{*}\left(K_{1}\right)\right|_{C}=\left.E_{\pi}^{\prime}\right|_{C}$. It is clear that one of the following cases occurs:
(a) $\operatorname{Supp}\left(\left.E_{\pi}^{\prime}\right|_{C}\right)$ consists of one single point P with $2 P \sim K_{C}$;
(b) $\operatorname{Supp}\left(\left.E_{\pi}^{\prime}\right|_{C}\right)$ consists of two different points P and Q, where $P+Q \sim$ K_{C}.

We will exclude the possibility of (b). Otherwise, we may write $\left.E_{\pi}^{\prime}\right|_{C}=$ $\varepsilon P+(1-\varepsilon) Q$, where $0<\varepsilon<1$.

By the argument in the proof of [CZ08, Proposition 4.6], we know that $\left.\operatorname{Mov}\left|4 K_{X^{\prime}}\right|\right|_{C} \succcurlyeq\left|2 K_{C}\right|$. Noting that $\operatorname{deg}\left(\left.4 E_{\pi}^{\prime}\right|_{C}\right)=4$, we see $\left.4 E_{\pi}^{\prime}\right|_{C} \sim 2 K_{C}$.

Thus 4ε is a positive integer. If $4 \varepsilon=1$, then $\left.4 E_{\pi}^{\prime}\right|_{C} \sim K_{C}+2 Q$, which implies that $2 Q \sim K_{C}$, a contradiction. Similarly, we can conclude that $4 \varepsilon \neq 3$. Thus we have $\varepsilon=\frac{1}{2}$ and

$$
2 P+2 Q=\left\llcorner\left. 5 E_{\pi}^{\prime}\right|_{C}\right\lrcorner \geq\left. M_{5}\right|_{C}
$$

for a general fiber C. This simply implies that $\left.\varphi_{5, X}\right|_{C}$ is not birational and neither is $\varphi_{5, X}$, which contradicts to [Ch03, Theorem 1.2(2)]. Therefore the only possibility is case (a).

Since $\left.E_{\pi}\right|_{C}+\left.E_{\pi}^{\prime}\right|_{C} \in\left|K_{C}\right|$ and $2 P \in\left|K_{C}\right|$, we have $\left.E_{\pi}\right|_{C}=P$, which implies that the horizontal part of $\left.E_{\pi}\right|_{S}$ (with respect to the fibration $\left.f\right|_{S}$) coincides with the horizontal part of $\left.E_{\pi}^{\prime}\right|_{S}$ (with respect to the fibration $\left.\left.f\right|_{S}\right)$. Since $\operatorname{Supp}\left(\left.E_{\pi}\right|_{C}\right)$ consists of exactly one point for a general C, there exists only one exceptional divisor E such that $(E \cdot C)=1$. In particular, the coefficient of E in E_{π} (and hence in E_{π}^{\prime}) is 1 .

Furthermore, for any other π-exceptional divisor $E^{\prime} \neq E,\left.E^{\prime}\right|_{S}$ is vertical with respect to $\left.f\right|_{S}$ for a general member S.

By Lemma 2.4, for a general member $S \in|M|$, we may write

$$
\begin{equation*}
\left.E_{\pi}\right|_{S}=\Gamma+E_{V},\left.\quad E_{\pi}^{\prime}\right|_{S}=\Gamma+E_{V}^{\prime} \tag{2.6}
\end{equation*}
$$

where Γ is the horizontal part satisfying $(\Gamma \cdot C)=1$ for a smooth fiber C contained in S, E_{V} and E_{V}^{\prime} are both vertical parts with respect to $\left.f\right|_{S}$.

Lemma 2.5. Let X be a minimal 3-fold of general type with $p_{g}(X) \geq 5$. Keep the notation in 2.1. Assume that $\operatorname{dim}(B)=2$ and that $\varphi_{4, X}$ is nonbirational. We have $\left(\left.\pi^{*}\left(K_{X}\right)\right|_{S} \cdot \Gamma\right)>0$. In particular, we have $E=E_{i}$ for some $i, a_{i}=b_{i}=1$ and $\pi(E)$ is an irreducible curve on X.

Proof. It is clear that $p_{g}(S)=h^{0}\left(\left.\left(K_{X^{\prime}}+S\right)\right|_{S}\right) \geq 3$, so S is not a $(1,2)$ surface and we have $\left(\sigma^{*}\left(K_{S_{0}}\right) \cdot C\right) \geq 2$ by the Hodge index theorem and the result of Bombieri Bom that a minimal $(1,1)$ surface is simply connected (see also [CC15, Lemma 2.4] for a direct reference).

By Relation (2.4), we have $\left(\sigma^{*}\left(K_{S_{0}}\right) \cdot C\right)=2$ and $\left(H_{S} \cdot C\right)=0$. Thus H_{S} is composed of vertical divisors with respect to $\left.f\right|_{S}$. Since Γ is the section of the fibration $\left.f\right|_{S}$, we have $\left(\left.\pi^{*}\left(K_{X}\right)\right|_{S} \cdot \Gamma\right) \geq \frac{1}{2}\left(\sigma^{*}\left(K_{S_{0}}\right) \cdot \Gamma\right)$ by 2.4). Thus it is sufficient to prove $\left(\sigma^{*}\left(K_{S_{0}}\right) \cdot \Gamma\right)>0$.

Suppose $\left(\sigma^{*}\left(K_{S_{0}}\right) \cdot \Gamma\right)=0$. We consider the contraction $\sigma: S \rightarrow S_{0}$ onto the minimal model S_{0}. Since $g(C)=2,\left(\sigma^{*}\left(K_{S_{0}}\right) \cdot C\right)=2$ and $C^{2}=0$, we see that all exceptional divisors of σ are contained in special fibers of $\left.f\right|_{S}$.

Thus $C=\sigma^{*}(\bar{C})$ where \bar{C} comes from a free pencil of genus 2 on S_{0}. Let $\bar{\Gamma}=\sigma_{*}(\Gamma)$. Since $(\bar{\Gamma} \cdot \bar{C})=(\Gamma \cdot C)=1$, we conclude that $\bar{\Gamma}$ is a section of fibration induced from the free pencil generated by \bar{C}. In particular, $\bar{\Gamma} \neq 0$. Thus $\bar{\Gamma}$ is a (-2)-curve on S_{0}. By the adjunction formula and (2.6), we can write

$$
K_{S}=\left.\left(K_{X^{\prime}}+S\right)\right|_{S}=\left.\pi^{*}\left(K_{X}\right)\right|_{S}+\left.S\right|_{S}+\Gamma+E_{V}
$$

Considering the Zariski decomposition of the above divisor, we can write

$$
\left.\pi^{*}\left(K_{X}\right)\right|_{S}+\left.S\right|_{S}+\Gamma+E_{V} \equiv\left(\left.\pi^{*}\left(K_{X}\right)\right|_{S}+\left.S\right|_{S}+N^{+}\right)+N^{-}
$$

where
(z1) both N^{+}and N^{-}are effective \mathbb{Q}-divisors and $N^{+}+N^{-}=\Gamma+E_{V}$;
(z2) the \mathbb{Q}-divisor $\left.\pi^{*}\left(K_{X}\right)\right|_{S}+\left.S\right|_{S}+N^{+}$is equal to $\sigma^{*}\left(K_{S_{0}}\right)$;
(z3) $\left(\left(\left.\pi^{*}\left(K_{X}\right)\right|_{S}+\left.S\right|_{S}+N^{+}\right) \cdot N^{-}\right)=0$.
Since $\left(\sigma^{*}\left(K_{S_{0}}\right) \cdot C\right)=2$ and $\left(\left.\pi^{*}\left(K_{X}\right)\right|_{S} \cdot C\right)=1$, we have $N^{+}=\Gamma+A$, where A is an effective vertical divisor. Thus we can write

$$
\begin{aligned}
\sigma^{*}\left(K_{S_{0}}\right) & =\left.\pi^{*}\left(K_{X}\right)\right|_{S}+\left.S\right|_{S}+\Gamma+A \\
& \equiv 2 a C+2 \Gamma+E_{V}^{\prime}+A
\end{aligned}
$$

Pushing forward to S_{0}, we have

$$
K_{S_{0}} \equiv 2 a \bar{C}+2 \bar{\Gamma}+\sigma_{*}\left(E_{V}^{\prime}+A\right)
$$

where $\sigma_{*}\left(E_{V}^{\prime}+A\right)$ is clearly vertical. Then we get $\left(K_{S_{0}} \cdot \bar{\Gamma}\right) \geq 2 a-4 \geq 2$, which contradicts to our assumption. So our conclusion is that $\left(\sigma^{*}\left(K_{S_{0}}\right)\right.$. $\Gamma)>0$.

Note that Γ comes from the exceptional divisor E. Since $\left(\left.\pi^{*}\left(K_{X}\right)\right|_{S}\right.$. $\left.\left.E\right|_{S}\right) \geq\left(\pi^{*}\left(K_{X}\right) \cdot \Gamma\right)>0$, we see that $E=E_{i}$ for some index i by the construction of π. In particular, by Lemma 2.5, we have $a_{i}=b_{i}=1$.

By Lemma 2.1, one sees that E comes from the blow-up of a smooth curve. Thus E carries a natural fibration whose general fiber is a smooth rational curve. Denote by l_{E} the general fiber of this fibration. We have the following observation:

Lemma 2.6. Under the same assumption as that of Lemma 2.5, keep the above notation. We have $\left(S \cdot l_{E}\right)=1$. In particular, we have $\left.S\right|_{E} \geq l_{1}+l_{2}$ for two distinct general elements in the same algebraic class of l_{E} on E.

Proof. Denote by E_{i}^{i} the exceptional divisor of π_{i} so that E dominates E_{i}^{i} and by $l_{E_{i}^{i}}$ the corresponding general ruling. We have $\left(E_{i}^{i} \cdot l_{E_{i}^{i}}\right)=-1$. Denote by \tilde{E} the total transform of E_{i}^{i} on X^{\prime}. Then we have $\left(\tilde{E} \cdot l_{E}\right)=-1$ by the projection formula. For any exceptional divisor D not contained in \tilde{E}, we have $\left(D \cdot l_{E}\right)=0$ by the choice of l_{E}. By (2.3), $\left(\pi^{*}\left(K_{X}\right) \cdot l_{E}\right)=0$ and our construction of π, we have $\left(S \cdot l_{E}\right) \leq 1$. Since $\left.f\right|_{E}$ is a birational morphism and f is induced by $|S|$, we have $\left(S \cdot l_{E}\right)_{X^{\prime}}=\left(\left.S\right|_{E} \cdot l_{E}\right)_{E}>0$. Since E is a smooth projective surface and $\left.S\right|_{E}$ is a Cartier divisor, we have $\left(S \cdot l_{E}\right)=1$.

Take two distinct general fibers l_{1} and l_{2} in the ruling of E. Since l_{E} is a smooth rational curve, we have $h^{0}\left(l_{E},\left.S\right|_{l_{E}}\right)=2$. Since $((S-E) \cdot C)=$ $-1<0$, we have $h^{0}\left(X^{\prime}, S-E\right)=0$. Thus we have $h^{0}\left(E,\left.S\right|_{E}\right) \geq p_{g}(X) \geq 5$. Consider the natural exact sequence

$$
0 \rightarrow H^{0}\left(E,\left.S\right|_{E}-l_{1}-l_{2}\right) \rightarrow H^{0}\left(E,\left.S\right|_{E}\right) \rightarrow H^{0}\left(l_{1},\left.S\right|_{l_{1}}\right) \oplus H^{0}\left(l_{2},\left.S\right|_{l_{2}}\right)
$$

We naturally get $h^{0}\left(E,\left.S\right|_{E}-l_{1}-l_{2}\right) \geq 1$, which implies that $\left.S\right|_{E} \geq l_{1}+$ l_{2}.

Now we are ready to prove the main statement.
Theorem 2.7. Let X be a minimal 3 -fold of general type with $p_{g}(X) \geq 5$. Keep the notation in 2.1. Assume that $\operatorname{dim}(B)=2$ and that $\varphi_{4, X}$ is nonbirational. Then X is birationally fibred by a pencil of $(1,2)$-surfaces.

Proof. First of all, we note that all our above arguments remain effective if we replace π by any further birational modification over π.

Since E is birational to B, we may take a common smooth projective birational modification W of both B and E. Take a birational modification $\pi^{\prime}: X^{\prime \prime} \rightarrow X^{\prime}$ such that $f \circ \pi^{\prime}$ factors through $W \rightarrow B$. Denote by $f^{\prime \prime}: X^{\prime \prime} \rightarrow$ W the corresponding fibration. The natural \mathbb{P}^{1}-fibration on E induces a fibration on W. Denote by l_{W} the general fiber of the fibration induced from the ruling. Set $\tilde{\pi}=\pi \circ \pi^{\prime}$.

Now we work on the higher model $X^{\prime \prime}$, on which we have the base point free linear system $\left|M^{\prime \prime}\right|=\left|\pi^{*}(M)\right|$ and the general member $S^{\prime \prime}$ has the property: $S^{\prime \prime}=\pi^{\prime *}(S)=f^{\prime \prime *}(H)$ for a certain nef and big divisor H on W. By Lemma 2.6, we have $H \geq l_{1, W}+l_{2, W}$ for two general distinct fibers on W (in the same algebraic class as that of $\left.l_{W}\right)$. Set $F^{\prime \prime}=f^{\prime \prime *}\left(l_{W}\right)$
and $F_{i}^{\prime \prime}=f^{\prime \prime *}\left(l_{i, W}\right)$ for $i=1,2$. Clearly $F^{\prime \prime}$ induces a pencil on $X^{\prime \prime}$ and $\tilde{\pi}^{*}\left(K_{X}\right) \geq S^{\prime \prime} \geq F_{1}^{\prime \prime}+F_{2}^{\prime \prime} \equiv 2 F^{\prime \prime}$.

Since $\left.S^{\prime \prime}\right|_{F^{\prime \prime}}$ is moving, we have $p_{g}\left(F^{\prime \prime}\right) \geq 2$. On the other hand, the canonical system $\left|K_{X^{\prime \prime}}\right|$ contains a free sub-pencil $\left|F_{1}^{\prime \prime}+F_{2}^{\prime \prime}\right|$ with a generic irreducible element $F^{\prime \prime}$, which is smooth and projective. By CC15, Lemma 2.1], we have

$$
\begin{equation*}
\left.\tilde{\pi}^{*}\left(K_{X}\right)\right|_{F^{\prime \prime}} \geq \frac{2}{3} \sigma^{\prime \prime *}\left(K_{F_{0}^{\prime \prime}}\right) \tag{2.7}
\end{equation*}
$$

where $\sigma^{\prime \prime}: F^{\prime \prime} \rightarrow F_{0}^{\prime \prime}$ denotes the contraction onto the minimal model.
Denote by $C^{\prime \prime}$ a general fiber of $f^{\prime \prime}$. Pick a smooth such element $C_{F}^{\prime \prime} \subset F^{\prime \prime}$. Clearly we have

$$
1=\left(\left.\tilde{\pi}^{*}\left(K_{X}\right)\right|_{F^{\prime \prime}} \cdot C_{F}^{\prime \prime}\right) \geq \frac{2}{3}\left(\sigma^{\prime \prime *}\left(K_{F_{0}^{\prime \prime}}\right) \cdot C_{F}^{\prime \prime}\right)
$$

which means that $\left(\sigma^{\prime \prime *}\left(K_{F_{0}^{\prime \prime}}\right) \cdot C_{F}^{\prime \prime}\right)=1$. Hence $F_{0}^{\prime \prime}$ must be a $(1,2)$-surface by Bombieri (see also [CC15, Lemma 2.4] for a direct reference). We are done.

Now it is clear that Theorem 1.1 follows directly from Theorem 2.2, Theorem 2.3 and Theorem 2.7. We have finished the proof of our main theorem.

3. Examples

It is interesting to know whether a pencil of $(1,2)$-surfaces necessarily appears in those 3 -folds of general type with $p_{g} \leq 4$ and with non-birational 4 -canonical maps. We provide two more examples here.

Example 3.1. Consider the general hypersurface of degree 12 (canonical 3fold) $X=X_{12} \subset \mathbb{P}(1,1,1,2,6)$. One knows that $K_{X}^{3}=1, p_{g}(X)=3$ and X has 2 orbifold points $\frac{1}{2}(1,-1,1)$. It is also clear that $\varphi_{4, X}$ is non-birational. We claim that X does not admit any pencil of (1,2)-surfaces.

Assume, to the contrary, that X admits a pencil of (1,2)-surfaces, say $\Lambda \subset\left|F_{1}\right|$ where $\operatorname{dim} \Lambda=1, F_{1}$ is irreducible and is of (1,2)-type. We keep the notation in 2.1 and modify π (for simplicity, still denoted by π), if necessary, so that $\operatorname{Mov}\left|\left\lfloor\pi^{*}\left(F_{1}\right)\right\rfloor\right|$ is base point free. Denote by F the generic irreducible element of $\operatorname{Mov}\left|\left\lfloor\pi^{*}\left(F_{1}\right)\right\rfloor\right|$. By assumption, F is a (1,2)-surface. Since $\left|K_{X}\right|$ is not composed of a pencil and, in fact, $\varphi_{1, X}$ induces a genus 2 fibration
(see [Ch07]), we see that the natural map

$$
H^{0}\left(K_{X^{\prime}}\right) \longrightarrow H^{0}\left(F, K_{F}\right)
$$

is surjective for a general element F. In particular, $K_{X^{\prime}} \geq F$ and $\left.\pi^{*}\left(K_{X}\right)\right|_{F} \geq$ $\operatorname{Mov}\left|K_{F}\right|$. Recall that we have $\rho(X)=1$ by Dolgacgev Dolg, 3.2.4]. Then we may write $K_{X} \equiv a F_{1}$ for some rational number $a \geq 1$. Since $r_{X}=2$, we have $2\left(K_{X}^{2} \cdot F_{1}\right) \in \mathbb{Z}_{>0}$. Hence $a=1$ or 2 .

First, we consider the case $a=1$. We have $K_{X} \sim F_{1}$ and $\left(K_{X}^{2} \cdot F_{1}\right)=$ 1. In fact, we may take such a partial resolution $\hat{\pi}: \hat{X} \longrightarrow X$ that $\hat{\pi}$ is a composition of blow-ups along those centers over $\operatorname{Bs}(\Lambda)$ and that $\operatorname{Mov}\left(\hat{\pi}^{*}(\Lambda)\right)$ is free of base points. By assumption, the generic irreducible element \hat{F} in $\operatorname{Mov}\left(\hat{\pi}^{*}(\Lambda)\right)$ is a nonsingular projective surface of (1,2)-type. Thus we may write

$$
\begin{gathered}
\hat{\pi}^{*}\left(F_{1}\right)=\hat{F}+E_{\hat{\pi}}^{\prime} \\
K_{\hat{X}}=\hat{\pi}^{*}\left(K_{X}\right)+E_{\hat{\pi}}
\end{gathered}
$$

where $\operatorname{Supp}\left(E_{\hat{\pi}}^{\prime}\right)=\operatorname{Supp}\left(E_{\hat{\pi}}\right)$ by the construction. Noting that $|\hat{F}|$ is a free pencil, we have $\left(\left.\hat{\pi}^{*}\left(K_{X}\right)\right|_{\hat{F}}\right)^{2}=\left(K_{X}^{2} \cdot F_{1}\right)=1$. The uniqueness of Zariski decomposition implies that $\left.\hat{\pi}^{*}\left(K_{X}\right)\right|_{\hat{F}}$ is the positive part of $K_{\hat{F}}$. Thus $\left(\left.\left.\hat{\pi}^{*}\left(K_{X}\right)\right|_{\hat{F}} \cdot E_{\hat{\pi}}\right|_{\hat{F}}\right)=0$, which also means that

$$
\left(K_{X} \cdot F_{1}^{2}\right)=\left(\left.\left.\hat{\pi}^{*}\left(K_{X}\right)\right|_{\hat{F}} \cdot E_{\hat{\pi}}^{\prime}\right|_{\hat{F}}\right)=0
$$

a contradiction.
We consider the case $a=2$. Clearly we have $\left(K_{X}^{2} \cdot F_{1}\right)=\frac{1}{2}$. On the other hand, we have $\left.\pi^{*}\left(K_{X}\right)\right|_{S} \geq \frac{1}{2} \sigma^{*}\left(K_{S_{0}}\right)$ by (2.4). Noting that $\left.S\right|_{F} \equiv$ $C \equiv \operatorname{Mov}\left|K_{F}\right|$, we have

$$
\begin{aligned}
\left(\pi^{*}\left(K_{X}\right)^{2} \cdot F\right) & \geq\left(\left.\left.\pi^{*}\left(K_{X}\right)\right|_{F} \cdot S\right|_{F}\right) \\
& =\left(\left.\left.\pi^{*}\left(K_{X}\right)\right|_{S} \cdot F\right|_{S}\right) \geq \frac{1}{2}\left(\left.\sigma^{*}\left(K_{S_{0}}\right) \cdot F\right|_{S}\right) \geq 1
\end{aligned}
$$

by CC15, Lemma 2.4] since S is not a (1,2)-surface. This is also absurd.
Example 3.2. Consider the general complete intersection $X=X_{6,10} \subset$ $\mathbb{P}(1,2,2,2,3,5)$, which has invariants: $K_{X}^{3}=\frac{1}{2}, p_{g}(X)=1$ and has 15 orbifold points of type $\frac{1}{2}(1,-1,1)$. We claim that X does not admit any pencil of (1,2)-surfaces. Assume, to the contrary, that X admits a pencil $|\bar{F}|$ of (1,2)-surfaces where \bar{F} is irreducible. We aim at deducing a contradiction.

Since $\rho(X)=1$ (see Dolg, 3.2.4]), we may write $K_{X} \equiv a \bar{F}$ for some positive rational number a. Noting that $\left(K_{X}^{2} \cdot \bar{F}\right) \leq 1$ (since \bar{F} is a $(1,2)$ surface), we have $a \geq \frac{1}{2}$.

First of all, let us fix the notation. Since $P_{2}(X)=4$ and the bicanonical map $\varphi_{2, X}$ gives a generically finite map, we set $|\bar{S}|=\operatorname{Mov}\left|2 K_{X}\right|$. Take a birational modification $\mu: \tilde{X} \longrightarrow X$ such that the following properties hold:
(i) \tilde{X} is nonsingular and projective;
(ii) both $\operatorname{Mov}\left|2 K_{\tilde{X}}\right|$ and $\operatorname{Mov}\left|\left\lfloor\mu^{*}(\bar{F})\right\rfloor\right|$ are base point free.

Take general members $S \in \operatorname{Mov}\left|2 K_{\tilde{X}}\right|$ and $F \in \operatorname{Mov}\left|\left\lfloor\mu^{*}(\bar{F})\right\rfloor\right|$. We may write

$$
\begin{aligned}
& \mu^{*}(\bar{S}) \sim_{\mathbb{Q}} S+E_{2} \\
& \mu^{*}(\bar{F}) \sim_{\mathbb{Q}} F+E_{1}
\end{aligned}
$$

where E_{1} and E_{2} are effective \mathbb{Q}-divisors. By assumption we know that $p_{g}(S) \geq 3$, that $\Phi_{|S|}$ is generically finite and that F is a nonsingular $(1,2)$ surface.

Since $\left(K_{X}^{2} \cdot \bar{F}\right)=\left(\pi^{*}\left(K_{X}\right)^{2} \cdot F\right)>0$ and $r_{X}\left(K_{X}^{2} \cdot \bar{F}\right) \in \mathbb{Z}$ (by the intersection theory and the fact that X has isolated singularities), we see $\left(K_{X}^{2} \cdot \bar{F}\right)=\frac{1}{2}$ or 1 . In a word, either $a=\frac{1}{2}$ or $a=1$ is true.

If $a=\frac{1}{2}$, then $\bar{F} \equiv 2 K_{X}$ and $\left(K_{X}^{2} \cdot \bar{F}\right)=1$. Since $\left(\left.\mu^{*}\left(K_{X}\right)\right|_{F}\right)^{2}=\left(K_{X}^{2}\right.$. $\bar{F})=1$ and $\left.\mu^{*}\left(K_{X}\right)\right|_{F} \leq K_{F}$, the uniqueness of Zariski decomposition implies that $\left.\mu^{*}\left(K_{X}\right)\right|_{F} \sim \sigma_{0}^{*}\left(K_{F_{0}}\right)$ where $\sigma_{0}: F \rightarrow F_{0}$ is the contraction onto the minimal model. The similar argument to that in Example 3.1 (the case $a=1$) shows that $\left(K_{X} \cdot F_{1}^{2}\right)=0$, a contradiction.

If $a=1$, we have

$$
2 \geq\left(K_{X} \cdot \bar{S}^{2}\right) \geq\left(\mu^{*}\left(K_{X}\right) \cdot S^{2}\right) \geq\left(\left.S\right|_{F}\right)^{2} \geq 2
$$

which implies $2 K_{X} \equiv \bar{S}$ and $\left(\mu^{*}\left(K_{X}\right) \cdot S^{2}\right)=2$. By CZ16, Lemma 2.4, Corollary 2.5], we have

$$
\left.\mu^{*}\left(K_{X}\right)\right|_{F} \geq \frac{1}{2} \sigma_{0}^{*}\left(K_{F_{0}}\right)
$$

Hence it follows that

$$
1 \leq \frac{1}{2}\left(\left.\sigma_{0}^{*}\left(K_{F_{0}}\right) \cdot S\right|_{F}\right) \leq\left(\mu^{*}\left(K_{X}\right) \cdot F \cdot S\right) \leq \frac{1}{2}\left(\mu^{*}\left(K_{X}\right) \cdot S^{2}\right)=1
$$

which implies $\left(\mu^{*}\left(K_{X}\right) \cdot F \cdot S\right)=1$. Since, by the Hodge index theorem,

$$
1=\left(\left.\left.\mu^{*}\left(K_{X}\right)\right|_{F} \cdot S\right|_{F}\right) \geq \sqrt{\left.\left.\mu^{*}\left(K_{X}\right)\right|_{F} ^{2} \cdot S\right|_{F} ^{2}} \geq 1
$$

one has $\left.\left.S\right|_{F} \equiv 2 \mu^{*}\left(K_{X}\right)\right|_{F}$. Let $\left.C \sim S\right|_{F}$ be a general curve. Since we have shown that $C^{2}=2, C$ must be hyperelliptic and $\left.C\right|_{C}$ gives a g_{2}^{1} of C. Now we consider the linear system

$$
\left|K_{X^{\prime}}+\left\lfloor 4 \mu^{*}\left(K_{X}\right)\right\rfloor\right| \succcurlyeq\left|\left\lfloor 5 \mu^{*}\left(K_{X}\right)\right\rfloor\right| .
$$

It is clear that, for a general member F of $|F|$,

$$
\left|K_{X^{\prime}}+\left\lfloor 4 \mu^{*}\left(K_{X}\right)\right\rfloor \|_{F} \preccurlyeq\right| K_{F}+2 C \mid .
$$

Since $\left|K_{F}+2 C\right|$ does not give a birational map, neither do $\mid K_{X^{\prime}}+$ $\left\lfloor 4 \mu^{*}\left(K_{X}\right)\right\rfloor \|_{F}$, which contradicts to the fact that $\varphi_{5, X}$ is birational. The conclusion is that X does not admit any pencil of $(1,2)$-surfaces.

It might be interesting to know more such examples. However the difficulty is how to prove the non-existence of a pencil of (1,2)-surfaces on a 3 -fold. For the case of $p_{g}=4$, the reader may refer to [CZ16] for a complete characterization of the birationality of φ_{4}.
Acknowledgment. We would like to thank professor Shigeyuki Kondo and professor Keiji Oguiso for their hospitality during the first author's visit at both Nagoya University and the University of Tokyo in November of 2017. The first author is a member of LMNS, Fudan University. The second author would like to thank professor JongHae Keum and professor Jun-Muk Hwang for their generous support during his stay at KIAS. Special thanks go to Chen Jiang who pointed out a wrong argument in Example 3.1 and Example 3.2 in the first version of this paper.

References

[Bom] E. Bombieri, Canonical models of surfaces of general type, Publications Mathematiques de L'IHES 42 (1973), 171-219.
[CC15] J. A. Chen, M. Chen, Explicit birational geometry for 3-folds and 4-folds of general type, III, Compos. Math. 151 (2015), 1041-1082.
[Ch03] M. Chen, Canonical stability of 3-folds of general type with $p_{g} \geq 3$, Int. J. Math. 14 (2003), 515-528.
[Ch04] M. Chen, Inequalities of Noether type for 3-folds of general type, J. Math. Soc. Japan 56 (2004), 1131-1155.
[Ch07] M. Chen, A sharp lower bound for the canonical volume of 3-folds of general type. Math. Ann. 337 (2007), no. 4, 887-908.

On an open problem of characterizing the birationality of 4 K
[CZ08] M. Chen, D.-Q. Zhang, Characterization of the 4-canonical birationality of algebraic threefolds, Math. Z. 258 (2008), 565-585.
[CZ16] M. Chen, Q. Zhang, Characterization of the 4-canonical birationality of algebraic threefolds II, Math. Z. 283 (2016), no. 3-4, 659-677.
[Dolg] I. Dolgachev, Weighted projective varieties. Group actions and vector fields (Vancouver, B.C., 1981), 34-71, Lecture Notes in Math., 956, Springer, Berlin, 1982.
[Flet] A. R. Iano-Fletcher, Working with weighted complete intersections, in Explicit birational geometry of 3 -folds, London Mathematical Society Lecture Note Series, vol. 281(Cambridge University Press, Cambridge, 2000), 101-173.

School of Mathematical Sciences \& Shanghai Centre for Mathematical Sciences, Fudan University, Shanghai 200433, China
E-mail address: mchen@fudan.edu.cn

School of Mathematical Sciences, Shanghai Jiao Tong University
Shanghai 200240, China
E-mail address: yonghu@sjtu.edu.cn
Received June 17, 2018
Accepted April 29, 2019

[^0]: The first author was supported by National Natural Science Foundation of China (\#12071078, \#11571076, \#11731004, \#11421061) and Program of Shanghai Subject Chief Scientist (\#16XD1400400). The second author is supported by National Researcher Program of National Research Foundation of Korea (Grant No. 20100020413) and the Shanghai Pujiang Program Grant No. 21PJ1405200.

