Ricci-flat cubic graphs with girth five

David Cushing, Rimka Kangaslampi, Yong Lin, Shiping Liu, Linyuan Lu, and Shing-Tung Yau

Abstract

We classify all connected, simple, 3-regular graphs with girth at least 5 that are Ricci-flat. We use the definition of Ricci curvature on graphs given in Lin-Lu-Yau, Tohoku Math. J., 2011, which is a variation of Ollivier, J. Funct. Anal., 2009. A graph is Ricci-flat, if it has vanishing Ricci curvature on all edges. We show, that the only Ricci-flat cubic graphs with girth at least 5 are the Petersen graph, the Triplex and the dodecahedral graph. This will correct the classification in [8] that misses the Triplex.

1. Introduction

Ollivier developed a notion of Ricci curvature of Markov chains valid on metric spaces including graphs in [12]. The Ollivier-Ricci curvature κ_{p} depends on an idleness parameter, $p \in[0,1]$. For graphs, the Ollivier-Ricci curvature has been studied mainly for idleness 0 , see [1, 5, 6, 6, 14], but for example in 13 Ollivier and Villani considered idleness $\frac{1}{d+1}$, where d is the degree of a regular graph, in order to investigate the curvature of the hypercube. In [7], Lin, Lu, and Yau modified the definition of Ollivier-Ricci curvature to compute the negative of the derivative of the curvature with respect to the idleness p at $p=1$, which they denote by κ. This modified Ollivier-Ricci curvature has been further investigated in, e.g., [10, 15].

Throughout this article, let $G=(V, E)$ be a connected simple (no loops and no multiedges) graph with vertex set V and edge set E. For any two adjacent vertices x and y, we write $x \sim y$, and denote by $x y$ the edge between them. Let d_{x} denote the degree of the vertex $x \in V$. Let $d(x, y)$ denote the length of the shortest path between two vertices x and y.

We define the following probability distributions μ_{x}^{p} for any $x \in V, p \in$ $[0,1]$:

$$
\mu_{x}^{p}(z)= \begin{cases}p, & \text { if } z=x \\ \frac{1-p}{d_{x}}, & \text { if } z \sim x \\ 0, & \text { otherwise }\end{cases}
$$

Definition 1. Let $G=(V, E)$ be a locally finite graph. Let μ_{1}, μ_{2} be two probability measures on V. The Wasserstein distance $W_{1}\left(\mu_{1}, \mu_{2}\right)$ between μ_{1} and μ_{2} is defined as

$$
\begin{equation*}
W_{1}\left(\mu_{1}, \mu_{2}\right)=\inf _{\pi} \sum_{y \in V} \sum_{x \in V} d(x, y) \pi(x, y) \tag{1}
\end{equation*}
$$

where the infimum runs over all transportation plans $\pi: V \times V \rightarrow[0,1]$ satisfying

$$
\mu_{1}(x)=\sum_{y \in V} \pi(x, y), \quad \mu_{2}(y)=\sum_{x \in V} \pi(x, y)
$$

The transportation plan π moves a distribution given by μ_{1} to a distribution given by μ_{2}, and $W_{1}\left(\mu_{1}, \mu_{2}\right)$ is a measure for the minimal effort which is required for such a transition. If π attains the infimum in (1) we call it an optimal transport plan transporting μ_{1} to μ_{2}. For more details about the optimal transport theory, we refer to [16.

Definition 2. The p-Ollivier-Ricci curvature on an edge $x y$ in $G=(V, E)$ is

$$
\kappa_{p}(x, y)=1-W_{1}\left(\mu_{x}^{p}, \mu_{y}^{p}\right)
$$

where p is called the idleness.
The Ollivier-Ricci curvature introduced by Lin-Lu-Yau in [7], is defined as

$$
\kappa(x, y)=\lim _{p \rightarrow 1} \frac{\kappa_{p}(x, y)}{1-p}
$$

We call a graph Ricci-flat if $\kappa(x, y)=0$ on all edges $x y \in G$. Note that for regular graphs we can calculate the curvature $\kappa(x, y)$ for an edge $x y$ as

$$
\kappa(x, y)=\frac{d+1}{d} \kappa_{\frac{1}{d+1}}(x, y),
$$

as shown in [2] by Bourne, Cushing, Liu, Münch and Peyerimhoff. We show, that the only Ricci-flat cubic graphs with at least girth 5 are the Petersen graph, the Triplex and the dodecahedral graph (see Figure 1).

2. Classification of Ricci-flat cubic graphs with girth 5

In [8, Theorem 1] the authors classify Ricci-flat graphs with girth at least 5 , but there is one 3 -regular graph missing from their classification, namely

Figure 1. The three Ricci-flat cubic graphs with girth 5.
the Triplex (Figure 1b). With the following theorem we can complete the classification.

Theorem 1. Let G be a 3-regular simple graph with girth $g(G) \geq 5$. If $\kappa(x, y)=0$ on all edges $x y \in G$, then G is the Petersen graph, the Triplex, or the dodecahedral graph.

Assuming that these graphs can be embedded to surfaces in such a way that they tile the surface with only pentagonal faces, the authors in [8] deduce that they only need to consider graphs with 10 or 20 vertices, obtaining the Petersen graph and the dodecahedral graph. However, the Triplex can be embedded to a torus with three pentagonal, two hexagonal and one 9gonal face. A direct way to fix this problem in the proof of [8, Theorem 1] is given in [3].

Using Theorem 1 together with the results for non-cubic graphs from [8] we have the following classification:

Theorem 2. Suppose that G is a Ricci-flat graph with girth $g(G) \geq 5$. Then G is one of the following graphs: the infinite path, cycle C_{n} with $n \geq 6$, the dodecahedral graph, the Triplex, the Petersen graph and the half-dodecahedral graph.

Before proving Theorem 1, let us first consider the local structure of Ricci-flat cubic graphs. The following lemma shows that in order to have zero curvature on an edge $x y$, the edge must lie on two pentagons.

Lemma 1. Let $G=(V, E)$ be a 3-regular graph of girth $g(G) \geq 5$. If $\kappa(x, y)=0$, then the smallest cycle C_{n} supporting the edge xy has $n=5$, and in addition $x y$ belongs to two 5 -cycles P_{1} and P_{2} such that $P_{1} \cap P_{2}=x y$.

Proof. Denote the two other neighbours of x in addition to y by x_{1} and x_{2}, and the neighbours of y by y_{1} and y_{2}. We can assume that an optimal transport plan π only transports probability distribution from x_{1} to y_{1} and x_{2} to y_{2}. Since there are no triangles or squares, $d\left(x_{i}, y_{i}\right) \geq 2$. The only possibility to have $\kappa(x, y)=0$ i.e. $\kappa_{1 / 4}(x, y)=0$ is if $d\left(x_{i}, y_{i}\right)=2, i=1,2$. Since $d\left(x_{1}, y_{1}\right)=2$, there exists a path $x_{1} u y_{1}$, where the vertex u cannot be any of the vertices $x_{1}, x_{2}, x, y, y_{1}$ or y_{2} without forming a triangle or a square. Similarly there exists another vertex v and a path $x_{2} v y_{2}$. Thus we have two pentagons, $x x_{1} u y_{1} y x$ and $x x_{2} v y_{2} y x$, that intersect only on the edge $x y$, as in Figure 3.

Figure 2. Two pentagons that intersect only on $x y$.

Remark. Lemma 1 implies that Ricci-flat cubic graphs with girth at least 5 in fact have girth exactly 5.

Let us now proceed to prove Theorem 1;
Proof of Theorem 1. Consider an edge $x y$ in the graph. By lemma 1 we know that this edge is on two pentagons that intersect only on $x y$, as in Figure 2. We will now construct all possible 3-regular, girth 5 simple graphs with $\kappa=0$ on all edges, starting from these pentagons. The vertices x_{2} and y_{2} cannot be adjacent to any other vertex in $\left\{x, y, x_{1}, y_{1}, u, v\right\}$ in order to have girth 5 . Thus x_{2} and y_{2} are connected to two new vertices, x_{3} and y_{3}, respectively. The vertex u is either connected to v or to a new vertex u_{1}, as in Figure 3. Let us consider these two cases separately.

Figure 3. Two possible graphs to start the construction.

Case 1:. Since the edge $y_{2} y_{3}$ has to lie on two pentagons, two of the following three possible ways for such pentagons to exist must be true (see Figure (4):
i) y_{3} is adjacent to x_{3},
ii) y_{3} is adjacent to x_{1} or
iii) there is a new vertex y_{4}, adjacent to both y_{3} and y_{1}.

Figure 4. The three ways to construct a pentagon with $y_{2} y_{3}$ in Case 1.

The cases ii) and iii) cannot be true at the same time, since then it would not be possible to continue the construction in order to have pentagons with the edge $x_{2} x_{3}$: the only vertex with degree less than three, y_{4}, would be too far from x_{3}.

If i) and ii) are true, then the only vertices with degree less that 3 are x_{3} and y_{1}, and $d\left(x_{3}, y_{1}\right)=4$. Thus, the last edge from x_{3} must go to y_{1} for it to be on a pentagon. Now all edges lie on two pentagons, and we have constructed the Petersen graph with 10 vertices.

If i) and iii) are true, then there must be another vertex x_{4} which is adjacent to x_{1}, since x_{1} cannot be adjacent to either of the existing vertices with degree less than 3 , that is, x_{3} or y_{4}, without forming a square. Let us then construct pentagons with $x_{1} x_{4}$. There are two possibilities for the first pentagon: either x_{4} is adjacent to x_{3} or to y_{4}. Consider the first possibility. Then x_{4} cannot be adjacent to y_{4}, since that would create a square $x_{4} x_{3} y_{3} y_{4} x_{4}$. So there must be yet another vertex x_{5} to which x_{4} is adjacent, and which is adjacent to y_{4}. But now all other vertices in the graph but x_{5} have degree 3, and the construction cannot be continued. Consider then the second possibility, x_{4} being adjacent to y_{4}. Similarly, now x_{4} cannot be adjacent to x_{3}, we need a new vertex $x_{5} \sim x_{4}$. Then the only other vertex with degree less than 3 is x_{3}, and $d\left(x_{5}, x_{3}\right)=4$, so x_{5} must be adjacent to x_{3}. But that leaves x_{5} the only vertex with degree less than 3 , and the construction cannot be continued. Thus, i) and iii) cannot be true at the same time, and the only graph with the edge $u v$ is the Petersen graph.

Case 2:. Since the edge $u u_{1}$ must lie on two pentagons, one of them through x_{2} and another through y_{2}, we have two isomorphically different possibilities:
a) there is one new vertex x_{4} adjacent to u_{1} and x_{3} and u_{1} is also adjacent to y_{1} (Figure 5) or
b) there are two new vertices, x_{4} adjacent to u_{1} and x_{3} and y_{4} adjacent to u_{1} and y_{3} (Figure 6).

If u_{1} were adjacent to both x_{1} and y_{1}, that would create a square $u_{1} y_{1} v x_{1} u_{1}$. The case where u_{1} would be adjacent to x_{1} and to a vertex y_{4} with $y_{4} \sim y_{3}$ is isomorphic to the case a) above. Assume that a) is true. Then there are two isomorphically different possibilities to have a pentagon through $x_{3} x_{2} x$, illustrated in Figure 55
i) Assume $x_{4} \sim x_{1}$. Then in order to have two pentagons with $y_{2} y_{3}$, we must have $y_{3} \sim x_{3}$ and $y_{3} \sim v$, which gives us the Triplex.

Figure 5. Case 2 a) with two non-isomorphic ways to continue.
ii) Assume that there is a new vertex x_{5} adjacent to x_{1} and x_{3}. Then there can exist two pentagons with $y_{2} y_{3}$ only if $y_{3} \sim x_{4}$ and $y_{3} \sim v$. But then the graph cannot be continued from x_{5}, since all other vertices already have degree 3 .

Note that having $x_{3} \sim v$ would also create a pentagon with $x_{3} x_{2} x$, but that is in fact isomorphic to i).

Assume then that b) is true. Then there are three possibilities to have a pentagon through $x_{2} x x_{1}$, illustrated in Figure 6 with labels i), ii) and iii). Symmetrically, there is three possibilities to have a pentagon with $y_{2} y y_{1}$, illustrated in Figure 6 with labels iv), v) and vi). Let us consider the possible non-isomorphic cases with pentagons on $x_{2} x x_{1}$ and $y_{2} y y_{1}$. There are four of them, since i) $\& v$ v) is just a mirror image of ii) $\&$ iv), the four combinations i) \& vi), its mirror iii) \& iv), ii) \& vi) and its mirror iii) \& v) all give in fact the same graph, and the case ii) $\& v$ v) would require $d(v)=4$.
i) \& iv) Assume that $x_{4} \sim x_{1}$ and $y_{4} \sim y_{1}$. Then in order to have a pentagon with $x_{4} u_{1} y_{4}$ the only possibility is that $x_{3} \sim y_{3}$. But that leaves only the vertex v with degree less than three, and the construction cannot be continued.

Figure 6. Case 2 b) with possible continuations.
i) \& v) Assume that $x_{4} \sim x_{1}$ and $y_{3} \sim v$. Then to have a pentagon with $x_{4} x_{1} v$ we must have $x_{3} \sim y_{1}$. But that leaves only the vertex y_{4} with degree less than three, and the construction cannot be continued.
i) \& vi) Assume that $x_{4} \sim x_{1}$ and that there exists a vertex y_{5} such that $y_{3} \sim$ $y_{5} \sim y_{1}$. Then to have a pentagon with $u_{1} x_{4} x_{1}$ we must have $y_{4} \sim v$. But that leaves only the vertices x_{3} and y_{5} with degree less than three, and since now $d\left(x_{3}, y_{5}\right)=5$, the construction cannot be continued.
iii) \& vi) Assume that there exists a vertex x_{5} such that $x_{3} \sim x_{5} \sim x_{1}$ and that a vertex y_{5} such that $y_{3} \sim y_{5} \sim y_{1}$. Then there is two non-isomorphic ways to have a pentagon with $v y_{1} y_{5}$: either $x_{5} \sim y_{5}$ or there exists two new verties v_{1} and y_{6} such that $v \sim v_{1} \sim y_{6} \sim y_{5}$. In the first case we must then have $v \sim y_{4}$ to have a pentagon with $y_{4} y_{3} y_{5}$. But then the only vertex with degree less than three is x_{4}, and the construction cannot be continued. In the latter case (Figure 7) there is two possibilities to have a pentagon with $x_{5} x_{1} v$: either $x_{5} \sim y_{6}$, or there is a new vertex x_{6} with $x_{5} \sim x_{6} \sim v_{1}$.

Assume first that $x_{5} \sim y_{6}$. Then there are three vertices with degree less than three, v_{1}, x_{4} and y_{4}. Since $d\left(v_{1}, x_{4}\right)=d\left(v_{1}, y_{4}\right)=4, v_{1}$ must be adjacent to either x_{4} or y_{4}. But that leaves only one vertex with

Figure 7. The graph for case 2 b) with iii), vi) and vertices v_{1} and y_{6} have two possible ways to continue.
degree less than three, and the construction cannot be continued. Thus we must have $x_{5} \sim x_{6} \sim v_{1}$. To have a pentagon with $x_{4} x_{3} x_{5}$ we need yet another vertex x_{7} with $x_{4} \sim x_{7} \sim x_{6}$. Similarly for a pentagon with $y_{4} y_{3} y_{5}$ we need a vertex y_{7} with $y_{4} \sim y_{7} \sim y_{6}$. Then there are two vertices with degree less than three in the graph, x_{7} and y_{7}, and connecting them with an edge finalizes the construction by creating the dodecahedral graph.

We have now shown that the only 3 -regular graphs with girth 5 and with every edge on two pentagons intersecting only at that edge are the Petersen graph, the Triplex and the dodecahedral graph. Therefore these are the only 3 -regular Ricci-flat graphs with girth at least 5 .

We also calculated the curvatures of all cubic graphs with 20 vertices or less, and obtained the same three Ricci-flat graphs with girth 5 . We used the graph generator package nauty by B. D. McKay and A. Piperno [11] to generate the graphs and the Graph Curvature Calculator [4] to calculate the curvatures.

References

[1] B. B. Bhattacharya and S. Mukherjee, Exact and asymptotic results on coarse Ricci curvature of graphs, Discrete Math. 338 (2015), no. 1, 23-42.
[2] D. Bourne, D. Cushing, S. Liu, F. Münch, and N. Peyerimhoff, OllivierRicci idleness functions of graphs, SIAM J. Discrete Math. 32 (2018), no. 2, 1408-1424.
[3] D. Cushing, R. Kangaslampi, Y. Lin, S. Liu, L. Lu, and S.-T. Yau, Erratum for Ricci-flat graphs with girth at least five, Comm. Anal. Geom. 29 (2022), no. 8, 1775-1781.
[4] D. Cushing, R. Kangaslampi, V. Lipiäinen, S. Liu, and G. W. Stagg, The Graph Curvature Calculator and the curvatures of cubic graphs, Exp. Math. (2019), https://doi.org/10.1080/10586458.2019.1660740.
[5] S. Im, H. Kim, J. Maeng, J. Yu, Y. Cha and S.H. Paeng, On the mean square displacement of a random walk on a graph, European J. Combin. 51 (2016), 227-235.
[6] J. Jost and S. Liu, Ollivier's Ricci curvature, local clustering and curvature-dimension inequalities on graphs, Discrete. Comput. Geom. 51 (2014), no. 2, 300-322.
[7] Y. Lin, L. Lu, and S.-T. Yau, Ricci curvature of graphs, Tohoku Math. J. 63 (2011), 605-627.
[8] Y. Lin, L. Lu, and S.-T. Yau, Ricci-flat graphs with girth at least five, Comm. Anal. Geom. 22 (2014), no 4, 671-687.
[9] Y. Lin and S.-T. Yau, Ricci curvature and eigenvalue estimate on locally finite graphs, Math. Res. Lett. 17 (2010), 343-356.
[10] B. Loisel and P. Romon, Ricci curvature on polyhedral surfaces via optimal transportation. Axioms 3 (2014), 119-139.
[11] B. D. McKay and A. Piperno, Practical Graph Isomorphism, II, J. Symbolic Computation 60 (2013), 94-112.
[12] Y. Ollivier, Ricci curvature of Markov chains on metric spaces, J. Funct. Anal. 256 (2009), 810-864.
[13] Y. Ollivier, C. Villani, A curved Brunn-Minkowski inequality on the discrete hypercube, or: what is the Ricci curvature of the discrete hypercube?, SIAM J. Discrete Math. 26 (2012), 983-996.
[14] S. H. Paeng, Volume and diameter of a graph and Ollivier's Ricci curvature, European J. Combin. 33 (2012), 1808-1819.
[15] J. D. H. Smith, Ricci curvature, circulants, and a matching condition, Discrete Math. 329 (2014), 88-98.
[16] C. Villani, Topics in optimal transportation, American Mathematical Society, 2003.

Department of Mathematical Sciences, Durham University
Durham DH1 3LE, UK
E-mail address: david.cushing@durham.ac.uk Current address:
School of Mathematics, Statistics and Physics, Newcastle University Newcastle upon Tyne NE1 7RU, UK
E-mail address: david.cushing1@newcastle.ac.uk

Computing sciences, Faculty of information technology and communication sciences, Tampere University, FI-33014 Tampere, Finland
E-mail address: riikka.kangaslampi@tuni.fi

Yau Mathematical Sciences Center and Department of Mathematics Tsinghua University, Beijing 100084, China
E-mail address: yonglin@mail.tsinghua.edu.cn

School of Mathematical Sciences
University of Science and Technology of China
Hefei 230026, China
E-mail address: spliu@ustc.edu.cn

Department of Mathematics, University of South Carolina
Columbia, SC 29208, USA
E-mail address: lu@math.sc.edu

Yau Mathematical Sciences Center, Tsinghua University
Beijing 100084, China
E-mail address: yau@math.harvard.edu
Received February 8, 2018
Accepted March 11, 2019

