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Introduction

Let M be a compact orientable three-manifold with some boundary tori.
We say as usual that M is hyperbolic if its interior admits a finite-volume
complete hyperbolic metric (which is then unique by Mostow and Prasad’s
rigidity theorem). Recall that a Dehn filling of M is the operation that
consists of attaching solid tori to some (possibly all) of the boundary com-
ponents of M , a manipulation that is essentially determined by the choice
of some slopes in the chosen boundary tori.

We say that a Dehn filling is hyperbolic if the resulting manifold is still
hyperbolic, and exceptional otherwise. The goal of this paper is to make a
further step in the classification of all the exceptional fillings in a natural
sequence of hyperbolic link complements, initiated in [34] and [35]. The
sequence is shown in Figure 1. The main result is Theorem 1.2 below, where
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Figure 1: A notable sequence of hyperbolic links with i ≤ 7 components. These
are the figure-eight knot, the Whitehead link, and some chain links with 3, . . . , 7
components. Those with 5, 6, and 7 components are minimally twisted.

we exhibit a complete classification of all the exceptional fillings of the last
two link complements shown in the figure.

The sequence

Figure 1 contains a sequence of notable hyperbolic links. These are the
figure-eight knot, the Whitehead link, and some particular chain links with
i = 3, . . . , 7 components. Let M1, . . . ,M7 be the complements of these links.
Each Mi is conjectured [2] to have smallest volume among hyperbolic man-
ifolds with i cusps (this conjecture has been proved in the cases i = 1, 2,
and 4 by Cao – Meyerhoff [11], Agol [2], and Yoshida [41]). Another impor-
tant feature of this sequence is that each Mi is obtained as a (−1)-filling of
the subsequent one Mi+1, as one sees via a blow-down as in Figure 2. See
[24, 37, 39] for more information on hyperbolic chain links.

The manifolds M1, . . . ,M7 appear naturally in many contexts. The man-
ifold M3 was called the magic manifold by Gordon and Wu in [20] because
of its many interesting fillings; it plays a role in the study and/or classi-
fication of the closed hyperbolic manifolds of smallest volume [18], of the
pseudo-Anosov mapping classes with small dilatation [22, 26], and of the
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Figure 2: A blow-down.

cusped hyperbolic 3-manifold with the largest number of exceptional fillings
[31].

The manifolds M4,M5, and M6 form a superb triple of highly symmetric
hyperbolic manifolds. They decompose into regular ideal octahedra, tetra-
hedra, and octahedra respectively, and they are characterised (together with
M3) by the configuration of the many thrice-punctured spheres they contain
[42]. The manifolds M5 and M6 cover two very natural hyperbolic orbifolds,
shown in Figure 3. The first is the boundary of the 5-simplex and decom-
poses into 5 regular ideal tetrahedra. The second is obtained by mirroring
an ideal regular octahedron. The manifolds M3, M5, and M6 are principal
congruence link complements [8], while M5 and M6 are also the smallest
hyperbolic 3-manifolds admitting a regular tessellation [21].

The fillings of M4 were used to classify the four-manifolds with shadow-
complexity one [28] and to build knots with long unknotting tunnels [12].
It was noted in [15, 40] that many cusped manifolds in the census [10] are
obtained by fillingM5. Among these, we find many Berge knots complements
[5] and other hyperbolic manifolds with interesting exceptional surgeries
[4, 6, 16, 19, 25].

The question of classifying all the exceptional fillings of M6 was raised in
[3]. We answer to this question here. The manifold M6 appears in the con-
struction of hyperbolic four-manifolds with arbitrarily many cusps [29] and
of arithmetic link extensions [7] in S3. Its fundamental group is biorderable
[27]. By filling M6 we obtain yet more hyperbolic manifolds with interesting
exceptional fillings [3, 38].

The manifold M7 lacks all the beautiful symmetries of M4,M5, and
M6. It is the first and the only non-arithmetic manifold in the sequence
M1, . . . ,M7.
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Figure 3: The manifolds M5 and M6 double cover two natural orbifolds. The deck
transformation is a π rotation around the dotted axis.

The exceptional Dehn fillings

The hyperbolic Dehn fillings of the figure-eight knot complement M1 were
famously described by Thurston in his notes [39]. The exceptional fillings of
the magic manifold M3 were then classified by Martelli and Petronio in [34].
Later on, all the exceptional fillings on M5 were listed by Martelli, Petronio,
and Roukema in [35].

The main result of this paper is a complete classification of all the ex-
ceptional filings of the complement M7 of the minimally twisted chain link
with seven components, the last one of the sequence in Figure 1. This of
course includes also a classification of all the exceptional fillings of M6.
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1. Main results

1.1. The general strategy

The exceptional Dehn fillings on a multi-cusped hyperbolic manifold M may
be infinite in number, but can typically be described using a finite amount of
data. For instance, the magic manifold contains infinitely many exceptional
fillings, which could be grouped into explicit families and were fully described
in few pages in [34].

To classify the exceptional fillings of M7 we adopt the same general
strategy of [34, 35], that we now outline. More generally, let M be any
hyperbolic manifold with some boundary tori. Recall that a filling of M is
determined by a set of slopes, one for each filled boundary torus (we are
allowed to leave some boundary tori unfilled). Following [35], we say that an
exceptional Dehn filling on M is isolated if any proper subset of the chosen
slopes produces a hyperbolic Dehn filling. Thurston’s Dehn filling Theorem
implies the following:

Theorem 1.1. Every hyperbolic M has only finitely many isolated excep-
tional fillings.

To classify all the exceptional fillings of M we must fulfill the following
tasks:

1) classify all the isolated exceptional fillings of M ,

2) recognise the filled manifolds in each case, and

3) if necessary, proceed recursively on each filled manifold.

The third point is necessary if the filled exceptional manifold contains some
hyperbolic piece in its prime or JSJ decomposition, a case that did not occur
in [34] and [35], but that will arise here in this paper.

We could achieve all these objectives for the complement M7 of the mini-
mally twisted chain link with seven components. To this purpose we made an
essential use of the formidable programs SnapPy [13], Regina [9], and Rec-
ognizer [36]. Task (1) was fulfilled via find exceptional fillings.py, a
python script written by the author already used in [35] and publicly avail-
able [33] to be performed on any cusped hyperbolic three-manifold. The
computer-assisted proof is rigorous thanks to the hikmot libraries [23].
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Number of cusps filled
Manifold 1 2 3 4 5 6 7 Total

M1 10 10
M2 12 14 26
M3 15 15 52 82
M4 16 24 96 492 628
M5 15 30 180 780 4818 5823
M6 12 30 240 1572 7080 46680 55614
M7 14 14 91 987 7119 32977 214007 255209

Table 1: Numbers of isolated exceptional fillings on Mi.

1.2. The output

When accomplished, the general strategy produces finitely many families
of exceptional fillings, but as the number of cusps increases their number
explodes, and it soon becomes impossible to write fully comprehensive tables
as it was done for the magic manifold in [34].

We now describe the outcome of our research. The most concise amount
of useful information that we can give is the following.

Theorem 1.2. The number of isolated exceptional fillings of M1, . . . ,M7

is shown in Table 1. The complete lists of fillings can be downloaded from
[33].

The first impression that we get from looking at Table 1 is that the
number of isolated exceptional fillings of Mi with a fixed number k of slopes
is roughly constant as i = 1, . . . , 7 varies, and grows roughly exponentially
in k.

1.3. Data reduction

The manifold M7 has 255,209 isolated exceptional fillings overall, and we
would like to describe what these filled manifolds are. We cannot of course
describe them all on a single table; instead, we try to reduce the amount of
data that is necessary to understand and present them in some reasonable
way.

It was already remarked in [35] that all the exceptional fillings of M5 can
actually be deduced from a very short lists of rules: a collection of 7 basic
exceptional fillings plus a list of 5 isometries of M5 and of some of its fillings
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Number of cusps filled
Manifold 1 2 3 4 5 6 7 Total

M1 6 6
M2 6 8 14
M3 5 3 14 22
M4 2 2 4 22 30
M5 1 1 3 7 48 60
M6 1 2 4 22 79 529 637
M7 2 2 9 73 522 2362 15357 18327

Table 2: Numbers of isolated exceptional fillings on Mi up to the action of the
symmetry group of Mi.

generate all the exceptional fillings. Everything could be described in [35]
in a half-page long theorem. (See Remark 1.6 below for some corrections of
the tables in [35].)

We would like to find a similar small generating set of rules for the
manifolds M6 and M7. As a first step, we quotient the exceptional fillings
of Mi by the action of its isometry group Isom(Mi). The isometry groups of
M1, . . . ,M7 have order:

8, 8, 12, 64, 240, 192, 28.

These are respectively

D8, D8, D12, G64, S5 × Z2, D8 × S4, D28.

Here D2n is the dihedral group of order 2n and the symbol G64 indicates
some non-abelian group of order 64 that does not split as a direct product.
The manifolds M4,M5, and M6 are arithmetic, decompose into regular ideal
tetrahedra or octahedra, and have an extraordinary number of symmetries.
On the other hand, the last manifold M7 is not arithmetic [37] and has
only few isometries: the 28 symmetries of the chain link that one infers from
Figure 1 and nothing more than that.

The numbers of isolated exceptional fillings on Mi for i = 1, . . . , 7 con-
sidered up to the action of Isom(Mi) are listed in Table 2. These numbers
are smaller than those of Table 1, but yet too big for our purposes, especially
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Number of cusps filled
Manifold 1 2 3 4 5 6 7 Total

M1 6 6
M2 6 4 10
M3 5 2 8 15
M4 2 0 0 1 3
M5 1 0 0 0 2 3
M6 1 0 0 2 4 40 47
M7 2 1 2 6 61 313 1622 2007

Table 3: Numbers of isolated exceptional fillings on Mi that do not factor through
Mi−1, up to the action of the symmetry group of Mi.

with the least symmetric and largest manifold M7. We now want to reduce
them further.

Recall that each Mi−1 is a filling of Mi. We use the standard merid-
ian/longitude basis to identify the slopes on the boundary tori of Mi with
Q ∪ {∞}. If s is a set of slopes we denote by Mi(s) the manifold obtained
by filling Mi via s. Via a blow-down as in Figure 2 we see that

Mi−1 = Mi(−1)

for all i ≥ 2. Note that there is no need of specifying which boundary com-
ponent is filled thanks to the cyclic symmetry of all chain links. We now say
that an exceptional filling of Mi factors through Mi−1 if it contains −1 or
any slope in the orbit of −1 along the action of Isom(Mi). Since we are clas-
sifying the exceptional slopes of Mi inductively on i, it is natural to exclude
those that factor through Mi−1. The surviving slopes are then collected in
Table 3.

The numbers in Table 3 are extraordinarily small for M1, . . . ,M5 and
are quite reasonable also for M6. We can say informally that every Mi adds
a very small number of exceptional fillings to those of Mi−1 when i ≤ 5.
Only 6+10+15+3+3+47=84 basic exceptional fillings generate all the ex-
ceptional fillings of the manifolds M1, . . . ,M6. These 84 exceptional fillings
are described in the tables at the end of the paper. The following theorem
summarizes these discoveries.
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Theorem 1.3. The numbers of isolated exceptional fillings on Mi that do
not factor through Mi−1, up to the action of the symmetry group of Mi, are
listed in Table 3. The fillings of M1, . . . ,M6 are described in the Tables 12,
13, 14, 15, 16, 17, 18, 19, and 20.

In the tables at the end of the paper we can find the exceptional slopes
and a description of the 84 filled exceptional manifolds. Among these, 81
are graph manifolds and 3 are irreducible manifolds whose JSJ contains a
hyperbolic piece, the figure-eight complement M1. The manifold M6 is the
first manifold in the list that has some exceptional fillings that are not graph
manifolds. A precise description of all the exceptional fillings of M6 is given
in Theorem 2.7.

1.4. The manifold M7

We are left with the 2,007 exceptional fillings of M7 from Table 3. These are
yet too many to be reproduced here. Why does M7 have such a big number
of isolated fillings that do not factor through M6? This is probably due again
to its lack of symmetries: the group Isom(Mi) acts transitively on the cusps
of Mi for all i, and the groups Isom(M4), Isom(M5), and Isom(M6) have a
formidable amount of additional symmetries that send the slope −1 on any
boundary torus T to the sets of slopes (respectively)

{

−1,
1

2
,
3

2
, 3

}

,

{

−1,
1

2
, 2

}

, {−1, 1}

on any boundary torus. Therefore Mi−1 is a filling of Mi in multiple ways
(respectively: in 16, 15, and 12 different ways), and hence there are many
possibilities for an exceptional set of slopes on Mi to factor through Mi−1.
(We remark that the slopes {0, 1, 2,∞}, {0, 1,∞}, and {0,∞} are excep-
tional on M4, M5, and M6 respectively.)

On the other hand Isom(M7) acts trivially on the slopes of a single
boundary torus, so M6 is a filling of M7 in only 7 distinct ways. Since {0,∞}
are exceptional, the first important non-exceptional slopes are −1 and 1. It is
natural to expect that most exceptional fillings of M7 should contain either
−1 or 1. This is indeed the case, as Table 4 shows quite impressively. We
denote by N6 the hyperbolic manifold N6 = M7(1).



✐

✐

“5-Martelli” — 2022/4/19 — 19:20 — page 1606 — #10
✐

✐

✐

✐

✐

✐

1606 Bruno Martelli

Number of cusps filled
Manifold 1 2 3 4 5 6 7 Total

M7 2 0 0 0 1 14 73 90

Table 4: Numbers of isolated exceptional fillings on M7 that do not contain the
slopes −1 and 1, up to the action of the symmetry group of M7.

Figure 4: Another sequence of hyperbolic chain links. Each link complement is a
1-filling of the subsequent one.

1.5. Another sequence of links

We are still left with the problem of listing all the exceptional fillings of the
new manifold N6 = M7(1). By mirroring the blow-down in Figure 2 we see
that N6 is also the complement of a chain link with six components. It will
be convenient to see N6 as the last member of another sequence of chain link
complements shown in Figure 4, that parallels somehow that of Figure 1.

For every i = 3, . . . , 6, let Ni be the complement of the chain link in
Figure 4 with i components. These are all hyperbolic. Each Ni is a 1-filling
of Ni+1, and N6 is a 1-filling of M7. The manifolds N3, . . . , N5 cannot be
obtained as a Dehn filling of M6 because they have some interesting excep-
tional fillings that M6 does not have, as we will see. The volumes of the
manifolds Mi and Ni are shown in Table 5.

It might be interesting to compare the numbers of exceptional fillings of
the sequence Ni with those of Mi. These are listed in Tables 6 and 7. The
symmetries of N3, . . . , N6 are only those of the corresponding chain links, so
they form a group of order 12, 16, 20, and 24.
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i 3 4 5 6 7

Vol(Mi) 5.33348 7.32772 10.14941 14.65544 19.79685

Vol(Ni) 7.70691 10.14941 12.84485 16.00046

Table 5: The approximated volumes of the manifolds Mi and Ni for i ≥ 3.

Number of cusps filled
Manifold 1 2 3 4 5 6 Total

N3 6 48 70 124
N4 8 56 108 315 487
N5 10 50 155 695 3137 4047
N6 12 33 150 1092 4962 28979 35228

Table 6: Numbers of isolated exceptional fillings on Ni.

Number of cusps filled
Manifold 1 2 3 4 5 6 Total

N3 2 10 14 26
N4 2 11 15 54 82
N5 2 7 19 71 326 425
N6 2 5 14 98 418 2478 3015

Table 7: Numbers of isolated exceptional fillings on Ni, up to the action of the
symmetry group of Ni.

1.6. Some notable fillings

Recall that our goal is to describe the exceptional fillings ofN6 with the mini-
mum amount of information. Using SnapPy we discover some notable fillings
of N3, . . . , N6 in Table 8. The table shows that the fillings {−3,−2,−1, 1}
on each N3, N4, N5 and the fillings {−2,−1, 1} on N6 are diffeomorphic to
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Slope
Manifold −3 −2 −1 1

N3 M4(4,
2
3
) M3(−2) M3(−1) = M2 M6(−2,−1

2
, ·, 1

2
, 3
2
)

N4 M5(3,
2
3
) M4(−2) M4(−1) = M3 N3

N5 M6(2, 2) M5(−2) M5(−1) = M4 N4

N6 M6(−2) M6(−1) = M5 N5

Table 8: Some fillings of Ni are diffeomorphic either to Ni−1 or to some filling of
M3,M4,M5,M6. For instance from this table we infer that N4(−3) = M5(3,

2

3
) and

N5(−1) = M5(−1) = M4.

Number of cusps filled
Manifold 1 2 3 4 5 6 7 Total

N3 2 0 1 3
N4 2 0 0 1 3
N5 2 0 0 0 3 5
N6 2 0 0 0 2 6 10

Table 9: Numbers of isolated exceptional fillings on Ni that do not factor, up to
the action of the symmetry group of Ni.

either Ni−1 or some fillings of M3,M4,M5,M6. Since we have already exam-
ined the exceptional fillings of these manifolds, we disregard them: we say
that a filling of N3, . . . , N6 factors if it contains one of these slopes (that
is {−3,−2,−1, 1} for N3, N4, N5, and {−2,−1, 1} for N6). We are happy
with this definition because the number of isolated exceptional fillings of
N3, . . . , N6 that do not factor is very small: see Table 9.

The following theorem summarizes our discoveries.

Theorem 1.4. The numbers of isolated exceptional fillings of Ni that do
not factor, up to the action of the symmetry group of Ni, are listed in Table
9. The fillings are described in the Tables 21, 22, 23, and 24.

Among these 3+3+5+10 = 21 exceptional fillings, we find 14 graph
manifolds and 7 irreducible manifolds whose JSJ contains a hyperbolic piece.
The hyperbolic pieces that arise are M1,M2,M3, and M4.
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Number of cusps filled
Manifold 1 2 3 4 5 6 7 Total

M7 2 0 0 0 0 2 11 15

Table 10: Numbers of isolated exceptional fillings on M7 that do not contain the
slopes −1, 1, and (−2,−2), up to the action of the symmetry group of M7.

1.7. A final improvement

We conclude this discussion by further reducing the numbers of Table 4.
Using SnapPy, we note the isometry M7(−2,−2) = N6(−3). Since we have
already classified the exceptional fillings of N6, we may disregard all the
fillings containing (−2,−2). We say that a filling of M7 factors if it contains
the slope 1, −1, or the pair (−2,−2) in two consecutive boundary compo-
nents. The final survivors are counted in Table 10. We will identify them in
Tables 26 and 27.

We summarize our discoveries on M7.

Theorem 1.5. The numbers of isolated exceptional fillings of M7 that do
not factor, up to the action of the symmetry group of M7, are listed in Table
10. The fillings are described in the Tables 26 and 27.

Among the exceptional fillings of M7 we find infinitely many pairwise
non-diffeomorphic closed manifolds whose JSJ has a hyperbolic piece. A
complete description of all the manifolds that can be obtained as exceptional
fillings of M7 is given in Theorem 2.11.

Remark 1.6. The tables in [35] of all the closed isolated exceptional fillings
ofM5 contain a few mistakes that we correct here. In [35, Tables 9 and 10] the
fillings (−1,−2,−1,−3,−2) and (−1,−2,−1, 1

2
, 1
2
) should be replaced with

the correct ones (−3,−2,−1,−3,−2) and (−1, 2,−1, 1
2
, 1
2
) respectively. On

the other hand, the exceptional fillings (−1,−1
2
,−1, 1

2
, 5
3
), (−1,−1

3
,−1, 2

3
, 3
2
),

(−1, 1
2
, 3,−1,−1

2
), and (−1, 1

2
,−1, 1

3
, 3
2
) should be removed from [35, Tables

9 and 10] because they are actually not isolated. For this reason the wrong
numbers 5232 and 52 appeared in [35, Tables 1 and 2] instead of the correct
ones 4818 and 48 that we display here.
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2. The exceptional fillings

In the previous section we have reduced all the isolated exceptional fill-
ings of the hyperbolic manifolds M1, . . . ,M7 to some, as small as possible,
“generating” set. We now describe explicitly these generating exceptional
fillings.

2.1. Notation

We use the same notation of [32, 35] for Seifert and graph manifolds, which
seems standard. We quickly recall it here. Given a compact surface Σ, possi-
bly with boundary, and some pairs (p1, q1), . . . , (pk, qk) of coprime integers,
the notation

X =
(

Σ, (p1, q1), . . . , (pk, qk)
)

denotes the 3-manifold X obtained as follows. We remove k open discs from
Σ, thus getting a new surface Σ′. Then we attach k solid tori to the (unique)
oriented circle bundle over Σ′ by killing the slopes (p1, q1), . . . , (pk, qk) in any
k boundary tori. We use here as a basis a meridian in ∂Σ′ and a longitude
{pt} × S1, oriented as a positive basis.

Note that the case pi = 0 is allowed here. It is a standard fact on Seifert
manifolds that if pi ̸= 0 for all i then X is a Seifert manifold, while if pi = 0
for some i then X “degenerates” to a connected sum of lens spaces and solid
tori. More specifically, if Σ is orientable we have

(

Σ, (0, 1), (p2, q2), . . . , (pk, qk)
)

= L(p2, q2)# · · ·#L(pk, qk)#2g(S
2 × S1)#b(D

2 × S1)

where g and b are the genus and the number of boundary components of Σ.
Concretely, in most cases the surface Σ will be either S2, D,A, or P , that is
a sphere, a disc, an annulus, or a pair of pants.

The manifold X described in this way is naturally equipped with an ori-
entation and a standard meridian/longitude basis on each boundary torus.
There is no need to distinguish between the boundary tori of a Seifert man-
ifold since they are all equivalent up to diffeomorphism. With that in mind,
given some manifolds X,Y, Z, and matrices A,B ∈ GL(2,Z) we may write

X
⋃

A
Y
⋃

B
Z, X/A, X

⋃B

A
Y
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to denote some graph manifolds that decomposes along tori into the pieces
X,Y, Z, glued via the maps A,B. In the second example two distinct bound-
ary components of X are identified via A. In the third, two manifolds X,Y
have two pairs of boundary tori glued via A and B. All the matrices here
will have det = −1. We also use the notation TA to denote a torus fibration
over S1 with monodromy A, and in this case we have detA = 1.

2.2. Ambiguities

The same graph manifold may be described in various different ways and
unfortunately in many occasions there is no preferred description.

A useful set of moves that modify the notation of a graph manifold was
collected in [34, Lemma 2.1]. We report here for completeness the ones that
are more relevant for us: we will use them at various points. Here are the
first ones:

(

Σ, (a, b), . . . (y, z)
)

=
(

Σ, (a,−b), . . . (y,−z)
)

(1)
(

Σ, (a, b), (c, d), . . .
)

=
(

Σ, (a, b+ ka), (c, d− kc), . . .
)

(2)
(

Σ, (a, b), . . .
)

=
(

Σ, (a, b+ ka), . . .
)

if ∂Σ ̸= ∅(3)
(

Σ, (1, 0), (a, b), . . .
)

=
(

Σ, (a, b), . . .
)

(4)

In the first move we change the orientation of the manifold. In this paper
we have chosen to write a Seifert manifold as standardly as possible, with
positive normalized numbers if the manifold has boundary: the unique ori-
ented Seifert manifold fibering over the orbifold (D, 2, 2) is usually denoted
as

(

D, (2, 1), (2, 1)
)

, although the notation
(

D, (2, 1), (2,−1)
)

would also be
natural since it visibly expresses the fact that the Euler number vanishes;
there are two oriented Seifert manifolds fibering over (D, 2, 3), and these
are

(

D, (2, 1), (3, 1)
)

and
(

D, (2, 1), (3, 2)
)

. They are orientation-reversingly
diffeomorphic.

The following moves involve the gluing of two pieces:

X
⋃

A
Y = X

⋃

−A
Y(5)

(

Σ, (a, b), . . .
)

⋃

(

m n

p q

) X =
(

Σ, (a, b+ ka), . . .
)

⋃

(

m + kn n

p + kq q

) X(6)

X
⋃

(

m n

p q

)

(

Σ, (a, b), . . .
)

= X
⋃

(

m n

p − km q − kn

)

(

Σ, (a, b+ ka), . . .
)

(7)
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The moves (6, 7) also apply when two boundary tori of the same block
are glued together, but move (5) does not! Note that with (5, 6, 7) it is not
possible to change the absolute value |n| of the top-right element n in the
gluing matrix. Indeed |n| has an important geometric significance: it is the
geometric intersection of the fibers of the two glued Seifert manifolds.

There are also some more complicated moves that occur in more sporadic
cases. The following reflect the fact that

(

D, (2, 1), (2, 1)
)

has an alternative

description as the orientable circle bundle S ×∼S1 over the Möbius strip S.

(

D, (2, 1), (2, 1)
)

⋃

(

m n

p q

) X = (S ×∼S1)
⋃

(

n n − m

q q − p

) X(8)

X
⋃

(

m n

p q

)

(

D, (2, 1), (2, 1)
)

= X
⋃

(

m + p n + q

−m −n

) (S ×∼S1)(9)

Finally, it is sometimes useful to understand how the manifold “degen-
erates” when we perform a longitudinal filling:

(

S2, (a, b), (c, d), (0, 1)
)

= L(a, b)#L(c, d)(10)
(

D, (0, 1), (a, b)
)

⋃

(

m n

p q

)

(

Σ, . . .
)

= L(a, b)#
(

Σ′, (n, q), . . .
)

(11)

Here Σ′ is Σ with one boundary component capped off. In this paper
S2 × S1 is also denoted as the lens space L(0, 1).

2.3. Zero and infinity

Let M be the complement of any chain link L ⊂ S3. The fillings 0 and ∞ on
any boundary component of M are easily understood, and they are always
exceptional.

The filling ∞ corresponds to the removal of a component from L, so we
get the complement of an open chain in S3 as in Figure 5-(1), that is easily
identified as the graph manifold A× S1, P × S1, or

P × S1
⋃

(

0 1

1 0

) · · ·
⋃

(

0 1

1 0

) P × S1

depending on the number of components of L.
The filling 0 may be modified with a handle slide as shown in Figure

5-(2). The resulting manifold is the complement of another chain link (with
two components less) attached to a P × S1.
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0

0
0=

(1)

(2)

Figure 5: The fillings ∞ and 0 on any chain link.

These exceptional fillings 0 and ∞ will appear on all the tables concern-
ing the various chain links studied in this paper.

2.4. The exceptional fillings

We can finally describe the exceptional fillings of M6 and M7. Let us start
with M6. For completeness, we also review all the exceptional fillings of
M1, . . . ,M5, already classified in [34, 35]. All the tables are postponed to
the end of the paper for the sake of clarity.

Theorem 2.1. Every isolated exceptional filling of Mi with i = 1, . . . , 6 that
does not factor through Mi−1 is equivalent, up to the action of Isom(Mi), to
precisely one of those listed in Tables 12, 13, 14, 15, 16, 17, 18 and 19. The
filled manifold is also shown there.

Recall that factoring through Mi−1 is equivalent to containing −1 in
some cusp, or any other slope obtained from −1 by the action of Isom(Mi).
The tables show the isolated exceptional slopes (one representative for each
orbit of Isom(Mi)), the filled manifold, and its integral first homology group.
The notation for the filled manifold sometimes differ from [34, 35] via some
of the moves listed in Section 2.2.

We now do the same withN3, . . . , N6. Recall that “factoring” here means
that the filling slopes contain at least one of the numbers {−3,−2,−1, 1}
for N3, N4, N5 and of {−2,−1, 1} for N6.

Theorem 2.2. Every isolated exceptional filling of N3, . . . , N6 that does
not factor is equivalent, up to the action of Isom(Ni), to precisely one of
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those listed in Tables 21, 22, 23, and 24. The filled manifold is also listed
there.

Finally, we turn to M7. Recall that “factoring” here means that the
filling slope contains either −1, 1, or the pair (−2,−2) in two consecutive
boundary tori.

Theorem 2.3. Every isolated exceptional filling of M7 that does not factor
is equivalent, up to the action of Isom(M7), to precisely one of those listed
in Tables 26 and 27.

The tables shown so far contain a fair amount of information. From
these, we can easily deduce which kinds of non-hyperbolic filling we can
obtain from each manifold Mi. We do this in the following sections.

2.5. The manifold M5

The following theorem was already proved in [35, Corollary 1.3].

Theorem 2.4. The closed non-hyperbolic fillings of M5 are precisely the
manifolds:

(

D, (a, b), (c, d)
)

⋃

(

0 1

1 0

)

(

D, (e, f), (g, h)
)

,

(

D, (2, 1), (2, 1)
)

⋃

(

1 + n 2 + n

−n −1 − n

)

(

D, (2, 1), (3, 1)
)

,

(

A, (a, b)
)/

(

0 1

1 0

) ,
(

A, (2, 1)
)/

(

1 2

0 −1

)

where (a, b), (c, d), (e, f), (g, h) are arbitrary pairs of coprime integers, and
n ∈ {0, 1, 2, 3}.

We note that the first family in the theorem contains many different
kinds of manifolds.

Proposition 2.5. The manifolds X that may be obtained via the descrip-
tion

X =
(

D, (a, b), (c, d)
)

⋃

(

0 1

1 0

)

(

D, (e, f), (g, h)
)

are precisely the following:
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1) The lens spaces and connected sums of two lens spaces.

2) The Seifert manifolds fibering over S2 with 3 exceptional fibres.

3) The Seifert manifolds fibering over P2 with 2 exceptional fibres.

4) The Seifert manifold (K, 1).

5) The graph manifolds whose JSJ decomposition is as in the description
of X.

Here K is the Klein bottle and (K, 1) is the fibration over K with Euler
number 1.

Proof. We use the moves described in Section 2.2. If one of a, c, e, g is zero,
we get a connected sum of two lens spaces. Now suppose a, c, e, g ̸= 0. If
a = 1, we get a Dehn filling of

(

D, (e, f), (g, h)
)

, hence either a lens space,
a connected sum of two lens spaces, or a Seifert manifold fibering over S2

with 3 exceptional fibres.
We are left with the case |a|, |c|, |e|, |g| ≥ 2. In general, we get a graph

manifold whose JSJ decomposition is as in the description of X. There is
only one exceptional case to consider: if a = c = 2, then up to some moves
we get

X =
(

D, (2, 1), (2, 1)
)

⋃

(

k 1

1 0

)

(

D, (e, f), (g, h)
)

=
(

S ×∼S1
)

⋃

(

1 1 − k

0 −1

)

(

D, (e, f), (g, h)
)

for some k ∈ Z. If k = 1 the fibers of the two blocks match to give a Seifert
manifold with two exceptional fibres over RP2. If e = g = 2 also the right
block has another fibration and we get

X =
(

S ×∼S1)
⋃

(

1 1 − k

l l − 1 − kl

)

(

D, (2, 1), (2, 1)
)

=
(

S ×∼S1
)

⋃

(

1 + l l − k − kl

−1 k − 1

)

(

S ×∼S1
)

for some k, l ∈ Z. The two fibres match when l − k − kl = 0 and k − 1 = ±1.
We get two cases (k, l) = (0, 0) or (2,−2) and in both cases we get the Seifert
manifold (K,±1). □

The generic case (5) consists precisely of all the irreducible 3-manifolds
whose JSJ decomposition consists of two Seifert pieces, each fibering over
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a disc with two cone points, whose fibers meet in the glued torus with
geometric intersection one. Theorem 2.4 says that M5 has also some more
sporadic exceptional fillings where this geometric intersection is 2, 3, 4, or 5.

Among the exceptional fillings of M5 we also find another family that
can be analyzed in a similar fashion:

Proposition 2.6. The manifolds X that may be obtained via the descrip-
tion

(

A, (a, b)
)/

(

0 1

1 0

)

are precisely the following:

1) The manifold S2 × S1.

2) The torus bundles of type

T(

b 1

−1 0

).

3) The graph manifolds whose JSJ decomposition is as in the description
of X.

Proof. When a = 0 we get S2 × S1. When a = 1 we get the torus bundle

T(

b −1

1 0

) = T(

b 1

−1 0

).

When |a| ≥ 2 we get a manifold whose JSJ decomposition is as described.
□

As above, the manifolds that we get in (3) are precisely all the irreducible
3-manifolds whose JSJ decomposition consists of a single piece fibering over
an annulus with a cone point, whose fibers meet in the glued torus with
geometric intersection one. Theorem 2.4 exhibits also a sporadic example
with geometric intersection 2.

As we already knew from [35], all the exceptional fillings of M5 are graph
manifolds. We now discover here that this is not the case for M6.

2.6. The manifold M6.

We now turn to the exceptional fillings of M6.
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Theorem 2.7. The closed non-hyperbolic fillings of M6 are precisely the
manifolds:

(

D, (a, b), (c, d)
)

⋃

(

0 1

1 0

)

(

A, (e, f)
)

⋃

(

0 1

1 0

)

(

D, (g, h), (i, j)
)

,

(

A, (a, b)
)

⋃

(

0 1

1 0

)

(

0 1

1 0

)

(

A, (c, d)
)

,

M1

⋃

(

−1 0

1 1

)

(

D, (2, 1), (2, 1)
)

, M1

⋃

(

−1 1

1 0

)

(

D, (2, 1), (2, 1)
)

where (a, b), (c, d), (e, f), (g, h), (i, j) are arbitrary pairs of coprime integers.

Proof. The Tables 17, 18, 19 and 20 show that the exceptional fillings

∞,

(

−2,−
1

2
, ·,

1

2
, 2

)

,

(

−3,−2,−
1

3
, 3, 2,

1

3

)

,

(

−3,−
3

2
,−

1

2
, 2, 2,

1

3

)

give rise precisely to all the manifolds listed in the theorem. Conversely, a
case by case analysis of the manifolds listed in Theorem 2.4 and Tables 17,
18, 19, and 20 shows that all the exceptional fillings of M6 are of one of
these types. Here are the details. Using the moves of Section 2.2 we see that

(

D, (a, b), (c, d)
)

⋃

(

0 1

1 0

)

(

A, (1, f)
)

⋃

(

0 1

1 0

)

(

D, (g, h), (i, j)
)

=

(

D, (a, b), (c, d)
)

⋃

(

1 f

0 −1

)

(

D, (g, h), (i, j)
)

,

(

A, (a, b)
)

⋃

(

0 1

1 0

)

(

0 1

1 0

)

(

A, (1, d)
)

=
(

A, (a, b)
)/

(

1 d

0 −1

) .

By applying the moves (6, 7) we deduce that we can actually obtain in this
way all the manifolds of the following two types:

(

D, (a, b), (c, d)
)

⋃

B

(

D, (g, h), (i, j)
)

,
(

A, (a, b)
)

/B

where B is any matrix that can be written as

B =

(

1 +mf f
−m− n−mnf −(1 + nf)

)

for some m,n, f ∈ Z. In other words, here B is any matrix B =
(

r f

s t

)

with
detB = −1 such that r ≡ 1 mod f and t ≡ −1 mod f . When the manifold
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is of the first type we can also exchange B with −B using the move (5) from
Section 2.2, so we may also get r ≡ −1 mod f and t ≡ 1 mod f in that
case. All the manifolds that arise from Theorem 2.4 and Tables 17, 18,
19 and 20 are of this kind, except of course the two manifolds whose JSJ
decomposition contains a hyperbolic piece. □

Theorem 2.7 exhibits a couple of important differences between M6 and
the manifolds M1, . . . ,M5. The first is that all the graph manifolds come
into two big families, and there are no sporadic manifolds outside of these.
The second is of course the presence of two irreducible manifolds whose JSJ
decomposition contains some hyperbolic piece.

The following proposition furnishes some details on the graph manifolds
produced by the first family.

Proposition 2.8. The manifolds X that may be obtained via the descrip-
tion

X =
(

D, (a, b), (c, d)
)

⋃

(

0 1

1 0

)

(

A, (e, f)
)

⋃

(

0 1

1 0

)

(

D, (g, h), (i, j)
)

are precisely the following:

1) The manifolds that arise in Proposition 2.5.

2) The connected sums of three lens spaces.

3) The connected sums of a Seifert manifold over S2 with 3 exceptional
fibres and a lens space.

4) The Seifert manifolds over S2 with 4 exceptional fibres.

5) The Seifert manifolds over K with 0 or 1 exceptional fibres.

6) The graph manifolds whose JSJ decomposition is

X =
(

D, (a, b), (c, d)
)

⋃

B

(

D, (g, h), (i, j)
)

with

B =

(

1 +mf f
−m− n−mnf −(1 + nf)

)

.

7) The graph manifolds whose JSJ decomposition is

X =
(

S, (a, b)
)

⋃

(

0 1

1 0

)

(

D, (c, d), (e, f)
)
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8) The graph manifolds whose JSJ decomposition is as in the description
of X.

Here K and S are the Klein bottle and the Möbius strip.

Proof. If a = 0 we get a connected sum L(c, d)#
(

S2, (f, e), (g, h), (i, j)
)

. The
second addendum may in turn give rise to a connected sum of two lens
spaces. If e = 0 we get a connected sum of two lens spaces. So we suppose
that a, c, e, g, i ̸= 0.

If a = 1 we get a manifold as in Proposition 2.5. So we suppose |a|, |c|, |g|,
|i| ≥ 2. If e = 1 we get a manifold

(

D, (a, b), (c, d)
)

⋃

B

(

D, (g, h), (i, j)
)

where B is any matrix that can be written as

B =

(

1 +mf f
−m− n−mnf −(1 + nf)

)

.

See the proof of Theorem 2.7. If f = 0 we get (4). If f ̸= 0 we get a graph
manifold as in (6), except possibly when one (or both) piece is

(

D, (2, 1), (2, 1)
)

and the fibrations match: in this way we could obtain a Seifert fibration over
RP2 with two singular fibres or over K without singular fibres; the former
was already obtained in (1) and the latter will be obtained in the next
paragraph by other means, so we ignore it.

We can now suppose that also |e| ≥ 2. We get a manifold of type (8),
except when the left (or the right) block is

(

D, (2, 1), (2, 1)
)

and its alterna-
tive fibration matches with that of the central block. This may happen and
we get a manifold of type (7), unless this happens on both extreme blocks
simultaneously and in this case we get (5). □

We do the same analysis with the second family of graph manifolds.

Proposition 2.9. The manifolds X that may be obtained via the descrip-
tion

(

A, (a, b)
)

⋃

(

0 1

1 0

)

(

0 1

1 0

)

(

A, (c, d)
)

are precisely the following:

1) The manifolds (S2 × S1)#L(p, q).
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2) The torus bundles TC with

C =

(

−(1 +mf) −f
−m− n−mnf −(1 + nf)

)

.

3) The graph manifolds whose JSJ decomposition is

X =
(

A, (a, b)
)

/B

with

B =

(

1 +mf f
−m− n−mnf −(1 + nf)

)

.

4) All graph manifolds whose JSJ decomposition is as in the description
of X.

Proof. If a = 0 we get (S2 × S1)#L(d, c). So we suppose a, c ̸= 0. If c = 1
we get (3), unless a = 1 and in this case we get (2). If |a|, |c| ≥ 2 we get
(4). □

We note in particular that we get all the torus bundles with monodromy
(

−1 0

a −1

)

. However, we do not get the identity matrix! We deduce the following.

Corollary 2.10. Among the six orientable flat 3-manifolds, five can be
obtained by Dehn filling M6, but the 3-torus cannot.

Proof. The four that fiber over S2 with three exceptional fibers or over RP2

with two exceptional fibers can already be obtained from the magic manifold
M3. The one that fibers over S2 with four exceptional fibers (equivalently,
over K) is obtained with M6. □

One important novelty in the exceptional fillings of M6 is of course the
presence of two sporadic irreducible manifolds whose JSJ decomposition
contains a hyperbolic piece. Both exceptional manifolds decompose into the
figure-eight knot complement M1 and the Seifert manifold

(

D, (2, 1), (2, 1)
)

,

which is diffeomorphic to the I-bundle K ×∼ I over the Klein bottle K and

to the orientable S1-bundle S ×∼S1 over the Möbius stip S. By looking at
the gluing matrices, we note that in both cases the meridian of the figure-
eight complement (which is also the shortest curve in a flat cusp section) is

attached to the fiber of the alternative fibration S ×∼S1, that is represented
as the slope (−1, 1) in the fibration

(

D, (2, 1), (2, 1)
)

.
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2.7. The manifold M7.

We now turn toM7. We recall that the simplest method we found to describe
all the exceptional fillings ofM7 was to study an alternative sequence of chain
links N3, . . . , N6.

We first note the quite surprising fact that N3 contains infinitely many
distinct exceptional fillings with hyperbolic pieces. As an aside, this implies
that the manifolds N3, N4, N5 are not fillings of M6.

We can now list all the exceptional fillings of M7.

Theorem 2.11. The closed non-hyperbolic fillings of M7 are precisely the
manifolds:

(

D, (a, b), (c, d)
)

⋃

(

0 1

1 0

)

(

A, (e, f)
)

⋃

(

0 1

1 0

)

(

A, (g, h)
)

⋃

(

0 1

1 0

)

(

D, (i, j), (k, l)
)

,

(

A, (a, b)
)

⋃

(

0 1

1 0

)

(

0 1

1 0

)

(

A, (c, d)
)

,

M5

(

(a, b), (c, d), (e, f), (g, h)
)

⋃

(

0 1

1 0

)

(

D, (i, j), (k, l)
)

,

M2(a, b)
⋃

(

−1 0

1 1

)

(

D, (2, 1), (2, 1)
)

,

(

A, (2, 1)
)/

(

n − 1 n

1 1

)

where (a, b), (c, d), (e, f), (g, h), (i, j), (k, l) are arbitrary pairs of coprime
integers and n ∈ {3, 4, 5, 6}. In the third family we suppose |i|, |k| ≥ 2.

We note the reappearance of some sporadic graph manifolds in the list,
which were absent in M6. The four sporadic graph manifolds listed in the
last row are not members of the previous families.

Proof. We have to check that all the exceptional fillings of M7 are of this
type, and to this purpose we only need to verify this for the manifolds listed
in Tables 21, 22, 23, 24, 26, and 27. Concerning graph manifolds, this is
easily settled using the moves described in Section 2.2 when necessary.

We are left with the non-graph manifolds with non-trivial JSJ decompo-
sition. The manifolds Ni(0) with i = 3, . . . , 6 are obviously a filling of N7(0)
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and hence can be excluded, since their fillings are already contained in the
third family. The tables contain three manifolds

Xi = M2

⋃

Ai

(

D, (2, 1), (2, 1)
)

,

where Ai is one of the matrices

A1 =

(

−1 2
1 −1

)

, A2 =

(

−1 0
1 1

)

, A3 =

(

−1 1
1 0

)

.

There are also more manifolds where M2 is replaced either by M1 or by
M2(−2) and Ai is still of one of these three types. Since M1 = M2(−1) via
an isometry that acts as the identity on the other boundary torus, these
manifolds are fillings of the Xi and can be ignored. To conclude we need to
show that the manifolds X1 and X3 are fillings of

X = M5

⋃

(

0 1

1 0

) P × S1.

It will be convenient to use the moves in Section 2.2 and write them as

X1 = M2

⋃

(

−1 2

0 1

)

(

D, (2, 1), (2,−1)
)

,

X3 = M2

⋃

(

−1 1

−1 2

)

(

D, (2,−1), (2,−1)
)

.

Using SnapPy we find an isometry from M2 to M5(−1,−2,−2) that acts
on a boundary torus as the matrix

B =

(

1 −1
0 1

)

.

We also note that there are isometries of M5 that act on the cusps like the
matrices

C1 =

(

0 1
−1 1

)

, C2 =

(

−1 1
−1 0

)

We deduce that both X1 and X3 are Dehn fillings of X because

(

−1 2
0 1

)

=

(

0 1
1 0

)

C1B,

(

−1 1
−1 2

)

=

(

0 1
1 0

)

C2B.

The proof is complete. □
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c M3 M4 M5 M6 M7 left Total

≤ 5 216 42 8 25 0 10 301
6 426 286 94 111 8 37 962
7 1077 1142 558 519 105 151 3552

Total ≤ 7 1719 1470 660 655 113 198 4815

Table 11: Numbers of cusped hyperbolic manifolds of complexity c that transform
into Mi after repeatedly drilling the shortest curve found by SnapPy. If i ≥ 4 we
only count those that were not previously transformed into Mi−1.

Corollary 2.12. The 3-torus S1 × S1 × S1 is not a filling of M7.

In particular, the Borromean rings complement is not a filling of M7. As
pointed out by the referee, this corollary is actually well-known: since the
minimally twisted chain links are strongly invertible, every Dehn surgery on
M7 is a double branched cover over some link in S3. By a result of Fox [17],
the 3-torus cannot be realized as a double branched cover on any link in S3.
Therefore it cannot be realized as a Dehn surgery on any minimally twisted
chain link.

3. The cusped census

Many cusped hyperbolic manifolds of the Callahan – Hildebrand – Weeks
census [10] are Dehn fillings of M7 and a classification of their exceptional
fillings can be deduced from the theorems stated here.

The Callahan – Hildebrand – Weeks census contains all the cusped hy-
perbolic manifolds N with complexity c ≤ 7 (the complexity is the minimum
number of tetrahedra in a topological ideal triangulation). To see whether
N can be obtained as a filling of Mi for some i ≤ 7, a very simple and con-
crete method consists of drilling the shortest simple closed curve found by
SnapPy in N multiple times, until we get a manifold with i cusps. This
typically leads to some hyperbolic manifold Ni and one checks via SnapPy
whether Ni is isometric to Mi or not. Note that as soon as Ni = Mi we
also have Ni+1 = Mi+1 because each Mi+1 is obtained by drilling a shortest
curve from Mi. If this crude algorithm fails, of course this does not imply
that N is not a filling of Mi.

We display in Table 11 the number of manifolds in each complexity
c ≤ 5, c = 6, and c = 7 for which this algorithm produces a positive answer
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Figure 6: The Borromean rings.

for Mi. We could represent all the manifolds of the census as a filling of M7,
except a number of 10, 37, and 151 of them with c ≤ 5, c = 6, and c = 7
respectively.

3.1. The Borromean rings

We have discovered at the end of Section 2.7 that the complement W of
the Borromean rings (shown in Figure 6) is not a Dehn filling of M7. While
performing the drilling algorithm, we notice that in each of the 10 remaining
manifolds N with c(N) ≤ 5 of Table 11, the drilled manifold N3 is in fact
isometric to the Borromean rings complement W . More generally, among
the 10, 47, and 198 remaining manifolds with c ≤ 5, c = 6, and c = 7, for
10, 34, and 92 of them the manifold N3 is isometric to W .

We are now led naturally to the study of the exceptional fillings of the
Borromean ring complement W . These are easily classified. We note that
W (−1) = M2 is the Whitehead link complement, so we consider only the
Dehn fillings that do not factor through M2.

Theorem 3.1. The isolated exceptional fillings on the Borromean rings W ,
considered up to the action of Isom(W ), are listed in Table 25.

The exceptional fillings of all the 301 manifolds with c ≤ 5 can be de-
duced from the theorems stated here. These 301 manifolds have either one
or two cusps.

While completing this paper, we have been informed that Dunfield has
recently classified and recognised the exceptional fillings of all the one-cusped
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hyperbolic manifolds in the much wider c ≤ 9 census. He discovered in par-
ticular that there are almost 206,000 exceptional fillings overall [14].

4. Proofs

The proofs of the Theorems 1.2, 2.1, 2.2, 2.3, and 3.1 follow the strategy
outlined in the introduction. To detect the isolated exceptional fillings we use
the python script find exceptional fillings.py, that can be downloaded
from [33] to be used on any multi-cusped hyperbolic manifold. The script
was already used in [35], and some of its routines have been rewritten in
a more efficient way to increase its speed. We refer to [35] for a detailed
tutorial to the script.

As explained there, the script produces two finite lists of fillings: a list
of “probably isolated exceptional fillings”, and a list of “probably hyper-
bolic fillings” that typically contains only closed fillings. To conclude rig-
orously with the proof we need to prove that indeed all the members of
the first list are not hyperbolic, and those of the second are hyperbolic
(in the unlucky case where the second list contains cusped manifolds, one
should run the program again on each). We have been able to accomplish
that in all the steps of the proofs. As in [35], we have used Recognizer and
Regina for the first task, and another python script for the second: the script
search geometric solution.py is designed to determine the hyperbolicity
of a long list of fillings of the same manifold M , using retriangulations and
finite coverings. We could complete all cases using finite covers of order ≤ 11.
Few cases needed the degree 11 coverings.

Following this strategy, all the exceptional fillings of Mi and Ni with
i ≤ 5 can be classified directly. The program needs few seconds for i ≤ 3,
few minutes for i = 4, and few hours for i = 5. To attack M6 we use the
formidable symmetries of M6 and note that, thanks to Agol and Lackenby’s
6 theorem [1, 30], an exceptional filling of M6 factors either through M5 or
through M6(−2). So to complete the classification for M6 we only needed
to analyze the 5-cusped manifold M6(−2). Alternatively, we can directly
classify all the fillings on M6 in few days of computer time. We used a
similar approach for the manifolds N3, . . . , N6.

Classifying directly the exceptional fillings of M7 takes too much com-
puter time, so we attacked it using the 6 theorem again: we only needed to
analyse M7(α) with α ∈ {−3,−2,−1,−1

2
, 0, 1

2
, 1, 2,∞}. Note that, due also

to the presence of fewer symmetries, we have to consider many more cases
for M7 than for M6. The slopes 0 and ∞ are exceptional. The slopes −1
and 1 have already been analysed and give M6 and N6. We ran the program
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on M7(α) for each remaining α, and after a few days the computation was
done.

We have also used another script to regenerate from the sometimes small
amount of information found (the exceptional fillings that do not factor) all
the isolated exceptional fillings of M6 and M7, by acting with the isometry
groups of M6 and M7.

∞ S3 {e}

±4
(

D, (2, 1), (2, 1)
)
⋃

(

0 1

1 0

)

(

D, (2, 1), (3, 1)
)

Z4

±3
(

S2, (3, 1), (3, 1), (4,−3)
)

Z3

±2
(

S2, (2, 1), (4, 1), (5,−4)
)

Z2

±1
(

S2, (2, 1), (3, 1), (7,−6)
)

{e}

0 T(

3 1

−1 0

) Z

Table 12: The exceptional fillings of the figure-eight knot complement M1. We
also show their first homology groups.
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∞ D × S1 Z

0
(

P × S1
)

/(0 1

1 0

) Z2

1
(

D, (2, 1), (3, 1)
)

Z

2
(

D, (2, 1), (4, 1)
)

Z× Z2

3
(

D, (3, 1), (3, 1)
)

Z× Z3

4
(

D, (2, 1), (2, 1)
)
⋃

(

0 1

1 0

)

(

A, (2, 1)
)

Z× Z4

(

3

2
, 5

)

(

S2, (2, 1), (3, 1), (3,−5)
)

Z15

(

4

3
, 5

)

(

D, (2, 1), (2, 1)
)
⋃

(

2 1

−1 −1

)

(

D, (2, 1), (3, 1)
)

Z20

(

5

2
,
7

2

)

(

D, (2, 1), (3, 1)
)
⋃

(

1 1

0 −1

)

(

D, (2, 1), (3, 1)
)

Z35

(−2,−2)
(

D, (2, 1), (2, 1)
)
⋃

(

1 2

0 −1

)

(

D, (2, 1), (3, 1)
)

Z2
2

Table 13: The isolated exceptional fillings of the Whitehead link complement M2

that do not factor through M1, up to the action of Isom(M2). We also show their
first homology groups.
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∞ A× S1 Z2

0
(

D, (2, 1), (3, 1)
)
⋃

(

1 1

1 0

) P × S1 Z2

1
(

A, (2, 1)
)

Z2

2
(

A, (3, 1)
)

Z2

3
(

A, (2, 1)
)
⋃

(

0 1

1 0

)

(

A, (2, 1)
)

Z2

(

4,
1

2

)

(

3

2
,
5

2

)

(

D, (2, 1), (3, 1)
)
⋃

(

1 1

1 0

)

(

A, (2, 1)
)

Z

(

8

3
,
3

2
,
3

2

)

(

D, (2, 1), (2, 1)
)
⋃

(

2 1

−1 −1

)

(

D, (2, 1), (3, 1)
)

Z20

(

5

2
,
5

3
,
5

3

)

(

D, (2, 1), (2, 1)
)
⋃

(

3 1

−2 −1

)

(

D, (2, 1), (3, 1)
)

Z16

(−2,−2,−2)
(

D, (2, 1), (2, 1)
)
⋃

(

2 3

−1 −2

)

(

D, (2, 1), (3, 1)
)

Z4

(

4,
3

2
,
3

2

)

T(

−3 1

−1 0

) Z× Z5

(

5, 5,
1

2

)

(

A, (2, 1)
)/

(

0 1

1 0

) Z× Z3

(

4, 4,
2

3

)

(

7

3
,
7

3
,
3

2

)

(

A, (2, 1)
)/

(

1 1

1 0

) Z× Z5

(

5

2
,
5

2
,
4

3

)

(

A, (2, 1)
)/

(

2 1

1 0

) Z× Z7

Table 14: The isolated exceptional fillings of the magic manifold M3 that do not
factor through M2, up to the action of Isom(M3). We also show their first homology
groups.



✐

✐

“5-Martelli” — 2022/4/19 — 19:20 — page 1629 — #33
✐

✐

✐

✐

✐

✐

Dehn surgery on the minimally twisted seven-chain link 1629

∞ P × S1 Z3

0
(

P × S1
)
⋃

(

0 1

1 0

)

(

A, (2, 1)
)

Z3

(−2,−2,−2,−2)
(

D, (2, 1), (2, 1)
)
⋃

(

3 4

−2 −3

)

(

D, (2, 1), (3, 1)
)

Z2
2

Table 15: The isolated exceptional fillings of M4 that do not factor through M3,
up to the action of Isom(M4). We also show their first homology groups.

∞
(

P × S1
)
⋃

(

0 1

1 0

)

(

P × S1
)

Z4

(−2,−2,−2,−2,−2)
(

D, (2, 1), (2, 1)
)
⋃

(

4 5

−3 −4

)

(

D, (2, 1), (3, 1)
)

Z4

(

−2,−2,
1

3
, 3,

1

3

)

(

A, (2, 1)
)/

(

1 2

0 −1

) Z× Z6

Table 16: The isolated exceptional fillings of M5 that do not factor through M4,
up to the action of Isom(M5). We also show their first homology groups.
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∞
(

P × S1
)
⋃

(

0 1

1 0

)

(

P × S1
)
⋃

(

0 1

1 0

)

(

P × S1
)

Z5

(−2,−2, ·, 2, 2)
(

D, (3, 1), (3, 2)
)
⋃

(

1 1

1 0

)

(

P × S1
)

Z2 × Z3

(

−2,−
1

2
, ·,

1

2
, 2

)

(

P × S1
)
⋃

(

0 1

1 0

)

(

0 1

1 0

)

(

P × S1
)

Z3

(

2, 2,
1

2
,−3,−2

)

(

D, (2, 1), (5, 2)
)

Z

(

2, 2,
1

2
,−4,−2

)

(

D, (2, 1), (3, 1)
)
⋃

(

1 1

1 0

)

(

A, (2, 1)
)

Z

(

2, 2,−
1

2
,−2,−

3

2

)

(

D, (2, 1), (4, 1)
)
⋃

(

1 1

1 0

)

(

A, (2, 1)
)

Z× Z2

(

1

2
,−2,−

1

2
,−2,

1

2

)

(

P × S1
)/

(

1 2

1 1

) Z2 × Z2

Table 17: The non-closed isolated exceptional fillings of M6 that do not factor
through M5, up to the action of Isom(M6). The dot indicates a cusp that is not
filled: it appears when the fillings are not along consecutive components on the link.
We also show the first homology groups.
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(

−3,−
2

3
,−2,

1

2
, 2,

1

2

)

(

−3,−
1

2
,−3,

1

2
, 2,

1

2

)

(

S2, (2, 1), (3, 1), (8,−7)
)

Z2

(

−3,−2,−
2

3
,−2, 2,

1

2

)

(

−3,−2,−
1

2
,−2, 2,

1

3

)

(

S2, (2, 1), (3, 1), (11,−9)
)

{e}

(

−4,−
2

3
,−2,

1

2
, 2,

1

2

)

(

−4,−
1

2
,−3,

1

2
, 2,

1

2

)

(

−
4

3
,−

1

2
, 2,

1

2
, 2,−

1

3

)

(

S2, (2, 1), (4, 1), (6,−5)
)

Z2
2

(

−3,−
2

3
,−2,

1

3
, 2,

1

2

)

(

−3,−
1

2
,−3,

1

2
, 2,

1

3

)

(

S2, (2, 1), (5, 1), (5,−4)
)

Z5

(

−5,−
2

3
,−2,

1

2
, 2,

1

2

)

(

−5,−
1

2
,−3,

1

2
, 2,

1

2

)

(

−
5

4
,−

1

2
, 2,

1

2
, 2,−

1

3

)

(

S2, (3, 1), (3, 1), (5,−4)
)

Z6

(

−4,−
2

3
,−2,

1

3
, 2,

1

2

)

(

−4,−
1

2
,−3,

1

3
, 2,

1

2

)

(

S2, (3, 1), (4, 1), (4,−3)
)

Z8

Table 18: The closed isolated exceptional fillings of M6 that do not factor through
M5, up to the action of Isom(M6). We also show their first homology groups.
(Part I.)
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(

−6,−
2

3
,−2,

1

2
, 2,

1

2

)

(

−6,−
1

2
,−3,

1

2
, 2,

1

2

)

(

−
6

5
,−

1

2
, 2,

1

2
, 2,−

1

3

)

(

D, (2, 1), (2, 1)
)
⋃

(

0 1

1 0

)

(

D, (2, 1), (4, 1)
)

Z2 × Z4

(

−5,−
2

3
,−2,

1

3
, 2,

1

2

)

(

−5,−
1

2
,−3,

1

3
, 2,

1

2

)

(

D, (2, 1), (3, 1)
)
⋃

(

0 1

1 0

)

(

D, (2, 1), (3, 1)
)

Z11

(

−
5

2
,−2,−

2

5
, 2, 2,

1

2

)

(

−
3

2
,−2,−

2

3
, 2, 2,

1

2

)

(

D, (2, 1), (3, 1)
)
⋃

(

1 1

0 −1

)

(

D, (2, 1), (3, 2)
)

Z37

(

−
5

3
,−2,−

1

2
, 2, 2,

1

3

)

(

D, (2, 1), (3, 1)
)
⋃

(

0 1

1 −1

)

(

D, (2, 1), (3, 2)
)

Z31

(

−4,−
2

3
,−2,

1

4
, 2,

1

2

)

(

−4,−
1

2
,−3,

1

4
, 2,

1

2

)

(

D, (2, 1), (2, 1)
)
⋃

(

0 1

1 0

)

(

D, (3, 1), (3, 1)
)

Z2 × Z6

(

−3,−
1

2
, 2, 2, 2,−

1

2

)

(

D, (2, 1), (2, 1)
)
⋃

(

2 1

−1 −1

)

(

D, (3, 1), (3, 1)
)

Z24

(

−4,−
3

4
,−2,

1

2
, 2,

1

2

)

(

−4,−
1

2
,−4,

1

2
, 2,

1

2

)

(

D, (2, 1), (2, 1)
)
⋃

(

1 2

0 −1

)

(

D, (2, 1), (4, 1)
)

Z3
2

(

−3,−
1

2
,−3,

1

3
, 2,

1

3

)

(

D, (2, 1), (2, 1)
)
⋃

(

1 2

0 −1

)

(

D, (3, 1), (3, 1)
)

Z12

Table 19: The closed isolated exceptional fillings of M6 that do not factor through
M5, up to the action of Isom(M6). We also show their first homology groups.
(Part II.)
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(

−4,−
1

2
,−3,

1

2
, 2,

1

3

)

(

−
4

3
,−

1

2
, 3,

1

2
, 2,−

1

3

)

(

D, (2, 1), (3, 1)
)
⋃

(

1 2

0 −1

)

(

D, (2, 1), (3, 1)
)

Z10

(

−3,−
2

3
,−3,

1

2
, 2,

1

2

)

(

D, (2, 1), (2, 1)
)
⋃

(

2 3

−1 −2

)

(

D, (2, 1), (4, 1)
)

Z2 × Z4

(

−3,−
2

3
,−2,

1

2
, 2,

1

3

)

(

D, (2, 1), (3, 1)
)
⋃

(

2 3

−1 −2

)

(

D, (2, 1), (3, 1)
)

Z9

(

−
3

2
,−

1

2
, 2,

2

3
, 2,−

1

2

)

(

D, (2, 1), (3, 1)
)
⋃

(

3 4

−2 −3

)

(

D, (2, 1), (3, 1)
)

Z8

(−2,−2,−2,−2,−2,−2)
(

D, (2, 1), (2, 1)
)
⋃

(

5 6

−4 −5

)

(

D, (2, 1), (3, 1)
)

Z2
2

(

−4,−2,−
2

3
,−2, 2,

1

2

)

(

−3,−3,−
1

2
,−3, 2,

1

2

)

(

A, (2, 1)
)/

(

−1 1

1 0

) Z

(

−3,−3,
1

2
, 2, 2,

1

2

)

(

A, (2, 1)
)/

(

1 3

0 −1

) Z× Z5

(

−3,−2,−
1

3
, 3, 2,

1

3

)

(

−
3

2
,−2,

1

2
,
3

2
, 2,−

1

2

)
M1

⋃

(

−1 0

1 1

)

(

D, (2, 1), (2, 1)
)

Z2
2

(

−3,−
3

2
,−

1

2
, 2, 2,

1

3

)

M1

⋃

(

−1 1

1 0

)

(

D, (2, 1), (2, 1)
)

Z4

Table 20: The closed isolated exceptional fillings of M6 that do not factor through
M5, up to the action of Isom(M6). We also show their first homology groups. (Part
III.)
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∞ A× S1 Z2

0 M1

⋃

(

0 1

1 0

)

(

P × S1
)

Z2

(2, 2, 2)
(

A, (2, 1)
)/

(

2 3

1 1

) Z× Z3

Table 21: The isolated exceptional fillings of N3 that do not factor, up to the
action of Isom(N3). We also show their first homology groups.

∞ P × S1 Z3

0 M2

⋃

(

0 1

1 0

)

(

P × S1
)

Z3

(2, 2, 2, 2)
(

A, (2, 1)
)/

(

3 4

1 1

) Z× Z4

Table 22: The isolated exceptional fillings of N4 that do not factor, up to the
action of Isom(N4). We also show their first homology groups.
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∞
(

P × S1
)
⋃

(

0 1

1 0

)

(

P × S1
)

Z4

0 M3

⋃

(

0 1

1 0

)

(

P × S1
)

Z4

(

−4,−
3

2
,−

3

2
,−4,−

1

2

)

M1

⋃

(

−1 2

1 −1

)

(

D, (2, 1), (2, 1)
)

Z2 × Z2

(

−
3

2
,−

3

2
,−

3

2
,−

3

2
,−

3

2

)

(

D, (2, 1), (3, 1)
)
⋃

(

4 5

−3 −4

)

(

D, (2, 1), (3, 1)
)

Z7

(2, 2, 2, 2, 2)
(

A, (2, 1)
)/

(

4 5

1 1

) Z× Z5

Table 23: The isolated exceptional fillings of N5 that do not factor, up to the
action of Isom(N5). We also show their first homology groups.
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∞
(

P × S1
)
⋃

(

0 1

1 0

)

(

P × S1
)
⋃

(

0 1

1 0

)

(

P × S1
)

Z5

0 M4

⋃

(

0 1

1 0

)

(

P × S1
)

Z5

(

−
1

2
,−4,−

1

2
,−4,−

1

2

)

M2

⋃

(

−1 2

1 −1

)

(

D, (2, 1), (2, 1)
)

Z× Z2
2

(

−
1

2
,−3,−

2

3
,−3,−

1

2

)

M2

⋃

(

−1 1

1 0

)

(

D, (2, 1), (2, 1)
)

Z× Z4

(

−5,−
1

2
,−3,−

1

2
,−3,−

1

2

)

(

D, (2, 1), (3, 1)
)
⋃

(

0 1

1 0

)

(

D, (2, 1), (3, 1)
)

Z11

(

−4,−
1

2
,−3,−

1

2
,−3,−

1

2

)

(

S2, (3, 1), (4, 1), (4,−3)
)

Z8

(

−3,−3,−
1

2
,−3,−3,−

1

2

)

(

A, (2, 1)
)/

(

1 4

0 −1

) Z× Z4

(

−3,−
1

2
,−3,−

1

2
,−3,−

1

2

)

(

S2, (2, 1), (5, 1), (5,−4)
)

Z5

(

−3,−
1

2
, 2,−

1

2
, 2,−

1

2

)

(

A, (2, 1)
)/

(

1 2

1 1

) Z× Z2

(2, 2, 2, 2, 2, 2)
(

A, (2, 1)
)/

(

5 6

1 1

) Z× Z6

Table 24: The isolated exceptional fillings of N6 that do not factor, up to the
action of Isom(N6). We also show their first homology groups.
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∞ (D × S1)#(D × S1) Z2

0
(

P × S1
)
⋃

(

0 1

1 0

)

(

0 −1

−1 0

)

(

P × S1
)

Z3

(−2,−2)
(

D, (2, 1), (2, 1)
)
⋃

(

1 2

1 1

)

(

A, (2, 1)
)

Z× Z2
2

(

−
4

3
,−3,−2

)

(

D, (2, 1), (2, 1)
)
⋃

(

2 1

−1 −1

)

(

D, (2, 1), (4, 1)
)

Z2 × Z12

(

−3,−
3

2
,−2

)

(

S2, (3, 1), (3, 1), (3,−4)
)

Z3 × Z6

Table 25: The isolated exceptional fillings of the Borromean rings complement W
that do not factor through M1, up to the action of Isom(W ). We also show their
first homology groups.

∞

(

P × S1
)
⋃

(

0 1

1 0

)

(

P × S1
)
⋃

(

0 1

1 0

)

(

P × S1
)
⋃

(

0 1

1 0

)

(

P × S1
) Z6

0 M5

⋃

(

0 1

1 0

)

(

P × S1
)

Z6

(

1

2
, 2,−

1

2
,−

3

2
,−2,−

1

2

)

(

−
1

2
,−2,

1

2
,
1

2
,−2,−

1

2

)
M2

⋃

(

−1 0

1 1

)

(

D, (2, 1), (2, 1)
)

Z× Z2
2

Table 26: The non-closed isolated exceptional fillings of M7 that do not factor, up
to the action of Isom(M7). We also show their first homology groups.
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(

−3,−2,−
1

2
, 2, 2, 2,−

1

2

)

(

D, (2, 1), (2, 1)
)
⋃

(

2 1

−1 −1

)

(

D, (3, 1), (4, 1)
)

Z28

(

−3,−2,
1

2
, 2, 2,

1

2
,−2

)

(

D, (2, 1), (2, 1)
)
⋃

(

2 1

−1 −1

)

(

D, (2, 1), (5, 1)
)

Z16

(

−2,−
1

2
, 2,−

1

2
,−

1

2
, 2,−

1

2

)

(

D, (2, 1), (2, 1)
)
⋃

(

3 4

−2 −3

)

(

D, (2, 1), (4, 1)
)

Z3
2

(

−
1

2
,−

1

2
,−

1

2
,−

1

2
,−

1

2
,−

1

2
,−

1

2

)

(

D, (2, 1), (3, 1)
)
⋃

(

6 7

−5 −6

)

(

D, (2, 1), (3, 1)
)

Z5

(

−
3

2
,−2,−

1

2
, 2, 2,−

1

2
,−2

)

(

−
3

2
,−2,−

1

2
, 2, 2,

1

2
, 2

)

(

A, (2, 1)
)/

(

1 2

1 1

) Z× Z2

(2, 2, 2, 2, 2, 2, 2)
(

A, (2, 1)
)/

(

6 7

1 1

) Z× Z7

(

−3,−2,−3,
1

2
, 2, 2,

1

2

)

(

A, (3, 1)
)/

(

1 3

0 −1

) Z× Z9

(

−
3

2
,−

3

2
,−2,

1

2
, 2,

1

2
,−2

)

(

−
3

2
,−2,−

1

2
, 2,

3

2
,
1

2
,−2

)

(

M2(−2)
)
⋃

(

−1 0

1 1

)

(

D, (2, 1), (2, 1)
)

Z3
2

(

−3,−
3

2
,−2,−

1

2
, 2, 2,

1

3

)

(

M2(−2)
)
⋃

(

−1 1

1 0

)

(

D, (2, 1), (2, 1)
)

Z2 × Z4

Table 27: The closed isolated exceptional fillings of M7 that do not factor, up to
the action of Isom(M7). We also show their first homology groups.
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