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1. Introduction

In this paper, we consider totally geodesic 3-punctured spheres in orientable
hyperbolic 3-manifolds. The ϵ-thick part of an orientable hyperbolic 3-
manifold M is its submanifold M[ϵ,∞) such that the open ball of radius
ϵ centered at any x ∈ M[ϵ,∞) is embedded in M . We call it simply the thick
part after fixing ϵ to be at most the Margulis constant for H3. Then the thin
part (i.e. the complement of the thick part) is the disjoint union of tubes and
cusp neighborhoods. A tube is a regular neighbourhood of a closed geodesic
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of length less than 2ϵ. By removing the cusp neighborhoods from M , we ob-
tain a 3-manifold M0. Then the interior of M0 is homeomorphic to M , and
a boundary component of M0 is a torus or annulus, called a cusp. For con-
venience, we ignore the distinction between M and M0. Thus an orientable
hyperbolic 3-manifold of finite volume is regarded as a compact 3-manifold
with (possibly empty) boundary consisting of torus cusps.

The upper half-space model gives the identifications of the ideal bound-
ary ∂H3 ∼= Ĉ = C ∪ {∞} and the group of the orientation-preserving isome-
tries Isom+(H3) ∼= PSL(2,C). A torus cusp neighborhood is isometric to a
neighborhood of the image of ∞ in H3/G, where G ∼= Z2 is a group that con-
sists of parabolic elements fixing ∞. Thus a torus cusp admits the natural
Euclidean structure up to scaling.

A 3-punctured sphere is obtained by removing three points from the 2-
sphere, but we often regard it as a compact orientable surface of genus zero
with three boundary components. We always assume that the boundary of
a 3-punctured sphere in a hyperbolic 3-manifold is contained in the cusps.
Adams [1] showed that an essential 3-punctured sphere in an orientable
hyperbolic 3-manifold is isotopic to a totally geodesic one. A totally geodesic
3-punctured sphere is isometric to the double of an ideal triangle in the
hyperbolic plane H2. Moreover, the hyperbolic structure of a 3-punctured
sphere is unique up to isometry. After we cut a hyperbolic 3-manifold along
a totally geodesic 3-punctured sphere, we can glue it again by an isometry
along the new boundary. Since there are six orientation-preserving isometries
of a totally geodesic 3-punctured sphere, we can construct hyperbolic 3-
manifolds with a common volume.

We remark on an immersed 3-punctured sphere. The existence of a non-
embedded immersed 3-punctured sphere almost determines the ambient hy-
perbolic 3-manifold.

Theorem 1.1 (Agol [3]). Let Σ be an immersed 3-punctured sphere in an
orientable hyperbolic 3-manifold M . Suppose that Σ is not homotopic to an
embedded one. Then M is obtained by a (possibly empty) Dehn filling on a
cusp of the Whitehead link complement. Furthermore, Σ is homotopic to a
totally geodesic 3-punctured sphere immersed in M as shown in Figure 1.

From now on, we consider embedded totally geodesic 3-punctured spheres.
If all the 3-punctured spheres in a hyperbolic 3-manifold are disjoint, we
can standardly decompose the 3-manifold along the 3-punctured spheres.
However, 3-punctured spheres may intersect. Thus we consider all the 3-
punctured spheres. Although the unions of 3-punctured spheres may be
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Figure 1: Non-embedded 3-punctured sphere

complicated, we can classify them. The JSJ decomposition of an irreducible
orientable 3-manifold gives atoroidal pieces and Seifert pieces, and then ev-
ery essential torus in the 3-manifold can be isotoped into a Seifert piece.
Theorem 1.2 can be regarded as an analog of the classification of the Seifert
3-manifolds.

Theorem 1.2. Let M be an orientable hyperbolic 3-manifold. Suppose that
X is a connected component of the union of all the (embedded) totally
geodesic 3-punctured spheres in M . Let N(X) be a regular neighborhood
of X. By abuse of terminology, we refer to the topological type of the pair
(N(X), X) as the type of X. If X consists of finitely many 3-punctured
spheres, then X is one of the following types:

• (general types)
An(n ≥ 1), B2n(n ≥ 1), T3, T4.

• (types determining the manifolds)
Whi2n(n ≥ 2),Whi ′4n(n ≥ 2),Bor6,Mag4,Tet8,Pen10,Oct8.

• (types almost determining the manifolds)

Ŵhin(n ≥ 2), Ŵhi ′2n(n ≥ 1), T̂et2, P̂en4, Ôct4.

The indices indicate the numbers of 3-punctured spheres.

Theorem 1.3. Let M be an orientable hyperbolic 3-manifold. Suppose that
X is a connected component of the union of all the totally geodesic 3-
punctured spheres in M . If X consists of infinitely many 3-punctured spheres,
then X is the type B∞ or Whi∞.
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Figure 2: An

Figure 3: B2n

Figure 4: T3 and T4

Careful descriptions of these types will be given in Section 2. Now we
explain them briefly. The general types appear in various manifolds. For
any finite multiset of general types, there are infinitely many hyperbolic
3-manifolds containing 3-punctured spheres of such types. When the type
B2n, T3, or T4 appears, there are additional isolated 3-punctured spheres,
which are contained in the boundary of 3-manifolds shown in Figures 3
and 4. In contrast, each of the determining types appears only in a certain
special manifold. Not all the 3-punctured spheres are shown in Figures 5 and
6, because there are too many 3-punctured spheres. The almost determining
types appear only in manifolds obtained by Dehn fillings of such special
manifolds. The dashed circles in Figures 5 and 7 indicate filled cusps. For an
(almost) determining type, the ambient 3-manifold has finite volume. For
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Figure 5: Whi (′)2n, Ŵhi (′)n, and Bor6

Figure 6: Mag4,Tet8,Pen10, and Oct8

Figure 7: T̂et2, P̂en4, and Ôct4

each n ≥ 2, the unions of 3-punctured spheres of the typesWhi4n andWhi ′4n
have a common topology as topological spaces, but they are distinguished

by their neighborhoods. The same argument holds for Ŵhi2n and Ŵhi ′2n.
For 3 ≤ n ≤ 6, let Mn denote the minimally twisted hyperbolic n-chain

link complement as shown in Figure 6. The 3-punctured spheres of the types
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Figure 8: B∞ and Whi∞

Mag4,Tet8,Pen10, and Oct8 are respectively contained only in the manifolds
M3,M4,M5, and M6. These manifolds are quite special for several reasons.
Agol [4] conjectured that they have the smallest volume of the n-cusped
orientable hyperbolic 3-manifolds. This conjecture was proven for M4 by
the author [32].

The manifold M3 is called the magic manifold by Gordon and Wu [15].
It is known that many interesting examples are obtained by Dehn fillings of
M3. For example, Kin and Takasawa [21] showed that some mapping tori
of punctured disk fibers with small entropy appear as Dehn fillings of M3.
The manifold M5 is known to give most of the census manifolds [9] by Dehn
fillings. Martelli, Petronio, and Roukema [25] classified the non-hyperbolic
manifolds obtained by Dehn fillings of M5. Kolpakov and Martelli [22] con-
structed the first examples of finite volume hyperbolic 4-manifolds with ex-
actly one cusp by using M6. Baker [5] showed that every link in S3 is a
sublink of a link whose complement is a covering of M6. He then used the
link in Figure 9 to construct coverings ofM6 efficiently. We can show that the
complement of this link is homeomorphic toM6 by finding eight 3-punctured
spheres of the type Oct8 (see also [20, Lemma 5.9]).

Moreover, the manifolds M3,M4,M5, and M6 are arithmetic hyperbolic
3-manifolds. A cusped finite volume hyperbolic 3-manifold is arithmetic if
and only if its fundamental group is commensurable to a Bianchi group
PSL(2,Od), where Od is the ring of integers of the imaginary quadratic field
Q(

√
−d) (see [23, Ch. 8] for more details). Thurston [30, Ch. 6] gave an

explicit representation of π1(M3) as a subgroup of PSL(2,O7). Baker [5]
gave an explicit representation of π1(M4) as a subgroup of PSL(2,O1),
and showed that M6 is a double covering of M4. The fundamental group
of the Whitehead link complement is also commensurable to PSL(2,O1).
Hatcher [16] showed that the fundamental group of a hyperbolic 3-manifold
obtained from regular ideal tetrahedra (resp. regular ideal octahedra) is
commensurable to PSL(2,O3) (resp. PSL(2,O1)). As we will describe in
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Section 2, the manifold M5 can be decomposed into ten regular ideal tetra-
hedra. Hence π1(M5) is commensurable to PSL(2,O3). In addition, Kin and
Rolfsen [20] studied bi-orderability of their fundamental groups.

Figure 9: A link whose complement is M6

Eudave-Muñoz and Ozawa [12] characterized non-hyperbolic 3-
component links in the 3-sphere whose complements contain essential 3-
punctured spheres with non-integral boundary slopes. Moreover, they con-
jectured that a hyperbolic link complement does not contain an essential
n-punctured sphere with non-meridional and non-integral boundary slope.
Since our result does not concern embeddings of hyperbolic 3-manifolds in
the 3-sphere, we do not solve this conjecture for 3-punctured spheres. Nev-
ertheless, our result might be helpful to approach this conjecture.

2. Description of the types of the unions of

3-punctured spheres

In this section we describe the types of the unions of 3-punctured spheres in
Theorems 1.2 and 1.3. This section concerns the existence of the 3-punctured
spheres. In Section 3 we will show that each special manifold has no other
3-punctured spheres than the described ones.

We first introduce manifolds containing the 3-punctured spheres of some
types. Let Wn denote the manifold as shown in the left of Figure 5 that is an
n-sheeted cyclic cover of the Whitehead link complement. Let W′

n denote
the manifold obtained by a half twist along a blue 3-punctured sphere of
Wn, which can be also shown in the left of Figure 5. The manifolds Wn and
W′

n are homeomorphic to certain link complements. For odd n, the manifold
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W′

n is homeomorphic to Wn by reversing orientation. Kaiser, Purcell and
Rollins [19] described more details on these manifolds. Note that our nota-
tions are different from theirs. The manifolds W2n−1,W4n−2,W4n,W′

4n−2,

and W′

4n are respectively homeomorphic to Ŵ2n−1,W 4n−2, Ŵ4n, Ŵ4n−2, and
W 4n in [19].

It is well known that the Whitehead link complement W1 can be decom-
posed into a regular ideal octahedron. Hence vol(Wn) = vol(W′

n) = nVoct,
where Voct = 3.6638... is the volume of a regular ideal octahedron. At present,
this is the smallest known volume of the (n+ 1)-cusped orientable hyperbolic
3-manifolds for n ≥ 10. The manifold W′

2 is the Borromean rings comple-
ment.

We recall that the manifolds M3, . . . ,M6 are the minimally twisted hy-
perbolic n-chain link complements for n = 3, . . . , 6 as shown in Figure 6.

For n ≥ 1, let Bn denote the hyperbolic 3-manifold with totally geodesic
boundary obtained by cutting Wn along a blue 3-punctured sphere shown in
the left of Figure 5. The manifold Bn is shown in Figure 3. The manifold B1

can be decomposed into a regular ideal octahedron as shown in Figure 10,
where faces X and X ′ are glued so that the orientations of edges match. We
will use this decomposition in Section 5.

Similarly, let T3 and T4 denote the hyperbolic 3-manifolds with totally
geodesic boundary respectively obtained by cutting M5 and M6 along a
3-punctured sphere. The manifolds T3 and T4 are shown in Figure 4.

A

A
′

B B
′

A

B

Figure 10: Gluing of a regular ideal octahedron for B1

An

The 3-punctured spheres of the type An are placed linearly, and can be
regarded as the most general types. We consider an isolated 3-punctured
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sphere as the type A1. For example, an appropriate Dehn filling of Wn+3

gives a manifold with 3-punctured spheres of the type An.

B2n, T3, T4

The manifolds Bn+1,T3, and T4 respectively contain 3-punctured spheres
of the types B2n, T3, and T4. If there are 3-punctured spheres of the type
B2n, T3, or T4, there are two (possibly identical) isolated 3-punctured spheres
that correspond to the boundary of T3,T4, or Bn+1.

The 3-punctured spheres of the typeB2n consist of n 3-punctured spheres
of the type An and n more 3-punctured spheres (shown in blue) which
intersect the former ones. The 3-punctured spheres of the type T3 intersect
at a common geodesic. The type T3 is symmetric. In other words, for any
pair of 3-punctured spheres in T3, there is an isometry of T3 that maps one
of the pair to the other. A blue 3-punctured sphere in the type T4 intersects
the three other 3-punctured spheres. The latter three 3-punctured spheres
are symmetric.

For each of the types B2n, T3, and T4, the metric of neighborhood of the
union is uniquely determined in Bn+1,T3, or T4. In contrast, the metric of
neighborhood of the union of the type An for n ≥ 2 depends on the modulus
of an adjacent torus cusp. We will consider this modulus in Section 5.

Ŵhi (′)n

If 3-punctured spheres are placed cyclically, their union is the type Ŵhin
or Ŵhi ′2n. The two types Ŵhi2n and Ŵhi ′2n are distinguished by neighbor-
hoods.

Suppose that a hyperbolic 3-manifold M contains 3-punctured spheres
of the type Ŵhin. Then the union of the n 3-punctured spheres with the
n adjacent torus cusps has a regular neighborhood homeomorphic to the
manifold Wn. The ambient 3-manifold M is obtained by a Dehn filling on

a cusp of Wn since it is atoroidal. The same argument holds for Ŵhi ′2n
in W′

2n. In fact, such a surgered hyperbolic 3-manifold except M3, . . . ,M6

contains no more 3-punctured spheres.
We remark that the Whitehead link complement W1 has two embedded

3-punctured spheres of the type Ŵhi ′2.
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Whi (′)2n

The 3-punctured spheres of the type Whi (′)2n consist of the n 3-punctured

spheres of the type Ŵhi (′)n and n more 3-punctured spheres (shown in blue
in the left of Figure 5) which intersect the former ones. The type Whi (′)2n
can be regarded as a cyclic version of B2n.

The 3-punctured spheres of the types Whi2n and Whi ′4n are respectively
contained only in the manifolds Wn and W′

2n. Suppose that a hyperbolic
3-manifold M contains 3-punctured spheres of the type Whi2n. Since M
contains 3-punctured spheres of the type Ŵhin, it is obtained by a (possibly
empty) Dehn filling on a cusp of Wn. Then the Dehn filling must be empty,
because M has a cusp that does not intersect the 3-punctured spheres of
the type Ŵhin. Thus M is uniquely determined as Wn. The same argument
holds for Whi ′4n in W′

2n.

Bor6

The Borromean rings complement W′

2 contains six 3-punctured spheres of
the type Bor6 instead of Whi ′4. In order to display them, we put the Bor-
romean rings so that each component is contained in a plane in R3. Then
there are two 3-punctured spheres in the union of each plane with the infinite
point as shown in the right of Figure 5.

The union of the 3-punctured spheres of the type Bor6 with the adjacent
torus cusps has a regular neighborhood whose boundary consists of spheres.
The ambient hyperbolic 3-manifold is uniquely determined as W′

2 since it is
irreducible.

Mag4,Tet8,Pen10,Oct8

The 3-punctured spheres of the types Mag4,Tet8,Pen10, and Oct8 are re-
spectively contained only in the manifolds M3,M4,M5, and M6. For 3 ≤ n ≤
6, the manifold Mn contains 3-punctured spheres of the type Ŵhi (′)n and
more 3-punctured spheres as shown in Figure 6. Rotational symmetry gives
the remaining 3-punctured spheres.

Let X be the union of the 3-punctured spheres of such a special type.
The union of X with the adjacent torus cusps has a regular neighborhood
whose boundary consists of spheres. The ambient hyperbolic 3-manifold is
uniquely determined since it is irreducible.
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T̂et2, P̂en4, Ôct4

The 3-punctured spheres of the types T̂et2, P̂en4, and Ôct4 are respec-
tively contained only in the hyperbolic manifolds obtained by Dehn fill-
ings on a cusp of M4,M5, and M6. In fact, such a surgered hyperbolic 3-
manifold except M3,M4, and M5 contains no more 3-punctured spheres. The
3-punctured spheres of the types T̂et2, P̂en4, and Ôct4 come from the ones
of the types Tet8,Pen10, and Oct8 that are disjoint from the filled cusps.

Let X be the union of the 3-punctured spheres of such a special type.
The union of X with the adjacent torus cusps has a regular neighborhood
homeomorphic to M4,M5− two balls, or M6. The ambient hyperbolic 3-
manifold is obtained by a Dehn filling on a cusp of M4,M5, or M6 since it
is irreducible and atoroidal.

B∞,Whi∞

There are two types of the union of infinitely many 3-punctured spheres,
which are infinite versions of B2n. The 3-punctured spheres of the type
Whi∞ extend infinitely to both sides, and is contained only in the manifold
W∞ shown in the right of Figure 8, which is an infinite cyclic cover of the
Whitehead link complement W1. The 3-punctured spheres of the type B∞

extend infinitely to one side, and is contained in half of W∞ shown in the
left of Figure 8.

It is possible to consider infinite versions of An, but in such a case there
is a cusp that bounds additional 3-punctured spheres. Then the union is B∞

or Whi∞. We will prove it in Section 5.

2.1. Symmetries of Mag4,Tet8,Pen10, and Oct8

The central 3-punctured sphere of M3 in Figure 6 is special in the sense
that this is the unique 3-punctured sphere intersecting any other one at two
geodesics. In contrast, for any pair of the 3-punctured spheres in M4,M5, or
M6, the manifold has an isometry that maps one of the pair to the other.

Following Dunfield and Thurston [10], we describe the manifoldsM4,M5,
and M6 with respect to their intrinsic symmetry. Each of M4,M5, and M6

has an involutional isometry that rotates about the blue circle in Figure 11.
The quotients by these involutions are naturally decomposed into ideal poly-
hedra. (In the deformations shown in the right side of Figure 11, the black
arcs shrink to the black vertices.) Then the original manifolds are recovered
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∼
=

∼
=

∼
=

Figure 11: Quotients of M4,M5, and M6

by the double branched coverings. The quotient of M5 is the boundary of
a 4-dimensional simplex (a.k.a. a pentachoron) made of five regular ideal
tetrahedra. The quotient of M6 is the double of a regular ideal octahedron.
The quotient of M4 is decomposed into four ideal tetrahedra whose dihedral
angles are π/4, π/4, and π/2. Each 3-punctured sphere in M4,M5, and M6

is the preimage of a face of these ideal polyhedra by the double branched
covering. In particular, the manifolds M4,M5, and M6 have isometries that
can map a 3-punctured sphere to any other one.

If we cut the manifolds M3,M4,M5, and M6 along all the 3-punctured
spheres, we respectively obtain two ideal triangular prisms, eight ideal tetra-
hedra each of which is a quarter of a regular ideal octahedron, ten reg-
ular ideal tetrahedra, and four regular ideal octahedra. By Sakuma and
Weeks [28], these are the canonical decompositions in the sense of Epstein
and Penner [11].
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2.2. Graphs for the unions

In Figure 12, we give graphs that indicate how the 3-punctured spheres in-
tersect. The vertices of a graph correspond to the 3-punctured spheres. Two
vertices are connected by an edge if the corresponding 3-punctured spheres
intersect. Two vertices are connected by two edges if the corresponding 3-
punctured spheres intersect at two geodesics. An edge is oriented if the
corresponding intersection is separating in a 3-punctured sphere and non-
separating in the other 3-punctured sphere. Our notations T3 and T4 come
from the triangle and tripod of the graphs.

An B2n T3 T4

Whi (′)2n

Bor6

Mag4 Tet8 Pen10 Oct8

Ŵhi (′)n T̂et2, Ŵhi (′)2 P̂en4 Ôct4

Whi2

Figure 12: Graphs indicating intersection of 3-punctured spheres

2.3. 3-punctured spheres in a non-orientable hyperbolic
3-manifold

We remark that the assumption of orientability is necessary. For instance,
we can obtain a non-orientable hyperbolic 3-manifold N3 by gluing one reg-
ular ideal octahedron as shown in Figure 13. The manifold N3 was given by
Adams and Sherman [2] as the 3-cusped hyperbolic 3-manifold of minimal
complexity. We remark that the manifold M5 is the 5-cusped hyperbolic
3-manifold of minimal complexity. The pairs of faces A ∪B and C ∪D are
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mapped to two 3-punctured spheres in N3. These 3-punctured spheres inter-
sect at three geodesics. Such intersection does not appear in an orientable
hyperbolic 3-manifold as we will show in Lemma 3.2.

A

D

A′

C

C ′

B

D′

B′

Figure 13: Gluing of a regular ideal octahedron for N3

3. Proof of the classification

We begin to prove Theorem 1.2. Theorem 1.3 will be proven in Section 5. We
consider totally geodesic embedded 3-punctured spheres in an orientable hy-
perbolic 3-manifold. For simplicity, we assume that every 3-punctured sphere
is totally geodesic. We first consider the intersection of two 3-punctured
spheres. After that, we classify the union of 3-punctured spheres.

3.1. Intersection of two 3-punctured spheres

In this subsection, we classify the intersection of two 3-punctured spheres.
The intersection of two 3-punctured spheres consists of disjoint simple geo-
desics. There are six simple geodesics in a 3-punctured sphere. Three of
them are non-separating, and the other three are separating as shown in
Figure 14. A component of the intersection of two 3-punctured spheres is
a type (N,N), (S,N), or (S,S) depending on whether the geodesic is non-
separating or separating in the two 3-punctured spheres. Of course, “N”
and “S” respectively indicate non-separating and separating. In Lemma 3.4,
we will show that an (S,S)-intersection does not occur. The unions of the
types A2 and B2, shown in Theorem 1.2, respectively contain an (N,N)-
intersection and an (S,N)-intersection.

Proposition 3.1. The intersection of two 3-punctured spheres in an ori-
entable hyperbolic 3-manifold is one of the following types:
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(o) The intersection is empty, i.e. the two 3-punctured spheres are disjoint.

(i) The intersection consists of an (N,N)-intersection.

(ii) The intersection consists of an (S,N)-intersection.

(iii) The intersection consists of two (N,N)-intersections.

separatingnon-separating

Figure 14: The simple geodesics in a 3-punctured sphere

We show that the other types of intersection are impossible. There are
at most three disjoint simple geodesics in a 3-punctured sphere. We first
show that the intersection of two 3-punctured spheres does not consist of
three geodesics.

Lemma 3.2. Let M be a (possibly non-orientable) hyperbolic 3-manifold.
Suppose that M contains 3-punctured spheres Σ0 and Σ1 that intersect at
three geodesics. Then M is decomposed into a regular ideal octahedron along
Σ0 and Σ1. Furthermore, M is non-orientable.

Proof. We regard the hyperbolic 3-space H3 as the universal covering of M ,
and use the upper-half space model of H3. We denote by (a, b) the geodesic in
H3 whose endpoints are a, b ∈ Ĉ = ∂H3. Let Σ̃i ⊂ H3 denote the preimage of
Σi for i = 0, 1. Let Σ̃0

0 be a component of Σ̃0. The plane Σ̃
0
0 contains an ideal

triangle ∆ whose edges are lifts of the intersection Σ0 ∩ Σ1. We may assume
that the vertices of ∆ are 0, 1,∞ ∈ Ĉ = ∂H3. Hence there are components
Σ̃k
1 of Σ̃1 for k = 0, 1, 2 such that Σ̃0

0 ∩ Σ̃0
1 = (0,∞), Σ̃0

0 ∩ Σ̃1
1 = (1,∞), and

Σ̃0
0 ∩ Σ̃2

1 = (0, 1). Since Σ1 is embedded in M , the three planes Σ̃0
1, Σ̃

1
1, and

Σ̃2
1 are mutually disjoint. Therefore Σ̃0

1, Σ̃
1
1, and Σ̃2

1 orthogonally intersect
Σ̃0
0.
In the same manner, there are components Σ̃1

0 and Σ̃2
0 of Σ̃0 such that

Σ̃1
0 ∩ Σ̃0

1 = (ai,∞) and Σ̃2
0 ∩ Σ̃0

1 = (0, ai) for a > 0. The planes Σ̃1
0 and Σ̃2

0

orthogonally intersect Σ̃0
1.
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We continue the same argument. Since each of the preimages of Σ0 and
Σ1 consists of disjoint planes, we have a = 1. There are components Σ̃3

j of Σ̃j

such that Σ̃3
0 ∩ Σ̃1

1 = (1, 1 + i) and Σ̃1
0 ∩ Σ̃3

1 = (i, 1 + i). Figure 15 shows the

boundary of these planes in Ĉ. The planes Σ̃k
j for j = 0, 1 and k = 0, 1, 2, 3

bound a regular ideal octahedron. The other components of Σ̃0 and Σ̃1 are
disjoint from this regular ideal octahedron. An isometry of a regular ideal
octahedron has a fixed point in the interior. Consequently, if M is decom-
posed along Σ0 and Σ1, one of the components after the decomposition is a
regular ideal octahedron. Now the surface area of a regular ideal octahedron
is equal to 8π, and the area of a 3-punctured sphere is equal to 2π. Therefore
there are no other components after the decomposition.

0 1

i 1 + i

∂Σ̃0

0

∂Σ̃0

1
∂Σ̃1

1
∂Σ̃2

1

∂Σ̃1

0

∂Σ̃2

0
∂Σ̃3

0

∂Σ̃3

1

Figure 15: Boundary of components of Σ̃0 and Σ̃1

According to the cusped octahedral census by Goerner [14, Table 2],
there are two orientable hyperbolic 3-manifolds and six non-orientable hy-
perbolic 3-manifolds obtained from one regular ideal octahedron. Agol [4]
showed that the Whitehead link complement and the (−2, 3, 8)-pretzel link
complement have the smallest volume Voct of the orientable hyperbolic 3-
manifold with two cusps, and described the ways to glue a regular ideal
octahedron to obtain the two manifolds. Assume that M is orientable. Then
M is one of the above two manifolds. The 3-punctured spheres Σ0 and Σ1

are the images of the faces of a regular ideal octahedron. The gluing ways,
however, do not give two 3-punctured spheres from the faces of a regular
ideal octahedron. □
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Therefore the intersection of two 3-punctured spheres in an orientable
hyperbolic 3-manifold cannot consist of three geodesics. We orient the hy-
perbolic 3-manifold and the 3-punctured spheres. We can easily show the
following lemma by considering the orientation of a neighborhood of the arc.

Lemma 3.3. Let S and T be properly embedded oriented surfaces in an ori-
ented 3-manifold with boundary. Suppose that S and T intersect transver-
sally. Let an arc g be a component of S ∩ T . Let x0 and x1 denote the
endpoints of g. For i = 0 and 1, let si denote the boundary components of
S containing xi, which possibly coincide. In the same manner, let ti denote
the boundary components of T containing xi. Then the intersections of si
and ti at xi have opposite signs with respect to the induced orientation.

We return the cases of two 3-punctured spheres in an oriented hyperbolic
3-manifold. Note that the boundary components of a 3-punctured sphere are
closed geodesics in a cusp with respect to its Euclidean metric.

Lemma 3.4. The intersection of two 3-punctured spheres contain no (S,S)-
intersection.

Proof. Assume that a geodesic g in the intersection is separating in both
3-punctured spheres. Note that there might be another component of the
intersection. We consider a cusp containing the endpoints of g. Let s and
t denote the boundary components of the two 3-punctured spheres that
intersect g. Then the intersection of the loops s and t contains at least the
endpoints of g. Since the loops s and t are contained in a common cusp, the
signs of the intersection at these endpoints coincide. This is impossible by
Lemma 3.3. □

We suppose that the intersection of two 3-punctured spheres consists of
two geodesics.

Lemma 3.5. The intersection of two 3-punctured spheres does not consist
of one (N,N)-intersection and one (S,N)-intersection.

Proof. Assume that two 3-punctured spheres intersect at one (N,N)-
intersection and one (S,N)-intersection. There are two possibilities of the
intersection as shown in the left and center of Figure 16.

In the left case, a cusp contains three loops s, u, and v of boundary
components of the 3-punctured spheres. The loops u and v are disjoint. The
loops s and u intersect at two points, but the loops s and v intersect at one
point. This is impossible.
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g1

g2

g2g1g2g1

g1

g2

s

u

v

g1

g2

s

t

g2

g1

u

w

t

s

u

v w

Figure 16: Orientations of two geodesics containing an (S,N)-intersection

In the central case, a cusp contains five loops s, t, u, v, and w of boundary
components of the 3-punctured spheres. The two loops s and t are disjoint,
and the three loops u, v, and w are mutually disjoint, Hence the number of
intersection of these five loops is a multiple of six. This contradicts the fact
that the intersection consists of the four endpoints of the two geodesics g1
and g2. □

Lemma 3.6. The intersection of two 3-punctured spheres does not consist
of two (S,N)-intersections.

Proof. Assume that two 3-punctured spheres intersect at two (S,N)-
intersections. It is sufficient to consider the intersection as shown in the
right of Figure 16.

In the case, a cusp contains four loops s, t, u, and w of the boundary
components of the 3-punctured spheres. Then s ∩ t = ∅, u ∩ w = ∅, t ∩ w =
∅, whereas s ∩ u ̸= ∅. This is impossible. □

Proof of Proposition 3.1. We have excluded the cases other than the cases
in Proposition 3.1. □

3.2. The unions with the type (iii)-intersection

In this subsection, we classify the unions of 3-punctured spheres that contain
the type (iii)-intersection shown in Proposition 3.1.
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Lemma 3.7. If two 3-punctured spheres have the type (iii)-intersection,
the ambient hyperbolic 3-manifold is obtained by a (possibly empty) Dehn
filling from one of the following manifolds (Figure 17):

• the manifold W2, which is a double covering of the Whitehead link
complement,

• the Borromean rings complement W′

2, or

• the minimally twisted hyperbolic 4-chain link complement M4.

Figure 17: Two 3-punctured spheres intersecting at two geodesics

Note that each of the manifolds W2,W′

2, and M4 is obtained by gluing
two regular ideal octahedra, and hence they have a common volume.

Proof. There are three possibilities depending on the orientations of inter-
sectional geodesics as shown in Figure 18.

The left case gives the union of two 3-punctured spheres of the types

Ŵhi2 and Ŵhi ′2 depending on the signs of the intersections on the boundary.
The union of the two 3-punctured spheres with the adjacent cusps has a
regular neighbourhood whose boundary is a torus. Hence the ambient 3-
manifold is obtained by a (possibly empty) Dehn filling from W2 or W′

2.
The central case also gives two types of the union depending on the signs

of the intersections on the boundary. One of these is the type T̂et2. Then the
ambient 3-manifold is obtained by a (possibly empty) Dehn filling fromM4 in
the same manner as above. The other type occurs in a manifold obtained by
a (possibly empty) Dehn filling from the non-hyperbolic minimally twisted
4-chain link complement M′

4 as shown in Figure 19. The manifold M′

4 can
be decomposed along a torus into two copies of Σ× S1, where Σ is a 3-
punctured sphere. Hence the ambient 3-manifold is a graph manifold, which
is not hyperbolic.
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g2g1

g2g1

g2g1

g2g1

g2g1

s

u

t

v

Figure 18: Orientations of two (N,N)-intersections

Figure 19: The non-hyperbolic minimally twisted 4-chain link

The right case does not occur. Assume that it occurs. Then a cusp
contains four boundary components s, t, u, and v of the 3-punctured spheres.
We have s ∩ t = ∅ and u ∩ v = ∅, but the intersection in s, t, u, and v consists
of three points. This is impossible. □

In Lemmas 3.11–3.15, we will show that if two 3-punctured spheres have
the type (iii)-intersection shown in Proposition 3.1, then the union of all

the 3-punctured spheres is Whi4, Ŵhi2,Bor6, Ŵhi ′2,Tet8, T̂et2, or Mag4.
We need Corollary 3.9 and Lemma 3.10 to prove that there are no other
3-punctured spheres than the described ones in certain manifolds.
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Theorem 3.8 (Miyamoto [27]). Let N be a hyperbolic 3-manifold with
totally geodesic boundary. Then

vol(N) ≥ 1

2
|χ(∂N)|Voct,

where χ indicates the Euler characteristic, and Voct = 3.6638... is the volume
of a regular ideal octahedron.

Corollary 3.9. A hyperbolic 3-manifold M contains at most ⌊vol(M)/Voct⌋
disjoint 3-punctured spheres.

Proof. By cutting n disjoint totally geodesic 3-manifolds, we obtain a hyper-
bolic 3-manifold N with totally geodesic boundary such that χ(∂N) = −2n.
Then we apply Theorem 3.8 to N . □

Lemma 3.10. Let M be an orientable hyperbolic 3-manifold. Suppose that
two distinct totally geodesic 3-punctured spheres Σ and Σ′ in M represent a
common homology class in H2(M,∂M ;Z). Then Σ and Σ′ are disjoint.

Proof. It is sufficient to show that ∂Σ ∩ ∂Σ′ = ∅. For i = 0, 1, 2, let si and s′i
denote the components of ∂Σ and ∂Σ′. The unions of loops ∂Σ = s0 ∪ s1 ∪ s2
and ∂Σ′ = s′0 ∪ s′1 ∪ s′2 represent a common homology class in H1(∂M ;Z).

We first suppose the homology classes of any pair of s0, s1, and s2 do not
cancel in H1(∂M ;Z). By changing indices, we may assume that [si] = [s′i] ∈
H1(∂M ;Z). Since the loops si and s′j do not coincide, we have ∂Σ ∩ ∂Σ′ = ∅.

Otherwise we may assume that [s0]=−[s1] and [s′0]=−[s′1] inH1(∂M ;Z).
If s0 ∪ s1 and s′0 ∪ s′1 intersect, then Σ and Σ′ have the type (iii)-intersection,
and the loops s0, s1, s

′

0, and s′1 are contained in a common cusp. This is im-
possible by Lemma 3.7. Therefore we have ∂Σ ∩ ∂Σ′ = ∅. □

In order to apply Corollary 3.9 and Lemma 3.10, we use the Thurston
norm. For a surface S =

⊔
i Si (each Si is a connected component), we de-

fine χ−(S) =
∑

imax{0,−χ(Si)}. For an orientable compact 3-manifold M ,
the Thurston norm of a class σ ∈ H2(M,∂M ;Z) is defined to be ∥σ∥ =
minχ−(S), where the minimum is taken over the (possibly disconnected)
embedded surfaces S that represent the class σ. Thurston [31] showed that
∥ · ∥ is extended to a norm on H2(M,∂M ;R) for a hyperbolic 3-manifold,
and the unit norm ball {σ ∈ H2(M,∂M ;R)|∥σ∥ ≤ 1} is convex. Note that
the norm ∥σ∥ of an integer class σ is odd if and only if σ can be represented
by an essential surface S such that the number of the components of ∂S is
odd.
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Lemma 3.11. The Borromean rings complement W′

2 has exactly the six
3-punctured spheres of the type Bor6.

Proof. Thurston [31] described the unit Thurston norm ball for W′

2

as follows. We may assume that linearly independent classes x, y, z ∈
H2(W′

2, ∂W
′

2;R) are represented by three of the 3-punctured spheres of the
type Bor6 as described in Section 2. The classes x, y and z form a basis
of H2(W′

2, ∂W
′

2;R)
∼= R3. Moreover, ∥x∥ = ∥y∥ = ∥z∥ = 1. The eight classes

±x± y ± z are fibered class, i.e. they are represented by a fiber of a map-
ping torus. Hence each of the classes ±x± y ± z is not represented by a 3-
punctured sphere. Moreover, each of the classes ±x± y ± z is represented by
a surface with at least three boundary components. Hence ∥ ± x± y ± z∥ ≠
1. Therefore we have ∥ ± x± y ± z∥ = 3. The 14 classes ±x,±y,±z, and
(±x± y ± z)/3 are contained in the boundary of the unit Thurston norm
ball. This fact and the convexity imply that the unit Thurston norm ball is
the octahedron whose vertices are ±x,±y, and ±z.

We know that ±x,±y, and ±z are exactly the integer classes in the
boundary of the unit Thurston norm ball. Hence any 3-punctured sphere
in W′

2 represents ±x,±y, or ±z. By ignoring the orientation, we may state
that for each of x, y, and z, there are two 3-punctured spheres each of which
represents the class. Therefore it is sufficient to show that x, y and z can-
not be represented by any other 3-punctured sphere. Assume that W′

2 has
another 3-punctured sphere Σ. Then Lemma 3.10 implies that Σ is disjoint
from the two 3-punctured spheres representing the same class. This contra-
dicts Corollary 3.9 and the fact that vol(W′

2) = 2Voct. Therefore W′

2 has no
other 3-punctured spheres than the described ones of Bor6. □

Lemma 3.12. The manifold W2 has exactly the four 3-punctured spheres
of the type Whi4.

Proof. Since vol(W2) = 2Voct, the manifold W2 contains at most two disjoint
3-punctured spheres by Corollary 3.9. Let Σ1, . . . ,Σ4 be the 3-punctured
spheres ofWhi4, and let C1, . . . , C3 be the cusps ofW2 as shown in Figure 20.
In order to show that there are no other 3-punctured spheres, we describe
the unit Thurston norm ball forW2. Let x ∈ H2(W2, ∂W;R) denote the class
represented by each of Σ1 and Σ2, and let y, z ∈ H2(W2, ∂W;R) denote the
classes respectively represented by Σ3 and Σ4. The classes x, y, and z form a
basis of H2(W2, ∂W;R) ∼= R3. Moreover, ∥x∥ = ∥y∥ = ∥z∥ = 1. Consider the
class x+ y + z. A surface representing x+ y + z intersects the three cusps.
If we show that x+ y + z cannot be represented by a 3-punctured sphere,
we have ∥x+ y + z∥ = 3.
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Assume that x+ y + z is represented by a 3-punctured sphere Σ. The
boundary slopes of Σ are determined, and each cusp contains one of these
slopes. The intersection Σ ∩ Σ1 is disjoint from the cusp C1. Since each cusp
contains exactly one boundary component of Σ, the intersection Σ ∩ Σi for
i = 1, 3 is not a separating geodesic in Σi. Hence Σ and Σ1 are disjoint.
Similarly, Σ and Σ2 are also disjoint. This contradicts the fact that W2

contains at most two disjoint 3-punctured spheres.
In the same manner, we have ∥ ± x± y ± z∥ = 3. Hence the unit Thurston

norm ball for W2 is the octahedron whose vertices are ±x,±y, and ±z sim-
ilarly to W′

2. Therefore any 3-punctured sphere in W2 represents ±x,±y, or
±z.

C1

g1

C3
C2

Σ1Σ2

Σ3

Σ4

Figure 20: The 3-punctured spheres of the type Whi4

Now the class x is represented only by Σ1 and Σ2. Assume that W2 has
another 3-punctured sphere Σ representing y than Σ3. Then Σ ∩ Σ3 = ∅.
Since the homology classes represented by the components of ∂Σ3 do not
cancel, the boundary ∂Σ consists of a loop in C2 and two loops in C3. Hence
Σ intersects Σ1 at the geodesic g1 = Σ1 ∩ Σ3. This contradicts the fact that
Σ ∩ Σ3 = ∅. Hence there are no other 3-punctured spheres representing y
than Σ3. The same argument holds for z. Therefore W2 has no other 3-
punctured spheres than Σ1, . . . ,Σ4. □

Lemma 3.13. The manifold M4 has exactly the eight 3-punctured spheres
of the type Tet8.
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Proof. We first describe the unit Thurston norm ball for M4. Let Σ1, . . . ,Σ4

be the 3-punctured spheres as shown in Figure 21, which respectively repre-
sent x, y, z, w ∈ H2(M4, ∂M4;R). Here the orientations of these 3-punctured
spheres are induced by the projection to the diagram. Let Σ5, . . . ,Σ8 de-
note the 3-punctured spheres that respectively represent y + z + w,−x+
z + w, x+ y − w, and x+ y + z. These eight 3-punctured spheres are the
ones described in Section 2.

Let u1 = (x+ y)/2, u2 = (y + z)/2, u3 = (z + w)/2, and u4 = (x− w)/2.
The classes u1, . . . , u4 form a basis of H2(M4, ∂M4;R) ∼= R4. With respect
to this basis, we can present classes as

x = (1,−1, 1, 1), y = (1, 1,−1,−1), z = (−1, 1, 1, 1), w = (1,−1, 1,−1),

y + z + w = (1, 1, 1,−1), − x+ z + w = (−1, 1, 1,−1),

x+ y − w = (1, 1,−1, 1), x+ y + z = (1, 1, 1, 1).

Since the norms of u1, . . . , u4, x, y, z, w, y + z + w,−x+ z + w, x+ y − w,
and x+ y + z are equal to one, the convexity implies that the unit Thurston
norm ball for M4 is the 4-dimensional cube whose vertices are ±x, ±y, ±z,
±w, ±(y + z + w),±(−x+ z + w),±(x+ y − w), and ±(x+ y + z). There-
fore any 3-punctured sphere in M4 represents one of these classes.

Σ1

Σ2

Σ4

Σ3

l2

m2

m1

l1

l3
m3

m4

l4

Figure 21: Four 3-punctured spheres in M4
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As we showed in Section 2, for any pair of Σ1, . . . ,Σ8, there is an isometry
of M4 that maps one of the pair to the other. Hence it is sufficient to show
that Σ1 is the unique 3-punctured sphere representing x.

Since vol(M4) = 2Voct, the manifold M4 contains at most two disjoint 3-
punctured spheres by Corollary 3.9. Assume that M4 has another 3-
punctured sphere Σ representing x than Σ1. Lemma 3.10 implies that Σ ∩
Σ1 = ∅. Since the components of ∂Σ are contained in distinct cusps, their
three slopes are the same as the slopes of ∂Σ1. Hence Σ ∩ Σ3 = ∅. This
contradicts the fact that M4 contains at most two disjoint 3-punctured
spheres. □

Lemma 3.14. Let M be a hyperbolic 3-manifold obtained by a (non-empty)
Dehn filling on the cusp of W2 or W′

2 as in Lemma 3.7. Then M has exactly

the two 3-punctured spheres of the type Ŵhi2 or Ŵhi ′2 respectively.

Proof. The Mayer-Vietoris sequence and the Poincaré duality imply that
H2(M,∂M ;R) ∼= R2. The manifold M contains at least two 3-punctured

spheres of the type Ŵhi2 or Ŵhi ′2. They represent classes x and y that form
a basis of H2(M,∂M ;R). Since ∥x∥ = ∥y∥ = 1 and ∥x+ y∥ = ∥x− y∥ = 2,
the unit Thurston norm ball for M is the square whose vertices are ±x
and ±y. Hence any 3-punctured sphere in M represents ±x or ±y. Since
a hyperbolic Dehn surgery decreases the volume [30, Theorem 6.5.6], we
have vol(M) < 2Voct. Hence the manifold M does not contain two disjoint
3-punctured spheres by Corollary 3.9. ThereforeM has no other 3-punctured
spheres. □

Lemma 3.15. Let M be a hyperbolic 3-manifold obtained by a (non-empty)
Dehn filling on a cusp of M4. If M = M3, it has exactly the four 3-punctured
spheres of the type Mag4. Otherwise M has exactly the two 3-punctured
spheres of the type T̂et2.

Proof. Thurston [31] described the unit Thurston norm ball for M3 as fol-
lows. We may assume that the four known 3-punctured spheres represent
x, y, z, x+ y + z ∈ H2(M3, ∂M3;R). Then the unit Thurston norm ball is
the parallelepiped whose vertices are ±x,±y,±z, and ±(x+ y + z). Since
vol(M3) < 2Voct, the manifold M3 has no other 3-punctured spheres by
Corollary 3.9.

We orient the meridians mi and the longitudes li of the cusps of M4 as
shown in Figure 21. For coprime integers p ≥ 0 and q, let M be a hyperbolic
3-manifold obtained by the (p, q)-Dehn filling on the first cusp of M4. In
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other words, M is obtained by gluing a solid torus to M4 along the slope
pm1 + ql1 as meridian. If (p, q) = (0, 1), (1, 0), (1, 1), or (2, 1), then M is
not hyperbolic. If (p, q) = (1,−1), (1, 2), (3, 1), or (3, 2), then M = M3. We
exclude these cases. Note that in general four Dehn fillings give a common
3-manifold by the symmetry of M4.

Following the notation in Lemma 3.13, the two 3-punctured spheres
Σ3 and Σ5 in M4 are disjoint from the filled cusp. Their union is T̂et2.
Assume that M contains another 3-punctured sphere Σ than Σ3 or Σ5. We
may assume that Σ is the union of an n-punctured sphere Σ′ in M4 and
(n− 3) essential disks in the filled solid torus. Suppose that Σ′ represents
ax+ by + cz + dw ∈ H2(M4, ∂M4;R) for a, b, c, d ∈ Z. Note that n is odd if
and only if a+ b+ c+ d is odd. Then the homology classes of the boundaries
are

[∂Σ′] = ((b− d)m1 + al1) + ((a+ c)m2 + bl2)

+ ((b+ d)m3 + cl3) + ((−a+ c)m4 + dl4),

[∂Σ3] = m2 + l3 +m4,

[∂Σ5] = (m2 + l2) + (2m3 + l3) + (m4 + l4).

For i = 3 and 5, two components of ∂Σ and ∂Σi intersect in at most two
points by Proposition 3.1. Hence

∣∣∣∣det
(
a+ c 1
b 0

)∣∣∣∣ = |b| ≤ 2,

∣∣∣∣det
(
a+ c 1
b 1

)∣∣∣∣ = |a− b+ c| ≤ 2,

∣∣∣∣det
(
b+ d 0
c 1

)∣∣∣∣ = |b+ d| ≤ 2,

∣∣∣∣det
(
b+ d 2
c 1

)∣∣∣∣ = |b− 2c+ d| ≤ 2,

∣∣∣∣det
(
−a+ c 1

d 0

)∣∣∣∣ = |d| ≤ 2,

∣∣∣∣det
(
−a+ c 1

d 1

)∣∣∣∣ = |a− c+ d| ≤ 2.

Suppose that (b− d, a) = (0, 0). Then |b| ≤ 1, |b− c| ≤ 1, and n is odd.
Since c is odd, we have (b, c) = ±(0, 1) or ±(1, 1). If (a, b, c, d) = ±(0, 0, 1, 0),
then Σ is disjoint from Σ3. If (a, b, c, d) = ±(0, 1, 1, 1), then Σ is disjoint from
Σ5. Since vol(M) < 2Voct, these are impossible by Corollary 3.9.

Suppose that (b− d, a) ̸= (0, 0). Then p/q = (b− d)/a. By reversing the
orientation if necessary, we may assume that b− d ≥ 0. Then (b− d)/p is
odd if and only if n is even. Therefore it is sufficient to consider the cases

(a, b, c, d) =(−1, 0,−1,−2), (−1, 2, 1, 0), (1, 2,±1,−2),

(3, 0,−1,−2), (3, 2, 1, 0), (3, 2,±1,−2).
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Suppose that (a, b, c, d) = (−1, 0,−1,−2). Then

(a+ c, b) = (−2, 0), (b+ d, c) = (−2,−1), and (−a+ c, d) = (0,−2).

Hence ∂Σ′ has at least five components disjoint from the filled cusp. This is
impossible. The other cases are also impossible similarly. □

3.3. The unions with the type (ii)-intersection

In this subsection, we classify the unions of 3-punctured spheres that contain
the type (ii)-intersection shown in Proposition 3.1.

Lemma 3.16. Suppose that two 3-punctured spheres Σ1 and Σ2 in a hyper-
bolic 3-manifold M have the type (ii)-intersection. In other words, we may
assume that Σ1 ∩ Σ2 is separating in Σ1 and non-separating in Σ2. Let X be
the component of the union of the 3-punctured spheres in M that contains
Σ1 and Σ2. Then X is B2n,Whi2n,Whi ′4n, or Bor6. (We allow 2n = ∞.)

Proof. We consider the two 3-punctured spheres Σ1 and Σ2 as shown in
Figure 22. Suppose that another 3-punctured sphere Σ intersects Σ2. Con-
sider the intersection of Σ and the cusp C. Proposition 3.1 implies that
Σ ∩ Σ2 ∩ C consists of at most two points. If Σ ∩ Σ2 ∩ C = ∅, then Σ ∩ Σ2 =
g2,Σ ∩ Σ1 = g3, and Σ ∩ C = ∅. Otherwise Σ ∩ Σ2 = g4 ∪ g5 and Σ ∩ Σ1 =
∅. In both cases, the ambient 3-manifold M is the Borromean rings comple-
ment W′

2. Then X is Bor6 by Lemma 3.11.
Suppose that Σ2 is disjoint from any other 3-punctured sphere than Σ1.

If Σ1 is also disjoint from any other 3-punctured sphere than Σ2, then X
is B2. If Σ1 intersects another 3-punctured sphere Σ3, there is another 3-
punctured sphere Σ4 that is homologous to Σ2 and intersects only Σ3. We
can continue this argument. If 3-punctured spheres lies cyclically, then X
is Whi2n or Whi ′4n. Otherwise X is B2n. If X consists of infinitely many
3-punctured spheres, then X is B∞ or Whi∞. □

3.4. The unions without intersection of the type (ii) or (iii)

From now on, we consider a component X of the union of 3-punctured
spheres without intersection of the type (ii) or (iii). Let us consider the
intersection L = X ∩ C, where C is a cusp. For the intersection of a 3-
punctured sphere and a cusp, we call a component of it a boundary loop,
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Σ2

Σ1

C

g1

g3

g5

g2

g4

Figure 22: 3-punctured spheres of the type B2

which is a closed geodesic in the cusp with respect to the Euclidean metric.
Then L is the union of the boundary loops in the cusp C.

Lemma 3.17. Let X be a component of the union of 3-punctured spheres
without intersection of the type (ii) or (iii). Then the intersection of two
boundary loops consists of at most one point. Moreover, each boundary loop
intersects other boundary loops at most two points.

Proof. The first assertion follows from the assumption that any pair of 3-
punctured spheres in X has the type (i)-intersection. The second assertion
follows from the fact that each boundary component of a 3-punctured sphere
meets exactly two non-separating simple geodesics. □

By Lemma 3.17, we may assume that the slope of a boundary loop in
L is 0, 1, or ∞ with respect to a choice of meridian and longitude. We say
that the following types of L are general (Figure 23):

• disjoint simple boundary loops,

• two boundary loops with one common point, and

• three boundary loops with two common points, two of which are par-
allel.

If L is not general, then L contains boundary loops that are one of the
three special types shown in Figure 24. Figures 23 and 24 show fundamental
domains of the cusp C.

We first consider special types of L.
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Figure 23: General types of L

Figure 24: Special types of L

Lemma 3.18. Let X and L be as above.

• If L contains three loops of slopes 0, 1, and ∞ with common intersec-
tion, then X contains T3.

• If L contains three loops of slopes 0, 1, and ∞ without common inter-
section, then X contains P̂en4.

• If L contains two pairs of loops of slopes 0 and ∞, then X contains
Ôct4.

Proof. We obtain the asserted containments by manually combining 3-
punctured spheres. In the second case, the union of the three 3-punctured
spheres with C has a regular neighborhood that contains another 3-puncture.
Moreover, the union of these four 3-punctured spheres is P̂en4. In the last
case, the assertion follows from Lemma 3.19. □

Lemma 3.19. Suppose that L contains two pairs of loops of slopes 0 and
∞. Let Σ1, . . . ,Σ4 be 3-punctured spheres in X such that Σ1 ∩ C and Σ3 ∩ C
are of slope 0, and Σ2 ∩ C and Σ4 ∩ C are of slope ∞. Then Σ1 ∩ Σ3 = ∅
and Σ2 ∩ Σ4 = ∅.

Proof. Assume that two 3-punctured spheres Σ1 and Σ3 intersect at a geo-
desic g5. There are two cases depending on orientations of geodesics at the
intersection as shown in Figure 25.
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g1

g2g3

g4

g5

g5

g1

g2g3

g4

g5

g5

Σ1

Σ2

Σ3

Σ4

Σ1

Σ3

Σ4 Σ2

s

t

u

v

Figure 25: Orientations of geodesics in four 3-punctured spheres

In the left case, four loops s, t, u, and v are contained in a common cusp.
Then s ∩ u = ∅ and t ∩ u = ∅, whereas s ∩ t ̸= ∅. This is impossible.

In the right case, the union of Σ1,Σ2, and Σ3 is Ŵhi3. Hence the ambient
3-manifold M is obtained by a Dehn filling on a cusp of W3. Then the proof
is completed by Lemma 3.20. □

Lemma 3.20. Let M be a hyperbolic 3-manifold obtained by a (non-empty)
Dehn filling on the cusp C1 of W3. Suppose that M ̸= M3. Then M has
exactly the three 3-punctured spheres of the type Ŵhi3.

Proof. We orient the meridiansmi and the longitudes li of the cusps ofW3 as
shown in Figure 26. The 3-punctured spheres Σ1,Σ2,Σ3, and Σ4 respectively
represent classes x, y, z, and w that form a basis of H2(W3, ∂W3;R) ∼= R4.
Assume that M has another 3-punctured sphere Σ than Σ2,Σ3, or Σ4. Then
we may assume that Σ is the union of an n-punctured sphere Σ′ in W3 and
(n− 3) essential disks in the filled solid torus. Suppose that Σ′ represents
ax+ by + cz + dw ∈ H2(W3, ∂W3;R) for a, b, c, d ∈ Z. Then

[∂Σ′] = al1 + ((−c− d)m2 + bl2) + ((−b− d)m3 + cl3)

+ ((−b− c)m4 + dl4).

If a ̸= 0, then M is obtained by the (0, 1)-Dehn filling, which is not hyper-
bolic. Hence we have a = 0, and b+ c+ d is odd. Since we exclude M3, two
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components of ∂Σ and ∂Σi for i = 2, 3, 4 intersect in at most one point.
Hence we have

|b| ≤ 1, |c| ≤ 1, |d| ≤ 1, |c+ d| ≤ 1, |b+ d| ≤ 1, |b+ c| ≤ 1.

These inequalities imply that (b, c, d) = (±1, 0, 0), (0,±1, 0), or (0, 0,±1).
Therefore we may assume that Σ is homologous to Σ2 in M . Lemma 3.10

implies that Σ ∩ Σ2 = ∅, but we have Σ ∩ Σ3 = Σ2 ∩ Σ3 and Σ ∩ Σ4 = Σ2 ∩
Σ4. This is impossible. □

l1

m1

l2

m2l3

m3

m4

l4

Σ3

Σ1

Σ2

Σ4

C1

Figure 26: Four 3-punctured spheres in W3

Based on Lemma 3.18, we classify the unions X that contain special
types of L. We recall that two 3-punctured spheres of X intersect in at most
one geodesic.

Lemma 3.21. Let X be a component of the union of the 3-punctured
spheres without intersection of the type (ii) or (iii) in Proposition 3.1.

• If X contains T3, then X is T3 or Pen10.

• If X contains P̂en4, then X is P̂en4 or Pen10.

• If X contains Ôct4, then X is Ôct4,Oct8, or Pen10.
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Proof. We first show that the manifold M5 has exactly the ten 3-punctured
spheres of Pen10. The intersection of the 3-punctured spheres of Pen10 and
each cusp consists of six boundary loops of slopes 0, 1, and ∞. If M5 has
another 3-punctured sphere, a cusp contains a more boundary loop. This
contradicts Lemma 3.17. Therefore M5 has no other 3-punctured spheres.

Suppose that X contains T3 and another 3-punctured sphere. Then the
intersection of X and a cusp contains three loops of slopes 0, 1 and ∞ with-
out common intersection. Hence X contains P̂en4. The ambient 3-manifold
is obtained by a possibly empty Dehn filling on a cusp of M5. Since the am-
bient 3-manifold contains 3-punctured spheres of T3, its volume is at least
vol(T3) = vol(M5). Therefore the ambient 3-manifold is M5, and X is Pen10.

Suppose that X contains P̂en4 and another 3-punctured sphere. Since
X also contains T3, the union X is Pen10.

Suppose that X contains Ôct4. The ambient 3-manifold is obtained by
a possibly empty Dehn filling on a cusp of M6. The manifold M6 has exactly
the eight 3-punctured spheres of the type Oct8, for otherwise X contains T3

and P̂en4.

l1
m1

l2

m2

l3

m3

l4 m4

m5

l5

l6

m6

Σ1

Σ2

Σ3

Σ4

Σ5

Σ6

C6

C4

C2

C1

C3

C5

Figure 27: Six 3-punctured spheres in M6

Let M be a hyperbolic 3-manifold obtained by a Dehn filling on the
cusp C1 of M6. Assume that M is not M5, and has another 3-punctured
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sphere Σ than the ones of Ôct4. We orient the meridians mi and the lon-
gitudes li of the cusps of M6 as shown in Figure 27. The 3-punctured
spheres Σ1, . . . ,Σ6 respectively represent classes x1, . . . , x6 that form a ba-
sis of H2(M6, ∂M6;R) ∼= R6. We may assume that Σ is the union of an
n-punctured sphere Σ′ in M6 and (n− 3) essential disks in the filled solid
torus. Suppose that Σ′ represents a1x1 + · · ·+ a6x6 ∈ H2(M6, ∂M6;R) for
a1, . . . , a6 ∈ Z. Then

[∂Σ′] = ((−a6 + a2)m1 + a1l1) + ((a1 − a3)m2 + a2l2)

+ ((−a2 + a4)m3 + a3l3) + ((a3 − a5)m4 + a4l4)

+ ((−a4 + a6)m5 + a5l5) + ((a5 − a1)m6 + a6l6).

The 3-punctured sphere Σ is disjoint from the cusp C4, for otherwise X is
Pen10. By the same reason, each Σ ∩ Ci for i = 2, 3, 5, 6 is a multiple of mi

or li. Since Σ is a 3-punctured sphere, we have

|a1 − a3|+ |a2|+ | − a2 + a4|+ |a3|
+ | − a4 + a6|+ |a5|+ |a5 − a1|+ |a6| = 1or 3.

However,

(a1 − a3) + a2 + (−a2 + a4) + a3

+ (−a4 + a6) + a5 + (a5 − a1) + a6 = 2(a5 + a6)

is even. This is impossible. □

Thus we have classified the unions that contain special boundary loops.
In the remaining cases, the intersection L is general (Figure 23). Note that
if L consists three boundary loops with two common points, the two parallel
loops in L are contained in distinct 3-punctured spheres.

Lemma 3.22. Suppose that the intersection of X and any cusp is general.
If X contains 3-punctured sphere Σ that intersects three other 3-punctured
spheres, then X is T4.

Proof. Clearly X contains T4. Let C1, C2, and C3 denote the cusps meeting
the 3-punctured sphere Σ. Assume that there is another 3-punctured sphere
Σ than the ones of T4. Then Σ intersects at least one of the three cusps
C1, C2, and C3. This contradicts the assumption that the intersection of X
and a cusp is general. □
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In the last remaining cases, the 3-punctured spheres in X are placed
linearly or cyclically. Suppose that X consists of finitely many 3-punctured
spheres. If the 3-punctured spheres in X are placed linearly, then X is An.
If the 3-punctured spheres in X are placed cyclically, then X is Ŵhin or

Ŵhi ′2n.
Thus we complete the proof of Theorem 1.2.

4. Volume and number of 3-punctured spheres

As an application of Theorem 1.2, we estimate the number of 3-punctured
spheres in a hyperbolic 3-manifold by its volume. We recall that if a hyper-
bolic 3-manifold M contains n disjoint 3-punctured spheres, then vol(M) ≥
nVoct by Corollary 3.9.

Theorem 4.1. Suppose that an orientable hyperbolic 3-manifold M has k
3-punctured spheres. Then k ≤ 4vol(M)/Voct. The equality holds if and only
if M is the manifold M4.

Proof. We first consider the special cases. Let Voct = 3.6638... be the volume
of a regular ideal octahedron, and let V3 = 1.0149... be the volume of a
regular ideal tetrahedron. The assertion for the special manifolds is obtained
from the following inequalities:

• vol(Wn) = vol(W′

n) = nVoct >
n
2Voct for Whi2n and Whi ′4n,

• vol(W′

2) = 2Voct >
3
2Voct for Bor6,

• vol(M3) = 5.3334... > Voct for Mag4,

• vol(M4) = 2Voct for Tet8,

• vol(M5) = 10V3 >
5
2Voct for Pen10,

• vol(M6) = 4Voct > 2Voct for Oct8.

Since a hyperbolic 3-manifold with 3-punctured spheres of the type Ŵhin
contains ⌊n/2⌋ disjoint 3-punctured spheres, its volume is at least ⌊n/2⌋Voct.

The same argument holds for Ŵhi ′2n. For T̂et2, the volume of a hyperbolic
3-manifold obtained by a Dehn filling on a cusp of M4 is at least Voct, since
the manifold contains a 3-punctured sphere. For P̂en4 and Ôct4, the volume
of a hyperbolic 3-manifold obtained by a Dehn filling on a cusp of M5 or M6

is at least 2Voct. Indeed, such a manifold has at least 4 cusps, and M4 has
the smallest volume of the orientable hyperbolic 3-manifolds with at least 4
cusps [32]. Thus we have shown the assertion for the special cases.
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We consider the general cases. Suppose that the union of the 3-punctured
spheres of an orientable hyperbolic 3-manifold M consists of the types
An, B2n,
T3, and T4. Let an, b2n, t3, and t4 denote the number of the correspond-
ing components. At least one of an, b2n, t3, and t4 is positive. Then M
contains

∑
n(⌊(n+ 1)/2⌋an + nb2n) + t3 + 3t4 disjoint 3-punctured spheres.

Hence vol(M) ≥ (
∑

n(⌊(n+ 1)/2⌋an + nb2n) + t3 + 3t4)Voct. The assertion
follows from the inequality

∑

n

(⌊n+ 1

2
⌋an + nb2n) + t3 + 3t4 >

1

4

(∑

n

(nan + 2nb2n) + 3t3 + 4t4

)
,

which is easily checked by comparing the coefficients termwise. □

5. Bound of modulus for An

Neighborhoods of 3-punctured spheres of the types B2n, T3, and T4 are iso-
metrically determined as the manifolds Bn+1,T3, and T4. The metric of a
neighborhood of 3-punctured spheres of the type An for n ≥ 2, however,
depends on the ambient hyperbolic 3-manifold. Let us consider 3-punctured
spheres Σ1, . . . ,Σn of the type An. There are n cusps each of which intersects
two or three of Σ1, . . . ,Σn at loops of two slopes. We will call them the ad-
jacent torus cusps for Σ1, . . . ,Σn. We define the meridians and longitudes of
the adjacent torus cusps as the intersection of the cusps and the 3-punctured
spheres, so that each 3-punctured sphere meets exactly one longitude. Then
the meridians and the longitudes are uniquely determined if n ≥ 3. For A2,
however, there is ambiguity to permute the meridian and longitude. In this
case we take them arbitrarily.

The Euclidean structure of such an adjacent cusp determines its modulus
τ with respect to the meridian and longitude. Then the cusp is isometric
to the quotient of C under the additive action of {m+ nτ ∈ C|m,n ∈ Z},
where 1 and τ respectively correspond to the meridian and longitude. We
may assume that Im(τ) > 0 by taking an appropriate orientation. We first
show that the moduli of such adjacent cusps coincide.

Proposition 5.1. Suppose that an orientable hyperbolic 3-manifold M con-
tains two 3-punctured spheres Σ1 and Σ2 of the type A2. Let τ and τ ′ denote
the moduli of the two adjacent cusps C1 and C2. Then τ = τ ′.

Proof. Let x, y, z, w ∈ π1(M) be represented by the loops shown in Fig-
ure 28. The base point is taken in Σ1 ∩ Σ2. The meridians correspond to
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y and z, and the longitudes correspond to x and w. Regard π1(M) as a
subgroup of PSL(2,C) ∼= Isom+(H3). Since x and y are parabolic elements
with distinct fixed points in ∂H3, we may assume that

x =

(
1 2
0 1

)
and y =

(
1 0
c 1

)

by taking conjugates. Then xy−1 =

(
1− 2c 2
−c 1

)
is also parabolic. Hence

|tr(xy−1)| = |2− 2c| = 2. Since y is not the identity, we have c = 2.

yx z w
C1 C2

Σ1 Σ2

Figure 28: Generators of π1(Σ1) and π1(Σ2)

The moduli τ and τ ′ give the representations

z =

(
1 2/τ
0 1

)
and w =

(
1 0
2τ ′ 1

)
.

Then zw−1 =

(
1− 4(τ ′/τ) 2/τ

−2τ ′ 1

)
is also parabolic. Hence

|tr(zw−1)| = |2− 4(τ ′/τ)| = 2. Since τ ′ ̸= 0, we have τ = τ ′. □

Therefore the metric of a neighbourhood of 3-puncture spheres of the
type An(n ≥ 2) is determined by the single modulus τ . In particular, the
angle at the intersection is equal to arg τ .

Let Cn denote the set of the moduli for 3-punctured spheres of the type
An contained in (possibly infinite volume) orientable hyperbolic 3-manifolds.
We first give a bound for Cn by using the Shimizu-Leutbecher lemma.

Lemma 5.2 (the Shimizu-Leutbecher lemma [29]). Suppose that a
group generated by two elements

(
1 1
0 1

)
,

(
a b
c d

)
∈ PSL(2,C)

is discrete. Then c = 0 or |c| ≥ 1.
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Proposition 5.3. Let τ ∈ C2. Then

|mτ + n| ≥ 1

4
and

∣∣∣m
τ

+ n
∣∣∣ ≥ 1

4

for any (m,n) ∈ Z× Z \ {(0, 0)}. In particular,

1

4
≤ |τ | ≤ 4 and 0.079 < arg τ < π − 0.079.

Proof. Let x, y, z, w ∈ π1(M) be as in the proof of Proposition 5.1. By taking

conjugates for the Shimizu-Leutbecher lemma, we have if x =

(
1 2
0 1

)
and

(
a b
c d

)
generate a discrete subgroup of PSL(2,C), then c = 0 or |c| ≥ 1/2.

Now considering ynwm =

(
1 0

2mτ + 2n 1

)
, we obtain |mτ + n| ≥ 1/4. Simi-

larly, since y =

(
1 0
2 1

)
and xnzm =

(
1 2(m/τ) + 2n
0 1

)
generate a discrete

subgroup, we have |(m/τ) + n| ≥ 1/4.

0 4

i

4i

1

4
i

−4

Figure 29: A bound for the modulus τ

In fact, these conditions are equivalent to the inequalities for

(m,n) = (1, 0), (4,±1), (3,±1), (2,±1), (3,±2), (4,±3), (1,±1).
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Indeed, for large (m,n), the equalities |mτ + n| = 1/4 and |(m/τ) + n| =
1/4 give small circles in C. The above inequalities define the region bounded
by 26 arcs as shown in Figure 29. This region is symmetric about the imag-
inary axis and invariant under the inversion with respect to the unit circle.
We recall that Im(τ) > 0. The inequalities for (m,n) = (1, 0) imply that
1
4 ≤ |τ | ≤ 4. A point of minimal slope of τ in the first quadrant satisfying

these inequalities is (93 +
√
55i)/128, which is contained in the intersec-

tion of two circles given by |3τ − 2| = 1/4 and |4τ − 3| = 1/4. Therefore
arg τ ≥ arctan(

√
55/93) > 0.079. □

For the 3-punctured spheres Σ1, . . . ,Σn of the type An, let Mn be a
regular neighborhood of the union of Σ1 ∪ · · · ∪ Σn with the n adjacent torus
cusps. The frontier ∂0Mn is a 4-punctured sphere. For τ ∈ C \ {0}, we define
a representation ρτ : π1(Mn) → PSL(2,C) whose restriction to π1(Σi ∪ Σi+1)
for each 1 ≤ i ≤ n− 1 is conjugate to the one in the proof of Proposition 5.1.
The parameter space C \ {0} can be regarded as the character variety for
Mn. We regard Cn as a subspace of C \ {0}. If τ ∈ Cn, then ρτ is the holonomy
representation for Mn with the cusp modulus τ . The image of ρτ is discrete
if and only if τ or τ̄ ∈ Cn.

Jørgensen’s inequality [18] implies that if representations of a group
to PSL(2,C) have discrete images, their algebraic limits is elementary or
has a discrete image. Hence Cn is closed in C \ {0}. We divide Cn into two
subsets Cincomp

n = {τ ∈ Cn | ρτ is injective} and Ccomp
n = {τ ∈ Cn | ρτ is not

injective}.

Theorem 5.4. The set Cincomp
n is homeomorphic to a closed disk.

Theorem 5.4 is due to Minsky [26]. Although in that paper he mainly
considered once-punctured torus groups, he noted that the same argument
holds for hyperbolic 3-manifolds with boundary consisting of 4-punctured
spheres. This homeomorphism is described as follows. Let T0,4 denote the
Teichmüller space of a 4-punctured sphere. Its Thurston compactification
T0,4 is homeomorphic to a closed disk. The set Cincomp

n is the image of a con-
tinuous map ι : T0,4 → C \ {0}. The Thurston boundary ∂T0,4 = T0,4 − T0,4
can be identified with R ∪ {∞}. A rational points of ∂T0,4 corresponds to
the homotopy class of an essential simple closed curve on the 4-punctured
sphere. Here we conventionally regard ∞ as a rational point. A parameter
τ ∈ Cincomp

n determines a hyperbolic structure of Mn as H3/ρτ (π1(Mn)). If
τ ∈ int(Cincomp

n ), then the hyperbolic structure is geometrically finite, and
the conformal structure on the infinite end ∂0Mn is given by ι−1(τ) ∈ T0,4.
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If ι−1(τ) is a rational point of ∂T0,4, there is an annular cusp of the corre-
sponding slope on ∂0Mn. On the other hand, if ι−1(τ) is an irrational point
of ∂T0,4, then H3/ρτ (π1(Mn)) is geometrically infinite.

Theorem 5.5. The set Ccomp
n is a countably infinite set.

If τ ∈ Ccomp
n , the manifold H3/ρτ (π1(Mn)) is the complement of a Mon-

tesinos link. We prepare the notion of Montesinos links.
Let B3 = {(x, y, z) ∈ R3|x2 + y2 + z2 ≤ 1}. Consider the natural pro-

jection of B3 into the xy-plane. A 2-tangle is two arcs properly embed-
ded in B3 whose endpoints are {(±1/

√
2,±1/

√
2, 0)}. The equivalence of

2-tangles is given by isotopy fixing the endpoints of the arcs. A trivial tan-
gle is a 2-tangle that is injected by the projection. The homotopy class of
a (non-oriented) essential closed curve in the 4-punctured sphere ∂0B

3 =
∂B3 − {(±1/

√
2,±1/

√
2, 0)} is determined by a slope r ∈ Q ∪ {∞}. Here

the slope r = p/q for coprime integers p and q is defined so that the homol-
ogy class of the loop is ±(pm+ ql), where m, l ∈ H1(∂0B

3,Z) are respec-
tively represented by the loops θ ∈ [0, 2π] 7→ (sin θ, 0, cos θ), (0, sin θ, cos θ).
A 2-tangle homeomorphic to a trivial tangle is determined up to isotopy by
r ∈ Q ∪ {∞}, where the compressing disk for ∂0B

3 in the complement has
the boundary of slope r. This tangle is called a rational tangle of slope r.

For r1, . . . , rn ∈ Q ∪ {∞}, the Montesinos link L(r1, . . . , rn) is defined
by composing rational tangles of slopes r1, . . . , rn as shown in Figure 30. We
consider that the diagram is drawn in the xy-plane, which determines the
slopes of tangles.

1/2 1/2 1/2 −3/2

Figure 30: The Montesinos link L(1/2, 1/2, . . . , 1/2,−3/2)
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Proof of Theorem 5.5. Let τ ∈ Ccomp
n . EquipMn with the metric for the cusp

modulus τ . Then ∂0Mn is compressible. By taking a regular neighborhood of
the union of Mn with the compressing disk, we obtain that the ambient hy-
perbolic 3-manifold H3/ρτ (π1(Mn)) is the union of Mn with the complement
of a trivial tangle. Hence the manifold H3/ρτ (π1(Mn)) is the complement of
a Montesinos link L(1/2, . . . , 1/2, r), where the number of tangles of slope
1/2 is n+ 1. The set Ccomp

n corresponds to the set of slopes r such that
L(1/2, . . . , 1/2, r) are hyperbolic links.

The classification of Montesinos links by Bonahon and Siebenmann [6]
implies that all these links but the following exceptions are hyperbolic (see
also [13, Section 3.3]).

• For n = 2, the four slopes r = −2,−3/2,−1,∞ are excluded.

• For n = 3, the two slopes r = −2,∞ are excluded.

• For n ≥ 4, the slope r = ∞ is excluded.

□

Remark 5.6. If an annular cusp of an excluded slope is added to Mn, we
obtain one of the manifolds Bn+1,T3, and T4. If the union of a 3-punctured
sphere with the compressing disk is an annulus, the filled manifold is not
hyperbolic.

Let us consider the subset Cfin
n of Cn consisting of the moduli that appears

in a finite volume hyperbolic 3-manifold. Note that Ccomp
n ⊂ Cfin

n . By Theo-
rem 5.7, the restriction about finite volume does not give serious difference
on bounds.

Theorem 5.7 (Brooks [8]). Let Γ < PSL(2,C) be a geometrically finite
Kleinian group. Then there exist arbitrarily small quasi-conformal deforma-
tions Γϵ of Γ, such that Γϵ is contained in the fundamental group of a finite
volume hyperbolic 3-manifold.

We apply Theorem 5.7 to Γ = ρτ (π1(Mn)).

Corollary 5.8. The set Cfin
n is dense in Cn.

Proposition 5.9. If 3-punctured spheres of the type An are contained in
the ones of the type B2n, the adjacent cusp modulus τ is equal to 2i. In
particular, 2i ∈ ∂Cincomp

n for any n ≥ 2.
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Proof. The 3-punctured spheres of the type B2n are contained in the man-
ifold Bn+1, which is decomposed into n+ 1 regular ideal octahedra. This
is obtained from the decomposition of B1 into a regular ideal octahedron
shown in Figure 10. We can construct a fundamental domain of each adja-
cent cusp by two Euclidean unit squares. Then the lengths of the meridian
and longitude are respectively equal to 1 and 2. Hence the modulus τ is
equal to 2i.

We have another proof by computing the representation. We use the
elements

y =

(
1 0
2 1

)
and z =

(
1 2τ−1

0 1

)

shown in Figure 28. Suppose that y and z represents meridians. If 3-
punctured spheres of the type A2 are contained in the ones of the type
B4, the element

yzy−1z−1 =

(
1− 4τ−1 8τ−2

−8τ−1 1 + 4τ−1 + 16τ−2

)

is parabolic. Hence |tr(yzy−1z−1)| = |2 + 16τ−2| = 2. Since Im(τ) > 0, we
have τ = 2i. □

Proposition 5.10. It holds that

Cn+1 ⊂ Cn, Cincomp
n+1 ⊂ Cincomp

n , and Cn+2 ⊂ Cincomp
n .

Proof. The first two containments are obvious. If τ ∈ Ccomp
n , the number of

the cusps of the ambient hyperbolic 3-manifold is n+ 1 or n+ 2 by the proof
of Theorem 5.5. Then τ /∈ Cn+2. Therefore we have Cn+2 ⊂ Cincomp

n . □

The sets Cn become arbitrarily smaller as n increases.

Theorem 5.11. For n ≥ 2, let τn ∈ Cn. Then lim
n→∞

τn = 2i.

By Corollary 5.8, we may assume that τn ∈ Cfin
n . Theorem 5.11 follows

from Theorem 5.12 and Lemma 5.13. Theorem 5.12 states that a Dehn filling
along a long slope gives a manifold with metric uniformly close to the original
one in their thick parts. Here we use the normalized length of a slope, i.e. it
is measured after rescaling the metric on the torus cusp to have unit area.
We recall that M[ϵ,∞) is the ϵ-thick part of a hyperbolic 3-manifold M . It is
crucial that the estimates in Theorem 5.12 do not depend on manifolds.
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Theorem 5.12. For any J > 1, there is a constant K ≥ 4
√
2π satisfying

the following condition. Suppose that M is obtained by a Dehn filling on a
cusp of a finite volume hyperbolic 3-manifold M0 along a slope of normalized
length L at least K. Then

(i) the filled core loop (i.e. the core loop in the filled solid torus of the
Dehn filling) is isotopic in M to a closed geodesic of length ≤ 2π/(L2 −
16π2), and

(ii) there is a J-bilipschitz diffeomorphism φ : (M0)[ϵ,∞) → M[ϵ,∞) isotopic
to the restriction of the natural inclusion M0 →֒ M .

The part (i) follows from the work of Hodgson and Kerckhoff [17]. The
part (ii) follows from the drilling theorem due to Brock and Bromberg [7],
which requires that the filled core loop is short. Magid [24, Section 4] unified
their arguments and gave the explicit bound in (i).

Lemma 5.13. Suppose that an orientable finite volume hyperbolic 3-
manifold M contains 3-punctured spheres Σ1, . . . ,Σn of the type An. Then
there is a finite volume hyperbolic 3-manifold M0 satisfying the following
properties:

• The manifold M is obtained by a Dehn filling on a cusp of M0 along
a slope of normalized length at least

√
n+ 1/2.

• The 3-punctured spheres Σ1, . . . ,Σn come from ones contained in 3-
punctured spheres of the type B2n in M0.

Proof. Let γ be a loop in M such that γ and two meridians of an adjacent
cusp bound a 2-punctured disk Σ as shown in Figure 31. Let N(γ) be an
open regular neighborhood of γ. Assume that M \N(γ) contains an essen-
tial sphere S. Since M is irreducible, the sphere S bounds a ball in M . Note
that the cusps of M are incompressible. We apply the standard argument
to reduce the intersection of surfaces in a 3-manifold by considering inner-
most intersection. Then by isotoping S in M \N(γ), we may assume that
S is disjoint from Σ1, . . . ,Σn, and S ∩ Σ consists of (possibly empty) loops
parallel to γ. If S ∩ Σ = ∅, then S bounds a ball in M \N(γ). Otherwise
γ bounds a disk D in M such that Σ ∩D = γ. Then Σ ∪D is an essential
annulus, which contradicts the fact that M is hyperbolic. Hence M \N(γ)
is irreducible.

If M \N(γ) is hyperbolic, then it is sufficient to let M0 = M \N(γ).
Suppose that M \N(γ) is not hyperbolic. Since M is hyperbolic, M \N(γ)
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Σ1 Σ2 Σn

γ

Figure 31: A drilled loop γ in M

is not a graph 3-manifold. Hence there are non-empty family of essential
disjoint tori T1, . . . , Tm for the JSJ decomposition of M \N(γ). Then we
may assume that Ti ∩ Σj = ∅. After the JSJ decomposition of M \N(γ)
along T1, . . . , Tm, there is a piece M0 such that Σ1 ∪ · · · ∪ Σn ⊂ M0. We may
assume that the frontier of M0 is T1, . . . , Tk. Since M is hyperbolic, each Ti

for 1 ≤ i ≤ k is compressible in M . Hence the manifold M is obtained by
a Dehn filling of M0 along T1, . . . , Tk. Since γ is contained in a single solid
torus for this Dehn filling, we have k = 1. We can take T1 by isotopy so
that Σ ∩M0 is a 3-punctured sphere in M0. Hence M0 contains 3-punctured
spheres of the type B2n. Moreover, the piece M0 is hyperbolic.

The manifold M0 can be decomposed along two 3-punctured spheres
into the manifold Bn+1 and a (possibly empty) manifold M ′

0. We consider
the cusp C of M0 on which we perform a Dehn filling. Let a meridian of
C be homotopic to γ in M . Then the outer boundary component of a blue
3-punctured sphere of Bn+1 in Figure 3 is a meridian. We can construct
a fundamental domain of the annular cusp C ′ = C ∩ Bn+1 by 4(n+ 1) Eu-
clidean unit squares. This is obtained from the decomposition of B1 into
a regular ideal octahedron shown in Figure 10. By adding a fundamental
domain F of C \ C ′, we obtain a fundamental domain of C as shown in
Figure 32. Let r ≥ 0 denote the height of F with respect to the meridian as
the base of F . Note that M0 is Wn+1 or W′

n+1 if r = 0. When we normalize
C to have unit area, the length of the meridian is 2/

√
n+ 1 + r. Since M is

hyperbolic, the slope of the Dehn filling of M0 is not the meridian. Hence
the length of this slope is at least

√
n+ 1 + r/2. □

We finally complete the classification for infinitely many 3-punctured
spheres.
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4

n+ 1

F

r

Figure 32: A fundamental domain of the cusp C

Proof of Theorem 1.3. If infinitely many intersecting 3-punctured spheres
are placed linearly, the adjacent cusp modulus is equal to 2i by Theorem 5.11.
Then there is a cusp that bounds additional 3-punctured spheres. Hence the
union of the 3-punctured spheres is B∞ or Whi∞. The argument in Section 3
implies that there is no other type of the union. □
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[13] D. Futer and F. Guéritaud, Angled decompositions of arborescent link
complements, Proc. Lond. Math. Soc. (3) 98 (2009), no. 2, 325–364.

[14] M. Goerner, A census of hyperbolic Platonic manifolds and augmented
knotted trivalent graphs, New York J. Math 23 (2017) 527–553.

[15] C. M. Gordon and Y.-Q. Wu, Toroidal and annular Dehn fillings, Proc.
Lond. Math. Soc. (3) 78 (1999), no. 3, 662–700.

[16] A. Hatcher, Hyperbolic structures of arithmetic type on some link com-
plements, J. Lond. Math. Soc. (2) 27 (1983), no. 2, 345–355.

[17] C. D. Hodgson and S. P. Kerckhoff, Universal bounds for hyperbolic
Dehn surgery, Ann. of Math. (2) 162 (2005), no. 1, 367–421.

[18] T. Jørgensen, On discrete groups of Möbius transformations, Amer. J.
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