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We construct the Nahm transform from finite energy instantons
on the product of a real line R and a three-dimensional torus T 3

to Dirac-type singular monopoles on the dual torus T̂ 3. Moreover,
we show the correspondence between the data which handle the
asymptotic behavior of instantons at infinity and one of monopoles
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1. Introduction

Set T 3 := R3/Λ3, where Λ3 ⊂ R3 is a lattice of R3. Let (V, h) be a Hermitian
vector bundle on R× T 3 and A be a connection on (V, h). The triple (V, h,A)
is called an instanton on R× T 3 if its curvature F (A) satisfies the ASD
equation F (A) = − ∗ F (A). Additionally, an instanton (V, h,A) on R× T 3

is L2-finite if it satisfies the finite energy condition |F (A)| ∈ L2(R× T 3).
Let T̂ 3 be the dual torus of T 3 i.e. T̂ 3 = Hom(R3,R)/Λ∗

3, where Λ∗
3 = {ξ ∈

Hom(R3,R) | ξ(Λ3) ⊂ Z} is the dual subgroup of Λ3. Let Z ⊂ T̂ 3 be a finite
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subset. Let (V̂ , ĥ, Â) be a Hermitian vector bundle with a connection on
T̂ 3 \ Z. Let Φ̂ be a skew-Hermitian section of End(V ) on T̂ 3 \ Z. The tuple
(V̂ , ĥ, Â, Φ̂) is said to be a monopole on T̂ 3 \ Z if it satisfies the Bogomolny
equation F (Â) = ∗∇Â(Φ̂). Moreover, Z is the Dirac-type singularities of

(V̂ , ĥ, Â, Φ̂) if it has a certain type of the asymptotic behavior around each
point of Z (Definition 2.6). Then we call (V̂ , ĥ, Â, Φ̂) a Dirac-type singular
monopole on T̂ 3. In this paper, we will construct the Nahm transform of
an L2-finite instanton (V, h,A) on the product of a real line R× T 3 to a
Dirac-type singular monopole (V̂ , ĥ, Â, Φ̂) on T̂ 3.

In general, for any closed subgroup Λ ⊂ R4 and the dual subgroup Λ∗ ⊂
Hom(R4,R), it is believed that there exists a way to construct Λ∗-invariant
instantons on Hom(R4,R) from Λ-invariant instantons on R4. For example,
if Λ = R4 and Λ∗ = {0}, it was constructed by Atiyah, Drinfeld, Hitchin and
Manin [2], and called the ADHM construction. The case (Λ,Λ∗) ≃ (R,R3)
was studied by Nahm [21], Hitchin [12] and Nakajima [22]. See Jardim [13]
for a list of many Nahm transformations.

Since R-invariant instantons on R× T̂ 3 can be regarded as monopoles on
T̂ 3, the construction in this paper corresponds to the case (Λ,Λ∗) ≃ (Z3,R×
Z3). This case was previously studied in Charbonneau [6] and Charbonneau-
Hurtubise[8]. The difference between [6, 8] and this paper will be mentioned
in detail after introducing our main results.

Next, let us consider relations between the Nahm transforms and the
Kobayashi-Hitchin correspondences. On a connected compact Kähler sur-
face (M, g) with the Kähler form ω, there exists a one-to-one correspon-
dence between irreducible instantons and stable holomorphic vector bundles
V with the condition (c1(V ) ∪ ω) /[X] = 0 up to their gauge transforma-
tions, which is called the Kobayashi-Hitchin correspondence (also called ‘the
Hitchin-Kobayashi correspondence’ or ‘the Donaldson-Uhlenbeck-Yau corre-
spondence’) and proved by Uhlenbeck and Yau [26]. In our case, there exist
similar relations under the assumption that T 3 is isomorphic to S1 × T 2 as a
Riemannian manifold. On one hand, in [7] Charbonneau and Hurtubise ob-
tained the Kobayashi-Hitchin correspondence between Dirac-type singular
monopoles on T̂ 3 and polystable singular mini-holomorphic bundles (Defini-
tion 2.8) on T̂ 3. On the other hand, we will give a construction of polystable
parabolic bundles with parabolic degree 0 on (P1 × T 2, {0,∞}× T 2) from
L2-finite instantons on R× T 3 (Theorem 5.11). However, it is only a half
part of the Kobayashi-Hitchin correspondence and we have not yet proved
the other part.
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Next we will construct mini-holomorphic bundles on T̂ 3 from stable
parabolic bundles on (P1 × T 2, {0,∞}× T 2) of rank r > 1 in reference to
[16]. We call this construction the algebraic Nahm transform as in [16] and
it satisfies the following commutative diagram.

L2-finite instantons
on R× T 3

Dirac-type singular

monopoles on T̂ 3

stable parabolic bundles
on (P1 × T 2, {0,∞}× T 2)

stable singular

mini-hol. bundles on T̂ 3

Nahm //

K-H corres.

��

OO

K-H corres.

constructed in [7]

��
Alg. Nahm //

1.1. Main result

The main results of this paper are summarized as follow.

(I) For any L2-finite instanton (V, h,A) on R× T 3, there exist model so-
lutions of the Nahm equation (Γ±, N±) = (Γi,±, Ni,±)i=1,2,3 such that
(V, h,A) is approximated by the T 3-invariant instantons associated
to (Γ±, N±) at t→ ±∞ (Corollary 3.4).

(II) We construct a monopole (V̂ , ĥ, Â, Φ̂) on T̂ 3 \ Sing(V, h,A) from an
L2-finite instanton (V, h,A) on R× T 3, where Sing(V, h,A) ⊂ T̂ 3 is
a finite subset determined by (Γ±) (Proposition 4.2). Moreover, each
point of Sing(V, h,A) is a Dirac-type singularity of (V̂ , ĥ, Â, Φ̂) (The-
orem 4.3).

(III) Assume that T 3 is isomorphic to S1 × T 2 as a Riemannian manifold. If

(V, h,A) is irreducible and rank(V ) > 1, then the weight k⃗ ∈ Zrank(V̂ )

of (V̂ , ĥ, Â, Φ̂) at each singular point ξ ∈ Sing(V, h,A) is determined
by the weights of the su(2) representation ρ±,ξ constructed from (N±)
(Theorem 6.2).

The first result is an analytical preparation of the Nahm transform in (II).
The second is the construction of the Nahm transform. The third is an
application of the commutativity in the above figure (Theorem 5.30). Let us
explain more details in the following.
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1.1.1. Main result (I). Let hCr be the canonical Hermitian metric on
Cr. For a smooth manifold S, we denote by (CrS , hS) the product bundle of
(Cr, hCr) on S. If there is no risk of confusion, then we abbreviate (CrS , hS)
to (Cr, h).

Let A be a connection on (Cr, h) on (0,∞)× T 3, and assume that the
connection form αdt+

∑
iAidx

i of A is invariant under T 3-action i.e. α and
Ai are T

3-invariant functions on (0,∞)× T 3. Then the ASD equation for
(Cr, h, A) is equivalent to the following Nahm equation:





∂A1

∂t
+ [α,A1] = −[A2, A3]

∂A2

∂t
+ [α,A2] = −[A3, A1]

∂A3

∂t
+ [α,A3] = −[A1, A2].

(1)

Let Γi ∈ u(r) (i = 1, 2, 3) be skew-Hermitian matrices which are commu-
tative each other. For the tuple Γ = (Γi), we set the centralizer Center(Γ) :=
{a ∈ u(r) | [Γi, a] = 0 (i = 1, 2, 3)}. Take Ni ∈ Center(Γ) (i = 1, 2, 3) satisfy-
ing Ni = [Nj , Nk] for any even permutation (ijk) of (123). Then the tuple
α = 0, Ai = Γi +Ni/t forms a solution of (1) on (0,∞).

Definition 1.1 (Definition 3.1). A tuple (Γ = (Γi), N = (Ni)) is called
a model solution of the Nahm equation if it satisfies the above conditions.

We obtain the following theorem as a consequence of results in [3] and
[20].

Theorem 1.2 (Corollary 3.4). Let (V, h,A) be an L2-finite instanton on
(0,∞)× T 3, i.e. its curvature F (A) is L2.

If we fix a positive number 0 < λ < 1 and take a sufficiently large R > 0,
then there exist a trivialization of C4,λ-class σ : (V, h)|(R,∞)×T 3 ≃ (Cr, h)
and a model solution of the Nahm equation (Γ, N) such that the following
holds for the connection form αdt+

∑
iAidx

i of A with respect to σ.

(1) The trivialization σ is a temporal gauge i.e. we have α = 0.

(2) For any 1 ≤ i ≤ 3, there exists a decomposition Ai − (Γi +Ni/t) =
ε1,i(t) + ε2,i(t) + ε3,i(t, x) such that we have ε1,i(t) ∈ Center(Γ),
ε2,i(t) ∈ (Center(Γ))⊥ and the following estimates for any 1 ≤ j ≤ 3,
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where (Center(Γ))⊥ means the orthogonal complement of Center(Γ)
in u(r) with respect to the inner product ⟨A,B⟩ := −tr(AB).

|∂jt ε1,i| = O(t−(1+j+δ))

|∂jt ε2,i| = O(exp(−δt))
||ε3,i||C3,λ([t,t+1]×T 3) = O(exp(−δt)),

where δ is a positive number.

Remark 1.3. Since the tuple α = 0, Ai = Γi +Ni/t also form a solution of
the Nahm equation on (−∞, 0), a similar result holds for L2-finite instantons
on (−∞, 0)× T 3.

1.1.2. Main result (II). Let (V, h,A) be an L2-finite instanton on R× T 3

of rank r. Applying Theorem 1.2 to (V, h,A)|(−∞,0)×T 3 and (V, h,A)|(0,∞)×T 3 ,
we obtain model solutions (Γ±, N±) which approximate (V, h,A) at t→
±∞. Since the simultaneous eigenvalues of

∑
i Γ±,idx

i ∈ Ω1(T 3) are T 3-
invariant pure imaginary 1-forms on T 3, they can be regarded as elements

of Hom(R3,
√
−1R). Thus we take ˜Spec(Γ±) ⊂ Hom(R3,R) as the set of

(2π
√
−1)−1 times simultaneous eigenvalues of

∑
i Γ±,idx

i. We define the

spectrum set Spec(Γ±) ⊂ T̂ 3 to be the image of ˜Spec(Γ±) by the quo-
tient map Hom(R3,R) → T̂ 3. We define the singularity set of (V, h,A) as
Sing(V, h,A) := Spec(Γ+) ∪ Spec(Γ−). For ξ ∈ T̂ 3 and the associated flat
Hermitian line bundle Lξ := (C, h, d+ 2π

√
−1⟨ξ, x⟩) on R× T 3, we set the

twisted instanton (V, h,Aξ) := (V, h,A)⊗ L−ξ. Then we have

Sing(V, h,Aξ) = Sing(V, h,A)− ξ = {µ− ξ ∈ T̂ 3 | µ ∈ Sing(V, h,A)}.

We construct the Nahm transform of (V, h,A) as follows. Let S± be
the spinor bundle on R× T 3 with respect to the trivial spin structure and
/∂
±
A : S± ⊗ V → S∓ ⊗ V be the Dirac operator of the connection A. Let

V be a Hermitian flat vector bundle on T̂ 3 which is the quotient of the
product bundle (L2(R× T 3, V ⊗ S−), || · ||L2) on Hom(R3,R) by a Λ∗

3-action

v · (ξ, f) := (ξ + v, exp(2π
√
−1⟨x, v⟩)f). For a family of L2-finite instantons

{(V, h,Aξ)}ξ∈T̂ 3 , we set (V̂ , ĥ) as a subbundle of V|T̂ 3\Sing(V,h,A) defined

by V̂ξ := Ker
(
/∂
−
Aξ

)
∩ L2. Then (V̂ , ĥ) is well-defined and of finite rank

because /∂
−
Aξ

is a continuous family of surjective Fredholm operators for

ξ ∈ T̂ 3 \ Sing(V, h,A) (see Theorem 3.13 and Remark 3.15). By Theorem
3.14, we have rank(V̂ ) = (8π2)−1||F (A)||2L2 .
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We define a connection Â on V̂ to be the induced connection from the
flat connection dV of V, i.e. we can write Â = PdV for the orthogonal pro-
jection P : V|T̂ 3\Sing(V,h,A) → V̂ . We take a skew-Hermitian endomorphism

Φ̂ as Φ̂(f) := P (2π
√
−1tf). Then we have the next theorem.

Theorem 1.4 (Proposition 4.2 and Theorem 4.3). (V̂ , ĥ, Â, Φ̂) is a
monopole on T̂ 3 \ Sing(V, h,A), and each point of Sing(V, h,A) is a Dirac-
type singularity of (V̂ , ĥ, Â, Φ̂).

Here we recall the definition of Dirac-type singularity of monopole by
following [7]. Let (X, g) be an oriented Riemannian 3-fold and Z ⊂ X be a
discrete subset. Let (V, h,A,Φ) be a monopole onX \ Z of rank r. Each point
p ∈ Z is a Dirac-type singularity of (V, h,A,Φ) with weight k⃗ = (k1, . . . , kr) ∈
Zr if the following conditions are satisfied.

• There exists a neighborhood B ⊂ X of p such that (V, h)|B\{p} is
decomposed into a direct sum of Hermitian line bundles

⊕r
i=1 Li such

that we have deg(Li) =
∫
∂B c1(Li) = ki for any 1 ≤ i ≤ k.

• Under the above decomposition, we have the next estimates.




Φ =

√
−1

2R

r∑

i=1

ki · IdLi
+O(1)

∇A(RΦ) = O(1),

where R is the distance from p.

1.1.3. Main result (III). SinceN± = (N±,i) satisfiesN±,i = [N±,j , N±,k]
for any even permutation (ijk) of (123), we can construct su(2) representa-
tion ρ± from N±. Then, ρ± can be decomposed into ρ± =

⊕
ξ∈Sing(V,h,A) ρ±,ξ

because N±,i ∈ Center(Γ±). Now we define the weight of ρ±,ξ to be w±,ξ :=
(rank(ρ±,ξ,i)) ∈ Zm±,ξ , where ρ±,ξ =

⊕m±,ξ

i=1 ρ±,ξ,i is the irreducible decom-

position. Let k⃗ξ be the weight of the monopole (V̂ , ĥ, Â, Φ̂) at ξ∈Sing(V, h,A)

and k⃗+,ξ, k⃗−,ξ the positive and negative part of k⃗ξ. Here main result (III)
can be described as follows.

Theorem 1.5 (Theorem 6.2). Assume T 3 is isomorphic to S1 × T 2 as a
Riemannian manifold. If the L2-finite instanton (V, h,A) is irreducible and
of rank(V ) > 1, then k⃗± agrees with ±w±,ξ with a suitable permutation.

Comparison with previous studies. In [5, 6], Charbonneau constructed
the Nahm transform to singular monopoles on T̂ 3 from L2-finite instantons
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of rank 2 with an assumption |Spec(Γ+)| = |Spec(Γ−)| = 2. In [8], Charbon-
neau and Hurtubise constructed the bijection of the equivalence classes of
spatially periodic instantons of rank r and Dirac-type singular monopoles on
the dual torus, under the genericity conditions |Spec(Γ+)| = |Spec(Γ−)| =
r and Spec(Γ+) ∩ Spec(Γ−) = ∅. Then A±,i = 0 holds for any i = 1, 2, 3,
and the weights of singularities of constructed monopoles are confined to
(±1, 0, . . . , 0).

In our Theorem 1.4, we study the Nahm transform (V̂ , ĥ, Â, Φ̂) of any
L2-finite spatially periodic instantons (V, h,A) without the genericity as-
sumptions as a refinement of the construction in [5, 6], and we prove that
the singularities of the monopoles (V̂ , ĥ, Â, Φ̂) are of Dirac type, in a more
direct way using a result in [19]. We also study the comparison of the weights
of the singularities of the instantons and the monopoles (Theorem 1.5) in
this generalized context.
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2. Preliminary

For the product bundle (CrS , hS) on a smooth manifold S, we denote by dS
the trivial connection on (CrS , hS). If there is no risk of confusion, then we
abbreviate dS to d.

2.1. Tori and dual tori

For a finite dimensional R-vector space X and a lattice Λ ⊂ X, we set T =
X/Λ. Let X∗ be the dual space of X. Let Λ∗ denote the dual lattice of Λ, i.e.,
Λ∗ := {v ∈ X∗ | v(Λ) ⊂ Z}. We define the dual torus T̂ of T by T̂ := X∗/Λ∗.

For any ξ ∈ T̂ , we define a flat Hermitian line bundle Lξ on T as Lξ :=
(CT , hT , dT + 2π

√
−1⟨ξ, dx⟩). By this correspondence, we can naturally re-

gard T̂ as the moduli space of flat Hermitian line bundles on T . The double
dual of T is naturally isomorphic to T , and hence x ∈ T also gives a flat
Hermitian line bundle Lx := (CT̂ , hT̂ , dT̂ + 2π

√
−1⟨x, dξ⟩) on T̂ .

We recall a differential-geometric construction of the Poincaré bundle
on T × T̂ in [10]. On T ×X∗, we have the following Hermitian line bundle
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with a connection on T × T̂

L̃ =
(
C, h, d− 2π

√
−1⟨ξ, dx⟩

)
.

The Λ∗-action on T ×X∗ is naturally lifted to the action on L̃ given by

v · (x, ξ, s) =
(
x, ξ + v, exp(2π

√
−1⟨x, v⟩)s

)
.

The induced Hermitian line bundle with a connection is called the Poincaré
bundle, and denoted by L.

Lemma 2.1 (Lemma 3.2.14 in [10]). The Poincaré bundle L has the
following properties.

• For any ξ ∈ T̂ , L|T×{ξ} is isomorphic to L−ξ.

• For any x ∈ T , L|{x}×T̂ is isomorphic to Lx.

Proof. The first claim is clear by the construction of L. For x ∈ T , the
connection form of L̃ on the slice {x} ×X∗ vanishes, and L|{x}×T̂ has

the global section induced by the function s(ξ) := exp(2π
√
−1⟨x, ξ⟩) on

{x} ×X∗, which satisfies ds = s(2π
√
−1⟨x, dξ⟩). Hence, L|{x}×T̂ is isomor-

phic to Lx. □

Remark 2.2. If X is a complex vector space, then T and T̂ are equipped
with the induced complex structures and L becomes a holomorphic line
bundle on T × T̂ by the holomorphic structure induced by the (0, 1)-part of
the connection on L.

In this paper, we fix a lattice Λ3 ⊂ R3. Thus T 3 = R3/Λ3, Λ
∗
3 ⊂ (R3)∗ and

T̂ 3 = Hom(R3,R)/Λ∗
3 are also fixed.

2.2. L2-finite instantons

Let (X, g) be a connected oriented Riemannian 4-fold and ∗ be the Hodge
operator on X. Let L2(X, g) denote the space of L2-functions on X with
respect to the measure induced by g.

Definition 2.3. Let (V, h) be a Hermitian vector bundle and A be a unitary
connection on (V, h).

• The tuple (V, h,A) is an instanton on X if the ASD equation F (A) =
− ∗ F (A) holds.
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• An instanton (V, h,A) is an L2-finite instanton on X if we have
|F (A)| ∈ L2(X, g), where the norm is induced by g and h.

2.2.1. Some easy properties of L2-finite instantons on R × T 3.

Lemma 2.4. Let (L, h,A) be an L2-finite instanton on R× T 3 of rank 1.
Then, (L, h,A) is a flat Hermitian line bundle. In particular, (L, h) is a
topologically trivial Hermitian line bundle.

Proof. Let t and (x1, x2, x3) be the standard coordinates of R and R3 re-
spectively. By abuse of notation, we use (t, x1, x2, x3) to denote a local
chart of R× T 3. Using this coordinate, we write F (A) =

∑
i Ftidt ∧ dxi +∑

i<j Fijdx
i ∧ dxj . By Bianchi’s identity ∇A(F (A)) = 0 and the ASD equa-

tion F (A) = − ∗ F (A), we have ∆(F (A)) = 0, where ∆ = ∇∗
A∇A +∇A∇∗

A

is the Laplacian. It implies that the functions Fti and Fij are harmonic and
L2 on R× T 3, and hence 0. Thus we obtain that (L, h,A) is a flat Hermitian
line bundle. □

Corollary 2.5. Let (V, h,A) be an L2-finite instanton on R× T 3 of rank
r. Then, (V, h) is a trivial Hermitian vector bundle.

Proof. By Lemma 2.4, (det(V ), det(h)) is a trivial Hermitian line bundle.
Thus, it suffices to prove that any principal SU(r)-bundle P on T 3 is topo-
logically trivial.

We may assume T 3 = (R/Z)3. Let q : R → S1 = R/Z be the quotient
map, and put T 2 = (R/Z)2. Take the open intervals I1 = (0, 1), I2 =
(1/2, 3/2). We set Ui := q(Ii)× T 2, and we obtain an open covering {U1, U2}
of T 3. Then, P |Ui

is trivial because SU(r) is simply-connected and Ui and
T 2 are homotopy equivalent. Moreover, we can patch each trivialization of
P |Ui

and get a global one. Indeed, any smooth map f : T 2 → SU(r) is ho-
motopic to a smooth map f1 : T

2 → SU(r) such that f1({0} × S1) ⊂ {e}
and f1(S

1 × {0}) ⊂ {e} because SU(r) is simply connected, and f1 is ho-
motopic to a constant map because π2(SU(r)) = 0. Therefore, P is a trivial
SU(r)-bundle. □

2.3. Monopoles with Dirac-type singularities

In this subsection, we recall the definition of monopoles with Dirac-type
singularities by following [7].
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Definition 2.6. Let (X, g) be an oriented Riemannian 3-fold and ∗ be the
Hodge operator on X.

(1) Let (V, h,A) be a Hermitian vector bundle with a unitary connection,
and Φ be a skew-Hermitian section of End(V ). The tuple (V, h,A,Φ) is
called a monopole on X if it satisfies the Bogomolny equation F (A) =
∗∇A(Φ).

(2) Let Z ⊂ X be a discrete subset. Let (V, h,A,Φ) be a monopole of rank
r ∈ N on X \ Z. Each point p ∈ Z is called a Dirac-type singularity of
the monopole (V, h,A,Φ) with weight k⃗ = (ki) ∈ Zr if the following
holds.
• There exists a small neighborhood B of p such that (V, h)|B\{p}

is decomposed into a sum of Hermitian line bundles
⊕r

i=1 Li with∫
∂B c1(Li) = ki.

• In the above decomposition, we have the following estimates,





Φ =

√
−1

2R

r∑

i=1

ki · IdLi
+O(1)

∇A(RΦ) = O(1),

where R is the distance from p.

In [19], the following proposition is proved.

Proposition 2.7. Let U ⊂ R3 be a neighborhood of 0 ∈ R3. Let (V, h,A,Φ)
be a monopole on (U \ {0}, gR3). Then, the point 0 is a Dirac-type singularity
of (V, h,A,Φ) if and only if |Φ(x)| = O(|x|−1) (x→ 0).

2.3.1. Monopoles and mini-holomorphic structure. We introduce
a complex-geometric interpretation of monopole by following [7] and [19].
Let Σ be a Riemann surface with a Kähler metric gΣ. Set S

1 := R/Z and
X := S1 × Σ. Let pi be the projection from X to the i-th component. Let q :
R → S1 be the quotient map. Let us recall the mini-holomorphic structure
on X in [19].

Definition 2.8.

(1) We define Ω0,1(X) := p1
∗Ω1

C(S
1)⊕ p2

∗Ω0,1(Σ) and Ω0,2(X) :=∧2Ω0,1(X). We define ∂X : Ω0,i(X) → Ω0,i+1(X) to be ∂X = dS1 +
∂Σ. We call the tuple (Ω0,i(X), ∂X) mini-holomorphic structure on X.
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(2) Let V be a vector bundle on an open subset U ⊂ X. Let Ω0,i(U, V )
denote the space of V -valued differential forms on U of degree (0, i).
A differential operator ∂V : Ω0,0(U, V ) → Ω0,1(U, V ) is called mini-
holomorphic structure of V if it satisfies the following conditions.
• For any f ∈ C∞(U) and s ∈ Ω0,i(U, V ), we have ∂V (fs) = ∂X(f) ∧
s+ f∂V (s). Note that the differential operators ∂V : Ω0,i(U, V ) →
Ω0,i+1(U, V ) are naturally induced.

• The integrability condition ∂V ◦ ∂V = 0 is satisfied.

Let I = (a, b) ⊂ R be an open interval with |b− a| < 1 and W ⊂ Σ be
a domain. Let (V, ∂V ) be a mini-holomorphic bundle on the open subset
of the form q(I)×W ⊂ X. We decompose the differential operator ∂V (s)
as ∂V (s) = dV,S1(s) + ∂V,Σ(s) ∈ p1

∗Ω1(S1)⊕ p2
∗Ω0,1(Σ) for a local section

s of V . For t ∈ I, let V t denote the holomorphic bundle (V |q(t)×W , ∂V,q(t))
on W , where ∂V,q(t) is the restriction of the differential operator ∂V,Σ on
{q(t)} ×W . For any fixed x ∈W , we obtain a connection on V |q(I)×{x} as
the restriction of dV,S1 on q(I)× {x}. Hence we have the parallel trans-
port Ψt,t′ : V

t → V t′ for any t, t′ ∈ I. The isomorphism Ψt,t′ is called the
scattering map in [7]. Recall that the scattering map Ψt,t′ : V

t → V t′ is a
holomorphic isomorphism, which follows from the integrability condition
∂V ◦ ∂V = [dV,S1 , ∂V,Σ] = 0. The next proposition shows that monopoles on
X have the underlying mini-holomorphic structures.

Proposition 2.9. Let (L, h,A,Φ) be a monopole on X. We decompose
the covariant derivative ∇A into ∇A(f) = ∇A,t(f)dt+∇1,0

A (f) +∇0,1
A (f) ∈

p1
∗Ω1(S1)⊕ p2

∗Ω1,0(Σ)⊕ p2
∗Ω0,1(Σ) for a local section f of L. Then, the

differential operator ∂L := (∇A,t −
√
−1Φ)dt+∇0,1

A is a mini-holomorphic
structure on L.

Proof. It is standard that the integrability condition ∂L ◦ ∂L = 0 follows
from the Bogomolny equation F (A) = ∗∇A(Φ). □

Let w be the standard coordinate of C. Let U ⊂ C be a neighborhood
of 0 and put U∗ := U \ {0}. Let (V, h,A,Φ) be a monopole of rank r on
([−ε, ε]× U) \ {(0, 0)} ⊂ R× C, and let (V, ∂V ) denote the underlying mini-
holomorphic bundle. The following proposition in [7] allows us to interpret
the weights of Dirac-type singularities in terms of the scattering maps of the
underlying mini-holomorphic bundles.
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Proposition 2.10. If (0, 0) is a Dirac-type singularity of weight k⃗ = (ki) ∈
Zr, then the scattering map Ψ−ε,ε : V

−ε|U∗ → V ε|U∗ is extended to a mero-
morphic isomorphism Ψ−ε,ε : V

−ε(∗0) → V ε(∗0) and there exists a holomor-
phic frame v− (resp. v+) of V −ε (resp. V ε) such that Φ−ε,ε can be repre-
sented as Ψ−ε,ε(v

−) = v+ · diag(wki), where diag(ci) is the diagonal matrix
whose (i, i)-th entries are ci. Moreover, this type of diagonal matrix repre-
sentation is unique up to permutations.

2.4. Filtered sheaves and filtered bundles

We recall the definitions of parabolic sheaves and bundles by following [16].

2.4.1. Filtered sheaves. Let X be a complex manifold. Let D be a
smooth hypersurface of X and D =

∐d
i=1Di be the decomposition into con-

nected components. Let E be a coherent OX(∗D) =
⋃
n∈ZOX(nD)-module.

A tuple P∗E = {PaE}a=(ai)∈Rd of OX -submodules of E is called a filtered
sheaf over E if it satisfies the following conditions:

• PaE ⊂ E is a coherent OX -module and PaE|X\D = E|X\D holds.

• For a = (ai) and a′ = (a′i) ∈ Rd, we have Pa′E ⊂ PaE if a′i ≤ ai for
any i = 1, . . . , d.

• On a small neighborhood U of Di, PaE|U depends only on ai, which
we denote by iPai

(E|U ).
• For any i = 1, . . . , d and a ∈ R, there exists ϵ > 0 such that we have
iPa(E|U ) = iPa+ϵ(E|U ).

• For any a ∈ Rd and n = (ni) ∈ Zd, we have Pa+nE = PaE(
∑
niDi).

A filtered subsheaf P∗E ′ ⊂ P∗E is a filtered sheaf over a subsheaf E ′ ⊂ E
such that PaE ′ ⊂ PaE for any a ∈ Rd. If PaE ′ = E ′ ∩ PaE holds for any
a ∈ Rd, it is called strict.

For a small neighborhood U of Di, we set
iP<a(E|U ) :=

∑
a′<a

iPa′(E|U ).
We also define a coherent ODi

-module iGra(E) by

iGra(E) = iP<a(E|U )/iP<a(E|U ).

We set

Par(P∗E , i) := {a ∈ R | iGra(E) ̸= 0}.
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Suppose that E is torsion free. The parabolic first Chern class par-c1(P∗E)
is defined as

par-c1(P∗E) := c1(P0,...,0V )−
d∑

i=1

∑

−1<ai≤0

ai · rankDi
(iGrai

(E))[Di].

Here rankDi
denote the rank of coherent sheaves on Di, and [Di] is the

cohomology class of Di on X.

2.4.2. Filtered bundles. A filtered sheaf P∗E on (X,D) is called a fil-
tered bundle if it satisfies the following conditions:

• For any a ∈ Rd, PaE is a locally free OX -module.

• For any i = 1, . . . , d and a ∈ R, iGra(E) is a locally free ODi
-module.

For example, we define the trivial filtered bundle OX(∗D) as PaOX(∗D)
= OX(

∑
[ai]Di), where [ai] ∈ Z is the greatest integer satisfying [ai] ≤ ai.

The filtered bundle P∗HomOX(∗D)(E1, E2) over HomOX(∗D)(E1, E2) is de-
fined as follows:

PaHomOX(∗D)(E1, E2) = {f ∈ Hom(E1, E2) | f(PbE1) ⊂ Pa+bE2 (∀b ∈ Rd)}.

We denote P∗HomOX(∗D)(E1, E2) by P∗Hom(E1, E2) if there is no risk of
confusion.

For any filtered bundle P∗E , the dual filtered bundle P∗(E∨) is defined
as P∗Hom(E ,OX(∗D)), Then we have a natural isomorphism

Pa(E∨) ≃ (P<−a+δE)∨ = (
⋃

b<−a+δ

PbE)∨,

where δ = (1, . . . , 1) ∈ Rd.

2.4.3. Stable filtered bundles on (P1 × T 2, {0,∞} × T 2). We con-
sider the case X = P1 × T 2 and D = ({0} × T 2) ⊔ ({∞} × T 2), where T 2 is
an elliptic curve. For a filtered bundle P∗E , we write PabE instead of PaE
for a = (a, b) ∈ R2.

For a filtered bundle P∗∗E , we define the parabolic degree of P∗∗E by

par-deg(P∗∗E) =
√
−1

2

∫

P1×{w0}
par-c1(P∗∗E), (∀w0 ∈ T 2).

Definition 2.11. Let P∗∗E be a filtered bundle on (X,D).
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• The filtered bundle P∗∗E is stable if it satisfies the following:
(1) For any a, b ∈ R, PabE|{0}×T 2 and PabE|{∞}×T 2 are semistable and

of degree 0.
(2) For any filtered subsheaf P∗∗E ′ ⊂ P∗∗E satisfying (1) and 0 <

rank(E ′) < rank(E), we have

par-deg(P∗∗E ′)/rank(E ′) < par-deg(P∗∗E)/rank(E).

• The filtered bundle P∗∗E is polystable if there exists a decomposi-
tion P∗∗E =

⊕
i∈I P∗∗Ei such that we have P∗∗Ei is stable and that

par-deg(P∗∗Ei)/rank(Ei) = par-deg(P∗∗Ej)/rank(Ej) holds for any
i, j ∈ I.

We have the following cohomology vanishing for stable filtered bundles of
degree 0.

Proposition 2.12. Let p : P1 × T 2 → T 2 be the projection map. Let F be
a holomorphic line bundle of degree 0 on T 2. For a stable filtered bundle
P∗∗E on P1 × T 2 satisfying par-deg(P∗∗E) = 0 and rank(E) > 1, we have
H i(P1 × T 2, P−t̂t̂E ⊗ p∗F ) = H i(P1 × T 2, P<−t̂<t̂E ⊗ p∗F ) = 0 for any t̂ ∈
R and any i ̸= 1.

Proof. By replacing E with E ⊗ p∗F , we may assume that F is trivial. By
considering P∗−t̂,∗+t̂E instead of P∗∗E, we may also assume t̂ = 0. If i < 0
or i > 2 holds, then the cohomologies vanish obviously. Thus we prove only
the cases i = 0 and i = 2. If there exists a non-zero global section of P00E,
we have a filtered subsheaf P∗∗O ⊂ P∗∗E of rank 1 that satisfies (1) in Def-
inition 2.11 and par-deg(P∗∗O) ≥ 0. However, it contradicts the stability
of P∗∗E. Thus, we have H0(P1 × T 2, P00E) = 0. By the natural inclusion
P<0<0V ⊂ P00V , we have H0(P1 × T 2, P<0<0E) = 0. By the natural isomor-
phism P00(E

∨) ≃ (P<1<1E)∨, we have H0(P1 × T 2, (P<1<1E)∨) = 0. Using
the Serre duality theorem and isomorphisms P<1<1E ≃ P<0<0E ⊗OX(D) ≃
P<0<0E ⊗ (Ω2

P1×T 2)−1, we obtainH2(P1 × T 2, P<1<1E ⊗ Ω2
P1×T 2) = H2(P1 ×

T 2, P<0<0E) = 0. We also have H2(P00E) = 0 by the short exact sequence
0 → P<0<0V → P00V → 1Gr0(P∗∗V )⊕ 2Gr0(P∗∗V ) → 0 and trivial vanish-
ing of cohomologies H2(T 2, 1Gr0(P∗∗V )) = H2(T 2, 2Gr0(P∗∗V )) = 0. □

2.5. The Fourier-Mukai transform of semistable bundles

We recall the Fourier-Mukai transform of semistable bundles of degree 0 on
an elliptic curve T 2 := C/Λ2 by following [16, Subsubsection 2.1.2].
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Let w be the standard coordinate of C. We will denote by T̂ 2 the dual
torus of T 2. Let V be a semistable bundle of degree 0 and of rank r on T 2. As
a part of result in [16, Proposition 2.2], we have the following proposition.

Proposition 2.13. There exist k ∈ N, Fi ∈ Pic0(T 2) and nilpotent matri-
ces Ni ∈ Mat(C, ri) (1 ≤ i ≤ k and

∑
i ri = r) such that we have Fi ̸≃ Fj

and an isomorphism V ≃⊕k
i=1 Fi ⊗ (Cri , ∂ +Nidw̄). Moreover, if we take

another isomorphism V ≃⊕k′

i=1 F
′
i ⊗ (Cr

′
i , ∂ +N ′

idw̄), then we have k = k′

and there exist a permutation σ of {1, . . . , k} and linear transformations
gi ∈ GL(ri,C) such that we have Fi ≃ Fσ(i), ri = r′i and Ni = Ad(gi)N

′
i for

any 1 ≤ r ≤ k.

Recall the spectrum of semistable bundle of degree 0 is defined as fol-
lows. (See [16].)

Definition 2.14. We take the decomposition V ≃⊕k
i=1 Fi⊗(Cri , ∂ +Nidw̄)

as in Proposition 2.13. We define the spectrum set Spec(V ) ⊂ T̂ 2 to be
Spec(V ) := {F1, . . . , Fk} under the identification T̂ 2 ≃ Pic0(T 2).

The following corollary is also obtained by [16, Proposition 2.2].

Corollary 2.15. We take the decomposition V ≃⊕k
i=1 Fi⊗(Cri , ∂ +Nidw̄)

as in Proposition 2.13. Let L → T 2 × T̂ 2 be the Poincaré bundle. Let pi
be the projection of T 2 × T̂ 2 to the i-th component. For any α ∈ Spec(V ),
we set a multi-index Iα = (iα,1, . . . , iα,kα) ∈ Nkα as a tuple of the sizes of
the Jordan blocks of Ni corresponding to α. The Fourier-Mukai transform
FM(V ) := Rp2∗(p

∗
1V ⊗ L) ∈ Db(Coh(OT̂ 2)) is given as follows:

H i(FM(V )) = 0, (i ̸= 1)

H1(FM(V )) ≃
⊕

α∈Spec(V )

kα⊕

j=1

OT̂ 2,α/m
iα,j

T̂ 2,α
,

where mT̂ 2,α is the maximal ideal of the stalk OT̂ 2,α.

3. L2-finite instantons on R × T 3

In this section, we fix a positive number 0 < λ < 1. Recall that a function
f is called of Ci,λ-class if f is of Ci-class and all derivatives of f of order i
are locally λ-Hölder continuous.
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3.1. Asymptotic behavior of solutions of the Nahm equation
on (0,∞)

For a T 3-invariant unitary connection A on (Cr, h) on (0,∞)× T 3, the tuple
(Cr, h, A) is an instanton if and only if the connection form of A = αdt+∑

iAidx
i satisfies the Nahm equation:





∂A1

∂t
+ [α,A1] = −[A2, A3]

∂A2

∂t
+ [α,A2] = −[A3, A1]

∂A3

∂t
+ [α,A3] = −[A1, A2].

(2)

For skew-Hermitian commuting matrices Γi ∈ u(r) (i = 1, 2, 3), let
Center(Γ) denote the centralizer of Γ := (Γi) in u(r), i.e. Center(Γ) = {a ∈
u(r) | [Γi, a] = 0 (i = 1, 2, 3)}. If we take Ni ∈ Center(Γ) (i = 1, 2, 3) satisfy-
ing the relations Ni = [Nj , Nk] for any even permutation (ijk) of (123), then
the tuple of α = 0 and Ai = Γi +Ni/t (i = 1, 2, 3) forms a solution of (2) on
(0,∞).

Definition 3.1. A pair of tuples (Γ = (Γi), N = (Ni)) as described above
is called a model solution of the Nahm equation.

In [3, Corollary 2.2 and Proposition 3.1], Biquard proved the following
theorem.

Theorem 3.2. Let (α(t), Ai(t)) be a solution of the Nahm equation of
C3,λ-class on (0,∞) of rank r. Then, there exist a model solution of the
Nahm equation (Γ, N) and a C4,λ-gauge transformation g : (0,∞) → U(r)
such that the following conditions are satisfied.

(i) The gauge transformation g satisfies g−1αg + g−1∂tg = 0.

(ii) We take the decomposition g−1Aig − (Γi +Ni/t) = ε1,i(t) + ε2,i(t)
satisfying ε1,i(t) ∈ Center(Γ) and ε2,i(t) ∈ (Center(Γ))⊥, where
(Center(Γ))⊥ means the orthogonal complement of Center(Γ) in u(r)
with respect to the inner product ⟨A,B⟩ := −tr(AB). Then, there ex-
ists δ > 0 such that the following estimates hold for any 1 ≤ i ≤ 3 and
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0 ≤ j ≤ 3.

{
|∂jt ε1,i(t)| = O(t−(1+j+δ))

|∂jt ε2,i(t)| = O(exp(−δt))

Proof. By Corollary 2.2 and Proposition 3.1 in [3], there exist a positive
number δ > 0 and a gauge transformation g0 : (0,∞) → U(r) such that for
the transformed solution (α̃, Ãi) = (g−1

0 αg0 + g−1
0 ∂tg0, g

−1
0 Aig0) we have the

following estimates:





|α̃| = O(exp(−δt))
|ε̃1,i| = O(t−(1+δ))
|ε̃2,i| = O(exp(−δt)),

(3)

where we set Ãi − (Γi +Ni/t) =: ε̃i,1 + ε̃i,2 ∈ Center(Γ)⊕ (Center(Γ))⊥. We
take another gauge transform g1 : (0,∞) → U(r) satisfying the following
conditions:

{
g−1
1 α̃g1 + g−1

1 ∂tg1 = 0
limt→∞ g1(t) = Id.

Then we have an estimate |g1(t)− Id| = O(exp(−δt)). Hence the same esti-
mate as (3) holds for the gauge transform g := g0g1. Moreover, by definition
of g1 we have g−1αg + g−1∂tg = 0, and this shows that g is of C4,λ-class.
For a permutation (ijk) of (123), the equation (2) can be written as follows:

∂t(ε1,i + ε2,i) =[Nj/t, ε1,k] + [ε1,j , Nk/t] + [ε1,j + ε2,j , ε1,k + ε2,k]+(4)

[Γj +Nj/t, ε2,k] + [ε2,j ,Γk +Nk/t].

Since we have [Center(Γ),Center(Γ)] ⊂ Center(Γ), by bootstrapping argu-
ment from (4) we obtain the desired estimates for derivatives of ε1,i(t) and
ε2,i(t). □

3.2. Asymptotic behavior of L2-finite instantons on (0,∞) × T 3

The following theorem is proved in [20, Lemma 3.3.2, Theorem 4.3.1, Corol-
lary 4.3.3, Corollary 5.1.3 and Theorem 5.2.2].

Theorem 3.3. Let (V, h,A) be an L2-finite instanton on (0,∞)× T 3. If
we take a sufficiently large R > 0, then there exist a positive number δ > 0, a
trivialization of C4,λ-class σ : (V, h)|(R,∞)×T 3 ≃ (Cr, h) and a T 3-invariant
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L2-finite instanton (Cr, h, Ã) on (R,∞)× T 3, such that we have the follow-
ing estimates.

{ ||Aσ||C3,λ([t,t+1]×T 3) = O(1)

||Aσ − Ã||C3,λ([t,t+1]×T 3) = O(exp(−δt)),

where Aσ is the connection form of A with respect to σ, and we identify Ã
with its connection form.

Proof. Since we have π1(T
3) ≃ Z3, by considering parallel transport, it is

proved that for any flat Hermitian vector bundle F on T 3 of rank r there
exists a tuple of Hermitian commuting matrices Γ = (Γi) ⊂ u(r) (i = 1, 2, 3)
such that we have F ≃ (Cr, h, d+

∑
i Γidx

i). By taking a suitable gauge
transformation of (Cr, h), we may assume the condition αi − βi ̸∈ (2π

√
−1)Z

for any two distinct simultaneous eigenvalues α = (αi), β = (βi) ∈ (
√
−1R)3

and for any i = 1, 2, 3. By Lemma 3.3.2, Theorem 4.3.1 and Corollary 4.3.3
in [20], there exist R > 0, a commuting tuple of skew-Hermitian matrices Γ =
(Γi) ⊂ u(r) (i = 1, 2, 3) and a trivialization of C4,λ-class σ̃ : (V, h)|(R,∞)×T 3 ≃
(Cr, h) such that ||Aσ̃ −

∑
i Γidx

i||C3,λ([t,t+1]×T 3) = o(1). In particular, we
obtain ||Aσ̃||C3,λ([t,t+1]×T 3) = O(1).

Let AL2
3
be the space of L2

3-connections of (Cr, h) and H ⊂ AL2
3
be the

Center manifold of the flat connection ∇Γ = (d+
∑

i Γidx
i) on (Cr, h) in

[20, Section 5.1]. By the definition of the Center manifold, we have ∇Γ ∈ H.
The T 3-action on T 3 itself induces the T 3-action on AL2

3
. Since ∇Γ is T 3-

invariant, by Corollary 5.1.3 in [20], H is a connected Riemannian manifold
equipped with a T 3-action. By [20], we have the T 3-equivariant isometry

T∇Γ
H ≃ H1

(
Ω∗
T 3(u(r)),∇ad(Γ)

)
, where ∇ad(Γ) is the flat connection on u(r)

induced by ∇Γ with the adjoint representation of u(r). However, any ele-
ments of H1(T 3,Ω∗(Cr,∇Γ)) are T

3-invariant because of the assumption on
simultaneous eigenvalues of Γ. Therefore, sinceH is connected, the T 3-action
on H is trivial. Hence, by Lemma 3.3.2 and Theorem 5.2.2 in [20], there exist
a positive number δ > 0, a trivialization σ : (V, h)|(R,∞)×T 3 ≃ (Cr, h) and a

T 3-invariant L2-finite instanton (Cr, h, Ã) on (R,∞)× T 3, such that we have
||Aσ − Ã||C3,λ([t,t+1]×T 3) = O(exp(−δt)), which completes the proof. □

We obtain the following corollary as a consequence of Theorem 3.3 and
Theorem 3.2.
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Corollary 3.4. Let (V, h,A) be an L2-finite instanton on (0,∞)× T 3 of
rank r. If we take a sufficiently large R > 0, then there exist a positive num-
ber δ > 0, a trivialization of C4,λ-class σ : (V, h)|(R,∞)×T 3 ≃ (Cr, h) and a
model solution of the Nahm equation (Γ, N) such that the following holds.

(i) Let αdt+
∑

iAidx
i denote the connection form of A with respect to

σ. Then we have α = 0.

(ii) There exist decompositions Ai−(Γi+Ni/t)=ε1,i(t)+ε2,i(t)+ε3,i(t, x)
such that we have ε1,i(t) ∈ Center(Γ), ε2,i(t) ∈ (Center(Γ))⊥ and that
the following estimates for 1 ≤ i ≤ 3 and 0 ≤ j ≤ 3,





|∂jt ε1,i| = O(t−(1+j+δ))

|∂jt ε2,i| = O(exp(−δt))
||ε3,i||C3,λ([t,t+1]×T 3) = O(exp(−δt)).

Remark 3.5. For any model solution (Γ, N), the tuple of α = 0 and Ai :=
Γi +Ni/t also forms a solution of the Nahm equation on (−∞, 0). Hence, a
similar result holds for L2-finite instantons on (−∞, 0)× T 3.

Let (V, h,A) be an L2-finite instanton on R× T 3. Applying Corollary
3.4 to (V, h,A)|(0,∞)×T 3 and (V, h,A)|(−∞,0)×T 3 , we obtain model solutions
(Γ±, N±) which approximate (V, h,A) at t→ ±∞.

Since the simultaneous eigenvalues of
∑

i Γ±,idx
i ∈ Ω1

T 3(u(r)) are T 3-
invariant pure imaginary 1-forms on T 3, they can be regarded as elements

of Hom(R3,
√
−1R). Thus we take ˜Spec(Γ±) ⊂ Hom(R3,R) as the set of

(2π
√
−1)−1 times simultaneous eigenvalues of

∑
i Γ±,idx

i. We take uni-
tary representations ρ± : su(2) → u(r) induced by N± to be ρ(

∑
i aiei) :=∑

i aiN±,i, where (ei)i=1,2,3 is a basis of su(2) satisfying ei = [ej , ek] for any
even permutation (ijk) of (123). Because N±,i ∈ Center(Γ±), we have the

decomposition ρ± =
⊕

ξ∈ ˜Spec(Γ±)

ρ±,ξ which is induced by the simultaneous

eigen decomposition of Γ±.

Definition 3.6.

• We define the spectrum set Spec(Γ±) ⊂ T̂ 3 to be the image of ˜Spec(Γ±)
by the quotient map Hom(R3,R) → T̂ 3.

• We define the singularity set of (V, h,A) as Sing(V, h,A) := Spec(Γ+) ∪
Spec(Γ−).
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• We assume that the quotient map ˜Spec(Γ±) → Spec(Γ±) is bijective,

and identify ˜Spec(Γ±) with Spec(Γ±). (See below Remark 3.7 (i).)
For ξ ∈ Sing(V, h,A), we define the unitary representations ρ±,ξ of
su(2) by putting ρ±,ξ := 0 for ξ ∈ Sing(V, h,A) \ Spec(Γ±).

Remark 3.7.

(i) We assume that there exists a fundamental domain H ⊂ Hom(R3,R)

of T̂ 3 such that 0 ∈ H and ˜Spec(Γ±) ⊂ H. Indeed, we can always
take a suitable R-invariant gauge transformation to satisfy this as-
sumption.

(ii) For ξ ∈ T̂ 3, we take a flat Hermitian line bundle Lξ on R× T 3 as in

subsection 2.1. For any ξ ∈ T̂ 3 and any L2-finite instanton (V, h,A),
we define (V, h,Aξ) := (V, h,A)⊗ L−ξ. Then we have

Sing(V, h,Aξ) = Sing(V, h,A)− ξ = {µ− ξ | µ ∈ Sing(V, h,A)}.

3.3. Fredholmness of Dirac operators

Let (V, h,A) be an L2-finite instanton on R× T 3. Take ξ ∈ T̂ 3 \ Sing(V, h,A),
and we set (V, h,Aξ) := (V, h,A)⊗ L−ξ. We shall study the Dirac operators
associated to (V, h,Aξ) by following [6].

Let σ0 be a global trivialization (V, h) (see Corollary 2.5). Let R± > 0 be
constants as in Corollary 3.4 with the L2-finite instantons (V, h,A)|(0,∞)×T 3

and (V, h,A)|(−∞,0)×T 3 respectively. We set R := max(R+, R−). We also de-
note by σ± trivializations of (V, h) on (R,∞)× T 3 and (−∞,−R)× T 3 in
Corollary 3.4 respectively. Let σ denote the triple (σ−, σ0, σ+). Let SR×T 3 =
S+ ⊕ S− denote the spinor bundle of R× T 3 with respect to the trivial spin
structure.

Definition 3.8. For 0 ≤ k ≤ 4, we define a norm || · ||L2
k,σ

: L2
k,loc(R× T 3,

V ⊗ S±) → R≥0 ∪ {∞} as follows:

||f ||2L2
k,σ

= ||σ+(f)||2L2
k([R+1,∞)) + ||σ0(f)||2L2

k([−(R+2),R+2])

+ ||σ−(f)||2L2
k((−∞,−(R+1)]).

We set L2
k,σ(R×T 3, V ⊗S±) :=

{
f ∈ L2

k,loc(R×T 3, V ⊗S±)
∣∣∣ ||f ||L2

k,σ
<∞

}
.

Remark 3.9. Since ||f ||L2 ≤ ||f ||L2
0,σ

≤ 3||f ||L2 , the ordinary L2-norm and

L2
0,σ-norm are equivalent.
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Let ST 3 be the spinor bundle on T 3 with respect to the trivial spin
structure. Let p : R× T 3 → T 3 is the projection map. There exists the iso-
morphism S± ≃ p∗ST 3 such that the Clifford product can be written as
follows.

clif(dt) =

(
0 −IdST3

IdST3
0

)
,

clif(dxi) =

(
0 clifT 3(dxi)

clifT 3(dxi) 0

)
.

Hence we obtain the following lemma.

Lemma 3.10. Under the identification between S+, S− and p∗2ST 3, the

Dirac operators /∂
±
A : V ⊗ S± → V ⊗ S∓ with respect to the trivialization σ±

can be written as follows:

/∂
±
A = ± ∂

∂t
+ /DA|{t}×T3

,

where /DA|{t}×T3
is the Dirac operator of (V,A)|{t}×T 3 on T 3.

Proof. The connection forms of A with respect to σ± are temporal i.e. they
have no dt terms. □

Proposition 3.11. For any 1 ≤ k ≤ 4, there exist Kk, Ck > 0 such that the
following estimates hold for any f ∈ L2

k,σ(R× T 3, V ⊗ S±).

||f ||L2
k,σ

≤ Ck

(
||f ||L2(|t|<Kk) + ||/∂±Aξ

(f)||L2
k−1,σ

)

Proof. By considering (V, h,Aξ) instead of (V, h,A) we may assume ξ = 0.
We consider the case k = 1. By the assumption ξ = 0 ̸∈ Sing(V, h,A) we have
Ker( /DΓ±

) = {0}, where Γ± = d+
∑

i(Γ±)idx
i are flat unitary connections

on the product bundle (Cr, h) on T 3. Thus we can easily prove by using the
Fourier series expansion that there exists B1 > 0 such that for any section
g ∈ L2

1(T
3,Cr ⊗ ST 3) we have

B1||g||L2
1(T

3) ≤ || /DΓ±
(g)||L2(T 3).

Take U1 > R+ 1 such that

(5) ||Aσ+
− Γ+||C0(t>U1−1) < B1/4, ||Aσ−

− Γ−||C0(t<−(U1−1)) < B1/4.
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We take a smooth function φ+
U1

: R → [0, 1] which satisfies the following:

φ+
U1
(t) =

{
1 (t > U1)
0 (t < U1 − 1).

We also set φ−
U1
(t) := φ+

U1
(−t) and φU1

(t) := φ+
U1
(t) + φ−

U1
(t). For any f ∈

L2
1,σ(R× T 3, V ⊗ S±), we have

||/∂±A(φU1
f)||L2 = ||∂t(φU1

f)± /DA(φU1
f)||L2

≥ ||∂t(φU1
f)±

(
/DΓ+

(φ+
U1
f) + /DΓ−

(φ−
U1
f)
)
||L2

− ||clif(Aσ+
− Γ+) · (φ+

U1
f)||L2

− ||clif(Aσ−
− Γ−) · (φ−

U1
f)||L2 .

Here we use an equality ⟨∂t(φ±
U1
f), /DΓ±

(φ±
U1
f)⟩L2 = −⟨ /DΓ±

(φ±
U1
f), ∂t(φ

±
U1
f)⟩L2 ,

then we have

||/∂±A(φU1
f)||L2 ≥ 1

3

(
||∂t(φU1

f)||L2 + || /DΓ+
(φ+

U1
f)||L2 + || /DΓ−

(φ−
U1
f)||L2

)

− ||clif(Aσ+
− Γ+) · (φ+

U1
f)||L2 − ||clif(Aσ−

− Γ−) · (φ−
U1
f)||L2 .

By this inequality and the inequalities (5), there exists B2 > 0 such that we
have

||/∂±A(φU1
f)||L2 ≥ B2||φU1

f ||L2
1,σ
.

Therefore, the following inequalities hold.

||f ||L2
1,σ

≤ ||φU1
f ||L2

1,σ
+ ||f ||L2

1,σ(|t|<U1)

≤ B2
−1||/∂±A(φU1

f)||L2 + ||f ||L2
1,σ(|t|<U1)

≤ B2
−1(||φU1

/∂
±
A(f)||L2 + ||clif(dφU1

)f ||L2) + ||f ||L2
1,σ(|t|<U1)

≤ B2
−1(||/∂±A(f)||L2) + (1 +B2

−1||∂tφU1
||L∞)||f ||L2

1,σ(|t|<U1)

Applying the interior estimate for elliptic operators to the above inequality,
we obtain an inequality

||f ||L2
1,σ

≤ C1

(
||f ||L2([−K1,K1]×T 3) + ||/∂±A(f)||L2

)
,

where C1 > 0 and K1 > U1 are constants independent of f . This is the de-
sired inequality for k = 1.
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We use an induction on k. Suppose that we have already obtained the
desired inequality in the case k = k0. We take a constant U2 > Kk0 and take
a function φU2

as above. Then, for any f ∈ L2
k0+1,σ we have

||f ||L2
k0+1,σ

≤ ||f ||L2
k0+1,σ(|t|<K2) + ||φU2

f ||L2
k0+1,σ

≤ ||f ||L2
k0+1,σ(|t|<U2) + ||φU2

f ||L2
k0,σ

+ ||∂t(φU2
f)||L2

k0,σ
(6)

+

3∑

i=1

||∂i(φU2
f)||L2

k0,σ
,

where ∂t(φU2
f) and ∂i(φU2

f) are taken under the trivializations σ±. Since
we can apply the interior estimate of elliptic operators and the assumption
of the induction to the first and second terms of (6), there exist B3 > 0 and
U3 > U2 such that we have

(7) ||f ||L2
k0+1,σ(|t|<U2) + ||φU2

f ||L2
k0,σ

≤ B3

(
||f ||L2(|t|<U3) + ||/∂±A(f)||L2

k0,σ

)
.

We also make an estimate of the third and fourth terms of (6) as follows:

||∂t(φU2
f)||L2

k0,σ
+

3∑

i=1

||∂i(φU2
f)||L2

k0,σ

≤ ||/∂±A(∂t(φU2
f))||L2

k0−1,σ
+

3∑

i=1

||/∂±A(∂i(φU2
f))||L2

k0−1,σ

≤ ||∂t(/∂±A(φU2
f))||L2

k0−1,σ
+ ||[/∂±A, ∂t](φU2

f)||L2
k0−1,σ

+

3∑

i=1

{
||∂i(/∂±A(φU2

f))||L2
k0−1,σ

+ ||[/∂±A, ∂i](φU2
f)||L2

k0−1,σ

}

≤ 4||/∂±A(φU2
f)||L2

k0,σ
+ ||[/∂±A, ∂t](φK2

f)||L2
k0−1,σ

+

3∑

i=1

||[/∂±A, ∂i](φU2
f)||L2

k0−1,σ

≤B4(||f ||L2([|t|<U4) + ||/∂±A(f)||L2
k0,σ

).(8)

Here B4 > 0 and U4 > U2 is a constant independent of f . As a consequence
of (6), (7) and (8), we obtain the desired inequality for k = k0 + 1, and the
proof is complete. □
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Corollary 3.12. For 0 ≤ k ≤ 3, if f ∈ L2
k(R× T 3, V × S±) satisfies

/∂
±
Aξ
(f) = g ∈ L2

k(R× T 3, V × S∓) as a distribution, then f ∈ L2
k+1,σ(R×

T 3, V × S±).

Proof. By the regularity of elliptic operators, we have f ∈ L2
k+1,loc(R× T 3,

V × S±). For n ∈ N, we take bump functions φn : R → [0, 1] satisfying

φn(t) =

{
1 (|t| < n)
0 (|t| > n+ 1).

From Proposition 3.11, there exist C,K > 0 such that we have

||φnf − φmf ||L2
k+1,σ

≤ C
(
||clif(dφn)f ||L2

k,σ
+ ||clif(dφm)f ||L2

k,σ
+ ||(φn − φm)g||L2

k,σ

)

for any natural numbers n,m > K. Hence {φnf} is a Cauchy sequence in
L2
k+1,σ. Moreover, this sequence converges pointwise to f . Therefore f ∈

L2
k+1,σ(R× T 3, V × S±). □

Theorem 3.13. For 1 ≤ k ≤ 4, the operators

/∂
±
Aξ

: L2
k,σ(R× T 3, V × S±) → L2

k−1,σ(R× T 3, V × S∓)

are Fredholm, and Ker(/∂
±
Aξ
) are independent of k.

Proof. By Corollary 3.12, it suffices to prove the case k = 1. Thus we prove
the following assertions.

(i) dim(Ker(/∂
±
Aξ
)) <∞

(ii) dim(Cok(/∂
±
Aξ
)) <∞

(iii) R(/∂
±
Aξ
) ⊂ L2(V × S∓) is closed

If a normed space has a relatively compact neighborhood of the origin,
then it is finite dimensional. Hence (i) is an easy consequence of Propo-
sition 3.11 and the compactness of the restriction map L2

1,σ(R× T 3, V ⊗
S±) → L2([−K,K]× T 3, V ⊗ S±). By Corollary 3.12, we have Cok(/∂

±
Aξ
) =

Ker(/∂
∓
Aξ
). Therefore, (ii) is deduced from (i).



✐

✐

“7-Yoshino” — 2022/4/13 — 19:38 — page 1715 — #25
✐

✐

✐

✐

✐

✐

The Nahm transform of spatially periodic instantons 1715

To prove (iii), it is enough to prove that there exists C > 0 such that for
any f ∈ (Ker(/∂

±
Aξ
))⊥L2 we have

(9) ||f ||L2
1,σ

≤ C||/∂±Aξ
(f)||L2 ,

where (Ker(/∂
±
Aξ
))⊥L2 means the orthogonal complement of Ker(/∂

±
Aξ
) in L2

1,σ

with respect to the ordinary L2 inner product. Suppose that there is no con-
stant C > 0 satisfying the inequality (9) for any f ∈ (Ker(/∂

±
Aξ
))⊥L2 . Take

fn ∈ (Ker(/∂
±
Aξ
))⊥L2 satisfying ||fn||L2

1,σ
= 1 > n||/∂±Aξ

(fn)||L2 for any n ∈ N.

Since the restriction map L2
1,σ(R× T 3, V ⊗ S±) → L2([−K,K]× T 3, V ⊗

S±) is compact, we may assume that {fn|[−K,K]×T 3} converges in

L2([−K,K]× T 3, V ⊗ S±). We have ||/∂±Aξ
(fn)||L2 < 1/n→ 0 (n→ ∞), and

hence {fn} also converges to some f∞ ∈ L2
1,σ(R× T 3, V ⊗ S±) by Propo-

sition 3.11. Then we have f∞ ∈ Ker(/∂
±
Aξ
) and f∞ ̸= 0. This contradicts

fn ∈ (Ker(/∂
±
Aξ
))⊥L2 . Therefore the inequality (9) holds for some C > 0. □

3.4. Index of Dirac operators

We calculate the index of Dirac operators by following Charbonneau [6].

Theorem 3.14. Let (V, h,A) be an L2-finite instanton on R× T 3 of rank
r and take ξ ∈ T̂ 3 \ Sing(V, h,A). The index of /∂

+
Aξ

is given by

index(/∂
+
Aξ
) = − 1

8π2
||F (Aξ)||2L2 = − 1

8π2
||F (A)||2L2 .

Proof. Replacing (V, h,A) with (V, h,Aξ), and we may assume ξ = 0. We
may also assume that any Γ±,i are diagonal matrices because Γ± = (Γ±,i)
are commuting Hermitian matrices. Take a positive constant K > R, and
a partition of unity {ϕ−, ϕ0, ϕ+} on R which is subordinate to the open
cover {(−∞,−K) , (−(K + 1),K + 1) , (K + 1,∞)}. We set a connection
aK := ϕ−Γ− + ϕ0A+ ϕ+Γ+, where Γ± are the connections given by d+∑

i Γ±,idx
i with respect to the trivialization σ±. Then the difference /∂

+
A −

/∂
+
aK

= clif (ϕ−(A− Γ−) + ϕ+(A− Γ+)) is a compact operator, hence we have

index(/∂
+
A) = index(/∂

+
aK

).

We take a continuous family of flat unitary connections {Γs}s∈[0,1] on
(V, h)|(R,∞)×T 3 satisfying the following conditions:

• Γ0 = Γ+.
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• The connection form of Γ1 with respect to σ+ is given by
∑

i Γ−,idx
i.

• For any s ∈ [0, 1], 0 ̸∈ Spec(Γs).

We set connections {asK} on (V, h) as asK = ϕ−Γ− + ϕ0Axi + ϕ+Γs. Then,

{/∂+as
K
} forms a continuous family of Fredholm operators. Hence we have

index(/∂
+
A) = index(/∂

+
aK

) = index(/∂
+
a1
K
).

We construct a Hermitian vector bundle (Ṽ , h̃) on a four-dimensional torus
T 4 by gluing (V, h) on t < −(K + 1) and t > K + 1 with trivializations σ±
respectively. Since the connection forms of a1K on |t| > K + 1 with respect

to σ+ and σ− are equal, we also construct a connection ã1K on (Ṽ , h̃) from
a1K . Then the relative index theorem in [11] tells us

(10) index(/∂
+
a1
K
)− index(/∂

+
γ−) = index(/∂

+

ã1
K

)− index(/∂
+
γ̃−),

where γ− (resp. γ̃−) is a flat connection on the product bundle (Cr, h)
on R× T 3 (resp. T 4) whose connection form is given by

∑
i Γ−,idx

i. By

the assumption ξ = 0 ̸∈ Sing(V, h,A), we have index(/∂
+
γ−) = index(/∂

+
γ̃−) = 0.

Hence we obtain index(/∂
+
a1
K
) = index(/∂

+

ã1
K

). By the Atiyah-Singer index the-

orem, we obtain

index(/∂
+

ã1
K

) = ch2(ã1K)/[T 4].

Hence we have

index(/∂
+
A) =

1

8π2

∫

T 4

Tr
(
F (ã1K) ∧ F (ã1K)

)

=
1

8π2

∫

[−(K+1),K+1]×T 3

Tr
(
F (a1K) ∧ F (a1K)

)
.

Since any Γ±,i are assumed to be diagonal matrices, by Corollary 3.4 we
have

∣∣∣∣∣

∫

[−(K+1),K+1]×T 3

Tr
(
F (a1K) ∧ F (a1K)

)
−
∫

R×T 3

Tr (F (A) ∧ F (A))
∣∣∣∣∣

= O(K−2).

Taking the limit of K → ∞, we obtain

index(/∂
+
A) =

1

8π2

∫

R×T 3

Tr (F (A) ∧ F (A)) = −||FA||2L2

8π2
,
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which proves the theorem. □

Remark 3.15. Let ξ ∈ T̂ 3 \ Sing(V, h,A). Since R× T 3 has infinite vol-
ume, the Weitzenböck formula /∂

−
Aξ
/∂
+
Aξ

= ∇∗
Aξ
∇Aξ

tells us

dim
(
Ker(/∂

−
Aξ
)
)
= dim

(
Cok(/∂

+
Aξ
)
)
=

||FAξ
||2L2

8π2
,

dim
(
Ker(/∂

+
Aξ
)
)
= dim

(
Cok(/∂

−
Aξ
)
)
= 0.

3.5. Asymptotic behavior of Harmonic spinors

Let (V, h,A) be an L2-finite instanton on R× T 3.

Proposition 3.16. There exist K,κ : R>0 → R>0 such that conditions are
satisfied.

• K(d), κ(d)−1 = O(d−1) as d→ 0.

• Let ξ ∈ T̂ 3 \ Sing(V, h,A) and f ∈ Ker(/∂
−
Aξ
) ∩ L2. We set the func-

tion F (t) :=
∫
{t}×T 3 |f(t, x)|2dx, where dx means the volume form of

T 3. For any t > K(d) (resp. t < −K(d)) we have F ′(t) ≤ −κ(d)F (t)
(resp. F ′(t) ≥ κ(d)F (t)). Here we abbreviate dist(ξ, Sing(V, h,A)) to
d.

Proof. We may assume f ̸= 0. By the interior regularity of elliptic operators,
we have F ∈ C4(R) ∩ L1(R). Hence we can calculate derivatives of F .

F ′(t) = 2

∫

T 3

⟨∂tf, f⟩dx.

F ′′(t) = 2

{∫

T 3

⟨∂2t f, f⟩dx+ 2

∫

T 3

|∂tf |2dx
}
.

By Lemma 3.10, Dirac operators with respect to σ+ can be written as /∂
−
Aξ

=

−∂t + /DAξ|{t}×T3
. Thus, for t > R we have

F ′(t) =2

∫

T 3

⟨ /DAz
f, f⟩dx.
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F ′′(t) =2

∫

T 3

⟨∂t( /DAξ
(f)), f⟩dx+ 2

∫

T 3

| /DAξ
f |2dx

=2

∫

T 3

⟨ /DAξ
(∂t(f)), f⟩dx+ 2

∫

T 3

⟨[∂t, /DAξ
](f), f⟩dx

+ 2

∫

T 3

| /DAξ
f |2dx

=2

∫

T 3

⟨ /DAξ
( /DAξ

(f)), f⟩dx+ 2

∫

T 3

⟨[∂t, /DAξ
](f), f⟩dx

+ 2

∫

T 3

| /DAξ
f |2dx

=4

∫

T 3

| /DAξ
f |2dx+ 2

∫

T 3

⟨[∂t, /DAξ
](f), f⟩dx

=4

∫

T 3

| /DΓ+,ξ
(f) + clif(A− Γ+)(f)|2dx+ 2

∫

T 3

⟨[∂t, /DAξ
](f), f⟩dx.(11)

Now we use the Fourier series expansion on T 3 and get the following
estimate: there exists C1 > 0 such that we have

(12)

∫

T 3

| /DΓ+,z
(f)|2dx ≥ d2C1F (t).

Moreover, Corollary 3.4 tells us
∣∣∣∣
∫

T 3

|clif(A− Γ+)(f)|2
∣∣∣∣ = O(t−2) · F (t),(13)

∣∣∣∣
∫

T 3

⟨[∂t, /DAξ
](f), f⟩

∣∣∣∣ = O(t−2) · F (t).(14)

By applying (12), (13) and (14) to (11), we can take positive functions
K(d) = O(d−1) and κ(d)−1 = O(d−1) such that if t > K(d), then F ′′(t) >
κ(d)2F (t).

We set F̃ (t) := exp(κ(d)t)F (t). Then, the inequality F ′′(t) > κ(d)2F (t)
is equivalent to F̃ ′′(t) > 2κ(d)F̃ ′(t). If we suppose there exists t0 > K(d)
such that F̃ ′(t0) > 0, then F (t) exp(−κ(d)t/2) → ∞ (t→ ∞) and this con-
tradicts F ∈ L1(R). Therefore, for any t > K we have F̃ ′(t0) ≤ 0 i.e. F ′(t) ≤
−κ(d)F (t).

The same proof works for t < 0 mutatis mutandis. □

Corollary 3.17. Let ξ ∈ T̂ 3 \ Sing(V, h,A). There exists C > 0 such that
the following estimate holds for any f ∈ Ker(/∂

−
Aξ
) ∩ L2:

||f ||C4,λ([t,t+1]×T 3) = O (exp(−C|t|)) .
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4. Construction of the Nahm transform

4.1. Construction of monopoles

We construct the Nahm transform by following Charbonneau [6]. Let (V, h,A)
be an L2-finite instanton on R× T 3. Let (V, || · ||L2 , d) be a flat Hermitian
vector bundle on T̂ 3 which is the quotient of the product vector bundle(
L2(R× T 3, V ⊗ S−), || · ||L2

)
on Hom(R3,R) by the Λ∗

3-action v · (ξ, f) :=
(ξ + v, exp(2π

√
−1⟨x, v⟩)f). We set (V̂ , ĥ) as the finite-dimensional sub-

bundle of V|T̂ 3\Sing(V,h,A) defined by V̂ξ := Ker
(
/∂
−
Aξ

)
∩ L2. Indeed, as men-

tioned in Remark 3.15, /∂
−
Aξ

: L2
1,σ → L2 is a continuous family of surjec-

tive Fredholm operators, hence (V̂ , ĥ) is a finite-dimensional subbundle of
V|T̂ 3\Sing(V,h,A) by the implicit function theorem. Moreover, Theorem 3.14

tells us rank(V̂ ) = (8π2)−1||F (A)||2L2 .

Let Â be the connection on (V̂ , ĥ) induced by the flat connection dV
on V, namely Â = PdV , where P : V|T̂ 3\Sing(V,h,A) → V̂ is the orthogonal
projection.

Let Φ̂ denote a skew-Hermitian section of End(V̂ ) given by Φξ(f) :=

Pξ(2π
√
−1tf). Since any f ∈ Ker

(
/∂
−
Aξ

)
∩ L2 decays exponentially in t→

±∞, 2π
√
−1tf is an L2 section.

Definition 4.1. (V̂ , ĥ, Â, Φ̂) is called the Nahm transform of (V, h,A).

Proposition 4.2. (V̂ , ĥ, Â, Φ̂) is a monopole on T̂ 3 \ Sing(V, h,A).

Proof. According to Charbonneau [6, Subsection 3.1 and 3.2], (V̂ , ĥ, Â, Φ̂)
is a monopole if for any open subset U ⊂ T̂ 3 \ Sing(V, h,A) and any local
section f ∈ Γ(U, V̂ ), (dVf)ξ ∈ L2(R× T 3, V ⊗ S−)⊗ Ω1

T̂ 3,ξ
decays exponen-

tially at t→ ±∞ for any ξ ∈ U . Since dVf satisfies the partial differential
equation ∂t(dVf) = /DAξ

(dVf) + clifR×T 3(⟨dξ, dx⟩)f and Corollary 3.17, the
decay condition of dVf can be proved by a similar way with the proof of
Proposition 3.16. □

4.2. Singularities of the Nahm transform

Let (V, h,A) be an L2-finite instanton on R× T 3 and (V̂ , ĥ, Â, Φ̂) be the
Nahm transform of (V, h,A). In this subsection, we prove the following the-
orem.
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Theorem 4.3. Each point of Sing(V, h,A) is a Dirac-type singularity of
(V̂ , ĥ, Â, Φ̂).

Proof. By Proposition 2.7, it suffices to show |Φ̂(ξ)| = O(d(ξ, p)−1) (ξ → p)
for any p ∈ Sing(V, h,A). Since Φ̂ is skew-Hermitian with respect to ĥ,
we have |Φ̂(ξ)| ≤ rank(V̂ ) ·max{|⟨Φ̂(f), f⟩| | f ∈ V̂ξ and |f | = 1}. Hence we

have only to show |⟨Φ̂(f), f⟩| = O(d(ξ, p)−1)||f ||2L2 for f ∈ Ker(/∂
−
Aξ
) ∩ L2.

We set F (t) :=
∫
{t}×T 3 |f(t, x)|2dx. By Proposition 3.16, we take functions

K,κ : R>0 → R>0. We abbreviate K(d(ξ, p)) and κ(d(ξ, p)) to K and κ re-
spectively. Then we have

|⟨Φ̂f, f⟩| ≤
∫ K

−K
|t|F (t)dt+

∫

{|t|>K}
|t|F (t)dt

≤K||f ||2L2 +

∫

{|t|>K}
|t|F (t)dt.

Here we use integration by parts, then

|⟨Φ̂f, f⟩| ≤K||f ||2L2 +K

∫

{|t|>K}
F (t)dt+

∫

{t>K}

{∫

|s|>t
F (s)ds

}
dt

≤2K||f ||2L2 +

∫

{t>K}

{∫

|s|>t
F (s)ds

}
dt.

Since the inequality F ′(t) ≤ −κ(d)F (t) (resp. F ′(t) ≥ κ(d)F (t)) holds for
any t > K(d) (resp. t < −K(d)), we have

∫
|s|>t F (s)ds ≤ κ−1(F (t) + F (−t)).

Therefore we obtain

|⟨Φ̂f, f⟩| ≤ 2K||f ||2L2 + κ−1

∫

{|t|>K}
F (t)dt ≤ (2K + κ−1)||f ||2L2 .

Since K,κ−1 = O(d(ξ, p)−1), we have |⟨Φ̂(f), f⟩| = O(d(ξ, p)−1)||f ||2L2 . □

5. Algebraic Nahm transform

In this section, we assume that T 3 is isomorphic to the product of a circle
S1 = R/Z and a 2-dimensional torus T 2 = R2/Λ2 as a Riemannian manifold.
Then, we have T̂ 3 = S1 × T̂ 2, where T̂ 2 = Hom(R2,R)/Λ∗

2 is the dual torus
of T 2. Under this assumption, we can regard R× T 3 as a Kähler manifold
by setting holomorphic coordinates τ = t+

√
−1x1 ∈ R× S1 and w = x2 +√

−1x3 ∈ T 2. Since the map R× S1 ∋ τ = t+
√
−1x1 → exp(2πτ) = z ∈ C∗
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is biholomorphic, we have a biholomorphic and isometric map R× T 3 ≃
(C∗, dzdz̄/|2πz|2)× T 2.

We will construct a stable filtered bundle on (P1 × T 2, {0,∞}× T 2) from
an L2-finite instanton on R× T 3 ≃ C∗ × T 2 as a prolongation of holomor-
phic vector bundles. Next, from a stable filtered bundle on (P1 × T 2, {0,∞}×
T 2) of rank r > 1 we construct a mini-holomorphic bundle on T̂ 3 = S1 × T̂ 2

outside a finite subset, and we call this construction the algebraic Nahm
transform. Finally, for an irreducible L2-finite instanton (V, h,A) on R×
T 3 of rank r > 1 and the associated stable filtered bundle P∗∗V on (P1 ×
T 2, {0,∞}× T 2), we show that the algebraic Nahm transform of P∗∗V is iso-
morphic to the underlying mini-holomorphic bundle of the Nahm transform
of (V, h,A).

5.1. Asymptotic behavior of L2-finite instantons as holomorphic
bundles

We refine Corollary 3.4 in order to make it compatible with the complex
structure of R× T 3.

Proposition 5.1. Let (V, h,A) be an L2-finite instanton on (0,∞)× T 3

of rank r. If we take a sufficiently large R > 0, then there exist a C2-frame
v = (vi) of V on (R,∞)× T 3, a model solution (Γ, N) of the Nahm equation
and a positive number δ > 0 such that the following holds.

(i) If we write the (0, 1)-part of connection form of A with respect to v as
∇0,1
A (v) = v (Aτ̄dτ̄ +Aw̄dw̄), then Aτ̄ and Aw̄ are T 2-invariant, and

we have [Aτ̄ ,Γw̄]=[Aw̄,Γw̄]=0, where Γτ̄dτ̄+Γw̄dw̄ :=(
∑

i Γidx
i)(0,1).

(ii) We also take Nw̄, Nτ̄ to be Nτ̄dτ̄ +Nw̄dw̄ := (
∑

iNidx
i)(0,1). We set

ε̃w̄ := Aw̄ − (Γw̄ +Nw̄/t) and ε̃τ̄ := Aτ̄ − (Γτ̄ +Nτ̄/t). Then, the fol-
lowing estimates hold:





|ε̃τ̄ |, |ε̃w̄| = O(t−(1+δ))

|∂tε̃τ̄ |, |∂tε̃w̄| = O(t−(2+δ))
|∂1ε̃τ̄ |, |∂1ε̃w̄| = O(exp(−δt)),

where ∂1 means the partial derivative with respect to x1.

(iii) For any 1≤ i, j≤r, we have ||⟨vi, vj⟩ − δij ||C2([t,t+1]×T 3)=O(exp(−δt)).

Remark 5.2. As Corollary 3.4 and Remark 3.5, we obtain a similar result
for L2-finite instantons on (−∞, 0)× T 3.
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Proof. Applying Corollary 3.4 to (V, h,A) gives a trivialization
(V, h)|(R,∞)×T 3 ≃ (Cr, h) and a model solution (Γ, N) of the Nahm equa-
tion. Take an orthonormal frame u on (R,∞)× T 3 such that Γ = (Γi) are
diagonal. We take a Hermitian vector space E = (Cr, hCr) and the eigen
decomposition of Γw̄ i.e. E =

⊕
α∈CEα and Γw̄ =

∑
α αIdEα

.
We take Banach spaces X1 and X2 as

Xi :=
(⊕

α

Ci,λ(T 2,End(Eα))
⊥
)
⊕
(⊕

α ̸=β

Ci,λ(T 2,Hom(Eα, Eβ))
)
,

where Ci,λ(T 2,End(Eα))
⊥ is the kernel of the linear map f 7→

∫
T 2 f . We

define a smooth map

F : X2 ×
(
⊕

α

End(Eα)

)
×X1 → X1

as

F (f, a, ε) := π
(
Ad(exp(f))(Γw̄ + a+ ε) + exp(−f)∂w exp(f)

)
,

where π : C1,λ(T 2,End(E)) → X1 is the projection. Then, dF (0,0,0)|X2
:

X2 → X1 is an isomorphism because we have dF(0,0,0)(f, 0, 0) = π(∂w(f)).
Therefore, the implicit function theorem shows that there exist a small neigh-
borhood U of (0, 0) ∈

(⊕
α End(Eα)

)
×X1 and a smooth map G : U → X2

such that for any (f, a, ε) ∈ Dom(F ) sufficiently close to (0, 0, 0), F (f, a, ε) =
0 and f = G(a, ε) are equivalent.

Lemma 5.3. There exists M > 0 such that for any (a, ε) ∈ U we have

||G(a, ε)||C2,λ(T 2) ≤M ||ε||C1,λ(T 2)

||∂aG(a, ε)||B(⊕
α
End(Eα),C2,λ(T 2)) ≤M ||ε||C1,λ(T 2)

||∂2aG(a, ε)||B(⊕α
End(Eα),B(

⊕
α
End(Eα),C2,λ(T 2))) ≤M ||ε||C1,λ(T 2),

where B(X,Y ) is the Banach space consisting of bounded linear maps from
a Banach spaces X to a Banach space Y .

Proof. By F (0, a, 0) = 0 and the definition of G, we have G(a, 0) = 0. Thus,
we have ∂aG(a, 0) = 0 and ∂2aG(a, 0) = 0, and this proves the lemma. □

For the error terms εi,j (1≤ i, j≤3) in Corollary 3.4, we set εi,τ̄dτ̄+εi,w̄dw̄ :=
(
∑

j εi,jdx
j)(0,1). Set a gauge transformation g := exp

(
G(ε1,w̄, ε2,w̄ + π(ε3,w̄))

)
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and take a frame v = ug. By Lemma 5.3 and the estimates of ε2,j , ε3,j in
Corollary 3.4, we have ||g − Id||C2([t,t+1]×T 3) = O(exp(−δt)). This proves (ii)
and (iii).

We prove (i). By the definition of F , Aw̄ is T 2-invariant and [Aw̄,Γw̄] = 0.
We will prove that Aτ̄ is also T 2-invariant and [Aτ̄ ,Γw̄] = 0. For an eigen-
value α ∈ C of Γw̄, let us denote by vα the subset of v corresponding to α.
Then we write ∇0,1

A as

∇0.1
A (vα) = (

∑

β

vβA
β
τ̄ ,α)dτ̄ + vαAw̄,αdw̄.

Then, rewriting ∇0,1
A ◦ ∇0,1

A = 0 gives

∂w(A
β
τ̄ ,α) = Aβτ̄ ,αAw̄,α −Aw̄,βA

β
τ̄ ,α

for any eigenvalues α ̸= β of Γw̄. We have limt→∞Aw̄,α = αId, and by Re-
mark 3.7 (i) we also have α− β ̸∈ 2πZ for any eigenvalues α ̸= β of Γw̄.
Therefore, if R > 0 is sufficiently large, then we obtain Aβτ̄ ,α = 0 on (R,∞)×
T 3 by the Fourier series expansion. This is equivalent to [Aτ̄ ,Γw̄] = 0. Here
we use ∇0,1

A ◦ ∇0,1
A = 0 again, and we have

(15) ∂τ (Aw̄,α)− ∂w(A
α
τ̄ ,α) + [Aατ̄ ,α, Aw̄,α] = 0.

Removing the T 2-invariant part of (15), and we obtain

∂w

(
(Aατ̄ ,α)

⊥
)
+
[
Aw̄,α, (A

α
τ̄ ,α)

⊥
]
= 0,

where (Aατ̄ ,α)
⊥ means the non-constant part of the Fourier series expansion

of Aατ̄ ,α. This equation implies that (Aατ̄ ,α)
⊥ is a constant function on T 2,

and hence 0. Thus, Aτ̄ is T 2-invariant. □

Corollary 5.4. Set Γ̃w̄ ∈ Γ((R,∞)× T 3,End(V )) as Γ̃w̄(v) := vΓw̄. For
an eigenvalue α ∈ C of Γw̄, we take a subbundle Vα of V |(R,∞)×T 3 to be

Vα := Ker(Γ̃w̄ − αIdV ). Then the decomposition V |(R,∞)×T 3 =
⊕

α Vα is a
holomorphic decomposition. Moreover, there exist C, δ > 0 such that for any
(t, x) ∈ R× T 3, for any eigenvalues α ̸= β, for any vα ∈ (Vα)(t,x) and for
any vβ ∈ (Vβ)(t,x), we have |⟨vα, vβ⟩| < C exp(−δt)|vα| · |vβ |.

Corollary 5.5. Let π : (0,∞)× T 3 → (0,∞)× S1 be the projection. There
exist a holomorphic Hermitian vector bundle (E, ∂E , hE) on (R,∞)× S1
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and a holomorphic endomorphism f ∈ Γ((R,∞)× S1,End(E)) such that the
following holds:

(i) (V, ∂A) and (π∗E, π∗(∂E) + fdw̄) are isomorphic.

(ii) Under the isomorphism between (V, ∂A) and (π∗E, π∗(∂E) + fdw̄), we
have the estimates ||h− π∗hE ||C2([t,t+1]×T 3) = O(exp(−δt)), where δ
is a positive number, and the norm is induced by h.

(iii) For the Chern connection ∇E of (E, hE , ∂E), we have |F (∇E)|hE
=

O(t−2).

(iv) (E, ∂E , f) has a holomorphic and orthogonal decomposition

(E, ∂E , hE , f) =
⊕

α

(Eα, ∂Eα
, hEα

, fα),

which is compatible with the decomposition V =
⊕

α Vα in Corollary
5.4.

Proof. Let (E, hE) be a trivial Hermitian vector bundle on (R,∞)× S1 and
e be a orthonormal frame of (E, hE). We set ∂E(e) = eAτ and f(e) = eAw̄.
Then all conditions are satisfied by Proposition 5.1. □

5.2. Prolongation of L2-finite instantons

By following [16] and [18], we construct a polystable filtered bundles on
(P1 × T 2, {0,∞}× T 2) from L2-finite instantons on R× T 3 ≃ C∗ × T 2.

Definition 5.6. Let (X, g) be a Kähler manifold. Let (V, h,A) be a holo-
morphic Hermitian bundle on ∆∗ ×X, where ∆∗ = {z ∈ C | 0 < |z| < 1}.
Let i : ∆∗ ×X → ∆×X be the inclusion.

(i) (V, h,A) is acceptable if |F (A)| is bounded on a neighborhood of {0} ×
X, where the norm is induced by h and the Poincaré-like metric g +
|z|−2(log |z|)−2dzdz̄.

(ii) For any a ∈ R, we define a (possibly non-coherent) O∆×X -submodule
PaV of i∗V as follows: For any open subset U ⊂ ∆×X, a section
s ∈ Γ(U, i∗V ) belongs to Γ(U,PaV ) if and only if for any p ∈ ({0} ×
X) ∩ U and for any ε > 0, an estimate |s| = O(|z|−(a+ε)) holds around
p. We call P∗V := {PaV }a∈R the prolongation of V .
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(iii) For a section s ∈ Γ(X ×∆, PaV ), we define ord(s) ∈ R to be

ord(s) := min{a′ ∈ R | s ∈ Γ(X ×∆, Pa′V )}.

Mochizuki [18] proved the following theorem.

Theorem 5.7. Let (X, g), (V, h,A) be as in Definition 5.6. If (V, h,A) is
acceptable, then P∗V = {PaV }a∈R forms a filtered bundle on (∆×X, {0} ×
X).

Let (V, h,A) be an L2-finite instanton on (−∞, 0)× T 3. Applying Corol-
lary 5.5 to (V, h,A), we take a positive number R > 0, a holomorphic vector
bundle (E, ∂E , hE) on (−∞,−R)× S1 and a holomorphic endomorphism
f ∈ Γ((−∞,−R)× S1,End(E)). For r > 0, we set ∆(r) := {z ∈ C | |z| <
exp(−2πr)} and ∆(r)∗ := ∆(r) \ {0}. Under the isomorphism ∆(0)∗ × T 2 ≃
(∞, 0)× T 3 and ∆(R)∗ ≃ (−∞, R)× S1, we obtain the prolongation P∗E
and P∗V from (E, hE , ∂E) and (V, h,A) respectively.

Corollary 5.8. Both (V, h,A) and (E, hE , ∂E) are acceptable on ∆(0)∗ ×
T 2 and ∆(R)∗ respectively. In particular, the prolongations P∗V and P∗E
are filtered bundles on (∆(0)× T 2, {0} × T 2) and (∆(R), {0}) respectively.

Proof. Under the coordinate change z = exp(2π(t+
√
−1x1)), the Poincaré

metric |z|−2(log |z|)−2dzdz̄ is written as (dt2 + (dx1)2)/t2. By Corollary 3.4,
we have |F (A)| = O(t−2), where the norm is induced by h and gR×T 3 . Thus,
(V, h,A) is acceptable on ∆(0)∗ × T 2. By Corollary 5.5 (iii), we also have
|F (∇E)| = O(t−2), and (E, hE , ∂E) is acceptable on ∆(R)∗. Therefore, by
Theorem 5.7, P∗V and P∗E are filtered bundles on (∆(0)× T 2, {0} × T 2)
and (∆(R), {0}) respectively. □

Let us prove that the isomorphism (V, ∂A) ≃ (π∗E, π∗∂E + π∗fdw̄) in Corol-
lary 5.5 is extended over ∆(R)× T 2.

Proposition 5.9. For any a ∈ R, we have the holomorphic isomorphism
Pa(V |∆(R)∗×T 2) ∼= (π∗PaE, π

∗(∂PaE) + π∗(Paf)dw̄) constructed from the iso-
morphism in Corollary 5.5. In particular, the vector bundle PaV |{0}×T 2 is
semistable of degree 0.

Proof. Let P̃aE denote (π∗PaE, π
∗(∂PaE) + π∗(Paf)dw̄). Let W ⊂ ∆(R)×

T 2 be an open subset. We take a local section s ∈ Γ(W, P̃aE). Then
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s|W\({0}×T 2) is a holomorphic section of (V, ∂A). Since h and π∗hE are mu-
tually bounded, s is a holomorphic section of PaV .

Let s′ be a holomorphic section of PaV on W . We obtain a holomorphic
section s′|W\({0}×T 2) of (π∗E, π∗∂E + π∗fdw̄). Because of the definition of
PaE, s′|W∩(P1×{w}) is a holomorphic section of PaE. Hence s′ is a holomor-

phic section of P̃aE.
Under this isomorphism, PaV |{0}×T 2 is naturally isomorphic to(

π∗(PaE|{0}), ∂T 2 + π∗(Paf |{0})dw̄
)
. Thus this vector bundle is semistable

and of degree 0. □

Corollary 5.10. For any a ∈ R, we have an isomorphism of vector bun-
dles Gra(V ) ≃ (Gra(E)× T 2, ∂T 2 +Gra(f)dw̄) on T 2, where we regard the
skyscraper sheaf Gra(E) and the endomorphism Gra(f) as a vector space
with an endomorphism.

Let (V, h,A) be an L2-finite instanton on R× T 3. We will denote by P∗∗V the
associated filtered bundle on (P1 × T 2, {0,∞}× T 2). We prove that P∗∗V is
polystable.

Theorem 5.11. The prolongation P∗∗V is polystable and par-deg(P∗∗V ) =
0. In particular, if (V, h,A) is irreducible, then P∗∗V is stable.

Once we admit this theorem, we obtain the next corollary from Propo-
sition 2.12.

Corollary 5.12. Let p : P1 × T 2 → T 2 be the projection. Let (V, h,A) be
an irreducible L2-finite instanton of rank r > 1 on R× T 3. Then, we have
H0(P1 × T 2, P00V ⊗ p∗F ) = H2(P1 × T 2, P<0<0V ⊗ p∗F ) = 0 for any F ∈
Pic0(T 2).

5.2.1. Norm estimate. As a preparation of the proof of Theorem 5.11,
we show the following norm estimates.

Let (V, h,A) be an L2-finite instanton on (−∞, 0)× T 3 of rank r. Ap-
plying Corollary 5.5 to (V, h,A), we take a positive number R > 0, a holo-
morphic Hermitian vector bundle (E, hE , ∂E) on (−∞,−R)× S1 ≃ ∆(R)∗

and a holomorphic endomorphism f ∈ Γ(∆(R)∗,End(E)). Let P∗E denote
the prolongation of E on ∆(R). On the fiber (PaE)|0, the parabolic filtration
{Fc(PaE|0)}a−1<c≤a is induced by the natural inclusion PcE →֒ PaE. Then
an endomorphism GrFc (f |0) on GrFc (PaE|0) is induced by f , and the nilpo-
tent part of GrFc (f |0) induces the weight filtration {WkGrFc (PaE|0)}k∈Z. For
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b ∈ GrFc (PaE|0), we denote by degW (bi) ∈ Z the degree of b with respect to
the weight filtration. For a holomorphic frame b = (b1, . . . , br) of PaE on
∆(R), b = (bi) is compatible with the parabolic filtration and the weight
filtration if the following conditions are satisfied:

• For any c ∈ (a− 1, a], {bi|0 | ord(bi) ≤ c} forms a basis of Fc(PaE).

• For any c ∈ (a− 1, a] and any k ∈ Z, {[bi] | ord(bi) = c, degW ([bi]) ≤
k} forms a basis of WkGrFc (PaE), where [bi] is the image of bi in
GrFc (PaE|0).

Proposition 5.13. Let a ∈ R and b = (b1, . . . , br) be a holomorphic frame
of PaE on ∆(R) that is compatible with the parabolic filtration and the weight
filtration. We take a Hermitian metric h1 on E|∆(R)∗ given by h1(bi, bj) :=

δij |z|−2ord(bi)(− log |z|2)degW (bi). Then h1 and hE are mutually bounded.

Proof. According to [24, Corollary 4.3], we only need to prove that there
exists p > 1 such that we have

∣∣F (E, hE) + [fdz/z, f †dz̄/z̄]
∣∣ ∈ Lp(∆(R)∗),

where f † is the adjoint of f with respect to the metric hE , and the norm
is induced by hE and dzdz̄. We set a holomorphic Hermitian vector bundle
(Ẽ, ∂Ẽ , hẼ) on ∆(R)∗ × T 2 by (Ẽ, ∂Ẽ , hẼ) := (π∗E, π∗(∂E) + fdw̄, π∗hE).

We write the curvature of the Chern connection of (Ẽ, ∂Ẽ , hẼ) as F (Ẽ, hẼ) =

F̃zz̄dz ∧ dz̄ + F̃ww̄dw ∧ dw̄ + F̃wz̄dw ∧ dz̄ + F̃zw̄dz ∧ dw̄. Then we have

π∗
(
F (E, hE) + [fdz/z, f †dz̄/z̄]

)
=
(
F̃zz̄ + |z|−2F̃ww̄

)
dz ∧ dz̄.

Since (V, h,A) is an instanton, the ASD equation F (A)zz̄ = −|z|−2F (A)ww̄
holds, where F (A)zz̄ and F (A)ww̄ are the components of the curvature F (A).
Hence we have

π∗
(
F (E, hE) + [fdz/z, f †dz̄/z̄]

)

=
(
(Fzz̄ − F (A)zz̄) + |z|−2(Fww̄ − F (A)ww̄)

)
dz ∧ dz̄.

Applying Corollary 5.5, we obtain

∣∣∣π∗
(
F (E, hE) + [fdz/z, f †dz̄/z̄]

)∣∣∣ = O(|z|−2+δ),

where δ is a positive number. Hence we have
∣∣F (E, hE) + [fdz/z, f †dz̄/z̄]

∣∣ ∈
Lp(∆(R)∗) for some p > 1. □
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5.2.2. Analytic degree for acceptable bundles on (P1, {0,∞}). As
a preparation to prove Theorem 5.11, by following [16], we introduce the
notion of analytic degree of acceptable bundles on (P1, {0,∞}), and con-
sider the relation between the parabolic degree and the analytic degree of
acceptable bundles on (P1, {0,∞}).

Let (E, ∂E , hE) be an acceptable holomorphic Hermitian vector bundle
on C∗. We assume that for any non-zero holomorphic section f of E on a
neighborhood of 0 ∈ P1 there exist C1 > 0 and k0(f) ∈ R such that we have
an estimate

C−1
1 |z|−ord0(f)(− log |z|2)k0(f) ≤ |f |hE

≤ C1|z|−ord0(f)(− log |z|2)k0(f).

We also assume a similar condition at ∞ ∈ P1.
For any holomorphic subbundle P00L of P00E, we set L := P00L|C∗ and

hL be the Hermitian metric induced by h. We define the analytic degree and
the parabolic degree of L by

deg(L, hE) :=
√
−1

∫

C∗

Tr(ΛF (hL))dvolC∗

and

par-deg(P∗∗L) :=
∫

P 1

par-c1(P∗∗L),

where P∗∗L is the strict filtered subbundle given by PabL := L ∩ PabE.

Proposition 5.14. We have the equality deg(L, hE) = 2π par-deg(P∗∗L).

Proof. By considering
∧rank(L)E and det(L) instead of E and L, we may

assume rank(L) = 1. Let e0, e∞ be holomorphic frames of P00L on a neigh-
borhood of 0,∞ ∈ P1. We set a smooth function ψ : C∗ → R satisfying

ψ(z) =

{
ord(e0) log |z|2 (on a small neighborhood of 0 ∈ P1)
−ord(e∞) log |z|2 (on a small neighborhood of ∞ ∈ P1)

and set a metric h′E on (E, ∂E) by h
′
E := hEe

ψ. We will denote by P ′
∗∗E,P

′
∗∗L

the prolongation of E and L with respect to the metric h′E respectively. Then
we have

par-deg(P∗∗L) = par-deg(P ′
∗∗L)− ord(e0)− ord(e∞)

deg(L, hE) = deg(L, h′E)− 2π ord(e0) + 2π ord(e∞).

Therefore, by replacing hE with h′E , we may assume par-deg(P∗∗L) =
deg(P00L) and ord(e0) = ord(e∞) = 0. We take another metric h1,L of P00L
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satisfying h1,L(e0, e0) = h1,L(e∞, e∞) = 1. We take a smooth function φ :
C∗ → R as h1,L = eφhL. By the definition of h1,L, we have deg(P00L) =
(2π)−1

√
−1
∫
P1 F (h1,L). We consider the following lemma.

Lemma 5.15. The 2-form ∂∂φ is integrable on C∗, and we have
∫
C∗ ∂∂φ =

0.

Once we admit this lemma, then we obtain the desired equality
deg(L, hE) = 2πpar-deg(P∗∗L) because we have F (hL) = F (h1,L) + ∂∂φ. □

proof of Lemma 5.15. We set η := z−1 and take a metric g1 on P1 sat-
isfying g1 = dzdz̄ on a small neighborhood of z = 0 and g1 = dηdη̄ on a
small neighborhood of η = 0. We take a smooth function ρ : R → [0, 1] sat-
isfying ρ(t) = 1 (|t| < 1/2) and ρ(t) = 0 (|t| > 1) and set χN : C∗ → [0, 1] as
χN (z) := ρ(N−1 log |z|2) for N ∈ N. Since χN is a compact supported func-
tion, we have

0 =

∫

C∗

∂∂(χNφ) =

∫

C∗

∂∂(χN )φ+

∫

C∗

∂χN · ∂φ(16)

−
∫

C∗

∂χN · ∂φ+

∫

C∗

χN∂∂(φ).

Here we consider the following lemma.

Lemma 5.16. The integrands of the first to third term of rhs of (16) are
dominated by an integrable functions independent of N . In particular, the
dominated convergence theorem shows

lim
N→∞

(∫

C∗

∂∂(χN )φ+

∫

C∗

∂χN · ∂φ−
∫

C∗

∂χN · ∂φ
)

= 0.

If we admit this lemma, then we have limN→∞

∫
C∗ χN∂∂(φ) = 0. There-

fore, ∂∂(φ) is integrable, and we have
∫
C∗ ∂∂φ = 0. □

proof of Lemma 5.16. We calculate the derivatives of χN , then

∂χN = N−1ρ′(N−1 log |z|2)z−1dz

∂χN = N−1ρ′(N−1 log |z|2)z̄−1dz̄

∂∂χN = −N−2ρ′′(N−1 log |z|2)|z|−2dz ∧ dz̄.
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Thus, there exists C2 > 0 independent from N such that on a small neigh-
borhood of z = 0 we have

|∂χN |g1 = |∂χN |g1 ≤ C2|z|−1(− log |z|)−1(17)

|∂∂χN |g1 ≤ C2|z|−2(− log |z|)−2,(18)

and on a small neighborhood of η = 0 we also have

|∂χN |g1 = |∂χN |g1 ≤ C2|η|−1(− log |η|)−1(19)

|∂∂χN |g1 ≤ C2|η|−2(− log |η|)−2.(20)

Hence by (18), (20) and the assumption of the norm of e0, e∞, there exist
an integrable function dominating the first term of (16) and independent of
N . To estimate the other terms, we prove the next lemma.

Lemma 5.17. |∂(φ)|g1 = |∂(φ)|g1 is an L2-function on (P1, g1).

If we suppose that the lemma is true, by (17) and (19) we obtain an inte-
grable function dominating the second and third terms of (16) independent
of N . Hence the proof of Proposition 5.20 is complete. □

proof of Lemma 5.17. If we prove |∂(φ)|g1 is an L2-function on a neigh-
borhood of z = 0, then the same proof works for a neighborhood of η = 0.
Thus, we only needs to show |∂(φ)|g1 ∈ L2(∆∗, g1), where ∆

∗ = {z ∈ C | 0 <
|z| < 1}.

Let ∇ be the Chern connection of (E, hE , ∂E). By definition of φ we have
exp(−2φ) = |e0|2hE

. Therefore we obtain |∂ exp(−2φ)| = |2∂φ| exp(−2φ) =
|hE(∇ze0, e0)| ≤ |e0|hE

· |∇ze0|hE
, where we set ∇ =: ∇zdz +∇z̄dz̄. Hence

we have |2∂φ| ≤ |e0|−1
hE

· |∇ze0|hE
. By the norm estimate of e0, it suffices to

prove that |(− log |z|2)−k|∇z(e0)|hE
∈ L2(∆), where k = k0(e0). We take a

smooth function a : R → [0, 1] satisfying a(t) = 0 (t > 1), a(t) = 1 (t < 1/2)
and the condition that a1/2 and a′ · a−1/2 are also smooth. We set a function
bN : ∆∗ → R as

bN (z) :=
(
1− a(− log |z|2)

)
· a(−N−1 log |z|2)

forN ∈ N. Then ∂(bN ) · b−1/2
N is a smooth function on ∆∗ because of the defi-

nition of a. Moreover, there exists C3 > 0 such that we have |∂(bN )b−1/2
N |g1 ≤
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C3|z|−1(− log |z|2)−1. We consider the following integral.
∫

∆∗

bN · hE(∇ze0,∇ze0)(− log |z|2)−2kdvol =

−
∫

∆∗

∂(bN ) · hE(e0,∇ze0)(− log |z|2)−2kdvol

−
∫

∆∗

bN · hE(e0, F (hE)e0)(− log |z|2)−2kdvol

+

∫

∆∗

bN · hE(e0,∇ze0) · (−2k)(− log |z|2)−2k−1z−1dvol,

where dvol =
√
−1dz ∧ dz̄. We have the following estimate on the first term

of rhs.
∣∣∣∂(bN ) · hE(e0,∇ze0)(− log |z|2)−2k

∣∣∣

≤
(
C3C1|z|−1(log |z|2)−1

) (
b1/2(z) · |∇ze0|hE

(− log |z|2)−k
)
.

For the second term, because of (E, ∂E , hE) is acceptable, there exists C4 > 0
such that we have

∣∣∣bN · hE(e0, F (hE)e0)(− log |z|2)−2k
∣∣∣ ≤ C4|z|−2(− log |z|2)−2.

For the third term, we also have
∣∣∣bN · hE(e0,∇ze0) · (−2k)(− log |z|2)−2k−1z−1

∣∣∣

≤
(
C1b

1/2
N · |z|−1(− log |z|2)−1

)(
b
1/2
N |∇ze0|hE

(− log |z|2)−k
)
.

Therefore, there exist C5, C6 > 0 such that
∫

∆∗

bN · hE(∇ze0,∇ze0)(− log |z|2)−2kdvol

≤C5 + C6

(∫

∆∗

bN · hE(∇ze0,∇ze0)(− log |z|2)−2kdvol

)1/2

<∞.

Thus, we obtain
∫

∆∗

bN · hE(∇ze0,∇ze0)(− log |z|2)−2kdvol < C7,

where C7 is a constant independent of N . Therefore, we conclude |∂(φ)|g1 ∈
L2(C∗, g1). □
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5.2.3. Analytic degree and parabolic degree on R × T 3. In order
to prove Theorem 5.11, we also consider the analytic degree of holomorphic
subsheaves of L2-finite instantons on R× T 3 by following [16].

Definition 5.18. Let (V, h,A) be an L2-finite instanton on R× T 3 = C∗ ×
T 2. Let F be a saturated OC∗×T 2-submodule of (V, ∂A) and hF the induced
metric of smooth part of F . We define the analytic degree of F by

deg(F , h) :=
√
−1

∫

C∗×T 2

Tr(ΛF (hF ))dvolC∗×T 2 ,

where dvolC∗×T 2 is the volume form with respect to the Riemannian metric
|z|−2dzdz̄ + dwdw̄. By the Chern-Weil formula in [23], this can be written
as

deg(F , h) = −
∫

C∗×T 2

|∂π|2hdvolC∗×T 2 ,

where π : V → F is the orthogonal projection.

Lemma 5.19. Let F be a saturated subsheaf of an L2-finite instanton
(V, h,A) on R× T 3. Then, deg(F , h) is finite if and only if the following
conditions are satisfied.

(i) F can be extended to a saturated subsheaf P00F of P00V .

(ii) For any z ∈ C∗, we have deg(F|{z}×T 2) = 0.

Proof. Assume that deg(F , h) is finite. We write ∂ = ∂C∗ + ∂T 2 . On one
hand we have
∫

T 2

dvolT 2

∫

C∗

|∂C∗π|2dvolC∗ ≤
∫

T 2

dvolT 2

∫

C∗

|∂π|2dvolC∗ = −deg(F , h) <∞.

Therefore, there exists a measurable subset A ⊂ T 2 such that |A| = |T 2| and∫
C∗×{w} |∂C∗π|2dvolC∗ <∞ holds for any w ∈ A. According to [23, Lemma

10.5, Lemma 10.6], this is equivalent to the condition that F|C∗×{w} can
be extended to a saturated subsheaf of P00V |P1×{w}. Moreover, since A is a
thick subset of T 2, by [25, Theorem 4.5] F can be extended to a saturated
subsheaf of P00V . On the other hand, we have

∫

C∗

dvolC∗

∫

T 2

|∂T 2π|2dvolT 2 ≤ −deg(F , h) <∞.

Hence there exists a sequence {zi} on C∗ such that we have zi → ∞ and∫
{zi}×T 2 |∂T 2π|2dvolT 2 → 0. We also have |F (A)|{zi}×T 2 → 0 by Corollary
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3.4. Therefore, we have deg(F|{zi}×T 2) → 0 because of the Chern-Weil for-
mula

deg(F|{z}×T 2) =
√
−1

∫

{z}×T 2

Tr (ΛT 2F (hF )) dvolT 2

=
√
−1

∫

{z}×T 2

Tr (πΛT 2F (A)) dvolT 2 −
∫

{z}×T 2

|∂T 2π|2dvolT 2 .(21)

Since deg(F|{z}×T 2) is a continuous and 2πZ-valued function, we conclude
deg(F|{z}×T 2) = 0 for any z ∈ C∗.

Conversely, We assume (i) and (ii). We have

−deg(F , h) =
∫

C∗×T 2

(|∂C∗π|2 + |∂T 2π|2)dvolC∗×T 2

=

∫

C∗×T 2

|∂C∗π|2dvolC∗×T 2 +

∫

C∗×T 2

|∂T 2π|2dvolC∗×T 2 .

Here we use (ii) and (21), then we obtain

−deg(F , h) =
∫

C∗×T 2

|∂C∗π|2dvolC∗×T 2

+
√
−1

∫

C∗×T 2

Tr (πΛT 2F (A)) dvolC∗×T 2

≤
∫

C∗×T 2

|∂C∗π|2dvolC∗×T 2 + ||F (A)||L1(R×T 3).

By Proposition 5.13, (V, ∂A, h)|C∗×{w} satisfies the assumption in Proposi-
tion 5.14 for any w ∈ T 2. Hence we have

−deg(F , h) = −2π

∫

T 2

par-deg((P∗∗F)|C∗×{w})dvolT 2

+
√
−1

∫

C∗×T 2

Tr (πΛC∗F (A)) dvolC∗×T 2 + ||F (A)||L1(R×T 3)

≤ −2π

∫

T 2

par-deg((P∗∗F)|C∗×{w})dvolT 2 + 2||F (A)||L1(R×T 3).

Then par-deg((P∗∗F)|C∗×{w}) is a constant on T 2, and we have the estimate
||F (A)||L1(R×T 3) <∞ by Corollary 3.4. Hence we obtain 0 ≤ −deg(F , h) <
∞. □

Proposition 5.20. Let F be a saturated subsheaf of an L2-finite instan-
ton (V, h,A) on R× T 3. If deg(F , h) is finite, then we have deg(F , h) =
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2πVol(T 2) · par-deg(P∗∗F), where P∗∗F is a filtered subsheaf defined by
PabF := PabV ∩ F .

Proof. Since deg(F , h) is finite, F can be extended to the saturated subsheaf
P00F of P00V by Lemma 5.19. We denote by B ⊂ T 2 the set of all w ∈ T 2

that P00F|P1×{w} is a subbundle of P00V |P1×{w}. Since T
2 is compact and

P00F is saturated, T 2 \B is a finite subset. By applying (ii) of Lemma 5.19,
we have

deg(F , h) =
√
−1

∫

C∗×T 2

ΛC∗F (hF )dvolC∗×T 2

=

∫

B
deg(F|C∗×{w}, h|C∗×{w})dvolT 2

=

∫

B
deg(F|C∗×{w}, h|C∗×{w})dvolT 2 .

By Proposition 5.13, (V, ∂A, h)|P1×{w} satisfy the assumption in Proposition
5.14. Hence we have

deg(F , h) =
∫

B
par-deg(P∗∗(F )|P1×{w})dvolT 2 = 2π|T 2|par-deg(P∗∗F).

This is the desired equality. □

5.2.4. Proof of Theorem 5.11. By Lemma 2.4, (det(V ), det(h),Tr(A))
is a flat Hermitian line bundle. Hence we have the equality par-deg(P∗∗V ) =
par-deg(P∗∗(det(V ))) = 0. It is proved in Proposition 5.9 that PabV |{0}×T 2

and PabV |{∞}×T 2 are semistable vector bundles of degree 0 for any a, b ∈ R.
Let P∗∗F be a filtered subsheaf of P∗∗V satisfying 0 < rank(F) < rank(V )
and (1) in Definition 2.11. We may assume that P00F is saturated. We
set F := P∗∗F|C∗×T 2 . Let U ⊂ R× T 3 be the maximal open subset such
that F|U is a subbundle of V |U . Since P00F is a saturated subsheaf of
P00V , (R× T 3) \ U is a finite subset. By Lemma 5.19 and Proposition 5.20,
we have deg(F , h) = par-deg(P∗∗F). Therefore, par-deg(P∗∗F) ≤ 0 holds by
the Chern-Weil formula. Moreover, if par-deg(P∗∗F) = 0 holds, then we have
∂π = 0. Hence F|U and (F|U )⊥ become instantons by the induced metric
from h, and (V, h,A)|U = (F|U )⊕ (F|U )⊥ is a decomposition as instantons.
Moreover, this decomposition is invariant under parallel transports. Thus it
can be extended to the decomposition on whole R× T 3. By repeating these
arguments, we can prove that P∗∗V is polystable. In particular, if (V, h,A)
is irreducible, then P∗∗V is stable. □
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5.3. Some properties of Gra(P∗V )

Let (V, h,A) be an L2-finite instanton on (−∞, 0)× T 3. Applying Proposi-
tion 5.1 to (V, h,A), we take a positive number R > 0, a C2-frame v = (vi)
of V on (−∞,−R)× T 3 and a model solution (Γ, N) of the Nahm equa-
tion. Assume that Γ = (Γi) are diagonal, and we will denote by vα the
subset of v corresponding to an eigenvalue α ∈ C of Γw̄. Applying Corol-
lary 5.5 to (V, h,A), we take a holomorphic vector bundle (E, ∂E , hE) =⊕

α(Eα, ∂Eα
, hEα

) on (−∞,−R)× S1 and a holomorphic endomorphism
f =

⊕
α fα ∈ Γ((−∞,−R)× S1,End(E)). Let e (resp. eα) be the C

∞-frame
of E (resp. Eα) which corresponds to v (resp. vα). We will denote by P∗V
and P∗E the prolongations of V over ∆(0)× T 2 and E over ∆(R) respec-
tively, where ∆(s) := {z ∈ C | |z| < exp(−2πs)} and ∆(s)∗ := ∆(s) \ {0}.
For a ∈ Par(P∗Eα), we have the weight filtration {WiGra(P∗Eα)}i∈Z on
Gra(P∗Eα) which is induced by the nilpotent part of Gra(fα) on Gra(Eα).

We set a holomorphic Hermitian vector bundle (E′, ∂E′ , hE′) on ∆(R)∗

and a holomorphic endomorphism f ′ ∈ Γ(∆(R)∗, E′) as





∂E′(e′) = e′(Γτ̄ + ((2π)−1 log |z|)−1Nτ̄ )dz̄/2πz̄
hE′(e′i, e

′
j) = δij

f ′(e′) = e′(Γw̄ + ((2π)−1 log |z|)−1Nw̄),

where e′ = (e′i) is a C
∞-frame of E′ on ∆(R)∗. Let E′ =

⊕
E′
α be the holo-

morphic decomposition induced by the eigen decomposition of Γw̄. We have
f ′(E′

α) ⊂ E′
α, hence we write f ′ =

⊕
α f

′
α. Then (E′

α, hE′
α
, ∂E′

α
) is also ac-

ceptable as (Eα, hα, ∂Eα
). Moreover, for a ∈ Par(P∗E

′
α) we also have the

weight filtration {WiGra(P∗E
′
α)}i∈Z on Gra(P∗E

′
α) which is induced by the

nilpotent part of Gra(f
′
α) on Gra(E

′
α).

Proposition 5.21. There exists a holomorphic isomorphism Ψ:(E, hE , ∂E)
→ (E′, hE′ , ∂E′) such that Ψ and Ψ−1 are bounded, and Ψ preserves the de-
compositions E =

⊕
Eα and E′ =

⊕
E′
α. In particular, we have Par(P∗E

′
α) =

Par(P∗Eα) and the induced isomorphisms

Ψ : GrW (Gra(Eα)) → GrW (Gra(E
′
α)).

Proof. For an eigenvalue α ∈ C of Γw̄, let e′α be the subset of e′ which
spans E′

α. We define Ψ1,α : Eα → E′
α as Ψ1,α(eα) := e′α. Then we have

∂Ψ1,α(eα) = e′αε̃τ̄ ,αdz̄/z̄, where ε̃τ̄ =
∑

α ε̃τ̄ ,α is the decomposition of ε̃τ̄
in Proposition 5.1 induced by the decomposition V |(−∞,−R)×T 3 =

⊕
α Vα

in Corollary 5.4. Let bα = (bα,i) and b′α = (b′α,j) be holomorphic frames of
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PaEα and PaE
′
α respectively that they have the norm estimates in Propo-

sition 5.13. We set a function Kα = (Kα,ij) : ∆
∗(R) → Mat(rα,C) as the

change of basis of z̄−1ε̃τ̄ ,α from the frames eα and e′α to the frames bα and
b′α. Because of the estimate of ε̃τ̄ in Proposition 5.1 and the norm estimates
of bα and b′α in Proposition 5.13, we have the following estimate

|Kα,ij | = O

(
|z|ord(bα,i)−ord(b′α,j)−1(− log |z|)−degW (bα,i)+degW (b′α,j)−1−δ

)
.

Therefore, according to [24, Lemma 7.1] there exist functions Sα,ij such that
we have ∂(Sα,ij) = Kα,ijdz̄, and it satisfies the following estimate

|Sα,ij | = O

(
|z|ord(bα,i)−ord(b′α,j)(− log |z|)−degW (bα,i)+degW (b′α,j)−δ

)
.

We set Sα : Eα→E′
α as Sα(bi) :=

∑
j Sα,ij · b′j . Then we have ∂Sα= ε̃τ̄ ,αdz̄/z̄

and |Sα| = O((− log |z|)−δ). Therefore, for some R′ > R, Ψα := Ψ1,α − Sα is
a holomorphic isomorphism on ∆∗(R′) such that Ψα and Ψ−1

α are bounded.
Finally, we set Ψ := ⊕αΨα. Then Ψ is holomorphic isomorphism, and both Ψ
and Ψ−1 are bounded. We write Ψα(bα,i) =

∑
j Ψα,ij · b′α,j . Then if ord(bα,i)

< ord(b′α,j), or ord(bα,i) = ord(b′α,j) and degW (bα,i) < degW (b′α,j), then we
have Ψij(0) = 0 because of the norm estimates of bα and b′α. Hence remains
follow from it. □

For a ∈ Par(P∗E) = Par(P∗E
′), the gradations Gra(E) and Gra(E

′) are
skyscraper sheaves with the supports {0} ⊂ ∆(R), and f and f ′ induces the
endomorphisms Gra(f) and Gra(f

′) on Gra(E) and Gra(E
′) respectively.

We regard (Gra(E
(′)),Gra(f

(′))) as a vector space with an endomorphism.

Corollary 5.22. From the isomorphism Ψ, we can construct an isomor-
phism (Gra(E)× T 2, ∂T 2 +Gra(f)dw̄) ≃ (Gra(E

′)× T 2, ∂T 2 +Gra(f
′)dw̄)

for a ∈ Par(P∗E).

Proof. In Proposition 5.21, we proved that Ψ induces an isomorphism be-
tween Gra(Eα) and Gra(E

′
α), and it also induces an isomorphism between

their gradation of the weight filtrations. Therefore, the Jordan normal forms
of Gra(f) and Gra(f

′) are equivalent. Hence the proof is complete. □

5.4. Algebraic Nahm transform

We set a hypersurfaceD = D1 ⊔D2 := ({0} × T 2) ⊔ ({∞} × T 2) ⊂ P1 × T 2.
Let P∗∗V be a stable filtered bundle of degree 0 and rank r > 1 on (P1 ×



✐

✐

“7-Yoshino” — 2022/4/13 — 19:38 — page 1737 — #47
✐

✐

✐

✐

✐

✐

The Nahm transform of spatially periodic instantons 1737

T 2, D) unless otherwise noted. We set SingR(P∗∗V ) to be −Par(P∗∗V, 1) ∪
Par(P∗∗V, 2) ⊂ R, where −Par(P∗∗V, 1) := {a ∈ R | −a ∈ Par(P∗∗V, 1)}.
We also set SingS1(P∗∗V ) := π(SingR(P∗∗V )) ⊂ S1, where π : R → S1 is the
quotient map.

Let L → T 2 × T̂ 2 be the Poincaré bundle of T 2. For I ⊂ {1, 2, 3}, let pI
be the projection of P1 × T 2 × T̂ 2 onto the product of the i-th components
(i ∈ I). We define a functor F i : Coh(OP1×T 2) → Coh(OT̂ 2) to be F i(F) :=
Rip3∗(p

∗
12F ⊗ p∗23L).

Proposition 5.23. The sheaves F 1(P<−t̂<t̂V ) and F 1(P−t̂t̂V ) are locally

free for any t̂ ∈ R.

Proof. Let p : P1 × T 2 → T 2 be the projection. By Proposition 2.12, we have
H0(P1 × T 2, P−t̂t̂V ⊗ p∗F ) = H2(P1 × T 2, P−t̂t̂V ⊗ p∗F ) = 0 for any t̂ ∈ R

and any F ∈ Pic0(T 2). Therefore h1(P1 × T 2, P−t̂t̂V ⊗ p∗F ) is a constant for
any F ∈ Pic0(T 2) by the Riemann-Roch-Hirzebruch theorem. Hence
F 1(P−t̂t̂V ) is a locally free sheaves on T̂ 2. By the same way we can prove
that F 1(P<−t̂<t̂V ) is also locally free. □

We will denote by AN(P∗∗V )t̂ the locally free sheaf F 1(P−t̂t̂V ) for t̂ ∈ R.
Since we have P−(t̂+1) (t̂+1)V ≃ P−t̂t̂V , we can regard {AN(P∗∗V )t̂} as a

family on t̂ ∈ S1.

Definition 5.24. We define the algebraic singularity set Sing(P∗∗V ) ⊂
T̂ 3 = S1 × T̂ 2 as

Sing(P∗∗V ) :=


 ⋃

t̂∈Par(P∗∗V,1)

{−π(t̂)} × Spec(1Grt̂(P∗∗V ))




∪


 ⋃

t̂∈Par(P∗∗V,2)

{π(t̂)} × Spec(2Grt̂(P∗∗V ))


 ,

where Spec(·) is the spectrum set of a semistable bundle of degree 0 on T 2

(See Definition 2.14).

By Corollary 5.22, the notions of singularity set and algebraic singularity
set are compatible.

Proposition 5.25. Let (V, h,A) be an irreducible L2-finite instanton on
R× T 3 of rank r > 1, and P∗∗V be the associated stable filtered bundle.
Then we have Sing(V, h,A) = Sing(P∗∗V ). □
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Proposition 5.26. Let I ⊂ R be a closed interval with |I| < 1 and π :
R → S1 be the quotient map. Let U ⊂ T̂ 2 be the complement of the image

of
(
π(I)× T̂ 2

)
∩ Sing(P∗∗V ) under the projection T̂ 3 → T̂ 2. Then, for any

t̂, t̂′ ∈ I, we have a natural isomorphism AN(P∗∗V )t̂|U ≃ AN(P∗∗V )t̂′ |U .

Proof. We only need to prove the claim under the assumption I = [−ε, ε] for
a positive number ε > 0. By extending I, we may assume that any points
in SingR(P∗∗V ) ∩ I are interior points of I. Hence we may assume either
I ∩ SingR(P∗∗V ) = ∅ or I ∩ SingR(P∗∗V ) = {0}. Under this assumption, we
will show that there exists the natural isomorphism

AN(P∗∗V )t̂|U ≃ F 1(P−ε−εV )|U

for any t̂ ∈ I. This isomorphism is obvious for t̂ = 0, and a proof for t̂ > 0 is
also valid for t̂ < 0. Hence we assume t̂ > 0. Then, the short exact sequence
0 → P−ε−εV → P−t̂t̂V → 2Gr1(P∗∗V ) → 0, we obtain the exact sequence
F 0(2Gr0(P∗∗V )) → F 1(P−ε−εV ) → AN(P∗∗V )t̂ → F 1(2Gr0(P∗∗V )). Here we
have F 0(2Gr0(P∗∗V )) = 0 and F 1(2Gr0(P∗∗V ))|U = 0 from Corollary 2.15.
Hence we obtain AN(P∗∗V )t̂|U ≃ F 1(P−ε−εV )|U . □

Definition 5.27. We call this isomorphism the algebraic scattering map.

Corollary 5.28. The family {AN(P∗∗V )t̂}t̂ forms a mini-holomorphic bun-
dle (AN(P∗∗V ), ∂AN, ∂AN,t̂) on T̂

3 \ Sing(P∗∗V ).

Definition 5.29. We call this construction the algebraic Nahm transform.

We prove that the Nahm transform and the algebraic Nahm transform are
compatible.

Theorem 5.30. Let (V, h,A) be an irreducible L2-finite instanton of rank
r > 1 on R× T 3 and P∗∗V the associated stable filtered bundle on (P1 ×
T 2, {0,∞}×T 2). Then, the underlying mini-holomorphic bundle (V̂ , ∂Â, ∂V̂ ,t̂)

of the Nahm transform (V̂ , ĥ, Â, Φ̂) of (V, h,A) is isomorphic to the algebraic
Nahm transform (AN(P∗∗V ), ∂AN, ∂AN,t̂).

Proof. For a smooth manifold M and a vector bundle F on M , let C∞(F )
denote the sheaf of C∞-sections of F . IfM is a complex manifold and F is a
holomorphic bundle, then we also denote by O(F ) the sheaf of holomorphic
sections of F .



✐

✐

“7-Yoshino” — 2022/4/13 — 19:38 — page 1739 — #49
✐

✐

✐

✐

✐

✐

The Nahm transform of spatially periodic instantons 1739

Let Ut̂ ⊂ T̂ 2 be the complement of the image of Sing(V, h,A) ∩ ({t̂} ×
T̂ 2) under the projection map T̂ 3 → T̂ 2. We first construct an isomorphism
(V̂ , ∂Â)|{t̂}×Ut̂

≃ AN(P∗∗V )t̂|Ut̂
for any t̂ ∈ S1. By replacing (V, h,A) with

(V, h,A+ 2π
√
−1t̂dt), we may assume t̂ = 0. From the short exact sequence

0 → P<0<0V → P00V → 1Gr0(P∗∗V )⊕ 2Gr0(P∗∗V ) → 0, we obtain the ex-
act sequence

0 → F 1(P<0<0V ) → AN(P∗∗V )0 → F 1(1Gr0(P∗∗V )⊕ 2Gr0(P∗∗V )).

Hence by the definition of U0, the isomorphism

F 1(P<0<0V )|U0
≃ AN(P∗∗V )0|U0

holds. Hence it suffices to prove (V̂ , ∂Â)|{0}×U0
≃ F 1(P<0<0V )|U0

. On one

hand, since the Dolbeault resolution (C∞(Ω0,∗(p∗12P<0<0V ⊗ p∗23L)), ∂) of
the holomorphic vector bundle p∗12P<0<0V ⊗ p∗23L is acyclic for the functor
p3∗, we have an isomorphism F 1(P<0<0V ) ≃ H1(p3∗C

∞(Ω0,∗(p∗12P<0<0V ⊗
p∗23L)), ∂). Let V i be the flat bundle on T̂ 2 which is the quotient of the
product bundle C∞(P1 × T 2,Ω0,i(P<0<0V )) on Hom(R2,R) by Λ∗

2-action

as in section 4. Then we have F 1(P<0<0V ) ≃ H1(p3∗C
∞(Ω0,∗(p∗12P<0<0V ⊗

p∗23L)), ∂) ≃ H1(O(V∗), ∂P<0<0Vξ
) on T̂ 2. On the other hand, for the normed

vector spaceXi := {f ∈ L2(R× T 3,Ω0,i(V )) | ∂A(f) ∈ L2}, we construct the
flat vector bundle V iL2 on T̂ 2 from Xi in a similar way. Then, we also have
an isomorphism (V̂ , ∂Â)|{0}×U0

≃ H1(O(V∗
L2 |U0

), ∂Aξ
). By Proposition 5.13,

we obtain the natural inclusions

C∞(P1 × T 2,Ω0,i(P<0<0V )) →֒ L2(R× T 3,Ω0,i(V ))

and the induced chain homomorphism

φ : (O(V∗|U0
), ∂P<0<0Vξ

) → (O(V∗
L2 |U0

), ∂Aξ
).

In order to prove that φ is a quasi-isomorphism, we only need to prove that
the specialization φξ : (C

∞(P1 × T 2,Ω0,∗(P<0<0V )), ∂P<0<0Vξ
) → (X∗, ∂Aξ

)
is a quasi-isomorphism for any ξ ∈ U0. We will show this below in Proposi-
tion 5.32.

It remains to prove that the scattering map of (V̂ , ĥ, Â, Φ̂) and the al-
gebraic scattering map of (AN(P∗∗V ), ∂AN, ∂AN,t) are compatible under the
isomorphism H1(φ). It suffices to show the following lemma.
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Lemma 5.31. Let I = [−ε, ε] ⊂ R be a closed interval and ξ ∈ T̂ 2 with the
condition (π(I)× {ξ}) ∩ Sing(V, h,A) = ∅. For t̂ ∈ I, we take

ft̂ ∈ AN(P∗∗V )(t̂,ξ) ≃ H1(P1 × T 2, P−t̂t̂Vξ)

satisfying the condition that ft̂ is a constant under the algebraic scattering
map for any t̂ ∈ I. Then, H1(φ)(t̂,ξ)(ft̂) is a constant under the scattering

map of (V̂ , ĥ, Â, Φ̂) for any t̂ ∈ I.
□

(Proof of Lemma 5.31). We may assume ξ = 0. As in section 4, we set
V the flat vector bundle on T̂ 3 which is the quotient of the product bundle
L2(R× T 3, S− ⊗ V ) on Hom(R3,R) by Λ∗

3-action. By using the orthogonal

projection P : V|T̂ 3\Sing(V,h,A) → V̂ , the equation of the scattering map can
be written as follows:

(22) ∇Ât̂
(·)−

√
−1Φ̂(·) = P (∂t̂(·) + log |z|(·)) = 0.

By the assumption, there exists f ∈ H1(P1 × T 2, P−ε−εV ) such that ft̂ is the
image of f under the natural isomorphism H1(P1 × T 2, P−ε−εV ) ≃ H1(P1 ×
T 2, P−t̂t̂V ). Here the image of ft̂ in V̂(t̂,0) is P (f · |z|−t̂). Hence the derivative
is ∂t̂P (f · |z|−t̂)=P (∂t̂(f · |z|−t̂))=−P (f · |z|−t̂ · log |z|). ThusH1(φ)(0,t̂)(ft̂)
satisfies the equation (22), and this completes the proof. □

5.4.1. L2-Dolbeault lemma. Let (V, h,A) be an irreducible L2-finite
instanton and P∗∗V its prolongation. We assume (0, 0) ̸∈ Sing(V, h,A). Let
A0,i(P<0<0V ) denote the sheaf of smooth sections of Ω0,i(P<0<0V ). Then
we have the natural isomorphism H1(P1 × T 2, (A0,∗(P<0<0V ), ∂P<0<0V )) ≃
AN(P∗∗V )(0,0). Let pA0,i

L2(V ) be the presheaf on P1 × T 2 that associates an
open subset W ⊂ P1 × T 2 to a C-vector space

{
s ∈ L2

(
W ∩ (R× T 3),Ω0,i(V )

) ∣∣∣ ∂A(s) ∈ L2
(
W ∩ (R× T 3),Ω0,i+1(V )

)}
,

where L2(W ∩ (R× T 3),Ω0,i(V )) means the set of L2-sections of Ω0,i(V )
on W ∩ (R× T 3) with respect to h and gR×T 3 . Let A0,i

L2(V ) denote the

sheafification of pA0,i
L2(V ). Then we have the natural isomorphism H1(P1 ×

T 2, (A0,∗
L2 , ∂A)) ≃ V̂(0,0). LetK : A0,i(P<0<0V ) → A0,i

L2(V ) be the sheaf homo-
morphism induced by the inclusion map C∞(W,Ω0,i(P<0<0V )) ⊂ L2

(
W ∩

(R× T 3),Ω0,i(V )
)
for an open subset W ⊂ P1 × T 2. For simplicity, we use

the same symbolK for the chain map (A0,∗(P<0<0V ), ∂P<0<0V ) → (A0,∗
L2 , ∂A).
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Proposition 5.32. The chain map K induces an isomorphism V̂(0,0) ≃
AN(P∗∗V )(0,0).

Proof. Let q : P1 × T 2 → P1 be the projection. To show that K induces an
isomorphism V̂(0,0) ≃ AN(P∗∗V )(0,0), we only need to prove that q∗K is a
quasi-isomorphism. Thus we consider the following lemma.

Lemma 5.33. For any z ∈ P1, (q∗K)z is a quasi-isomorphism, where (q∗K)z
means the induced chain map between the stalks at z.

Once we admit the lemma, then q∗K is a quasi-isomorphism and the
proof is complete. □

(Proof of Lemma 5.33). This lemma is trivial unless z = 0 or z = ∞, and
the same proof works for both the cases z = 0 and z = ∞. Thus it suffices
to consider only the case z = 0.

From Proposition 5.1, we take a sufficiently small neighborhood U of
0 ∈ P1, a frame v = (vi) of V on U∗ × T 2, and a model solution (Γ, N) of
the Nahm equation that they satisfy conditions in Proposition 5.1, where
U∗ := U \ {0}. Let (E, hE , ∂E , f) =

⊕
α(Eα, hEα

, ∂Eα
, fα) be the holomor-

phic Hermitian vector bundle with the endomorphism on U∗ constructed
from (V, h,A) in Corollary 5.5. Let e be the C∞-frame of E which cor-
responds to v. We take the sheaves A0,i

L2(E) and A0,i(P<0E) on U con-

structed from E and P<0E in a similar way to A0,i
L2(V ) and A0,i(P<0<0V ).

Then we have A0,i
L2(E) ≃⊕αA

0,i
L2(Eα) and A0,i(P<0E) ≃⊕αA0,i(P<0Eα)

because Eα and Eβ are orthogonal for any α ̸= β.

We write∇0,1
A = ∂Az̄

dz̄ + ∂Aw̄
dw̄. For s ∈ L2(U∗ × T 2, V ), we denote the

Fourier series expansion of s with respect to v by

s = v ·
∑

n∈Λ∗
2

sn(z) exp(2π
√
−1⟨n,w⟩).

By using the Fourier series expansion, we set the bounded operator I :
L2(U∗ × T 2, V ) → L2(U∗, E) by I(s) := e · s0(z), and set the closed sub-
space L2(U∗ × T 2, V )⊥ := Ker(I). Because of Remark 3.7 (i), we can con-
struct the inverse operator GL2 : L2(U∗ × T 2, V )⊥ → L2(U∗ × T 2, V )⊥ of
∂Aw̄

as

GL2(s) := v ·
∑

n=(n2,n3)
∈Λ∗

2\{(0,0)}

(
(
√
−1n2 − n3)π +Aw̄

)−1
sn(z) exp(2π

√
−1⟨n,w⟩),
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where Aw̄ is the component of ∇0,1
A (v) = v(Aw̄dw̄ +Az̄dz̄). Therefore, the

complex (q∗A0,∗
L2 (V )(U), ∂A) is quasi-isomorphic to the following complex:

A0,0
L2 (E)(U)

f⊕∂E−−−→ A0,0
L2 (E)(U)⊕A0,1

L2 (E)(U)
∂E − f−−−−→ A0,1

L2 (E)(U).

Since fα : A0,0
L2 (Eα)(U) → A0,0

L2 (Eα)(U) is an isomorphism for α ̸= 0, the

complex (q∗A0,∗
L2 (V )(U), ∂A) is quasi-isomorphic to

A0,0
L2 (E0)(U)

f0⊕∂E0−−−−−→ A0,0
L2 (E0)(U)⊕A0,1

L2 (E0)(U)
∂E0

− f0−−−−−→ A0,1
L2 (E0)(U).

By the assumption (0, 0) ̸∈ Sing(V, h,A), the same argument in the proof of
[27, Proposition 11.5] shows that ∂E0

is surjective. Thus (q∗A0,∗
L2 (V )(U), ∂A)

is quasi-isomorphic to

(
Ker(∂E0

) ∩ A0,0
L2 (E0)(U)

)
f0−→
(
Ker(∂E0

) ∩ A0,0
L2 (E0)(U)

)
.

By a similar way we can prove that (q∗A0,∗(P<0<0V )(U), ∂P<0V ) is also
quasi-isomorphic to

Γ(U,P<0(E0))
P<0f0−−−−→ Γ(U,P<0(E0)).

By the assumption (0, 0) ̸∈ Sing(V, h,A), we can show any s ∈ Ker(∂E0
) ∩

A0,0
L2 (E0)(U

∗) decays exponentially in t→ −∞. Hence we have Ker(∂E0
) ∩

A0,0
L2 (E0)(U

∗) = Γ(U,P<0(E0)) and the proof is complete. □

6. Correspondence between weights

As in Section 5, we assume that T 3 is isomorphic to the product of a circle
S1 = R/Z and a 2-dimensional torus T 2 = R2/Λ2 as a Riemannian man-
ifold. Let P∗∗V be a stable filtered bundle on (P1 × T 2, {0,∞}× T 2) of
deg(P∗∗V ) = 0 and of rank r > 1. Let (AN(P∗∗V ), ∂AN, ∂AN,t) be the al-
gebraic Nahm transform of P∗∗V . Let Sing0(P∗∗V ) ⊂ T̂ 2 be the image of
Sing(P∗∗V ) ∩ {0} × T̂ 2 under the projection T̂ 3 = S1 × T̂ 2 → T̂ 2. Let L →
T 2 × T̂ 2 be the Poincaré bundle of T 2. For I ⊂ {1, 2, 3}, let pI be the projec-
tion of P1 × T 2 × T̂ 2 onto the product of the i-th components (i ∈ I). We de-
fine a functor F i : Coh(OP1×T 2) → Coh(OT̂ 2) to be F i(F) := Rip3∗(p

∗
12F ⊗

p∗23L) as in subsection 5.4.
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Proposition 6.1. We take a positive number ε > 0 small enough to sat-
isfy Sing(P∗∗V ) ∩

(
q([−ε, ε])× T̂ 2

)
= {0} × Sing0(P∗∗V ), where q : R → S1

be the quotient map. Then, we have the following.

• We have a sequence of injections

F 1(P−ε−εV ) →֒ AN(P∗∗V )±ε →֒ F 1(PεεV )

which is compatible with the algebraic scattering map.

• Under the above sequence of injections, we have the following isomor-
phisms:

AN(P∗∗V )−ε ∩AN(P∗∗V )ε ≃ F 1(P−ε−εV ).

AN(P∗∗V )−ε +AN(P∗∗V )ε ≃ F 1(PεεV ).

F 1(PεεV )/AN(P∗∗V )ε ≃ F 1(1Gr0(P∗∗V )) ≃ H1(FM(1Gr0(P∗∗V ))).

F 1(PεεV )/AN(P∗∗V )−ε ≃ F 1(2Gr0(P∗∗V )) ≃ H1(FM(2Gr0(P∗∗V ))).

Here iGr0(P∗∗V )) is the gradation of P∗∗V (See subsubsection 2.4.1),
and FM(E) ∈ Db(Coh(OT̂ 2)) is the Fourier-Mukai transform of a co-
herent sheaf E on T 2.

Proof. From the definition of stable filtered bundle on (P1 × T 2, {0,∞}×
T 2), iGr0(P∗∗V ) (i = 1, 2) are semistable locally free sheaves on {0} × T 2

and {∞} × T 2 respectively. Thus by Corollary 2.15 we have

F 0(iGr0(P∗∗V )) = H0(FM(iGr0(P∗∗V ))) = 0.

Hence by the short exact sequences 0 → P−ε−εV → Pε−εV → 1Gr0(P∗∗V ) →
0 and 0 → Pε−εV → PεεV → 2Gr0(P∗∗V ) → 0, we have an inclusion of
sheaves F 1(P−ε−εV ) →֒ AN(P∗∗V )−ε →֒ F 1(PεεV ). Since F 2(Pε−εV ) = 0 is
shown in Proposition 5.23, we have

F 1(PεεV )/AN(P∗∗V )−ε = F 1(2Gr0(P∗∗V )) = H1(FM(2Gr0(P∗∗V ))).

In a similar way, we obtain F 1(P−ε−εV ) →֒ AN(P∗∗V )ε →֒ F 1(PεεV ) and

F 1(PεεV )/AN(P∗∗V )ε = F 1(1Gr0(P∗∗V )) = H1(FM(1Gr0(P∗∗V ))).

The compatibility with the algebraic scattering map is trivial by the defini-
tion of the algebraic scattering map.
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We consider the short exact sequence 0 → P−ε−εV → Pε−εV ⊕ P−εεV →
PεεV → 0. Since Proposition 5.23 shows F 0(PεεV ) = 0 and F 2(P−ε−εV ) =
0, we obtain the exact sequence

0 → F 1(P−ε−εV ) → AN(P∗∗V )−ε ⊕AN(P∗∗V )ε → F 1(PεεV ) → 0.

Therefore we have

AN(P∗∗V )−ε ∩AN(P∗∗V )ε ≃ F 1(P−ε−εV ),

AN(P∗∗V )−ε +AN(P∗∗V )ε ≃ F 1(PεεV ).
□

Let (V, h,A) be an irreducible L2-finite instanton of rank r > 1 and
(V̂ , ĥ, Â, Φ̂) the Nahm transform of (V, h,A). For ξ ∈ Sing(V, h,A), let ρ±,ξ
be the representation of su(2) defined in Definition 3.6. For the irreducible
decomposition ρ±,ξ =

⊕m±,ξ

i=1 ρ±,ξ,i, we set w±,ξ := (rank(ρ±,ξ,i)). We decom-

pose the weight k⃗ = (ki) ∈ Zrank(V̂ ) of (V̂ , ĥ, Â, Φ̂) at ξ ∈ Sing(V, h,A) into
the positive part k+ and the negative part k−.

Theorem 6.2. k± agrees with ±w±,ξ under a suitable permutation.

Proof. By considering Vξ = (V, h,Aξ) instead of (V, h,A), we assume ξ = 0.
By Proposition 6.1 and Proposition 2.10, k+ (resp. k−) is determined by
the stalk at 0 ∈ T̂ 2 of H1(FM(2Gr0(P∗∗V ))) (resp. H1(FM(1Gr0(P∗∗V )))).
Applying Proposition 5.1 to (V, h,A)|(0,∞)×T 3 and (V, h,A)|(−∞,0)×T 3 , we
obtain the model solutions (Γ±, N±) of the Nahm equation. We set Γ±,τ̄dτ̄ +
Γ±,w̄dw̄ := (

∑
i Γ±,idx

i)(0,1) and N±,τ̄dτ̄ +N±,w̄dw̄ := (
∑

iN±,idx
i)(0,1). We

consider the following lemma.

Lemma 6.3. Let X±,0 be the eigenspace of Γ±,τ̄ of eigenvalue 0. The gra-
dation iGr0(P∗∗V ) (i = 1, 2) are isomorphic with the holomorphic bundles
Ẽ± :=

(
X±,0 × T 2, ∂T 2 + (Γ±,w̄ +N±,w̄)|X±,0

dw̄
)
respectively.

If we admit this lemma, then by Corollary 2.15, the stalk H1(FM(Ẽ±))0
is determined by the size of Jordan blocks of (Γ±,w̄ +N±,w̄)|X±,0

whose eigen-
values are 0. Since the size of Jordan blocks of (Γ±,w̄ +N±,w̄)|X±,0

whose
eigenvalues are 0 is the rank of irreducible representations of su(2) contained
in ρ±,0, hence k± agrees with ±w±,ξ with a suitable permutation. □

(proof of Lemma 6.3). We may assume that any Γi are diagonal. As in
subsection 5.3, we take R > 0 and set the holomorphic Hermitian vector bun-
dle with the endomorphism (E′

±, hE′
±
, ∂E′

±
, f ′±) on ∆∗(R) := {z ∈ C | 0 <
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|z| < exp(−2πR)} as follows:





∂E′
±
(e′±) = e′

(
Γ±,τ̄ + ((2π)−1 log |z|)−1N±,τ̄

)
dz̄/(2πz̄)

hE′
±
(e′±,i, e

′
±,j) = δij

f ′±(e
′

±) = e′±
(
Γ±,w̄ + ((2π)−1 log |z|)−1N±,w̄

)
,

where e′± = (e′±,i) is a C∞-frame of E′
± on ∆(R)∗. We take a holomor-

phic frame b′± = (b′±,i) of E′
± by b′± := e′± exp(−Γ±,τ̄ τ̄ − 2N±,τ̄ log(t)) =

e′± exp(−(2π)−1Γ±,τ̄ log(z̄)− 2N±,τ̄ log((2π)
−1 log |z|)). Then, we also set

the holomorphic frame b′′± = (b′′±,i) of P0E
′ by b′′±,i := z−⌈ord(b′±,i)⌉b′±,i, where

⌈α⌉ is the least integer satisfying ⌈α⌉ ≥ α. Hence we obtain P0f
′(b′′±) =

b′′±(Γ±,w̄+N±,w̄) by the change of basis. By Remark 3.7 (i), iGr0(P∗∗V ) (i =
1, 2) is spanned by the subset of b′′± that correspond to eigenvectors of
Γ±,1 of eigenvalue 0. By Corollary 5.22, iGr0(P∗∗V ) (i = 1, 2) is isomor-
phic to the holomorphic bundles

(
Gr0(P∗E

′
±)× T 2, ∂T 2 +Gr0(P∗f

′
±)dw̄

)
≃(

X±,0 × T 2, ∂T 2 + (Γ±,w̄ +N±,w̄)|X±,0
dw̄
)
respectively. □

References

[1] Michael Atiyah, “Vector bundles over an elliptic curve”, Proceedings of
the London Mathematical Society 7(1957), 414–452

[2] Michael Atiyah, Vladimir Drinfeld, Nigel Hitchin and Yuri Manin,
“Construction of instantons”, Physics Letters A 65 (1978), no. 3, 185–
187
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Mathématiques de l’IHÉS 58 (1983), no. 1, 83–196.

[12] Nigel J Hitchin, “On the construction of monopoles”, Communications
in Mathematical Physics 89 (1983), no. 2, 145–190.

[13] Marcos Jardim, “A survey on Nahm transform”, Journal of Geometry
and Physics 52 (2004), no. 3, 313–327.

[14] Peter Kronheimer, “Monopoles and Taub-NUT metrics”, Master The-
sis, University of Oxford (1985)

[15] H. Blaine Lawson and Marie-Louise Michelsohn, “Spin Geometry”,
Princeton University Press (1989)

[16] Takuro Mochizuki, “Asymptotic behaviour and the Nahm transform of
doubly periodic instantons with square integrable curvature”, Geometry
& Topology 18 (2014), no. 5, 2823–2949.

[17] Takuro Mochizuki, “Notes on periodic monopoles and Nahm trans-
forms”, Preprint

[18] Takuro Mochizuki, “Wild harmonic bundles and wild pure D-modules”,
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