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We construct algebraic virtual cycles that give us the cohomolog-
ical field theories of Fan-Jarvis-Ruan invariants by integral trans-
formations.

1. Introduction

In this paper, we construct an algebraic virtual cycle that should provide us
with the cohomological field theory of Fan-Jarvis-Ruan-Witten (FJRW for
short) invariants in [7] by a Fourier-Mukai type integral transformation.

1.1. Background and motivation

Let w : CN → C be a nondegenerate quasi-homogeneous polynomial (cf.
§2.1) which defines a nonsingular hypersurface Qw = Pw−1(0). Let Ĝ be a
subgroup of (C∗)N and χ : Ĝ→ C∗ be a homomorphism such that w(g · x) =
χ(g)w(x). The kernel of χ is a finite group denoted by G. If we let Ĝ act on
CN × C by g · (x, t) = (g · x, χ(g)−1t), the quotient stack

X = [(CN × C)/Ĝ]

admits a function w(x, t) = t · w(x) and two GIT quotients

X+ =
(
(CN − 0)× C

)
/Ĝ, X− =

(
C
N × (C− 0)

)
/Ĝ = C

N/G.

The former X+ is an (orbi-)line bundle over the weighted projective stack
PN−1 and the critical locus of w|X+

is Qw, up to quotient by a finite group
G/µd. On the other hand, w|X−

= w.
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In [18], Witten conjectured that the Gromov-Witten invariants of Qw

should be computable by the Landau-Ginzburg (LG for short) model

w : CN/G −→ C

whose curve counting invariants should be integrals on the solution space of
Witten’s equation on the moduli space X of G-spin curves (C, pj , Li, φ) (cf.

§2.2) together with sections (xi) ∈
∏N

i=1H
0(Li).

Through analysis, Fan, Jarvis and Ruan in [7] studied the solution space
of Witten’s equation and defined the FJRW invariants which were proved
to satisfy nice properties like the splitting axioms, codified as cohomological
field theories. Quantum singularity theories in the title refer to cohomological
field theories arising from singularities like w−1(0).

Slightly later, Polishchuk and Vaintrob in [15, 16] provided a purely
algebraic construction of cohomological field theories of the LG model w :
CN/G→ C by matrix factorizations. They constructed a universal matrix
factorization and their cohomological field theories are obtained by Fourier-
Mukai type transformations on matrix factorizations and Hochschild homol-
ogy. As the functors of matrix factorizations do not preserve the ordinary
cohomology degrees, the algebraic theory in [15, 16] lacks in explicit inter-
pretation in terms of cycles and basic properties like the homogeneity of
dimension are not obvious.

An algebraic theory for FJRW invariants by algebraic cycles was pro-
vided in [5] for narrow sectors by constructing the virtual fundamental cycle
for the moduli space X where Witten’s equation is replaced by the cosection
localization principle (cf. [12]). For the general case including broad sectors,
the second and third named authors in [13] generalized the cosection local-
ization of [12] to intersection homology and provided a direct construction
of the cohomological field theories for both broad and narrow sectors. As the
construction in [13] does not involve virtual cycles, one may wonder whether
it is possible to construct the cohomological field theories by a Fourier-Mukai
type integral transformation whose kernel is an algebraic virtual cycle.

The goal of this paper is to construct algebraic virtual cycles that give
us the cohomological field theories of [13] by integral transformations.

1.2. Construction of virtual cycles by blowups

The moduli stack X of rigidified G-spin curves with sections can be written
as the zero locus of a section s of a vector bundle E over a Deligne-Mumford
stack Y (cf. §2.3). We also have a cosection σ : E → OY satisfying σ ◦ s = 0
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and a smooth morphism q : Y → Z = w−1(0), where w is a nondegenerate
quasi-homogeneous polynomial on a finite dimensional vector space. As X is
usually not proper, the ordinary virtual fundamental class [X]vir, as a Chow
cycle supported in X, cannot be used for an integral transformation. On the
other hand, the intersection S of X and the degeneracy locus Z (sometimes
called the zero locus) of σ is the moduli space of rigidified G-spin curves;
hence S = X ∩ Z is proper.

When Y is smooth, we have the canonical perfect obstruction theory
[TY |X

ds
−→E|X ] ofX. Since σ ◦ s = 0, 0 = d(σ ◦ s) = σ ◦ ds and hence the co-

section σ descends to a cosection of the obstruction sheaf ObX = coker(ds).
In the narrow case, Z = 0 and one can apply the cosection localization prin-
ciple in [12, Theorem 5.1] to obtain the cosection localized virtual cycle

[X]virloc ∈ A∗(S)

which gives us the FJRW invariants in the narrow case (cf. [5]).
In the broad case, Y is singular and σ does not descend to ObX . In order

to apply the cosection localization in [12], we will replace Z by its blowup Z ′

at the isolated singular point 0, and pull back all the data above to Z ′ to get
a smooth morphism q′ : Y ′ → Z ′, a vector bundle E′ over Y ′, a section s′ of
E′ which defines X ′, and a cosection σ′ of E′ whose zero locus Z′ intersects
with X ′ along the proper S′ = Z ′ ×Z S. Since Z

′ is smooth and σ′ ◦ s′ = 0,
Y ′ is smooth and the cosection σ′ descends to a cosection of the obstruction
sheaf ObX′ = coker(ds′). Applying [12, Theorem 5.1], we obtain a cosection
localized virtual cycle

[X ′]virloc ∈ A∗(S
′).

The proper morphism p and the composite q below

p : S′ −→ S, q : S′ →֒ Y ′ q
′

−→Z ′,

where the former is induced from the blowup morphism Z ′ → Z, together
with the virtual cycle [X ′]virloc, give rise to an integral transformation

(1.1) Φ[X′]virloc
: H∗(Z ′) −→ H∗(S), α 7→ p∗([X

′]virloc ∩ q
∗α).

The insertion space H⊗n of the FJRW theory (cf. §2.1) is contained in the
direct sum of spaces of the form

IHm(Z) ⊂ Hm−2(Z ′) ∼= Hm(Z ′)
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and we have a proper pushforward H∗(S)→ H∗(Mg,n). Hence (1.1) enables
us to define homomorphisms

(1.2) Ω′
g,n : H⊗n −→ H∗(Mg,n) ∼= H∗(Mg,n).

In [13, Theorem 3.2], the second and third named authors constructed
the cosection localized Gysin maps for intersection homology

(1.3) s!σ : IH∗(Y ) −→ H∗(S).

Composed with the pullback q∗ : IH∗(Z)→ IH∗(Y ), (1.3) also enables us to
define homomorphisms

(1.4) Ωg,n : H⊗n −→ H∗(Mg,n) ∼= H∗(Mg,n).

In [13, Theorem 4.5], it was proved that (1.4) satisfies the axioms of the
FJRW cohomological field theory.

The goal of this paper is to prove that

Ω′
g,n = Ωg,n,

and hence the integral transformation (1.1) by the algebraic virtual cycle
[X ′]virloc provides us with the FJRW cohomological field theory (1.2) (cf. The-
orem 5.1).

1.3. Layout

In §2, we recall the spin curves and their moduli space. In §3, we construct
virtual cycles by blowup and define an integral transformation whose kernel
is the virtual cycle. In §4, we recall the cohomological field theory construc-
tion by intersection homology in [13]. In §5, we prove the main theorem
about the equality of the two cohomological field theories constructed in the
previous sections.

1.4. Notation and convention

All varieties, schemes and stacks are defined over C in this paper. We will
use only the classical topology of algebraic varieties and schemes. All the
topological spaces in this paper are locally compact Hausdorff countable
CW complexes. Intersection homology in this paper refers to the middle
perversity intersection homology unless stated otherwise. The Borel-Moore
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homology groups are denoted by H∗(−). We will not use the ordinary ho-
mology groups. All the cohomology groups in this paper have complex co-
efficients. The fundamental class of an irreducible closed substack V of a
Deligne-Mumford stack Y in the Chow group A∗(Y ) is denoted by [[V ]] while
the fundamental class of V in the Borel-Moore homology group H∗(Y ) is
denoted by [V ].

2. Spin curves and FJRW invariants

In this section, we recall the Fan-Jarvis-Ruan-Witten theory from [7]. Our
presentation follows [13, §4].

2.1. Hypersurface singularities

A polynomial w : CN → C is quasi-homogeneous if for some d1, · · · , dN , d ∈
Z>0,

(2.1) w(td1x1, · · · , t
dNxN ) = td · w(x1, · · · , xN ).

Here we assume that d > 0 is the minimal possible. Let qi = di/d. The quasi-
homogeneous polynomial w is nondegenerate if the following are satisfied:

1) no mominial of w is of the form xixj for i ̸= j;

2) the projective hypersurface Qw defined by w is nonsingular:

Qw = Pw−1(0) ⊂ P
N−1
d1,··· ,dN

= (CN − 0)/C∗

where C∗ acts on CN with weights d1, · · · , dN .

By (2), the hypersurface w−1(0) ⊂ CN has singularity only at the origin 0
and qi ≤

1
2 .

We write w =
∑ν

k=1 ckwk, where ck ∈ C∗ and wk are distinct monomials.
The kernel of the homomorphism

(2.2) (w1, · · · , wν) : (C
∗)N −→ (C∗)ν

is the symmetry group

(2.3) Gw = {(λ1 · · · , λN ) ∈ (C∗)N |w(λ1x1, · · · , λNxN ) = w(x1, · · · , xN )}
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of w, which is finite by the nondegeneracy. Let

Jw = (e2πiq1 , · · · , e2πiqN ) ∈ Gw,

and fix a subgroup G of Gw containing Jw. The pair (w,G) is the input data
for the FJRW theory in [7].

Consider the diagonal embedding C∗ → (C∗)ν and the fiber product

Ĝw
//

��

C∗

��

(C∗)N // (C∗)ν

of (2.2). By the quasi-homogeneity (2.1), the homomorphism

C
∗ → (C∗)N , t 7→ (td1 , · · · , tdN )

factors through Ĝw, which together with the inclusion Gw → Ĝw gives us
a surjective homomorphism Gw × C∗ → Ĝw whose kernel is µd ≤ C∗, the
group of d-th roots of unity. The subgroup G of Gw thus determines

Ĝ = G× C
∗/µd ⊂ Ĝw

that fits into an exact sequence

(2.4) 1 −→ G −→ Ĝ
χ
−→C

∗ −→ 1.

Since G acts trivially on w, for λ ∈ Ĝ ⊂ (C∗)N ,

(2.5) w(λ · x) = χ(λ)w(x).

The state space for the singularity (w,G) in [7] is

(2.6) H =
⊕

γ∈G

Hγ , Hγ = HNγ (CNγ , w∞
γ )G.

Here CNγ is the γ-fixed subspace of CN , and w∞
γ = (Re(wγ))

−1(a,∞), where
wγ = w|CNγ and a >> 0.
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If we let

Z ′
γ −→ Zγ = w−1

γ (0)

be the weighted blowup at the origin, then Z ′
γ is the line bundle OQwγ

(−1)

which is the restriction of O
P
Nγ−1

d1,··· ,dNγ

(−1) to Qwγ
= Pw−1

γ (0) ⊂ P
Nγ−1
d1,··· ,dNγ

. As

Qwγ
is smooth by [7, Lemma 2.1.10], so is Z ′

γ .
We consider the vanishing cohomology H∗

van(Pw
−1
γ (0)) and the primitive

cohomologyH∗
prim(Pw

−1
γ (0)) ofQwγ

= Pw−1
γ (0). Complex Morse theory then

provides us with isomorphisms

HNγ (CNγ , w∞
γ ) ∼= HNγ−2

van (Pw−1
γ (0)) ∼= H

Nγ−2
prim (Pw−1

γ (0)),

by [17, Proposition 2.27] since the weighted projective space has no primitive
cohomology in non-zero degrees. On the other hand, the middle perversity
intersection homology of w−1

γ (0) satisfies (cf. [3, p.20])

(2.7) IHi(w
−1
γ (0)) =





H
Nγ−2
prim (Pw−1

γ (0)), i = Nγ

C, i = 2Nγ − 2

0, otherwise.

Hence we have

Hγ = IHNγ
(w−1

γ (0))G ⊂ H
Nγ−2
prim (Pw−1

γ (0))

⊂ HNγ−2(Pw−1
γ (0)) = HNγ−2(Z ′

γ).

For γ1, γ2 ∈ G, the Thom-Sebastiani sum

wγ1
⊞ wγ2

: CNγ1 ⊕ C
Nγ2 → C

is defined by (x, y) 7→ wγ1
(x) + wγ2

(y). By [14], we have canonical isomor-
phisms and a commutative square

H
Nγ1−2
van (Pw−1

γ1
(0))⊗H

Nγ2−2
van (Pw−1

γ2
(0))

∼=

��

∼= // H
Nγ1+Nγ2−2
van (P(wγ1

⊞ wγ2
)−1(0))

∼=

��

IHNγ1
(w−1

γ1
(0))⊗ IHNγ2

(w−1
γ2

(0))
∼= // IHNγ1+Nγ2

((wγ1
⊞ wγ2

)−1(0)).

Therefore, Hγ1
⊗Hγ2

is canonically isomorphic to

IHNγ1+Nγ2
((wγ1

⊞ wγ2
)−1(0))G×G(2.8)

∼= H
Nγ1

+Nγ2
−2

van (P(wγ1
⊞ wγ2

)−1(0))G×G.
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2.2. Moduli of spin curves

Given the input data (w,G), we have the moduli stack of spin curves.
A pointed twisted curve refers to a proper Deligne-Mumford stack C

with smooth substacks p1, · · · , pn ⊂ C, such that

1) denoting the coarse moduli space by ρ : C → |C|, |C| is a projective
curve which has at worst nodal singularities and the markings ρ(pi) =
|pi| are smooth points of |C|;

2) ρ is an isomorphism away from special points (nodes or makings);

3) a marking is locally C/µl for some l > 0, where µl is the group of l-th
roots of unity;

4) a node is locally {xy = 0}/µl for some l > 0, where µl acts via (x, y)
z =

(zx, z−1y).

The log dualizing sheaf of C is the pullback

ωlog
C = ρ∗ωlog

|C| = ρ∗ω|C|(|p1|+ · · ·+ |pn|).

A G-spin curve is a principal Ĝ-bundle P on a pointed twisted curve
(C, p1, · · · , pn) equipped with an isomorphism

φ : χ∗P ∼= P (ωlog
C )

of principal C∗-bundles. Here P (ωlog
C ) is the principal C∗-bundle associated

to the line bundle ωlog
C ; χ is as in (2.4) and χ∗P is the principal C∗-bundle

obtained by applying χ to the fibers of P . Applying the inclusion map Ĝ→
(C∗)N to P , we obtain a principal (C∗)N -bundle P ×Ĝ (C∗)N over C which
gives us line bundles (L1, · · · , LN ). The stabilizer group Gpj

of a marking pj
acts on the fiber ⊕iLi|pj

by γj = (γij)1≤i≤N ∈ G. We let γ = (γ1, · · · , γn) ∈
Gn and call it the type of the G-spin curve. The stabilizer group Gp of a
node p acts on ⊕iLi|p by a γp ∈ G.

The spin curve (C, pj , Li, φ) is stable if (|C|, |p1|, · · · , |pn|) is a stable
curve, and the homomorphism from the stabilizer group of a marking pj
(resp. a node p) into G that sends the generator to γj (resp. γp) is injective.

Theorem 2.1. [7, Theorem 2.2.6] [16, Proposition 3.2.6] The stack Sg,n of
stable G-spin curves is a smooth proper Deligne-Mumford stack with projec-
tive coarse moduli. The forgetful morphism Sg,n →Mg,n sending a G-spin
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curve (C, pj , Li, φ) to the underlying stable curve (|C|, |pj |) is flat proper and
quasi-finite.

A rigidification of a G-spin curve at a marking pj is an isomorphism

ψj : L1|pj
⊕ · · · ⊕ LN |pj

∼=
−→ [CN/⟨γj⟩],

where ⟨γj⟩ ≤ G is the subgroup generated by γj , such that wk ◦ ψj = respj
◦

φk|pj
for every monomial wk of w. Here φk : L1 ⊕ · · · ⊕ LN → ωlog

C is the

homomorphism induced by wk and φ. The moduli stack Srig
g,n of stable G-

spin curves with rigidification is an étale cover over Sg,n and hence Srig
g,n is a

proper smooth Deligne-Mumford stack. The moduli stack of G-spin curves
of type γ with rigidification is denoted by Srig

g,γ . So we have the disjoint union

Srig
g,n = ⊔γS

rig
g,γ .

2.3. Moduli of spin curves with sections

To simplify the notation, let S = Srig
g,γ . Let Li be the universal line bundle

over the universal curve π : C → S over S. By [16, §4.2], there are a locally
free resolution

(2.9) Rπ∗(⊕
N
i=1Li)

∼= [M
β
−→F ]

and a smooth morphism

qM :M −→ B = Bγ =

n∏

j=1

C
Nγj .

The Thom-Sebastiani sum wγ = wγ1
⊞ · · ·⊞ wγn

is a polynomial function
on B = Bγ whose zero locus is denoted by Z = Zγ .

Let EM = p∗
MF and sM be the section of EM defined by β where pM :

M → S is the bundle projection. Then the zero locus s−1
M (0) of the section

is the moduli space

X = Xrig
g,γ

of stable G-spin curves (C, pj , Li, φ) of type γ together with rigidification ψ
and sections (x1, · · · , xN ) ∈ ⊕iH

0(Li) of the line bundles Li. By [16, §4.2],
EM admits a cosection (i.e. a homomorphism to the structure sheaf) σM :
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EM → OM , which satisfies

σM ◦ sM = wγ ◦ qM and X ∩ σ−1
M (0)red = S.

Since the sum of residues of any meromorphic 1-form over a curve is zero,

(2.10) X = Xrig
g,γ ⊂ Y = Yg,γ := Z ×B M ⊂M.

In summary we have the following diagram:

(2.11) EM

��

σM // OM M × C // C

X s−1
M (0)

pX

##

� � //M

sM

CC

wγ◦qM

33

qM

!!

pM

��

S B
wγ

// C

By (2.10), we have a fiber diagram

(2.12) X

qX
  

� � ı // Y //

qY

��

M

qM

��

Z � � // B.

Here qY is smooth as qM is smooth. The restriction of EM (resp. σM , resp.
sM ) to Y is denoted by E (resp. σ, resp. s). By (2.10), X = s−1(0).

Because Z has at most an isolated hypersurface singularity by our as-
sumption on the quasi-homogeneous polynomial w, for dimC Z = m− 1 ≥ 2,
the affine variety Z is normal and hence Y is a normal as well. When
m ≤ 2, we may replace Z by its normalization. The intersection homology
remains the same under normalization and all the arguments in this paper
go through. Therefore for the FJRW theory, it suffices to work under the
following.

Assumption 2.2. Let Y be a normal Deligne-Mumford stack over C. Let
s ∈ H0(E) for a vector bundle E of rank r over Y and let X = s−1(0). Let
σ ∈ H0(E∨) = HomY (E,OY ) be a cosection of E satisfying

(2.13) σ ◦ s = 0.

Let Z = σ−1(0) = zero(σ) be the degeneracy locus where σ is zero (i.e. not
surjective). We assume that S = X ∩ Z is proper and there is a smooth
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morphisms q = qY : Y → Z where Z = w−1
γ (0) ⊂ B = Cm is the hypersur-

face defined by a nondegenerate quasi-homogeneous polynomial wγ. Let g :
Z ′ → Z be the blowup of Z at the origin, so that Z ′ is smooth. We let
f : Y ′ = Y ×Z Z

′ → Y denote the pullback of g by q : Y → Z.

More precisely, X (resp. Z) is the closed substack defined by the image
of s∨ : E∨ → OY (resp. σ : E → OY ) in OY .

3. Algebraic virtual cycles

In this section, we construct algebraic virtual cycles for quantum singularity
theories and define Fourier-Mukai type integral transformations which will
give us cohomological field theories in the subsequent sections.

We use the notation in §2. Let E, Y, s, σ be as in Assumption 2.2. In par-
ticular, the moduli space X = Xrig

g,γ of rigidified G-spin curves with sections

(C, pj , Li, φ, ψ, xi),

where (C, pj , Li, φ, ψ) ∈ S = Srig
g,γ and xi ∈ H

0(Li), is the zero locus of s ∈

H0(E) in Y . The restriction of the smooth morphism q = qY toX is denoted
by qX : X → Z = Zγ .

3.1. Cosection localized virtual cycle by blowup

By [1, §6], there is a relative perfect obstruction theory

(3.1) ϕX/Z : EX/Z = [E|∨X
ds
−→ΩY/Z |X ] −→ LX/Z

where LX/Z = τ≥−1LX/Z is the truncated relative cotangent complex of qX .
In other words, h0(ϕX/Z) is an isomorphism and h−1(ϕX/Z) is surjective.
Since σ ◦ s = wγ ◦ q = 0 (cf. (2.11)), σ ◦ ds|TY/Z

= 0 and hence σ : E → OY

induces a cosection

(3.2) σX/Z : ObX/Z = coker(TY/Z |X
ds
−→E|X) −→ OX

of the relative obstruction sheaf. Let X◦ ⊂ X be the preimage of the smooth
part Zsm ⊂ Z. Then an easy argument shows that the cosection (3.2) de-
scends to a cosection of the obstruction sheaf ObX |X◦ of the induced absolute
perfect obstruction theory of X◦. The desired descent fails over X −X◦.

In order to obtain an absolute perfect obstruction theory with a cosection
of its obstruction sheaf, we consider the blowup g : Z ′ → Z = Zγ at the



✐

✐

“1-Kiem” — 2022/4/26 — 2:14 — page 1760 — #12
✐

✐

✐

✐

✐

✐

1760 H.-L. Chang, Y.-H. Kiem, and J. Li

origin and the fiber product

(3.3) S′ ı′ //

p

��

X ′ //

��

Y ′ q
′

//

f
��

Z ′

g

��

S
ı // X // Y

q
// Z

so that Y ′ (resp. Z ′) is a smooth model of Y (resp. Z). We denote the
pullbacks of E, s, σ,Z to Y ′ by E′, s′, σ′,Z′ so that X ′ = s′−1(0) and Z′ =
σ′−1(0) while S′ = X ′ ∩ Z′.

The pullback of (3.1) to Y ′ is a relative perfect obstruction theory

(3.4) ϕX′/Z′ : EX′/Z′ = [E′|∨X′

ds′
−→ΩY ′/Z′ |X′ ] −→ LX′/Z′ .

We also have the absolute perfect obstruction theory

(3.5) ϕX′ : EX′ = [E|∨X′

ds′
−→ΩY ′ |X′ ] −→ LX′ .

As σ′ ◦ s′ = 0 on Y ′, σ′ desends to a cosection

(3.6) σX′ : ObX′ = coker(ds′ : TY ′ |X′ → E′|X′) −→ OX′ .

Therefore we can apply the cosection localization principle.

Theorem 3.1. [12, Theorem 5.1] Let X ′ be a Deligne-Mumford stack
equipped with a perfect obstruction theory ϕX′ and a cosection σX′ : ObX′ →
OX′. Then X ′ admits a localized virtual cycle

[[X ′]]virloc ∈ A∗(S
′)

where S′ is the zero locus of σX′. Its image in A∗(X
′) by the inclusion

S′ ⊂ X ′ is the ordinary virtual fundamental class [[X ′]]vir and [[X ′]]virloc is de-
formation invariant in the sense of intersection theory (cf. [1]).

Under Assumption 2.2, the construction of [[X ′]]virloc goes as follows: By
[12, Proposition 4.3], the normal cone CX′/Y ′ ⊂ E′|X′ has support in

E′|X′(σX′) = E′|S′ ∪ ker(σX′ : E′|X′−S′ → OX′−S′).

Then we apply the cosection localized Gysin map

(3.7) 0!E′|X′ ,σX′
: A∗(E

′|X′(σX′)) −→ A∗(S
′)
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to the cycle [[CX′/Y ′ ]] to obtain

(3.8) [[X ′]]virloc = 0!E|X′ ,σX′
[[CX′/Y ′ ]] ∈ A∗(S

′).

Since dimCX′/Y ′ = dimY = dimS + rank(M)− 1, the dimension of [[X ′]]virloc

is

(3.9) dimS + rank(M)− 1− rank(E) = 3g − 3 + n− 1 +
∑

i

χ(Li).

This class [[X ′]]virloc depends only on the perfect obstruction theory ϕX′

and the cosection σX′ . In particular, the virtual cycle [[X ′]]virloc ∈ A∗(S
′) is

independent of a choice of the resolution (2.9), and hence the choices of Y ,
E, etc in §2.3.

The construction of (3.7) in [12, §2] under Assumption 2.2 goes as fol-
lows: Let ρ : Ỹ ′ → Y ′ be the blowup of Y ′ along Z′ (equivalently along the
ideal σ′(E′)) so that the pullback of σ′ is a surjection Ẽ′ = ρ∗E′ → OỸ ′

(−Z̃′)

where Z̃′ denotes the exceptional divisor of ρ. Restricting these to X̃ ′ =
X ′ ×Y ′ Ỹ ′, we have a short exact sequence

0 −→ F ′ −→ Ẽ′|X̃′
−→ OX̃′

(−S̃′) −→ 0

of locally free sheaves where S̃′ = S′ ×Y ′ Ỹ ′. For ξ′ ∈ A∗(E
′|X′(σX′)), we

pick ζ ′ ∈ A∗(F
′) and η′ ∈ A∗(E

′|S′) such that

(3.10) ξ′ = ρ∗ζ
′ + ı′∗η

′, and ξ′|X′−S′ = ζ ′|X̃′−S̃′

where ı′∗ is the pushforward induced by the inclusion S′ ⊂ X ′. Then (3.7)
is defined by

(3.11) 0!E′|X′ ,σX′
(ξ′) = −ρS∗

(
S̃′ · 0!F ′(ζ ′)

)
+ 0!E′|S′

(η′) ∈ A∗(S
′)

where ρS : S̃′ → S′ is the restriction of ρ, 0!F ′ and 0!E′|S′

denote the ordinary

Gysin maps and S̃′· denotes the intersection with the Cartier divisor S̃′ (cf.
[9]). By [12, §2], (3.11) is independent of all the choices. Moreover, instead
of ρ, we may use any σX′-regularizing morphism (Definition 4.2) and (3.7)
is independent of this choice as well.



✐

✐

“1-Kiem” — 2022/4/26 — 2:14 — page 1762 — #14
✐

✐

✐

✐

✐

✐

1762 H.-L. Chang, Y.-H. Kiem, and J. Li

3.2. Integral transformations by virtual cycles

In this subsection, we define integral transformations by the virtual cycles
constructed in Theorem 3.1. We will see in the subsequent section that these
transformations form cohomological field theories.

Under Assumption 2.2, by Theorem 3.1, we have the virtual cycle
[[X ′]]virloc ∈ A∗(S

′) where S′ = S ×X X ′. From (3.3), we have morphisms

(3.12) Z ′ q
←−S′ p

−→S

where p is obtained from g by base change and q is the restriction of q′ to
S′. Since g is the blowup at the origin, p is proper. As S = Srig

g,γ is proper,
so is S′.

As the blowup Z ′ is a line bundle over PZ = Pw−1
γ (0), the cohomol-

ogy H∗(Z ′) of Z ′ is isomorphic to H∗(Pw−1
γ (0)) ⊃ H∗

prim(Pw
−1
γ (0)). By the

Thom-Sebastiani isomorphism (2.8), we have

Hγ =

n⊗

j=1

Hγj
∼= H

∑
j Nγj

−2

prim (Pw−1
γ (0))G

n

(3.13)

⊂ H
∑

j Nγj
−2(Pw−1

γ (0)) = H
∑

j Nγj
−2(Z ′).

Since Nγj
are often an odd number, a class in Hγ is not algebraic in general.

Hence for a Fourier-Mukai type integral transformation with our state space
Hγ , we cannot use the Chow groups.

For an irreducible variety V , we can associate the Borel-Moore homology
class of V after choosing a suitable triangulation. See [4, 11] for Borel-Moore
homology. We thus have the cycle class map (cf. [9, Chapter 19])

(3.14) hS′ : A∗(S
′) −→ H∗(S

′)

and the homological virtual cycle

(3.15) [X ′]virloc = hS′ [[X ′]]virloc ∈ H∗(S
′).

By (3.12) and (3.15), we define our integral transformations as

(3.16) Φ[X′]virloc
: H∗(Z ′) −→ H∗(S), Φ[X′]virloc

(v) = p∗([X
′]virloc ∩ q

∗(v)).

We have a forgetful morphism

st : S = Srig
g,γ −→Mg,n, (C, pj , Li, φ, ψ) 7→ (|C|, |pj |)
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whose pushforward is denoted by st∗ : H∗(S)→ H∗(Mg,n) ∼= H∗(Mg,n).
Composing (3.16) and (3.13) with

(3.17)
(−1)D

deg st
st∗ : H∗(S) −→ H∗(Mg,n)

where D = −
∑

i χ(Li), we obtain the composite

(3.18) Ω′
g,n,γ : Hγ −→ H∗(Z ′) −→ H∗(S) −→ H∗(Mg,n) ∼= H∗(Mg,n).

Summing up for γ ∈ Gn, we obtain

Definition 3.2. For g ≥ 0 and n ≥ 0 with 2g − 2 + n > 0, we have homo-
morphisms

(3.19) Ω′
g,n : H⊗n =

⊕

γ

Hγ −→ H∗(Mg,n) ∼= H∗(Mg,n).

By (3.9), the image of Ω′
g,n|Hγ

lies in degree

2
(
3g − 3 + n− 1 +

∑

i

χ(Li)
)
−
(∑

j

Nj − 2
)

(3.20)

= 6g − 6 + 2n+ 2
∑

i

χ(Li)−
∑

j

Nγj

which matches the computation in [7, Theorem 4.1.1].
In §5, we will see that the homomorphisms in Definition 3.2 form a

cohomological field theoy by comparing them with the cohomological field
theory constructed in [13].

4. Quantum singularity theories via intersection homology

In this section, we recall the construction of cohomological field theories by
intersection homology in [13].

We refer to [13, §2] for useful facts about Borel-Moore homology and
intersection homology. For instance, we will use the natural map

ϵY : IHi(Y ) −→ Hi(Y )

that sends the middle perversity intersection homology cycles to itself in the
Borel-Moore homology. Also, we will use proper pushforwards and placid
(flat) pullbacks of Borel-Moore homology groups.



✐

✐

“1-Kiem” — 2022/4/26 — 2:14 — page 1764 — #16
✐

✐

✐

✐

✐

✐

1764 H.-L. Chang, Y.-H. Kiem, and J. Li

We first recall the cosection localized Gysin maps for intersection homol-
ogy groups. Let E be a vector bundle of rank r over a Deligne-Mumford stack
Y . Let s be a section andX = s−1(0). The canonical orientation on the fibers
by the complex structure gives us the Thom class τY/E ∈ H

2r(E,E − 0E) =
H2r

Y (E) where 0E denotes the zero section of E. The section s induces
a map (Y,X)→ (E, 0E) and e(E, s) = s∗τY/E ∈ H

2r(Y, Y −X) = H2r
X (Y ).

The (ordinary) Gysin map is now defined as

s! : Hi(Y ) −→ Hi−2r(X), ξ 7→ ξ ∩ e(E, s).

When E is equipped with a cosection σ : E → OY , s
! further localizes to

S = X ∩ Z where Z is the locus where σ is not surjective. Let ı : S → X be
the inclusion map. The following cosection localized Gysin map is the main
machinery in this section.

Theorem 4.1. [13, Theorem 3.2] Under Assumption 2.2, we have a ho-
momorphism

(4.1) s!σ : IHi(Y ) −→ Hi−2r(S)

whose composition with ı∗ : Hi−2r(S)→ Hi−2r(X) equals s! ◦ ϵY .

Here is an outline of the construction: For s!σ, we have to resolve the
degeneracy of σ.

Definition 4.2. Under Assumption 2.2, a proper morphism ρ : Ỹ → Y is
called σ-regularizing if it is an isomorphism over Y − Z and the pullback
Ẽ = ρ∗E → OỸ of σ : E → OY factors through a surjective homomorphism

σ̃ : Ẽ → OỸ (−Z̃) for an effective Cartier divisor Z̃ lying over Z.

For instance, the blowup of Y along the ideal I = σ(E) ⊂ OY is σ-
regularizing.

Let ρ : Ỹ → Y be a σ-regularizing morphism and F be the kernel of
the surjection σ̃ : Ẽ → OỸ (−Z̃). By the decomposition theorem [2], for any

ξ ∈ Hi(Y ), we can always find ζ ∈ Hi(Ỹ ) and η ∈ Hi(Z) such that

ϵY (ξ) = ρ∗(ζ) + ȷ∗(η), ϵY (ξ)|Y−Z = ζ|Ỹ−Z̃

where ȷ : Z→ Y denotes the inclusion (cf. [13, Lemma 2.2]). Then s!σ is
defined by

(4.2) s!σ(ξ) = −ρS∗

(
ζ ∩ e(F, s̃) ∩ e(OX̃(S̃), tS̃)

)
+ η ∩ e(E|Z, s|Z)
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where tS̃ is the section of OX̃(S̃) whose zero locus is S̃. It was proved in [13,
§3] that s!σ(ξ) is independent of the choices of ζ, η and ρ.

In the FJRW theory, with S = Srig
g,γ ,X = Xrig

g,γ , Bγ =
∏n

j=1C
Nγj and w =

wγ , Assumption 2.2 is satisfied and hence we have the cosection localized
Gysin map

(4.3) s!σ : IHi(Y ) −→ Hi−2rank(E)(S)

by Theorem 4.1. Moreover since qY is smooth, we have the pullback homo-
morphism

(4.4) q∗
Y : IHi(Z) −→ IHi+dimR M−dimR B(Y ).

Composing (4.3) and (4.4) with the Thom-Sebastiani isomorphism

Hγ =
⊗

j

Hγj
∼= IH∑

j Nγj
(w−1

γ (0))G
n

,

we obtain

(4.5) Hγ
∼= IH∑

j Nγj
(w−1

γ (0))G
n q

∗

Y−→ IH∗(Y )
s!σ−→H2vd(X)−

∑
Nγj

(Srig
g,γ)

where vd(X) = 3g − 3 + n+
∑

i χ(Li) is the virtual dimension of X.
Composing (4.5) with (3.17) and summing over γ, we obtain

(4.6) Ωg,n : H⊗n −→ H∗(Mg,n).

Theorem 4.3. [13, Theorem 4.5] The homomorphisms {Ωg,n}2g−2+n>0 in
(4.6) define a cohomological field theory with a unit for the state space H.
Moreover this cohomological field theory coincides with that in [7, Theorem
4.2.2] when we restrict H to the narrow sector

⊕
γ:Nγj

=0, ∀j

⊗
j Hγj

.

Here a cohomological field theory is a term that codifies nice properties
expected from curve counting invariants as follows.

Definition 4.4. Let H be a vector space equipped with a basis {e1, · · · , em}
and a perfect pairing ⟨ek, el⟩ = ckl. A cohomological field theory with a unit
1 for the state space H consists of homomorphisms

(4.7) Ωg,n : H⊗n −→ H∗(Mg,n), for 2g − 2 + n > 0

satisfying the following:
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1) if we let the symmetric group Sn act on Mg,n by permuting the mark-
ings and on H⊗n by permuting the factors, Ωg,n is Sn-equivariant;

2) if we let u :Mg−1,n+2 →Mg,n denote the gluing of the last two mark-
ings, then we have

(4.8) u∗Ωg,n(v1, · · · , vn) =
∑

k,l

cklΩg−1,n+2(v1, · · · , vn, ek, el)

in H∗(Mg−1,n+2) for all vi ∈ H where (ckl) = (ckl)
−1;

3) if we let u :Mg1,n1+1 ×Mg2,n2+1 →Mg,n with g = g1 + g2 and n =
n1 + n2 denote the gluing of the last markings, then

(4.9)

u
∗Ωg,n(v1, · · · , vn) =

∑

k,l

c
klΩg1,n1+1(v1, · · · , vn1 , ek)⊗ Ωg2,n2+1(vn1+1, · · · , vn, el)

in H∗(Mg1,n1+1)⊗H
∗(Mg2,n2+1) for all vi ∈ H;

4) if we let θ :Mg,n+1 →Mg,n denote the morphism forgetting the last
marking, we have

(4.10) Ωg,n+1(v1, · · · , vn,1) = θ∗Ωg,n(v1, · · · , vn), ∀vi ∈ H;

5) Ω0,3(v1, v2,1) = ⟨v1, v2⟩ for vi ∈ H.

For a smooth projective variety Q, lettingMg,n(Q, d) denote the moduli
stack of stable maps to Q of genus g and degree d, it is well known that

H∗(Q)⊗n −→ H∗(Mg,n), (vj) 7→ p∗


[Mg,n(Q, d)]

vir ∩

n∏

j=1

ev∗j (vj)




form a cohomological field theory where p :Mg,n(Q, d)→Mg,n is the for-
getful morphism and evj :Mg,n(Q, d)→ Q is the evaluation map at the j-th
marking.

The homomorphisms (4.6) are suitable for proving the axioms of coho-
mological field theories while those in Definition 3.2 are defined by Fourier-
Mukai type integral operators with algebraic kernels [[X ′]]virloc. In the subse-
quent section, we will prove that actually they are the same.

We end this section with the following.
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Proposition 4.5. Let E be an algebraic vector bundle of rank r over a
smooth Deligne-Mumford stack Y . Let s ∈ H0(E) and σ ∈ H0(E∨) satisfy
σ ◦ s = 0. Let X = zero(s), Z = zero(σ) and S = X ∩ Z. Then

s!σ[Y ] = [X]virloc := hS [[X]]virloc ∈ H2 dimY−2r(S),

where s!σ is from Theorem 4.1 and [[X]]virloc is from Theorem 3.1 (with primes
removed).

Proof. Suppose σ = 0. Let Γ ⊂ E × C∗ be the graph of the section (y, t) 7→
t−1s(y). Let Γ be the closure of Γ in E × C. Then for t ̸= 0, the fiber Γt over
t is isomorphic to Y and the fiber Γ0 over t = 0 is the normal cone CX/Y

(cf. [9]). As Y = Γ1 is homologous to Γ0 = CX/Y , s
![Y ] = s![CX/Y ]. The

proposition now follows from the fact that s![CX/Y ] = hX ◦ 0
!
E [[CX/Y ]] by [9,

Chapter 19] where 0!E denotes the algebraic Gysin map of Chow groups.

When σ is not necessarily zero, we let ρ : Ỹ → Y be the blowup of Y
along Z so that we have an exact sequence

0 −→ F −→ Ẽ
σ̃
−→OỸ (−Z̃) −→ 0

where Z̃ is the exceptional divisor, Ẽ, s̃ and σ̃ denote the pullbacks of E, s
and σ to Ỹ respectively. Then

[[Y ]] = ρ∗[[Ỹ ]].

From the commutative diagram

Ỹ × C∗

��

t−1s̃ // Ẽ × C∗

��

Y × C∗ t−1s // E × C∗,

we find that [[CX/Y ]] = ρ̂∗[[CX̃/Ỹ ]] as CX/Y (resp. CX̃/Ỹ ) is rationally equiva-

lent to Y in E (resp. Ỹ in Ẽ). Here ρ̂ : Ẽ|X̃ → E|X is the induced map from
ρ. By (3.11),

[[X]]virloc = 0!E|X ,σ[[CX/Y ]] = −ρS∗(S̃ · 0
!
F |X̃

[[CX̃/Ỹ ]]).

By [9, Chapter 19], (4.2) and the case for trivial cosection, if we apply the
cycle class map hS , we obtain

hS [[X]]virloc = −ρS∗(t
!
S̃
s̃![Ỹ ]) = s!σ[Y ]
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as desired. □

A direct consequence of Proposition 4.5 is the following.

Corollary 4.6. Under Assumption 2.2, letting Z ′ → Z = Zγ be the blowup
at the origin and using the notation of §3, we have

(4.11) [X ′]virloc = s′
!
σ′ [Y ′], and Φ[X′]virloc

(α) = p∗(s
′!
σ′ [Y ′] ∩ q∗(α))

for α ∈ H∗(Z ′).

5. Comparison

The goal of this section is to prove the following.

Theorem 5.1. The homomorphism Ωg,n in (4.6) equals Ω′
g,n in (3.19).

Hence, the integral transformations Φ[X′]virloc
with algebraic kernels [X ′]virloc give

rise to cohomological field theories {Ω′
g,n}.

Proof. Recall that the maps (4.6) (resp. (3.19)) are obtained by composing
s!σq

∗ (resp. Φ[X′]virloc
) with the stabilization (3.17). Therefore the theorem

follows once we show that whenever

(5.1) ϵZ(v) = g∗([Z
′] ∩ α) for α ∈ H∗(Z ′), v ∈ IH∗(Z),

(5.2) Φ[X′]virloc
(α) = p∗([X

′]virloc ∩ q
∗α) = s!σq

∗(v),

which is Theorem 5.4 below. Note that since Z = w−1
γ (0) is a nondegenerate

hypersurface singularity, if we let m− 1 = dimZ, IHm(Z) ∼= Hm−2
prim (PZ) ⊂

Hm−2(PZ) ∼= Hm−2(Z ′) ∼= Hm(Z ′) and we have a commutative diagram

(5.3) Hm(Z ′)

g∗

��

Hm−2(Z ′)
[Z′]∩

∼=
oo Hm−2(PZ)

∼=oo

Hm(Z) IHm(Z)
ϵZoo

∼= // Hm−2
prim (PZ).

?�

OO

By the isomorphism IHm(Z) ∼= Hm−2
prim (PZ), α ∈ Hm−2

prim (PZ) and v ∈ IHm(Z)
determine each other uniquely. □
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For a proof of (5.2), we need a couple of propositions on the cosection
localized Gysin map s!σ.

By [10, 5.2], for a Deligne-Mumford stack Y , we have a cap product

(5.4) IHi(Y )×Hj(Y )
∩
−→ IHi−j(Y ), (ξ, α) 7→ ξ ∩ α

which fits into a commutative diagram

(5.5) IHi(Y )×Hj(Y )
∩ //

ϵY ×1
��

IHi−j(Y )

ϵY

��

Hi(Y )×Hj(Y )
∩ // Hi−j(Y )

where the bottom arrow is the usual cap product [11, IX.3]. The cap product
satisfies the projection formula (cf. [11, IX.3.7])

(5.6) g∗(ξ ∩ f
∗α) = f∗ξ ∩ α, ξ ∈ Hi(X), α ∈ Hj

W (Y ) = Hj(Y, Y −W )

where f : X → Y is proper and g : f−1(W )→W is the restriction of f to
f−1(W ) =W ×Y X for closed W ⊂ Y . For closed A and B in Y ,

(5.7) (ξ ∩ α) ∩ β|A = ξ ∩ (α ∪ β) = (ξ ∩ β) ∩ α|B

for ξ ∈ Hi(Y ), α ∈ Hj
A(Y ) and β ∈ Hk

B(Y ) when jk is even.

Proposition 5.2. Let X = zero(s), Z = zero(σ) and S = X ∩ Z. For α ∈
Hj(Y ) and ξ ∈ IHi(Y ), we have

s!σ(ξ ∩ α) = s!σ(ξ) ∩ α|S ∈ Hi−j−2r(S).

Proof. Let ρ : Ỹ → Y be a σ-regularizing birational morphism such that the
exceptional divisor Z̃ lies over Z = zero(σ). The cosection σ : E → OY lifts to
a surjective homomorphism σ̃ : Ẽ = ρ∗E → OỸ (−Z̃) whose kernel is denoted

by F . For s!σ(ξ), we pick ζ ∈ Hi(Ỹ ) and η ∈ Hi(Z) such that

ϵY (ξ) = ρ∗ζ + ȷ∗η, ϵY (ξ)|Y−Z = ζ|Ỹ−Z̃

where ȷ : Z→ Y denotes the inclusion. By the definition of s!σ, we have

(5.8) s!σ(ξ) = η ∩ e(E|Z, s|Z)− ρS∗(ζ ∩ e(F, s̃) ∩ e(OX̃(S̃), tS̃))

where ρS : S̃ → S is the restriction of ρ to S̃ = Ỹ ×Y S and tS̃ is the section

of OX̃(S̃) whose vanishing locus is the divisor S̃.
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By (5.5) and (5.6), we have

ϵY (ξ ∩ α) = ϵY (ξ) ∩ α = ρ∗(ζ) ∩ α+ ȷ∗(η) ∩ α

= ρ∗(ζ ∩ ρ
∗α) + ȷ∗(η ∩ ȷ

∗α).

Hence we have

s!σ(ξ ∩ α) = (η ∩ ȷ∗α) ∩ e(E|Z, s|Z)

− ρS∗((ζ ∩ ρ
∗α) ∩ e(F, s̃) ∩ e(OX̃(S̃), tS̃)).

By (5.7), the above line equals

(5.9) (η ∩ e(E|Z, s|Z)) ∩ α|S − ρS∗(ζ ∩ e(F, s̃) ∩ e(OX̃(S̃), tS̃) ∩ ρ
∗
Sα|S).

By the projection formula again and (5.8), (5.9) equals

(η ∩ e(E|Z, s|Z)) ∩ α|S − ρS∗(ζ ∩ e(F, s̃) ∩ e(OX̃(S̃), tS̃)) ∩ α|S

= s!σ(ξ) ∩ α|S .

This proves the proposition. □

Proposition 5.3. Let f : Y ′ → Y be a proper morphism of normal Deligne-
Mumford stacks. Let E′, s′, σ′, X ′,Z′, S′ etc be the pullbacks of E, s, σ,X,Z, S
etc by f . Let p : S′ → S denote the restriction of f to S′. Let ξ ∈ IHi(Y ).
Suppose there exists ξ′ ∈ IHi(Y

′) such that f∗ϵY ′(ξ′) = ϵY (ξ). Then we have

p∗s
′!
σ′(ξ′) = s!σ(ξ) ∈ Hi−2r(S).

Proof. Let ρ : Ỹ → Y be a σ-regularizing birational morphism so that σ lifts
to the surjective homomorphism σ̃ : Ẽ = ρ∗E → OỸ (−Z̃) over Ỹ with kernel
F . Consider the fiber product

Ỹ ′ f̃
//

ρ′

��

Ỹ

ρ

��

Y ′ f
// Y

Then σ̃ lifts to a surjective homomorphism σ̃′ : Ẽ′ = ρ′∗E′ → OỸ ′
(−Z̃′) where

Z̃′ = Z̃×Ỹ Ỹ
′.
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For s′!σ′(ξ′), we pick ζ ′ ∈ Hi(Ỹ
′) and η′ ∈ Hi(Z

′) such that

(5.10) ϵY ′(ξ′) = ρ′∗ζ
′ + ȷ′∗η

′, ϵY ′(ξ′)|Y ′−Z′ = ζ ′|Ỹ ′−Z̃′

where ȷ′ : Z′ → Y ′ denotes the inclusion. By the definition of s′!σ′ , we have

(5.11) s′
!
σ′(ξ′) = η′ ∩ e(E′|Z′ , s′|Z′)− ρS′∗(ζ

′ ∩ e(F ′, s̃′) ∩ e(OX̃′
(S̃′), tS̃′

))

By applying f∗ to (5.10), we have

ϵY (ξ) = f∗ϵY ′(ξ′) = f∗ρ
′
∗ζ

′ + f∗ȷ
′
∗η

′ = ρ∗(f̃∗(ζ
′)) + ȷ∗(fZ∗(η

′))

where fZ : Z′ → Z denotes the restriction of f to Z′ = Z×Y Y
′. Moreover,

f̃∗(ζ
′)|Ỹ−Z̃

= f̃∗ϵY ′(ξ′)|Y−Z = ϵY (ξ)|Y−Z by (5.10). Hence, we have

(5.12) s!σ(ξ) = fZ∗(η
′) ∩ e(E|Z, s|Z)− ρS∗(f̃∗(ζ

′) ∩ e(F, s̃) ∩ e(OX̃(S̃), tS̃)).

By the projection formula (5.6), fZ∗(η
′) ∩ e(E|Z, s|Z) = p∗(η

′ ∩ e(E′|Z′ , s|Z′))
and

ρS∗(f̃∗(ζ
′)∩e(F, s̃) ∩ e(OX̃(S̃), tS̃))

= ρS∗p̃∗(ζ
′ ∩ e(F ′, s̃′) ∩ e(OX̃′

(S̃′), tS̃′
))

= p∗ρS′∗(ζ
′ ∩ e(F ′, s̃′) ∩ e(OX̃′

(S̃′), tS̃′
)),

where p̃ comes from the fiber diagram

S̃′ p̃
//

ρS′

��

S̃

ρS

��

S′ p
// S.

Hence by (5.11), (5.12) equals

p∗

(
η′ ∩ e(E′|Z′ , s|Z′)− ρS′∗(ζ

′ ∩ e(F ′, s̃′) ∩ e(OX̃′
(S̃′), tS̃′

))
)
= p∗s

′!
σ′(ξ′).

This proves the proposition. □
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Theorem 5.4. Under Assumption 2.2, we let g : Z ′ → Z be a birational
proper morphism with Z ′ smooth. Consider the fiber product

(5.13) Y ′ f
//

q
′

��

Y

q

��

Z ′ g
// Z

so that Y ′ is smooth. Let E′, s′, σ′, X ′, S′ etc be the pullbacks of E, s, σ,X, S
etc by f . Let p : S′ → S denote the restriction of f to S′ and q : S′ → Z ′

be the restriction of q′ to S′. Then (5.2) holds and we have a commutative
diagram

(5.14) H∗(Z
′)

g∗

��

H∗(Z ′)
[Z′]∩

∼=
oo

q∗
// H∗(S′)

[X′]virloc∩ // H∗(S
′)

p∗

��

H∗(Z) IH∗(Z)
ϵZoo

q
∗

// IH∗(Y )
s!σ // H∗(S)

where by Corollary 4.6, the virtual cycle for X ′ is

(5.15) [X ′]virloc = s′
!
σ′ [Y ′] = [Y ′] ∩ eσ′(E′, s′) ∈ H∗(S

′).

Proof. By (5.15) and Proposition 5.2, we have

p∗([X
′]virloc ∩ q

∗α) = p∗(s
′!
σ′ [Y ′] ∩ q∗α)(5.16)

= p∗s
′!
σ′([Y ′] ∩ q′∗α) = p∗s

′!
σ′q

′∗([Z ′] ∩ α)

since Y ′, Z ′,q′ are smooth. From the fiber diagram (5.13), we have

f∗q
′∗([Z ′] ∩ α) = q∗g∗([Z

′] ∩ α) = q∗ϵZ(v) = ϵY (q
∗v)

since q is smooth. Therefore, by Proposition 5.3, (5.16) equals s!σq
∗v as

desired. □
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