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In this article we use the mean curvature flow with surgery to de-
rive regularity estimates for the level set flow going past Brakke
regularity in certain special conditions allowing for 2-convex re-
gions of high density. We also show a stability result for the plane
under the level set flow.

1. Introduction

The mean curvature flow is the gradient flow of the area functional and so,
in principle, from a given submanifold should flow to a minimal surface.
Of course, in general, the mean curvature flow develops singularities. In
response “weak solutions” of the mean curvature flow (such as the Brakke
flow [4], and level set flow [15], [9], and [23]) have been developed.

One such approach is the mean curvature flow with surgery developed by
Huisken, Sinestrari [22] (and Brendle and Huisken [6] for the surface case)
and later Haslhofer and Kleiner in [17]). The mean curvature flow with
surgery “cuts” the manifold into pieces with very well understood geometry
and topology and for this and the explicit nature of the flow with surgery is
particularly easy to understand (and makes it a useful tool to understand the
topology of the space of applicable hypersurfaces; see [7] or [28]). To be able
to do this however unfortunately boils down eventually to understanding
the nature of the singularities very well and establishing certain quite strong
estimates, and all this has only been carried out (in R

n+1 at least) for 2-
convex compact hypersurfaces.

However the necessary estimates of Haslhofer and Kleiner as they men-
tioned in their paper are local in nature so can be expected to be localized in
some cases. In this paper we study when this is possible, using the pseudolo-
cality estimates of Chen and Yin [11], and use the localized mean curvature
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flow with surgery to understand the level set flow - the localized mean cur-
vature flow with surgery converges to the level set flow in a precise sense
as the surgery parameters degenerate in correspondence with the compact
2-convex case. Using this we show a regularity for the level set flow and a
stability result for the plane under the level set flow, showing that the mean
curvature flow can be fruitfully used to study the level set flow that as far
as the author knows were previously unknown. The first theorem we show
in this article is a general short time existence theorem for a localized flow
with surgery:

Theorem 1.1. (Short time existence of flow with localized surgery)
Suppose M is α noncollapsed and β 2-convex in an open neighborhood UΩ

of a bounded open set Ω, and that there is δ, C > 0 for which it can be guar-
anteed |A|2 < C in the complement of Ωt on the time interval [0, δ] for any
piecewise smooth mean curvature flow starting from M , with the discontinu-
ities only occuring within Ωt. Then there exists η > 0, η ≤ δ, so that M has
a flow with surgery and is α̂ < α non collapsed and β̂ < β 2-convex within
Ωt on [0, η].

The stipulation concerning the singularities at first glance might seem
rather restrictive perhaps but actually this can be guaranteed by pseudolo-
cality estimates that control the curvature of a point through a flow just by
the curvature at nearby points - this is explained in more detail after the
proof of theorem 1.1 in section 3.

It was pointed out by Lauer in [24] and independently Head in [19]
that, for Huisken and Sinestrari’s definition of the mean curvature flow with
surgery, as the surgery parameters are allowed to degenerate the correspond-
ing flows with surgery Hausdorff converge to the level set flow as defined by
Illmanen in [23]. Important for the next result and as justification of the
definition of localized flow with surgery we extend Lauer’s methods to show:

Theorem 1.2. (Convergence to level set flow) Given M if there ex-
ists a mean curvature flow with surgery, as constructed in theorem 1.1, on
[0, T ], then denoting the surgery flows (Mt)i starting at M where the surgery
parameter (Hth)i → ∞ as i → ∞, we have the (Mt)i as sets in R

n+1 × [0, T ]
Hausdorff converge subsequentially to the level set flow Lt of M on [0, T ].

The meaning of the surgery parameter Hth will be described in the
next section. We point out here that to overcome a technical hurdle in using
Lauer’s method we use ideas from the recent paper of Hershkovits and White
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[20] - name we use a result of their’s that for us gives a way to “localize”
the level set flow. We will mainly be interested though in such hypersurfaces
with surgery satisfying additional assumptions that essentially control in a
precise sense how far M deviates from a plane P :

Definition 1.1. We will say M is (V, h,R, ϵ) controlled above a hypersur-
face P in a bounded region Ω ⊂ M when

1) M ∩ Ω lies to one side of the hypersurface P

2) there exists 0 < V ≤ ∞ so that the measure of points bounded initially
bounded by P and Ω is less than V .

3) The supremum of the height of M over P is bounded by 0 < h ≤ ∞.

4) In the R-collar neighborhood CR of ∂Ω, M is graphical over P with
C4 norm bounded by 3ϵ.

The definition above is a bit obtuse but is essentially that the flat norm
of M over P roughly the volume discrepancy V and h bound how bulky M
is over P . The definition could also possibly be phrased in terms of the flat
norm of M over Ω ⊂ P but for our applications in mind we want to keep h
and V decoupled. By M lying above P we mean that M lies on one side of
P and where M is graphical over P its outward normal points away from
P (equivalently, thinking of M as the boundary of a domain K so that the
outward normal of M is pointing outside K, the halfspace bounded by P
disjoint from M lies in K). The statement about the R-collar neighborhood
of ∂Ω is for an eventual use of the Brakke regularity theorem and ensures
the edges of M don’t “curl up” much, see below for the case P is a plane
(we will mainly be interested in the case the hypersurface is extremely close
to a plane).

With this definition in hand, let’s define the sets our regularity and
stability theorems concern. The first one corresponds to the regularity result;
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note that for notational compactness later on we also package assumptions
on α-noncollapsedness and β 2-convexity in CR, although this could be easily
modified to just concern some open set containing ∂Ω:

Definition 1.2. The set Σ = Σ(α, β}, {c, S}, {V, h,R, ϵ}, {P,Ω}) is the set
of hypersurfaces Mn ⊂ R

n+1 satisfying:

1) locally α-noncollapsed: M ∩ (Ω ∪ CR) is α-controlled in its interior.

2) locally β-two convex: in M ∩ (Ω ∪ CR) (λ1 + λ2) > Hβ.

3) supported boundary curvature: there exists 1 >> c > 0, S ∈ {Q ∈
Sym(M) | λ1(Q) + λ2(Q) > 0} such that H > cϵ, A > ϵS in CR

4) M is (V, h,R, ϵ) controlled over the plane P in the region Ω.

Note we only assume control on α and β but not an initial mean cur-
vature bound γ (referring to the definition of an pα-controlled domain for
the surgery in Haslhofer and Kleiner’s definition, see below). Items 3 and 4
imply a uniform lower bound η0 on η from theorem 1.1 for M ∈ Σ. With
our notation and sets defined we finally state our convergence theorem; the
proof crucially uses the mean curvature flow with surgery to easily get a
good estimate on the height of the level set flow after a short time.

Theorem 1.3. (Local Brakke regularity type theorem for the LSF)
There are choices of parameters {α, β}, {c, S}, {V, h,R, ϵ}, {P,Ω} so that if
M ∈ Σ and

1) has polynomial volume growth, and

2) Is either compact or C0 asymptotically flat in the sense of definition
1.3 below,

then there is some η on which a surgery flow of M exists on [0, η] by the-
orem 1.1. For a given T ∈ [η2 , η], there are choices of (V, h,R, ϵ) for which
LT is a smooth graph over P .

The choice of constants V, h depend on α̂, β̂, found in the existence theo-
rem 1.1. α̂, β̂, in turn depend on R, ϵ, c, and S and also α and β. Since there
are many parameters and their interdependence is somewhat complicated
we describe explicitly after the proof of theorem 1.3 in section 5 how one
could choose parameters {α, β}, {c, S}, {V, h,R, ϵ}, {P,Ω} so that if M ∈ Σ
then theorem 1.3 is applicable. We will also show without much work using
a general construction of Buzano, Haslhofer, and Hershkovits (theorem 4.1
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in [7]) how to construct “nontrivial” (i.e. nongraphical, singularity forming)
hypersurfaces that satisfy the assumptions of Theorem 1.3 in section 7. Such
examples can also be designed to have arbitrarily large area ratios initially
in a ball of fixed radius.

Note that this theorem is an improvement on just Brakke regularity for
the level set flow of Lt of M because we make no apriori assumptions on the
densities in a parabolic ball; indeed the the hypotheses allow singularities
for the LSF to develop in the regions of space-time we are considering, at
which points the density will be relatively large. The point is that under
correct assumptions these can be shown to “clear out” quickly. For a recent
improvement on the Brakke regularity theorem in another, more general,
direction, see the recent work of Lahiri [25].

This theorem is also interesting from a PDE viewpoint because the mean
curvature flow is essentially a heat equation, and such result says, imagining
high area ratio localized perturbations of a given hypersurface as high fre-
quency modes of the initial condition of sorts, that in analogy to heat flow on
a torus, the high frequency modes decay quickly in time. It’s interesting that
our arguments though use pseudolocality strongly, which is a consequence
of the nonlinearity of the flow and is false for the linear heat equation. More
precisely:

Corollary 1.4. (Rapid smoothing) Let M be a smooth hypersurface with
|A|2 < C for some C > 0 of polynomial volume growth. Suppose we perturb
M in some open set U ⊂ M to get a hypersurface M so that:

1) M̃ ∈ Σ, in fact that:

2) M satisfies the hypotheses of theorem 1.3, and

3) M̃ = M outside set U

Then then by time an appropriate T as in theorem 1.3 for appropriate choice
of constants, M̃T is smooth and has bounded curvature.

Of course taking T small enough (depending on the curvature of M̃

away from the perturbations) one can easily see that M̃T is close at least in
Hausdorff distance to M .

To state the next corollary we define a refinement of the set Σ above,
which concerns the case when M is asymptotically planar with prescribed
curvature decay:
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Definition 1.3. The set Σ1 = Σ1({α, β}, {c, S}, {V, h,R, ϵ}, {P,Ω}, {f,
P1, C1}) is the set of hypersurfaces Mn ⊂ R

n+1 satisfying, in addition to
the set of conditions given in the definition of Σ

1) asymptotically planar in that in M ∩ Ωc is a graph of a function F
over a plane P1 and furthermore writing F in polar coordinates we
have ||F (r, θ)||C2 < f(r), where f : R+ → R+ satisfies lim

r→∞
f(r) = 0.

2) the hypersurface P is a graph over P1 with C1 norm bounded by C1.

A stability statement for graphs over planes in n ≥ 3 was noticed as
a consequence of the maximum principle in an appendix of [13] using the
higher dimensional catenoids as barriers; the corollary below follows is a
statement in the same spirit and follows from the flow quickly becoming
graphical, the interior estimates of Ecker and Huisken, and pseudolocality:

Corollary 1.5. (Long term flow to plane) With Mn ∈ Σ1 asymptoti-
cally satisfying the assumptions above in theorem 1.3 in some region Ω above
the origin then as t → ∞ the level set Lt of M will never fatten and in fact
will be smooth on after time T . It will converge smoothly to the corresponding
plane P1 as t → ∞.

Acknowledgements: The author thanks his advisor, Richard Schoen,
for his advice and patience. The author also thanks the anonymous referees
for their careful reading, critque, and encouragement to fill out details, which
helped to much improve the clarity of the exposition.

2. Background on the mean curvature flow (with surgery)

The first subsection introducing the mean curvature flow we borrow quite
liberally from the author’s previous paper [28], although a couple additional
comments are made concerning the flow of noncompact hypersurfaces. The
second subsection concerns the mean curvature flow with surgery as defined
by Haslhofer and Kleiner in [17] which differs from the original formulation of
the flow with surgery by Huisken and Sinestrari in [17] (see also [6]). Namely
the discussion there of surgery differs from the corresponding section in the
author’s previously mentioned article.
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2.1. Classical formulation of the mean curvature flow

In this subsection we start with the differential geometric, or “classical,”
definition of mean curvature flow for smooth embedded hypersurfaces of
R
n+1; for a nice introduction, see [27]. Let M be an n dimensional manifold

and let F : M → R
n+1 be an embedding of M realizing it as a smooth closed

hypersurface of Euclidean space - which by abuse of notation we also refer
to M . Then the mean curvature flow of M is given by F̂ : M × [0, T ) →
R
n+1 satisfying (where ν is outward pointing normal and H is the mean

curvature):

(2.1)
dF̂

dt
= −Hν, F̂ (M, 0) = F (M)

(It follows from the Jordan separation theorem that closed embedded hy-
persurfaces are oriented). Denote F̂ (·, t) = F̂t, and further denote by Mt the
image of F̂t (so M0 = M). It turns out that (2.1) is a degenerate parabolic
system of equations so take some work to show short term existence (to see
its degenerate, any tangential perturbation of F is a mean curvature flow).
More specifically, where g is the induced metric on M:

(2.2) ∆gF = gij(
∂2F

∂xi∂xj
− Γk

ij

∂F

∂xk
) = gijhijν = Hν

There are ways to work around this degeneracy (as discussed in [27]) so that
we have short term existence for compact manifolds.

For noncompact hypersurfaces M in R
N with uniformly bounded second

fundamental form (i.e. there is some C > 0 so that |A|2 < C at every point
on M), one may solve the mean curvature flow within B(0, R) ∩N ; by the
uniform curvature bound there is ϵ > 0 so that N ∩B(0, R) has a mean
curvature flow on [0, ϵ]. Then one may take a sequence Ri → ∞ and employ
a diagonalization argument to obtain a mean curvature flow for M ; the flow
of M we constructed is in fact unique by Chen and Yin in [11] (we will
in fact use estimates from that same paper below). Since all noncompact
hypersurfaces of interest will have asymptotically bounded geometry, we
will always have a mean curvature flow of them for at least a short time.

Now that we have established existence of the flow in cases important to
us, let’s record associated evolution equations for some of the usual geometric
quantities:

• ∂
∂tgij = −2Hhij
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• ∂
∂tdµ = −H2dµ

• ∂
∂th

i
j = ∆hij + |A|2hij

• ∂
∂tH = ∆H + |A|2H

• ∂
∂t |A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4

So, for example, from the heat equation for H one sees by the maximum
principle that if H > 0 initially it remains so under the flow. There is also a
more complicated tensor maximum principle by Hamilton originally devel-
oped for the Ricci flow (see [16]) that says essentially that if M is a compact
manifold one has the following evolution equation for a tensor S:

(2.3)
∂S

∂t
= ∆S +Φ(S)

and if S belongs to a convex cone of tensors, then if solutions to the system
of ODE

(2.4)
∂S

∂t
= Φ(S)

stay in that cone then solutions to the PDE (2.2) stay in the cone too
(essentially this is because ∆ “averages”). So, for example, one can see then
that convex surfaces stay convex under the flow very easily this way using
the evolution equation above for the Weingarten operator. Similarly one
can see that 2-convex hypersurface (i.e. for the two smallest principal
curvatures λ1, λ2, λ1 + λ2 > 0 everywhere) remain 2-convex under the flow.

Another important curvature condition in this paper is α non-

collapsing: a mean convex hypersurface M is said to be 2-sided α non-
collapsed for some α > 0 if at every point p ∈ M , there is an interior and
exterior ball of radius α/H(p) touching M precisely at p. This condition
is used in the formulation of the finiteness theorem. It was shown by Ben
Andrews in [2] to be preserved under the flow for compact surfaces. (a sharp
version of this statement, first shown by Brendle in [5] and later Haslhofer
and Kleiner in [18], is important in [6] where MCF+surgery to n = 2 was first
accomplished). Very recently it was also claimed to be true for non-compact
hypersurfaces by Cheng in [10].

Finally, perhaps the most geometric manifestation of the maximum prin-
ciple is that if two compact hypersurfaces are disjoint initially they remain
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so under the flow. So, by putting a large hypersphere around M and noting
under the mean curvature flow that such a sphere collapses to a point in
finite time, the flow of M must not be defined past a certain time either
in that as t → T , Mt converge to a set that isn’t a manifold. Note this im-
plies as t → T that |A|2 → ∞ at a sequence of points on Mt; if not then
we could use curvature bounds to attain a smooth limit MT which we can
then flow further, contradicting our choice of T . Of course this particular
argument doesn’t work in the noncompact case but it is easy to see using
the Angenent’s torus [1] as a barrier that singularities can occur along the
flow of noncompact hypersurfaces as well:

Thus as in the compact case to use mean curvature flow to study non-
compact hypersurfaces one is faced with finding a way to extend the flow
through singularities. Thus weak solutions to the flow are necessitated. One
such weak solution is the Brakke flow, developed in Brakke’s thesis [4], where
a weak solution to the flow is defined in terms of varifolds. For this paper
it suffices to say that the classical MCF and the LSF (defined below) are
Brakke flows, and that if the density ratios of a Brakke flow are sufficiently
close to 1 in a parabolic cylinder then the varifolds are actually smooth with
bounded curvature within a certain time interval (this is Brakke’s regularity
theorem - we will be more precise about its statement in section 3) - in
addition to Brakke’s thesis see [30] or [26]. Another type of weak solution
which came later is mean curvature flow with surgery:
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2.2. Mean curvature flow with surgery for compact 2-convex

hypersurfaces in R
n+1

First we give the definition of pα controlled:

Definition 2.1. (Definition 1.15 in [17]) Let pα = (α, β, γ) ∈ (0, N − 2)×
(0, 1

N−2)× (0,∞). A smooth compact domain K0 ⊂ R
N is called an pα-

controlled initial condition if it satisfies the α-noncollapsedness condition
and the inequalities λ1 + λ2 ≥ βH and H ≤ γ.

Speaking very roughly, for the mean curvature flow with surgery ap-
proach of Haslhofer and Kleiner, like with the Huisken and Sinestrari ap-
proach there are three main constants, Hth ≤ Hneck ≤ Htrig. If Htrig is
reached somewhere during the mean curvature flow Mt of a manifold M
it turns out the nearby regions will be “neck-like” and one can cut and glue
in appropriate caps (maintaining 2-convexity, etc) so that after the surgery
the result has mean curvature bounded byHneck. The high curvature regions
have well understood geometry and are discarded and the mean curvature
flow with surgery proceeds starting from the low curvature leftovers. Be-
fore stating a more precise statement we are forced to introduce a couple
more definitions. First an abbreviated definition of the most general type of
piecewise smooth flow we will consider:

Definition 2.2. (see Definition 1.3 in [17]) An (α, δ)− flow K is a col-
lection of finitely many smooth α-noncollapsed flows {Ki

t ∩ U}t∈[ti−1,ti], (i =
1, . . . k; t0 < . . . tk) in a open set U ⊂ R

N , such that:

1) for each i = 1, . . . , k − 1, the final time slices of some collection of
disjoint strong δ-necks (see below) are replaced by standard caps, giving
a domain K#

ti ⊂ Ki
ti =: K−

ti .

2) the initial time slice of the next flow, Ki+1
ti =: K+

ti , is obtained from

K#
ti by discarding some connected components.

For the definition of standard caps and the cutting and pasting see defini-
tions 2.2 and 2.4 in [17]; their name speaks for itself and the only important
thing to note is that cutting and then pasting them in will preserve the
pα-control parameters on the flow. We will however give the definition of
δ-strong neck; below s is a scaling parameter that need not concern us:

Definition 2.3. (Definition 2.3 in [17]) We say than an (α, δ)-flow K =
{Kt ⊂ U}t∈I has a strong δ-neck with center p and radius s at time t0 ∈ I,
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if {s−1 · (Kt0+s2t − p)}t∈(−1,0] is δ-close in C [1/δ] in BU
1/δ × (−1, 0] to the

evolution of a solid round cylinder D
N−1

× R with radius 1 at t = 0, where
BU

1/δ = s−1 · ((B(p, s/δ) ∩ U)− p) ⊂ B(0, 1/δ) ⊂ R
N .

We finally state the main existence result of Haslhofer and Kleiner; see
theorem 1.21 in [17]

Theorem 2.1. (Existence of mean curvature flow with surgery). There
are constants δ = δ( pα) > 0 and Θ(δ) = Θ( pα, δ) < ∞ (δ ≤ δ) with the follow-
ing significance. If δ ≤ δ and H = (Htrig, Hneck, Hth) are positive numbers
with Htrig/Hneck, Hneck/hth, Hneck ≥ Θ(δ), then there exists an ( pα, δ,H)-
flow {Kt}t∈[0,∞) for every pα-controlled initial condition K0.

The most important difference for us (as will be evident below) between
Huisken and Sinestrari’s approach and Haslhofer and Kleiner’s approach
is that Huisken and Sinestari estimates are global in nature whereas Hasl-
hofer and Kleiner’s estimates are local. Namely, if within a spacetime neigh-
borhood U × [0, T ] it is known that the flow is uniformly α-noncollapsed
and β 2-convex with bounded initial curvature, there are parameters Hth <
Hneck < Htrig for which surgeries can be done at times when H = Hneck and
so the postsurgery domain has curvature comparable to Hneck.

3. Localizing the mean curvature flow with surgery

Recall surgery is defined for two-convex compact hypersurfaces in R
n+1.

However, many of Haslhofer and Kleiner’s estimates are local in nature and
their mean curvature flow with surgery can be localized, as long as the high
curvature regions (where H > 1

2Hth say) where surgery occurs are uniformly
2-convex (for a fixed choice of parameters).

The main technical point then to check in performing a “localized” mean
curvature flow with surgery is ensuring that the regions where we want
to perform surgeries are and remain for some time uniformly 2-convex in
suitably large neighborhoods of where singularities occur. The key technical
result to do so (at least for this approach) is the pseudolocality of the mean
curvature flow.

Pseudolocality essentially says that the mean curvature flow at a point,
at least “short term” is essentially controlled by a neighborhood around
that point and that points far away are essentially inconsequential - this is
in contrast to the linear heat equation. It plays a crucial role in our argu-
ments in this section (controlling the singular set) and in some arguments in
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the other sections. Recall the following (consequence of the) pseudolocality
theorem for the mean curvature flow of Chen and Yin:

Theorem 3.1. (Theorem 7.5 in [11]) Let M be an n-dimensional man-

ifold satisfying
3∑

i=0
|∇

i
Rm| ≤ c20 and inj(M) ≥ i0 > 0. Then there is ϵ > 0

with the following property. Suppose we have a smooth solution Mt ⊂ M
to the MCF properly embedded in BM (x0, r0) for t ∈ [0, T ] where r0 < i0/2,
0 < T ≤ ϵ2r20. We assume that at time zero, x0 ∈ M0, and the second fun-
damental form satisfies |A|(x) ≤ r−1

0 on M0 ∩BM (x0, r0) and assume M0 is
graphic in the ball BM (x0, r0). Then we have

(3.1) |A|(x, t) ≤ (ϵr0)
−1

for any x ∈ BM (x0, ϵr0) ∩Mt, t ∈ [0, T ].

Of course, when the ambient space is R
N , we may take i0 = ∞ and

since it is flat we may take c0 = 0. We also highlight the following easy
consequence of pseudolocality.

Remark 3.1. If there are in addition initial bounds for |∇A| and |∇2A|
then we also obtain bounds on |∇A| and |∇2A| a short time in the future
using Chen and Yin’s theorem above in combination with applying (in small
balls) lemmas 4.1 and 4.2 in [6]

The first and most important place pseudolocality helps us is to keep
the degeneracy of 2-convexity at bay; below the MCF is normalized so it
has no tangential component:

Proposition 3.2. Suppose that Ω ⊂ M is a region in which M is α-
:noncollapsed and H > ϵ on Ω. Then there is T > 0, α̂ > 0, and β̂ > 0 so
that Ω is α̂ is non collapsed and β̂ 2-convex on [0, T ] or up to the first
singular time Tsing, if Tsing < T .

Before starting we remark that it will be clear from the proof that T
depends only on |∇iA|2, i from 0 to 2 (this is coming from using the pseu-
dolocality theorems) and a lower bound on H and a lower bound on A (as
a symmetric matrix) in a neighborhood of ∂Ω

Proof. Recall the evolution equation for H under the flow, that dH
dt = ∆H +

|A|2H. One sees by the maximum principle if H(x) is a local minimum then
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dH
dt (x) ≥ 0. This tells us that regions where H < 0 can’t spontaneously form
within mean convex regions, and in addition that for any c if inf

x∈Ω
H(x) > c

in Ω intially and H(x) > c on ∂Ω on [0, T ] then H > c on all of Ω on [0, T ].

Let us say that x, y ∈ M are α-noncollapsed with respect to each other if
H(x), H(y) > 0 and y ̸∈ B(x+ ν α

H(x) ,
α

H(x)) and vice versa. We recall from

Andrew’s proof [2] that provided H > 0, x and y in Mt are α-noncollapsed
with respect to each other if the following quantity1 is positive:
(3.2)

Zα(x, y, t) =
H(x, t)

2
||X(y, t)−X(x, t)||2 + α⟨X(y, t)−X(x, t), ν(x, t)⟩

Of course Mt is α-noncollapsed in Ωt if every pair of points in Ωt is α-
noncollapsed with respect to each other. Andrews showed for closed mean
convex hypersurfaces that α-noncollapsing was preserved by the maximum
principle. He calculated that on a smooth compact manifold with respect to
special coordinates about extremal points x and y (see above lemma 4 in
[2]) the following holds.

∂Zα

∂t
=

n∑

i,j=1

(
gijx

∂2Z

∂xi∂xj
+ gijy

∂2Z

∂yi∂yj
+ 2gijx g

jl
y ⟨∂

x
k , ∂

y
l ⟩

∂2Z

∂xi∂yj

)

+

(
|hx|2 +

4Hx(Hx − αhxnn)

α2
⟨w, ∂y

n⟩
2

)
Z

(3.3)

We see then that checking at values of x and y which minimize Zα the
second derivative terms are positve, so that if Zα is initially nonnegative it
stay so. In the our case we are interested in the noncollapsedness of a set
with boundary, Ωt, but we see if for a time interval [0, T ] we can show there
is an α̂ ≤ α so tht if x and y are points that minimize Zα̂ they must be
within the interior of Ω, then the same argument will go through to show α̂
noncollapsing is preserved under the flow (note that if a set is α-noncollapsed
and α̂ ≤ α, it is also α̂ noncollapsed).

To do this, note that in the definition 1.3 for our set Ω we have α-
noncollapsing in a neighborhood UΣ of Ω. By pseudolocality |A|2 at every
point p ∈ ∂Ω will be bounded, for a short time, by some constant just de-
pending on initial bounds of |A|2 in a neighborhood. Since M is initially
smooth and Ω is bounded there are apriori uniform bounds on |∇A|, |∇2A|
in a neighborhood of ∂Ω, which remark 3.1 above implies in combination

1Different from Andrews, we decorated our notation with α since this value is
subject to change in our argument
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with the last sentence impies there are uniform bounds on these quantities
a short time later along ∂Ω just depending on the initial data.

Since the evolution equation dH
dt = ∆H + |A|2H is bounded by combi-

nations of |A|, |∇A|, and |∇2A| there is thus on some small forward time a
uniform bound on dH

dt . Thus there is a T > 0 just depending on |A|, |∇A|,
|∇2A| and c for which H(p) > c/2 on [0, T ] for p ∈ ∂Ω. Also as a conse-
quence of pseudolocality we see in a suitable half collar neighborhood V of
∂Ω interior to Ω (see the figure below) the curvature is bound on [0, T1] by
say C (potentially huge).

We see then there is an α ≤ α, for which we may ensure that spheres
osculating ∂Ωt of radius

α
ϵ don’t touch points in Ωt on [0, T1]. Taking α̂ =

α/2, we see as discussed above that Ωt must be α̂ noncollapsed on [0, T1].

β-noncollapsedness is a pointwise inequality and that there is such a β̂
on some fixed time [0, T2], T2 ≤ T1, follows by pseudolocality as with mean
convexity explained above. □

Note the above theorem had no stipulation on the curvature far in the
interior of Ω. We are now ready to prove the short term existence theorem
for the flow with surgery:

Proof. (of theorem 1.1) Proposition 3.2 above yelds a time interval [0, T ] and
constants α̂, β̂ in which the set Ωt must be α̂ noncollapsed and β̂ 2-convex
up to

1) time T , if Mt has a smooth flow on the interval [0, T ], or

2) the first singular time, which we denote T1, if T1 < T .

In the first case, there is nothing to do. In the second case, possibly taking T
smaller so that T ≤ δ as in the theorem statement, we know the first singular-
ity must occur within Ω and since T was choosen in the proof proposition 3.1
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so that, in particular, no singularities occur along ∂Ωt, we know the singu-
larities must be taking place in the interior of Ω. By the existence of surgery
for our α̂ and β̂ there exists choices of parameters Hth < Hneck < Htrig so
that the surgery can be done when H = Htrig and the curvature postsurgery
will be comparable to Hneck. Furthermore the surgery parameter Hth can be
taken to be as large as one wants - we will take it larger than what H could
possibly obtain in Ωt on [0, T ] (H large implies |A|2 is large). Hence a surgery
can be done at a time T ∗ before T1 then, and so that ΩT ∗ postsurgery is
also α̂ noncollapsed and β̂ 2-convex.

The curvature within ΩT ∗ after the surgery will be bounded by approxi-
mately Hneck. The region outside of ΩT ∗ will not be affected by the surgery
of course, and since we stipulate we can guarantee no singularities occur out-
side of Ωt on [0, δ] for any piecewise smooth flow Mt starting from M , where
the discontinuities are restricted to Ωt, the curvature on Ωc

t is bounded on
[0, ϵ] by some uniform constant C ′.

Hence, we may restart the flow for some definite amount of time, if the
next singular time, T2, is less than T we repeat the process described above.
Refering to the conclusion of the theorem, T will be taken to be η. □

Of course, pseudolocality can be used to easily show many examples
where singularities won’t occur outside some fixed subset Ω for a fixed time
interval of a piecewise smooth MCF that is continuous outside of Ωt. More
precisely, suppose the curvature in UΩ ∪ Ωc is bounded by a uniform con-
stant, say C1, and let r1 > 0 be the infimum of the distance between ∂U
and ∂Ω. Thne we see every point x ∈ Ωc has a neighborhood B(x, r1) within
which the curvature is bounded by C1. taking r1 possibly smaller, we may
ensure C1 <

1
r1
. Then we can apply theorem 1.3 to see there is a time δ, if

all points y ∈ B(x, r1), x ∈ Ωc
t move by the MCF, on which the curvature

at every point in Ωc would be bounded by 1
ϵr1

, where ϵ is the dimensional
constant from theorem 3.1 - hence no singularities could occur outside of Ωt

on some short time interval.

4. Convergence to level set flow

In [19, 24] Lauer and Head respectively showed that as the surgery param-
eters degenerate, that is as Hth → ∞, the flow with surgery Hausdorff con-
verges to the level set flow. Strictly speaking, his theorem was for compact
2-convex hypersurfaces Mn, n ≥ 3, using the surgery algorithm of Huisken
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and Sinestrari [22]. As Haslhofer and Kleiner observed (see proposition 1.27
in [17]) it is also true for their algorithm; we will show it is true for our
localized surgery.

This also serves as justification for our definition of the mean curvature
flow with surgery; it was important we designed our surgery algorithm to
produce a weak set flow (see below). Another important observation is that,
using theorem 10 of Hershkovits and White in [20], we can “localize” the
level set flow so can get away with showing convergence to the level set flow
near the singularities (in the mean convex region of Mt), roughly speaking.

First we record a couple definitions; these definitions are originally due
to Illmanen (see [23]). It is common when discussing the level set flow (so
we’ll do it here) to consider not M but a set K with ∂K = M chosen so that
the outward normal of K agrees with that of M . We will quite often abuse
notation by mixing M and its corresponding K though, the reader should
be warned. When M is smooth the flow of K is just given by redefining the
boundary of K by the flow of M .

Definition 4.1. (Weak Set Flow). Let W be an open subset of a Rieman-
nian manifold and consider K ⊂ W . Let {ℓt}t≥0 be a one -parameter family
of closed sets with initial condition ℓ0 = K such that the space-time track
∪(ℓt × {t}) ⊂ W is relatively closed in W . Then {ℓt}t≥0 is a weak set flow
for K if for every smooth closed surface Σ ⊂ W disjoint from K with smooth
MCF defined on [a, b] we have

(4.1) ℓa ∩ Σa = ∅ =⇒ ℓt ∩ Σt = ∅

for each t ∈ [a, b]

The level set flow is the maximal such flow:

Definition 4.2. (Level set flow). The level set flow of a set K ⊂ W , which
we denote Lt(K), is the maximal weak set flow. That is, a one-parameter
family of closed sets Lt with L0 = K such that if a weak set flow ℓt satisfies
ℓ0 = K then ℓt ⊂ Lt for each t ≥ 0. The existence of a maximal weak set
flow is verified by taking the closure of the union of all weak set flows with
a given initial data. If ℓt is the weak set flow of K ⊂ W , we denote by ℓ̂ the
spacetime track swept out by ℓt. That is

(4.2) ℓ̂ =
⋃

t≥0

ℓt × {t} ⊂ W × R+
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Remark 4.1. Evans-Spruck and Chen-Giga-Goto defined the level set flow
as viscosity solutions to

(4.3) wt = |∇w|Div

(
∇w

|∇w|

)

but one can check (see section 10.3 in [23]) that this is equivalent to the
definition we gave above.

Theorem 1.2, stated more precisely then:

Theorem 4.1. (convergence to level set flow) Let M ⊂ R
n+1, n ≥ 2 be so

M has mean curvature flows with surgery (Mt)i as defined above on [0, T ]
where (Hth)i → ∞. Then

(4.4) lim
i→∞

ˆ(Mt)i = L̂t

in Hasudorff topology.

The argument of Lauer strongly uses the global mean convexity of the
surfaces he has in question; in our case we only have two convexity in a neigh-
borhood about the origin though. To deal with this we recall the following
theorem of Hershkovits and White we had mentioned before:

Theorem 4.2. (Theorem 10 in [20]) Suppose that Y and Z are bounded
open subsets of R

n+1. Suppose that t ∈ [0, T ] → Mt is a weak set flow of
compact sets in Y ∪ Z. Suppose that there is a continuous function

w : Y ∪ Z → R

with the following properties:

1) w(x, t) = 0 if and only if x ∈ Mt

2) For each c,

t ∈ [0, T ] → {x ∈ Y : w(x, t) = c}

defines a weak set flow in Y .

3) w is smooth with non-vanishing gradient on Z

Then t ∈ [0, T ] → Mt is the level set flow of M in R
n+1

Before moving on, a remark on applying the theorem to above to all the
situations encountered in this article:
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Remark 4.2. Its clear from the proof of the theorem above that the the-
orem will also hold if the level sets have bounded geometry away from the
surgery regions (so as to obtain the bounds in the paragraph above equation
(12) in [20]). In this case Z need not be bounded. In particular, the result
above holds for asymptotically planar hypersurfaces - a more general class
of hypersurfaces for which this is true certainly seems possible as well.

Hershkovits and White use this theorem to show that flows with only
singularities with mean convex neighborhoods are nonfattening - previously
this was only known for hypersurfaces satisfying some condition globally like
mean convexity or star shapedness. They use the theorem above to “localize”
the level set flow by interpolating between two functions of nonvanishing
gradient; the distance function to the mean curvature flow of M near the
smooth regions and the arrival time function near the singular set (the mean
convexity ensures the arrival time function has nonvanishing gradient). For
our case it essentially means we only need to prove convergence of the level
set flow in the mean convex region, where the singularities are stipulated to
form.

So let’s prove the local convergence in the mean convex region - we
proceed directly as in [24]. First we note the following (see lemma 2.2 in
[24]). Denote by (MH)t to be the mean curvature flow with surgery of M
with surgery parameter Htrig = H:

Lemma 4.3. Given ϵ > 0 there exists H0 > 0 such that if H ≥ H0, T is a
surgery time, and x ∈ R

n+1, then

(4.5) Bϵ(x) ⊂ (MH)−T =⇒ Bϵ(x) ⊂ (MH)+T

This statement follows jsut as in Haslhofer and Kleiner (again, propo-
sition 1.27 in [17]). To see briefly why it is true, since the necks where the
surgeries are done are very thin, how thin depending on H, for any choice
depending on ϵ > 0 we can find an H so that a ball of radius ϵ can’t sit inside
the neck. Hence any such ball must be far away from where any surgeries
are happening.

We see each of the (MH)t are weak set flows since the mean curvature
flow is and at surgery times si, (MH)+si ⊂ (MH)−si . Hence lim

H→∞
is also. We

see from how our surgery is defined in the bounded region Ω containing the
surgeries that Mt ∩ Ω is uniformly two convex on [0, T ], so that for ϵ > 0
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sufficiently small there exists tϵ > 0 so that in Ω:

(4.6) d(M,Mtϵ) = ϵ

Let Πϵ ⊂ R
n+2 be the level set flow of Mtϵ . Then Πϵ is the level set flow

of K shifted backwards in time by tϵ (ignoring t < 0). Let H0 = H0(ϵ) be
chosen as in the lemma above.

Claim: Πϵ ⊂ MH in B(0, R) for all H ≥ H0. Let T1 be the first surgery
time of MH . Since ∂KH is a smooth mean curvature flow on [0, T1) and Πϵ

is a weak set flow the distance between the two is nondecreasing on that
interval. Thus d((Πϵ)T ), (∂MH)−T ) ≥ ϵ in Ω from our choice of ϵ. Applying
the lemma we see this inequality holds across the surgery as well. We may
then repeat the argument for subsequent surgery times.

Since lim
ϵ→0

Πϵ = L̂ in B(0, R) the claim implies L̂ ⊂ limH→∞MH in Ω

since the limit of relatively closed sets is relatively closed in Hausdorff
topology. On the other hand as we already noted each mean curvature
flow with surgery is a weak set flow for M . Hence the limit is also so that
limi→∞(Mi) ⊂ L̂ in B(0, R).

Away from the mean convex set by assumption we have uniform curva-
ture bounds (in our definition of mean curavture flow with localized surgery,
uniform curvature bounds are assumed to occur outside the surgery regions)
so for the flows with surgery (Mi)t we can pass to a Hasudorff converging
subsequence that converges smoothly away from the mean convex surgery
regions, and the limit by Hershkovits and White’s theorem must be the
level set flow. Hence we get that globally the flows with surgery converge in
Hausdorff sense to the level set flow Lt of M .

5. A variant of the local brakke regularity theorem
for the LSF

In this section we prove theorem 1.3. For the sake of reducing notational
clutter we will prove for the case P is the plane xn+1 = 0 - we will then easily
explain why the conclusion will also be true for convex P appropriately close
to a plane. Also we denote (like above) M = ∂K and Lt the level set flow
of M .

By (4) in definition 1.1 we get a uniform lower bound on the time Ta

for which the surface does not intersect P in Σ, without loss of generality
in this section η < Ta. With that being said we show the following height
estimate on mean convex flows with surgery in a ball:
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Lemma 5.1. Fix ϵ > 0 and suppose M ∈ Σ. By theorem 1.1, there is a
η > 0 so that a flow with surgery exists out of M - let Mt be any such flow
(i.e. no stipulations on Htrig). Then for any 0 < T < η, there exists V, h so
that MT is in the slab bounded by the planes xn+1 = ϵ and xn+1 = 0

Remark 5.1. Note that no curvature assumptions are made so we may
freely use this lemma as we let the surgery parameters degenerate. Also note
since the post surgery domains (immediately after surgery) are contained in
the presurgery domains, it suffices to consider smooth times for the flow.

Proof. Denote by Φϵ ⊂ Kt the set of points in Kt above the plane xn+1 = ϵ.
Note sinceMt is mean convex Vt is decreasing under the flow, and hence Vt <
V , where Vt is defined in the obvious way. Furthermore the α noncollapsing
condition crucially relates V and the mean curvature of points on Mt ∩ Φϵ

since at every point there is an interior osculating sphere proportional to
the curvature; thus if p ∈ Π and xn+1(p) > ϵ there is a constant µ(ϵ, c) > 0
so that µ

Hn+1(p) ≤ |B( α
H )| ≤ V or so that n+1

√
µ
V < H(p).

At points on Mt where the height function xn+1 takes its maximal value the
normal is pointing down, implying the height h(t) of Mt satisfies:

(5.1)
dh

dt
≤ − n+1

√
µ

V

we see if h is small enough then the statement follows. □

Note to get a simple negative lower bound for the speed of h we could
have also argued that there is a lower bound depend on c (from definition
1.2) and ϵ as in the proof of theorem 1.1- this proof is more useful though
because it relates derivative of h with V in an explicit way. We are now ready
to prove theorem 1.3; the structure of the proof is very roughly captured by
the following:
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good area ratio bounds =⇒ good Gaussian area bounds =⇒ good
Gaussian density bounds at later times =⇒ smoothness at later times

Proof. (of theorem 1.3) In theorem 1.1 the choice of surgery parameters
didn’t affect the duration of surgery (only the geometry of ∂Ω does) so
we may always take a sequence of surgery flows of [0, η] that Hausdorff
converge to the level set flow of M by theorem 1.2. Lemma 5.1 above also
didn’t depend on the choice of surgery parameters, so we thus obtain the
conclusion of lemma 5.1 for the level set flow as well. With this in mind the
first step is to use the lemma to get some area ratio bounds in small balls
in a slab containing the plane P . To get these we will to use (to make our
lives easier later) a slightly modified multiplicity bound theorem of White.
One easily checks from the proof of the multiplicity bound theorem that it
sufficed for the mean convex set K to initially simply contain the slab S;
containing the whole ball was unnecessary:

Theorem 5.2. (modified multplicity bound theorem) Let B = B(x, r) be a
ball, and let S be a slab in B of thickness 2ϵr passing through the center of
the ball

(5.2) S = {y ∈ B | dist(y,H) < ϵr}

where H is a hyperplane passing through the center of the ball and ϵ > 0.
Suppose S is intially contained in K, and that Mt ∩B is contained in the
slab S. Then Kt ∩B \ S consists of k of the two connected components of
B \ S, where k is 0, 1, or 2. Furthermore

(5.3) area(Mt ∩B) ≤ (2− k + 2nϵ)ωnr
n.

Remark 5.2. The reason it was important to not use the regular theorem
(i.e. with balls) is for the sake of generality; note it is helpful for the example
in section 7.

With this in hand we are now ready to show by time T that, at least
at some scales, the area ratios are very close to 1. We recall the area ratio
function θ(Lt, x, r):

(5.4) θ(Lt, x, r) =
area(Lt ∩B(x, r))

ωnrn

Now let M be as in the statement of theorem 1.3. To use the multiplicity
bound theorem we first cover our plane P with the “partial” slabs Sp =
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S(p, r0, σ) = {y ∈ B(p, r0) | dist(y, P ) < ϵr0}, where r0 > 0 and p ∈ P . From
lemma 5.1 there are appropriate choices of V, h for any 0 < T1 < η so that,
if initially S(p, r0, ϵ) ⊂ K0, then by time t = T1, LT1

is contained in
⋃
p∈P

Sp.

Again as mentioned before the start of lemma 5.1 without loss of gener-
ality M lies on one side of P for t ∈ [0, η]. The multplicity bound theorem
then holds at t = T with k = 1, so that in each Sx we have area(LT1

∩
B(x, r0)) ≤ (1 + 2nσ)ωnr

n
0 , implying that θ(LT1

, x, r0) < 1 + 2nσ for each
x ∈ P and in fact (since none of LT1

∩ ΩT1
lays outside the union of slabs)

θ(LT1
, x, r0) < 1 + 2nσ for each x ∈

⋃
p∈P

Sp. Also note that in our case (i.e.

nonminimal) the area ratios will not necessarily be increasing in r, but the
control we have just at these scales is nonetheless helpful.

We wish to use next the Brakke regularity theorem whch involves the
Gaussian density ratio. Recall the Gaussian density ratio Θ(Lt, X, r) is given
by:

(5.5) Θ(Lt, X, r) =

∫

y∈Lt−r2

1

(4πr2)n/2
e

−|y−x|2

4r2 dHny

Where X = (x, t). In analogy to area densities θ for minimal surfaces, the
Gaussian density Θ are nonincreasing in r along a Brakke flow, implying
for a given (spatial) point x that control at larger scales will give control at
smaller scales forward in time.

Now we recall White’s version of the local Brakke regularity theorem
[30]. Since we will be considering times less than η, the flow (by Hershkovits
and White, [20]) will be nonfattening so is a genuine Brakke flow. Also, as
the level set flow “biggest” flow and nonfattening, it will agree with the
Brakke flow described in section 7 of [30] and hence we will be able to apply
White’s version of the local Brakke regularity theorem to our case (we point
this out specifically because most of that paper pertains to smooth flows up
to the first singular time).

Theorem 5.3. (Brakke, White) There are numbers ϵ = ϵ(N) > 0 and C =
C(N) < ∞ with the following property. If M is a Brakke flow of integral
varifolds in the class S(λ,m,N) (defined in section 7 of [30]) starting from
a smooth hypersurface M in an open subset U of the spacetime R

n+1 × R

and if the Gaussian density ratios Θ(Lt, X, r) are bounded above by 1 + ϵ for
0 < r < d(X,U), then each spacetime point X = (x, t) of M is smooth and
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satisfies:

(5.6) |A|2 ≤
C

δ(X,U)

where δ(X,U) is the infimum of ||X − Y || amount all spacetime points Y ∈
U c

Above the statement concerning the necessary range of r, 0<r<d(X,U),
can be seen from the proof of theorem 3.1 in [30] and is a slightly stronger
statement than presented in White. We also have the following important
technical remark:

Remark 5.3. (technical remark regarding Brakke flows) Concerning the
family S(λ,m,N) of Brakke flows, it is shown in theorem 7.4 in section 7 of
[30] that if M is compact it has a Brakke flow in S(λ,m,N). However one
can easily check that the proof caries through if the graph of the function u,
as in the proof, has polynomial volume growth - it is easy to construct such
a function if M is asymptotically flat.

By the polynomial area growth assumption and the exponential decay
of the Gaussian weight in (5.5) we see, if R (in the definition of (V,R, h, ϵ)-
controlled) is sufficently large for a given choice of r1, then Θ(LT ∩ Ωc

T , x, r1)
can be made as small as we want. By continuity of the of the Gaussian weight
we see then if for each δ, r1 > 0 we can pick R > 0 (so Ωt is surrounded in a
large neighborhood of nearly planar points), r1 > r0 > 0 so that if the area
ratios θ(LT1

, x, r0) < 1 + δ then Θ(LT1
, x, r1) < 1 + 2δ.

Now, the Brakke regularity theorem needs control over all Gaussian den-
sities in an open set of spacetime and hence for Gaussian areas r sufficiently
small, but as mentioned above the favorable thing for us is that, in analogy
to area densities θ for minimal surfaces, the Gaussian ratios Θ are non-
increasing in r along a Brakke flow so the densities at time T1 + r2 are
bounded by 1 + 4nσ for r < r1. We see we had flexibility in choosing r0 in
the proof of the area bounds and hence we have flexibility in choosing r1, so
by varying r1 in some small positive interval, by montonicity we obtain an
interval (a, b) ∈ [η2 , η] so that Θ(L,X, r) ≤ 1 + 4nσ for all spacetime points
X ∈ U =

⋃
p∈P

Sp × (a, b) and r sufficiently small; say r < r∗ for some r∗ > 0.

Of course, the level set flow from times (a, b), as these are less that
η is nonfattening (from Hershkovits and White [20]) and hence a Brakke
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flow, thus, taking σ sufficiently small and a− b potentially smaller (so every
point X ∈ U has δ(X,U) < r∗) we may now apply Brakke regularity to get,
at some time slice Tsmooth ∈ (a, b), uniform curvature bounds on LTsmooth

a
fixed distance away from ∂Ω. On the other hand on the boundary we will
also have curvature bounds via pseudolocality. Taking σ smaller if need be,
these curvature bounds along with the trappedness of Ω in the σ-tubuluar
neighborhood of P imply that ΩLTsmooth

is a graph over P . By adjusting
T1 ∈ [0, η], we may arrange Tsmooth to be any T ∈ [η2 , η]

Now a remark regarding when P is not a plane from the proofs above
that if P was not perfectly a plane, but merely a graph over a plane, the
proof of lemma 5.1 still goes through. If the hypersurface is not a plane but
so that, in the balls B(pr1) above was sufficiently close in C2 norm to a plane
(this depends on the ϵ necessary in the Brakke regularity theorem), we will
still be able to bound the area ratios at a range of small scales as above so
that the Brakke regularity theorem can be used at a later time along the
flow as above. □

As promised we now discuss how one could choose parameters {α, β},
{c, S}, {V, h,R, ϵ}, {P,Ω} so that if M ∈ Σ (for these parameters) one could
apply the smoothing theorem:

1) Choose σ (and hence ϵ) so that the application of the Brakke regularity
theorem in the above proof would hold.

2) Having picked ϵ, pick R large enough so that the comment about area
ratios controlling Gaussian density holds.

3) Next, pick α, β, P,Ω, V, c, S - these choices in particular aren’t too
important, although one would want Ω large compared to R above to
allow for topology and in section 7 the design of P is important.

4) For a given M ∈ Σ theorem 1.1 yields a time η > 0 for which we may
define a mean curvature flow with surgery.

5) Pick h sufficiently small (i.e. just a bit bigger than ϵ), depending on
V , so that lemma 5.1 holds for our choice of ϵ.

Now, one would be justifiably worried if they were concerned these sets
could contain only contain trivial (i.e. already graphical) elements - it might
be feared that taking h small enough implies the surface is graphical for
instance. However, a construction due to Buzano, Haslhofer, and Hershkovits
lets us show there are nontrivial elements, as described in section 7.
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Before explaining the proofs of the corollaries, we also we remark we see
from the proof that V and h are also related and that, for a given h > 0,
V could in principle be taken sufficiently small to make the conclusion of
the theorem hold - to have tall but thin 2-convex spikes. However, we see
there is a lower bound on the enclosed between the plane xn+1 = ϵ and and
xn+1 = 0 (approximately on the order ϵ|Ω|), so lemma 5.1 in practice won’t
be able to be used to give extremely fast speeds for h, refering to equation
5.1. Lemma 5.1 does work well for “short” spikes however.

6. Rapid smoothing and LSF long time convergence to a
plane corollaries

6.1. Corollary 1.4: rapid smoothing

This statement is essentially a “globalization” of Theorem 1.3 and follows
quickly from it. As discussed at the end of section 3, there indeed exists δ > 0
on which we can ensure no singularities will occur on [0, δ] for any piecewise
smooth flow starting from M outside of U , so by theorem 1.1 there will
be a flow with surgery localized in the open set U from the statement of
the corollary, on say [0, η] where η < δ, if the perturbations are compactly
supported and 2-convex. From theorem 1.3 there is a T < η (for appropriate
choices of parameters) for which Lt is smooth in Ωt for appropriate choices of
parameters. Since T < η the surface is smooth everywhere then. As for the
curvature bound, the Brakke regularity theorem gives us curvature bounds
at time T at fixed distance into the interior of ΩT . From definition 1.3 and
the construction in theorem 1.1 we see the curvature will be bounded in a
neighborhood of ∂Ω. Putting these all together gives the statement.

6.2. Corollary 1.5: LSF long time convergence to a plane

Let M ∈ Σ1, then theorem 1.1 gives some time interval [0, η] on which the
flow with surgery exists for M . We see by pseudolocality for a short time
after the flow that, since CR ∪ Ωc is initially a graph over the plane P1

(from definition of Σ1) this region will remain so for a short time under
the flow (there will be a lower bound on this time as well for a given set
of parameters). Without loss of generality then CR ∪ Ωc remains graphical
over P1 under the flow on time [0, η]. By the asymptotic planar condition the
initial hypersurface M (and corresponding plane P1) is constrained between
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two parallel planes P1 and P2. By the avoidance principle, it must remain so
under the mean curvature flow. During surgeries, high curvature pieces are
discarded and caps are placed within the hull of the neck they are associated
with, so Mt will remain between P1 and P2 after surgeries as well. Thus MT

is constrained between P1 and P2 for any choice of parameters and hence
LT is too.

If the M ∈ Σ1 for a correct choice of parameters, by time T ∈ [η2 , η]
LT ∩ ΩT will be a smooth graph over P , and we see in the proof of theorem
1.3 by taking σ smaller we may also arrange its Lipschtiz norm over P is
as small as we wish. By item (2) in definition 1.3 then for correct choices
of parameters LT ∩ ΩT will be a graph over the plane P1 with bounded
Lipschitz norm - hence all of LT will be by the discussion in the previous
paragraph. Then we know the mean curvature flow of LT , which coincides
with level set flow on smooth hypersurfaces, stays graphical and its flow
exists (without singularities) for all time by the classical results of Ecker
and Huisken (specifically see theorem 4.6 in [14]). In fact, by proposition 4.4
in [14] one sees that as t → ∞, |A| and all its gradients must tend to zero
uniformly in space. Since LT is bounded between two planes (this, of course,
also implies its mean curvature flow is) the flow (LT )t of LT must converge
to a plane. We see that in fact the plane it converges to must be P since for
arbitarily large times, as there will be points arbitrarily close to the plane P
using the asymptotically planar assumption combined with pseudolocality.

7. Explicit examples of Theorem 1.3

To construct explicit nontrivial examples of mean convex regions that satisfy
the hypotheses of theorem 1.3 we may use the recent gluing construction of
Buzano, Haslhofer, and Hershkovits - namely Theorem 4.1 in [7]. It suffices
to say for our purposes that it allows one to glue “strings,” tubular neigh-
borhoods of curve segments, of arbitrarily small diameter to a mean convex
hypersurface M in a mean convex way. Then to construct an example, take
an ϵ (from the proof of theorem 1.3) thick slab of large radius R with top and
bottom parallel to the plane xn+1 = 0, which we’ll denote by S = S(ϵ, R),
and run it by the mean curvature flow for a very short time. The result will
be convex and hence mean convex and 2-convex and remain very close to
the original slab sufficiently near the origin, within say the ball B(0, r). As
discussed in the end of the proof of theorem 1.3 the surface itself translated
within this ball, translated in the xn+1-coordinate by −ϵ, can be used as
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the hypersurface P , so h = ϵ exactly with respect P . We see it immediately
enter the associated ϵ thick slab of P under the flow by mean convexity.

We then add strings to the surface near the origin; as mentioned in the
proof of theorem 1.1 there is an η > 0 so that the surgery is possible on
[0, η] whose value doesn’t depend well in the interior of Ω. The strings can
be taken with sufficiently small surface volume and height so that the surface
must satisify lemma 5.1.

By packing the strings very tightly and taking extremely small tubular
neighborhoods, we can make the area ratios of M in a fixed ball B(p, ρ),
that is the ratio of its local surface to that of the plane, as large as we
want while still making the enclosed volume by the strings as small as we
want (note that here outer noncollapsing isnt so important as long as nearby
exterior points are intrinsically far, so a “ball of yarn” works). By adding
small beads along the strings (that is, applying the gluing construction to
glue tiny spheres along the strings in a 2-convex way) one can see using
a barrier argument with the Angenent torus there are many examples of
surfaces in these classes that develop singularities as well.
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