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We define an explicit quasi-local mass functional which is nonde-
creasing along all doubly convex foliations of null cones. Assuming
the existence of a doubly convex foliation, we use this new func-
tional to prove the Null Penrose Conjecture.
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1. Introduction

A spacetime (M, g) is defined to be a four dimensional smooth manifold M
equipped with a metric g(·, ·) (or ⟨·, ·⟩) of Lorentzian signature (−,+,+,+).
We assume that the spacetime is both orientable and time orientable, i.e. ad-
mits a nowhere vanishing timelike vector field, defined to be future-pointing.

Throughout this paper, we will denote by Σ a spacelike embedding of a
sphere in M with induced metric γ. It is well known that Σ has trivial nor-
mal bundle T⊥Σ with induced metric of signature (−,+). From any choice
of null section

¯
L ∈ Γ(T⊥Σ), we have a unique null partner L ∈ Γ(T⊥Σ) sat-

isfying ⟨
¯
L,L⟩ = 2, providing T⊥Σ with a null basis {L,

¯
L}. We also notice

1847
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that any ‘boost’ {
¯
L,L} → {

¯
La, La} given by:

¯
La := a

¯
L, La :=

1

a
L

(for a ∈ F(Σ) a non-vanishing smooth function on Σ) insures ⟨
¯
La, La⟩ =

⟨
¯
L,L⟩ = 2.

Our convention for the second fundamental form II and mean curvature
H⃗ of Σ are

II(V,W ) = D⊥
VW, H⃗ = trΣ II

for V,W ∈ Γ(TΣ) and D the Levi-Civita connection of the spacetime.

H⃗

L

¯
L

T⊥Σ

M

V,W ∈ Γ(TΣ)

Σ

Definition 1.1. Given a choice of null basis {
¯
L,L}, following the conven-

tions of Sauter [32], we define the associated symmetric 2-tensors
¯
χ, χ and

torsion (connection 1-form) ζ by

¯
χ(V,W ) := ⟨DV

¯
L,W ⟩ = −⟨

¯
L, II(V,W )⟩

χ(V,W ) := ⟨DV L,W ⟩ = −⟨L, II(V,W )⟩

ζ(V ) :=
1

2
⟨DV

¯
L,L⟩ = −1

2
⟨DV L,

¯
L⟩

where V,W ∈ Γ(TΣ).

Denoting the exterior derivative on Σ by /d, any boosted basis {
¯
La, La}

produces the associated tensors of Definition 1.1:

¯
χa(V,W ) := ⟨DV (a

¯
L),W ⟩ = a

¯
χ(V,W )

χa(V,W ) := ⟨DV (
1

a
L),W ⟩ = 1

a
χ(V,W )

ζa(V ) :=
1

2
⟨DV (a

¯
L),

1

a
L⟩ = ζ(V ) + V log |a| = (ζ + /d log |a|)(V ).
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For a symmetric 2-tensor T on Σ its trace-free (or trace-less) part is given
by

T̂ := T − 1

2
(trγ T )γ

allowing us to decompose
¯
χ into its shear and expansion components re-

spectively:

¯
χ = ˆ

¯
χ+

1

2
(tr

¯
χ)γ.

Definition 1.2. We say Σ is expanding along
¯
L for some null section

¯
L ∈ Γ(T⊥Σ) provided that,

(†) ⟨−H⃗,
¯
L⟩ = tr

¯
χ > 0

on all of Σ.

Any infinitesimal flow of Σ along
¯
L gives, by first variation of area,

˙dA = ⟨−H⃗,
¯
L⟩dA = tr

¯
χdA. So the flow is locally area expanding ( ˙dA > 0)

only if Σ “is expanding along
¯
L”:

Σ0

Σs

Ω

¯
L ¯

L

Remark 1.3. In Section 4 we will show (Lemma 4.10), whenever Ω is
past asymptotically flat inside a spacetime satisfying the dominant energy
condition, a consequence of the famous Raychaudhuri equation (Section 3,
(3.4)) is that any cross section Σ →֒ Ω is expanding along the past pointing
null section

¯
L ∈ Γ(T⊥Σ) ∩ Γ(TΩ)|Σ. So inequality (†) holds for any foliation

of Ω along
¯
La where a > 0 and we have an expanding null cone (as illustrated

in the figure above).

For Σ expanding along some
¯
L ∈ Γ(T⊥Σ) we are able to choose a canon-

ical null basis {L−, L+} by requiring that our flow along L− = a
¯
L be uni-

formly area expanding ( ˙dA = dA). From first variation of area, flowing along



✐

✐

“5-Roesch” — 2022/5/2 — 2:04 — page 1850 — #4
✐

✐

✐

✐

✐

✐

1850 Henri P. Roesch

a
¯
L gives

˙dA = −⟨H⃗, a
¯
L⟩dA = a tr

¯
χdA.

So we achieve a uniformly area expanding null flow when a = 1
tr

¯
χ giving:

Definition 1.4. For Σ expanding along some
¯
L ∈ Γ(T⊥Σ) we call the as-

sociated canonical uniformly area expanding null basis {L−, L+} given by

L− := ¯
L

tr
¯
χ
, L+ := tr

¯
χL

the null inflation basis.
We also define χ−(+) := −⟨II, L−(+)⟩. From the comments immediately

after Definition 1.1 we observe that

trχ− = 1

trχ+ = tr
¯
χ trχ = ⟨H⃗, H⃗⟩

and for V ∈ Γ(TΣ) the torsion associated to this basis is given by

τ(V ) =
1

2
⟨DV L

−, L+⟩ = (ζ − /d log tr
¯
χ)(V ).

We will denote the induced covariant derivative on Σ by /∇.

Definition 1.5. Assuming Σ is expanding along
¯
L, for some

¯
L ∈ Γ(T⊥Σ),

we define the geometric flux function

(1.1) ρ = K − 1

4
⟨H⃗, H⃗⟩+ /∇ · τ

where K represents the Gaussian curvature of Σ.
This allows us to define the associated quasi-local mass

(1.2) m(Σ) =
1

2

( 1

4π

∫

Σ
ρ

2

3dA
)

3

2

.

For the induced covariant derivative /∇ we denote the associated Lapla-
cian on Σ by /∆.

Remark 1.6. Whenever trχ+ = ⟨H⃗, H⃗⟩ ≠ 0, Σ has two null inflation bases
given by {L−, L+} and { L+

trχ+ , trχ+L−}. As a result, we typically have two
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distinct flux functions

ρ− = K − 1

4
⟨H⃗, H⃗⟩+ /∇ · τ

ρ+ = K − 1

4
⟨H⃗, H⃗⟩ − /∇ · τ − /∆ log |⟨H⃗, H⃗⟩|

with associated mass functionals m±. For the Bartnik datum αH (see Sec-
tion 1.1), we will see for a past pointing

¯
L that ρ− − ρ+ = 2 /∇ · αH (Lemma

1.10). For ⟨H⃗, H⃗⟩ ≠ 0, whenever Σ is ‘time-flat’ (i.e. /∇ · αH = 0) it follows
that ρ− = ρ+ =⇒ m− = m+.

For a normal null flow off of some Σ with null flow vector
¯
L, technically

the flow speed is zero since ⟨
¯
L,

¯
L⟩ = 0. In the case the Σ expands along

¯
L

we define the expansion speed, σ, according to
¯
L = σL−. We notice that

σ = tr
¯
χ. We are now ready to state our first result.

Theorem 1.7. Let Ω be a null hypersurface foliated by spacelike spheres
{Σs} expanding along the null flow direction

¯
L = σL− such that |ρ(s)| > 0

for each s. Then the mass m(s) := m(Σs) has rate of change

8π

(2m)
1

3

dm

ds
=

∫

Σs

σ

ρ
1

3

(

(|χ̂−|2 +G(L−, L−))(
1

4
⟨H⃗, H⃗⟩

− 1

3
/∆ log |ρ|) + 1

2
|ν|2 +G(L−, N)

)

dA

where

G = Ric− 1

2
Rg,

σ = tr
¯
χ,

ν :=
2

3
χ̂− · /d log |ρ| − τ,

N :=
1

9
|/d log |ρ||2L− +

1

3
/∇ log |ρ| − 1

4
L+.

If we assume therefore that our spacetime M satisfies the dominant
energy condition our mass functional m(Σs) is non-decreasing for foliations
{Σs} of doubly convex 2-spheres:

Definition 1.8. A spacelike 2-sphere Σ is called doubly convex if it satisfies:

ρ > 0

1

4
⟨H⃗, H⃗⟩ ≥ 1

3
/∆ log ρ.

In the case that the second inequality is strict, we say Σ is strict doubly
convex.
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So for a doubly convex foliation the dominant energy condition ensures
the product of the first two terms of the integrand in Theorem 1.7 is non-
negative. The second is non-negative since each Σs is spacelike and the
last term is non-negative again from the dominant energy condition since
⟨N,N⟩ = 0 and ⟨N,L−⟩ = −1

2 < 0 (i.e. N is null and at every point p ∈ Σ
lies inside the same connected component of the null cone in TpM as L−).

We will assume in Sections 4 and 5 that
¯
L is past pointing. Adopting

the same definitions as Mars and Soria [23] (see Section 4.1) we have our
second main result:

Theorem 1.9. Let Ω be a null hypersurface in a spacetime satisfying the
dominant energy condition that extends to past null infinity. If {Σs} is a
doubly convex foliation we have

m(0) ≤ lim
s→∞

m(Σs) =:M

(for M ≤ ∞). If, in addition, Ω is past asymptotically flat with strong flux
decay and {Σs} asymptotically geodesic (see Section 4) then

M ≤ mTB

where mTB is the Trautman-Bondi mass of Ω. Moreover, in the case that
trχ|Σ0

= 0 we have the null Penrose inequality

√

|Σ0|
16π

≤ mTB.

Furthermore, if equality holds for some strict doubly convex foliation outside
Σ0, equality holds for all foliations of Ω and the data (γ,

¯
χ, trχ and ζ) is

realized by some foliation of the standard null cone of the Schwarzschild
spacetime.

1.1. Background

An interesting energy functional for a closed spacelike surface Σ introduced
by Hawking [16] is defined by

EH(Σ) =

√

|Σ|
16π

(

1− 1

16π

∫

Σ
⟨H⃗, H⃗⟩dA

)

.

Named the Hawking Energy this functional provides a measure of the en-
ergy content within Σ. We also notice by the Gauss-Bonnet and Divergence
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Theorems that
∫

Σ
ρdA = 8π

EH(Σ)
√

|Σ|
4π

motivating in part why we call ρ a flux function.
Existence of a limit of the Hawking Energy along suitable 2-spheres foli-

ating a null cone has been analyzed in work of Christodoulou-Klainermann
[11], generalized by Bieri [4], also Klainerman-Nicolò [20], Chruściel-Paetz
[12], and a setting we will adopt in Sections 3 and 4 due to Mars-Soria [23].
From this limit, one is able to define the notion of the total mass of a null
cone Ω called the Trautman-Bondi mass (see Definition 4.18). Historically,
the definition of mass at null infinity (see Section 3) can be traced back
to Trautman [36], generalizing, and predating, a more explicit coordinate
based construction by Bondi et al. [6, 31]. We refer the reader to [5] for
more details, including how the Trautman-Bondi mass relates to the famous
one of Arnowitt-Deser-Misner [2] at spacelike infinity.

In Minkowski spacetime, if Σ is chosen to be any cross-section of the null
cone of a point, work of Sauter ([32], Section 4.5) shows that EH(Σ) = 0, as
expected of a flat vacuum spacetime. For Schwarzschild spacetime, the fa-
mous geometry modeling a static isolated black hole of fixed massM , Sauter
also shows when Σ is any cross-section of the so called ‘standard null cone’,
EH(Σ) ≥M with equality if and only if Σ is ‘time-symmetric’ ([32], Lemma
4.4). This is reminiscent of the special relativistic understanding that an
energy measurement E =

√

M2 + |p⃗|2 for a particle always over-estimates
its mass M except when measured within its rest frame (i.e a frame where
p⃗ = 0).

Monotonicity properties of EH were analyzed in detail by work of Bray-
Hayward-Mars-Simon [7], and Bray-Jauregui-Mars [9]. In particular, these
authors identify the existence of null flows for which EH is non-decreasing.
However, although the Hawking Energy enjoys monotonicity and conver-
gence along certain flows, difficulty remains in assigning physical significance
to the convergence of EH due to the lack of control on the asymptotics of
such flows [3, 21, 24, 32]. We expect these difficulties may very well be symp-
tomatic of the fact that an energy functional is particularly susceptible to
the plethora of ways boosts can develop along any given flow.

Given a fixed reference frame in special relativity, energy accumulates
with 4-velocity (vector) addition P1 + P2 = P3 =⇒ E3 = E1 + E2. Analo-
gously, we expect an expanding null flow off of Σ, ‘within a fixed reference
frame’, to infinitesimally exhibit non-decreasing energy. However, with no
a priori knowledge of the flow, we have no way to fix or even identify a
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P2 = (E2, p⃗2)

P1 = (E1, p⃗1)

PP ′P3 = (E3, p⃗3)

reference frame geometrically. Consequently, we have no way to account
for any accumulation of ‘phantom energy’ coming from infinitesimal boosts
along the flow. As shown above, this is analogous with a fluctuating ref-
erence frame in special relativity coming from boosts: P → P ′ (i.e energy
increases) or P ′ → P (i.e. energy decreases). Geometrically, we expect this
to manifest along the flow in a (local) ‘tilting’ of Σ. One may even expect
a net decrease in energy as is evident in Schwarzschild spacetime (recall
EH(Σ) ≥M). This is not a problem, however, if we appeal instead to mass
rather than energy. Leaning again on our special relativistic intuition, we see
that the boost-separated 4-velocities P ′ = (E′, p⃗′) and P = (E, p⃗) measure
the same massM2 = E2 − |p⃗|2 = (E′)2 − |p⃗′|2 = (M ′)2. Moreover, by virtue
of the Lorentzian triangle inequality (provided all vectors are timelike and
future/past pointing), along any given flow the mass should always increase:

M3 = |(E1 + E2, p⃗1 + p⃗2)| ≥ |(E1, p⃗1)|+ |(E2, p⃗2)| =M1 +M2.

Therefore, appealing instead to a quasi local mass functional we hope a larger
class of flows will give rise to more generic monotonicity. We approach the
problem of finding such a mass functional by first finding an optimal choice
of flux function for EH .

As early as 1962, in [6, 31] we find the use of a flux function called
the Bondi mass-aspect function related to the Trautman-Bondi energy and
mass (see [5] for a summary of the details). Another, used by Christodoulou-
Klainermann in [11], is given by

µ = K − 1

4
⟨H⃗, H⃗⟩ − /∇ · ζ

dependent on the null basis {
¯
L,L} ⊂ Γ(T⊥Σ). Using µ in his Ph.D thesis

[32], Sauter showed the existence of flows on past null cones that render
EH non-decreasing, making explicit use of the fact that, under a boost, this
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mass aspect function changes via ζ according to

ζ → ζa = ζ + /d log |a| =⇒ µ→ µa = K − 1

4
⟨H⃗, H⃗⟩ − /∇ · ζ − /∆ log |a|.

From these observations, our divergence term given in (1.1) (up to a sign)
is somewhat motivated by a desire of finding a flux function independent
of boosts. In fact, in the case that Σ is admissible: H2 := ⟨H⃗, H⃗⟩ > 0, we’re
able to construct the orthonormal frame field

{er = −H⃗
H
, et} : ⟨er, er⟩ = 1, ⟨et, et⟩ = −1, ⟨er, et⟩ = 0

where et is future pointing. The associated connection 1-form is given by

αH(V ) := ⟨DV er, et⟩.

Thus, if
¯
L is past pointing, the following lemma allows us to give ρ in terms

of the Bartnik data of Σ:

ρ = K − 1

4
⟨H⃗, H⃗⟩+ /∇ · αH − /∆ logH.

Lemma 1.10. For Σ admissible

τ = ±αH − /d logH

from which we conclude that

ρ∓ = K − 1

4
⟨H⃗, H⃗⟩ ± /∇ · αH − /∆ logH

where +/− indicates whether L− is past/future pointing.

Proof. Since −H⃗ = 1
2(trχ¯

L+ tr
¯
χL), we see 0 < H2 = tr

¯
χ trχ. We may

therefore choose
¯
L so that Σ is expanding along

¯
L. The inverse mean cur-

vature vector is given by

I⃗ := − H⃗

H2
=

1

2

(

¯
L

tr
¯
χ
+

L

trχ

)

.
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As a result,

αH(V ) = ⟨DV
er
H
,Het⟩ = ⟨DV

1

2

(

¯
L

tr
¯
χ
+

L

trχ

)

,∓1

2
(trχ

¯
L− tr

¯
χL)⟩

= ±1

4

(

⟨DV ¯
L

tr
¯
χ
, tr

¯
χL⟩ − ⟨DV

tr
¯
χL

H2
, H2 ¯

L

tr
¯
χ
⟩
)

= ±1

4

(

⟨DV ¯
L

tr
¯
χ
, tr

¯
χL⟩+ ⟨DV (H

2 ¯
L

tr
¯
χ
),
tr
¯
χL

H2
⟩
)

= ±1

4

(

2⟨DV ¯
L

tr
¯
χ
, tr

¯
χL⟩+ 2V logH2

)

we recall, τ(V ) := 1
2⟨DV L

−, L+⟩, with L− = ¯
L
tr

¯
χ , and L

+ = tr
¯
χL. □

We refer the reader to Section 2 for further motivation of (1.1) and (1.2)
from an analysis of the Schwarzschild spacetime.

1.2. The Penrose conjecture

One important application for a quasi-local mass is to study the Penrose
conjecture [28, 29]:

√

|Σi|
16π

≤M

where |Σi| is the area of an ‘initial’ black hole boundary, and M is the to-
tal mass of the system. In the appropriate setting, this provides not only a
strengthened version of the famous Positive Mass Theorem of Schoen-Yau
[33–35], and Witten [39], but also insight regarding the mathematical valid-
ity of the weak cosmic censorship hypothesis that Penrose employed in the
formulation of his conjecture. We refer the reader to [22] for a more compre-
hensive introduction and survey. A rough summary of the heuristic argument
is given in the following: according to the famous Hawking-Penrose singular-
ity theorems ([15, 27]), a variety of ‘physically reasonable’ initial data for an
isolated system (a cluster of stars, a galaxy, etc...) support solutions of the
Einstein field equations that develop singularities. Under cosmic censorship,
a spherical boundary forms prior to the singularity to ‘wrap it up’, hiding
any chaotic physics likely to ensue. This boundary traces out the event hori-
zon, acting as a semi-permeable barrier, trapping even light from escaping
to the outside (a black hole). As matter continues to fall through the event
horizon, the Hawking area theorem [16, 17] (see also [30]) describes that the
area of the boundary expands to the future. Outside the horizon, the system
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approaches equilibrium via the dissipation of gravitational radiation. This
is measured by the loss in Trautman-Bondi mass [14, 31] along null infinity.
It is expected that the spacetime consequently settles towards a stationary
vacuum solution of the field equations, namely a member of the Kerr family
of rotating black holes. A Kerr black hole supports an event horizon where
all cross-sections are isometric, called a Killing Horizon, each with (‘final’)
area |Σf |. The area |Σf | is also explicitly bounded above by the square of
the irreducible Trautman-Bondi mass at null infinity:

|Σf | ≤ 16π(mf
TB)

2.

Therefore, returning to any initial configuration of total mass M , with a
black hole boundary of area |Σi|, the Penrose conjecture is the resulting
inequality:

√

|Σi|
16π

≤
√

|Σf |
16π

≤ mf
TB ≤M.

The existence and exact location of the event horizon assumes knowledge
of the complete future evolution of the spacetime and its structure. Conse-
quently, cosmic censorship posits a fundamental mathematical structure to
solutions of Einstein’s field equations. The Penrose conjecture is therefore
not only an interesting bound on a global geometric invariant (namely, the
mass), it hints at the validity of cosmic censorship. In-fact, any physical sys-
tem supporting data that contradicts the conjectured inequality would deal
a crippling blow to the cosmic censorship hypothesis. In this paper we’re
concerned with a formulation of the conjecture for data supported on a null
hypersurface. The original argument assumes an embedded asymptotically
flat Riemannian hypersurface.

The first major breakthrough on the original formulation of the conjec-
ture was for a class of geometrically standalone or ‘time symmetric’ initial
data called the Riemannian Penrose Inequality. In 1997, Huisken-Ilmanen
[19] were able to prove the Penrose conjecture for a single connected com-
ponent of the black hole boundary. Their approach showed the existence of
a suitably weak propagation of 2-spheres under inverse mean curvature for
which EH is non-decreasing. This flow interpolates between an outermost

minimal surface (the black hole boundary component) where EH =

√

|Σi|
16π ,

and spacelike infinity where the flow approximates round spheres, and EH
approaches the total ADM mass MADM ([2]). In 1999, Bray [8] extended
the result to include multiple boundary components. By utilizing a com-
pletely different approach of conformally flowing the metric of the slice,
Bray showed that the total mass of the space remains non-increasing while
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the total horizon area is non-decreasing. The horizon components eventually
coalesce along the flow as the geometry approaches a time symmetric slice of
the Schwarzschild space. The conjecture subsequently follows from the fact
that the horizon area matches exactly the mass (by a factor of 16π) for this
Schwarzschild slice.

For the null formulation, Sauter ([32], Theorem 4.10) proved the con-
jecture for a class of null hypersurfaces analogous to the time symmetric
slices in the Riemannian case. In this paper, Theorem 1.9 extends Sauter’s
result to a class of null hypersurfaces admitting a doubly convex foliation as
described in Definition 1.8.

1.3. Outline

This paper is organized as follows:

1) Section 1: Introduction

2) Section 2: Schwarzschild Geometry
We motivate ρ and m from an analysis of the standard null cones of
Schwarzschild geometry.

3) Section 3: Propogation of ρ
We prove Theorem 1.7 by calculating the propagation of ρ along arbi-
trary null flows foliating a null cone Ω. We also study the restrictions
placed on Ω in the case that a flow satisfies dmds = 0, the case of equality
for Theorem 1.9.

4) Section 4: Foliation Comparison
Given an arbitrary cross section Σ within a null hypersurface Ω, we
find its flux ρ in terms of the data for a given background foliation.
An analysis of this relationship yields Theorem 1.9 under the necessary
decay.

5) Section 5: Spherical Symmetry
For a class of perturbations of the black hole exterior in a spherically
symmetric spacetime, we show the existence of asymptotically flat null
cones of strong flux decay that allow strict doubly convex foliations.
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2. Schwarzschild geometry

Schwarzschild spacetime models a static black hole of mass M given by the
metric

gS = −hdt⊗ dt+ h−1dr ⊗ dr + r2(dϑ⊗ dϑ+ (sinϑ)2dφ⊗ dφ)

where h = 1− 2M
r for 2M > r > 0, r > 2M . The maximal extension of this

geometry is called the Kruskal spacetime (P×r S
2, gK) which is given by the

warped product of the Kruskal Plane P := {uv > −2Me−1} and the stan-
dard round S

2 with warping function r = g−1(uv) for g(r) = (r − 2M)e
r

2M
−1,

r > 0. The metric and its inverse are given by:

gK = F (r)(du⊗ dv + dv ⊗ du) + r2(dϑ⊗ dϑ+ (sinϑ)2dφ⊗ dφ)

g−1
K =

1

F
(∂v ⊗ ∂u + ∂u ⊗ ∂v) + r−2(∂ϑ ⊗ ∂ϑ + (sinϑ)−2∂φ ⊗ ∂φ)

where F (r) = 8M2

r e1−
r

2M . We recover the Schwarzschild spacetime on v > 0,
u ̸= 0 with the coordinate change t = 2M log | vu | ([25]).

r = 0

r = 2M

r = 4M

r = 5M

ω = r|Σ

2∂v
∂u
F

L

¯
L

r = 0

r = 0

r = 4M

r = 5M

v

u

Ω := {v = v0}

P Ω
u = 0

Σ

Each round S
2 has area 4πr2 so we interpret r as a ‘radius’ function

and F (r) gives rise to unbounded curvature at r = 0 and the ‘black hole’
singularity. A standard past null cone of Schwarzchild spacetime Ω is the
hypersurface given by fixing the coordinate v, say v = v0. Denoting the gra-
dient of a function f by Df we recognize the null vector field ∂u

F = Dv re-
stricts to Ω as both a tangent (since ∂u(v) = 0) and normal (since Dv ⊥ TΩ)
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vector field. It follows that Dv ∈ T⊥Ω ∩ TΩ and the induced metric on Ω
is degenerate, so Ω is an example of a null hypersurface. From the iden-
tity DDfDf = 1

2D|Df |2 we see ∂u
F is geodesic and Ω is realized as the past

light cone of a spherically symmetric section of the event horizon (r = 2M)
as shown above. Setting

¯
L = D(4M log v) = 4M

v
∂u
F we see

¯
L(r) = 4M

v
ru
F =

4M
v

v
g′(r)F = 4M

v
v

4M = 1. We conclude that r restricts to an affine parameter
along the geodesics generating Ω and therefore any cross section Σ can be
given as a graph over S2 in Ω with graph function ω = r|Σ.

Lemma 2.1. Given a cross section Σ := {r = ω} of the standard null cone
Ω := {v = v0} in Kruskal spacetime we have for the null vector field

¯
L sat-

isfying
¯
L(r) = 1 that:

γ = ω2γ̊,
¯
χ =

1

ω
γ, tr

¯
χ =

2

ω
, ζ = −/d logω,

χ =
1

ω
(1− 2M

ω
+ | /∇ω|2)γ − 2Hω, trχ =

2

ω

(

1− 2M

ω
− ω2 /∆ logω

)

,

ρ =
2M

ω3
.

where γ is the metric, Hω the Hessian of ω, and γ̊ the round metric on S
2.

Proof. The above result is a special case of Lemma 5.1 setting β = 0 and
M(v, r) =M so we postpone the proof. □

2.1. Why /∇ · τ?

From Lemma 2.1 we see any cross-section Σ := {r = ω} of the standard null
cone satisfies

τ = ζ − /d log tr
¯
χ = −/d logω + /d logω = 0.

Restricting ourselves to Schwarzschild, the reader may be tempted into ques-
tioning the necessity of the divergence term in (1.1) given that it vanishes
altogether. However, work of Wang, Wang and Zhang ([38] Theorem B’)
in n-dimensional Schwarzschild highlights an intimate relationship between
τ on a codimension-2 spacelike surface Σ and its ‘normal null geometry’.
Namely, if Σ satisfies αH = /d logH it must be constrained to a shear-free
null hypersurface of spherical symmetry, or the standard null cone in di-
mension four. One could argue therefore that the vanishing of τ for any
cross-section of the standard null cone in Schwarzschild simply serves to



✐

✐

“5-Roesch” — 2022/5/2 — 2:04 — page 1861 — #15
✐

✐

✐

✐

✐

✐

Proof of a null Penrose conjecture 1861

obscure its (expected) contribution to ρ. We will see in Section 3 that the
ultimate contribution of /∇ · τ is to the propagation of ρ (Theorem 3.5). It’s
inclusion removes various problematic terms along normal null flows off of
our surface Σ culminating in the simple and physically relevant structure of
Theorem 1.7.

2.2. Motivating m(Σ)

Motivating (1.2) is less subtle than (1.1) in Schwarzschild given the strikingly
simple expression for ρ given in Lemma 2.1. For the cross-section Σ := {r =
ω} with area form dA = ω2dS (dS the standard area form on a round S

2),
we notice that irrespective of ω we succeed in extracting precisely the black
hole mass M as soon as we integrate ρ to the appropriate power

m(Σ) =
1

2

( 1

4π

∫

Σ
ρ

2

3dA
)

3

2

=
1

2

( 1

4π

∫

S2

(2M)
2

3

ω2
ω2dS

)
3

2

=M.

Lemma 2.2. Suppose Σ is a compact Riemannian manifold, then for any
f ∈ F(Σ)

(

∫

f
2

3dA
)

3

2

= inf
ψ>0

(

√

∫

ψ2dA

∫ |f |
ψ
dA

)

Proof. by choosing ψ3
ϵ = |f |+ ϵ for some ϵ > 0 it’s a simple verification that

(

∫

(|f |+ ϵ)
2

3dA
)

3

2 ≥
√

∫

ψ2
ϵ dA

∫ |f |
ψϵ
dA ≥ inf

ψ>0

√

∫

ψ2dA

∫ |f |
ψ
dA

so by the Dominated Convergence Theorem

(

∫

f
2

3dA
)

3

2

= lim
ϵ→0

(

∫

(|f |+ ϵ)
2

3dA
)

3

2 ≥ inf
ψ>0

√

∫

ψ2dA

∫ |f |
ψ
dA.

We show the inequality holds in the opposite direction from Hölder’s in-
equality

∫

f
2

3dA =

∫

(
f

ψ
)

2

3ψ
2

3dA ≤
(

√

∫

ψ2dA
)

2

3
(

∫ |f |
ψ
dA

)
2

3

where the result follows from raising both sides to the 3
2 power and taking

an infimum over all ψ > 0. □
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So given any 2-sphere in an arbitrary spacetime with non-negative flux ρ ≥ 0,

defining EψH(Σ) :=
1
8π

√ ∫
ψ2dA
4π

∫ ρ
ψdA, we conclude that

m(Σ) = inf
ψ>0

EψH(Σ) ≤ EH(Σ)

as expected. Recalling our use of Hölder’s inequality in the proof of Lemma
2.2, we see that m(Σ) = EH(Σ) if and only if ρ is constant on Σ. So for Σ :=
{r = ω} ⊂ Ω, where Ω is the standard null cone in Schwarzschild spacetime,
we see that m(Σ) underestimates the Hawking energy EH(Σ) with equality
only if ρ hence ω is constant. Namely, the round spheres of intersection
between time-symmetric slices given by t = const > 0 (hence r = const > 0
in Ω), as expected from Sauters work ([32], Lemma 4.4). One can show (see,
for example, [23]) that a cross-section of the standard null cone is a round
sphere with constant Gauss curvature K = 1

r20
if and only if ω solves the

non-linear equation

1−
( ω

r0

)2
= ∆̊ log

( ω

r0

)

for ∆̊ the Laplace-Beltrami operator with respect to the metric γ̊. Solutions

take the form ω(ϑ, φ) = r0

√
1−|v⃗|2

1−v⃗·n⃗(ϑ,φ) , for some v⃗ inside the unit ball B̊3 ⊂ R
3,

and n⃗(ϑ, φ) the unit position vector. We conclude that this round sphere
Σr0v⃗ →֒ Ω has energy EH(r0, v⃗) =

M√
1−|v⃗|2

which is precisely the observed

(special relativistic) energy of a particle of mass M traveling at velocity v⃗
relative to its observer. It follows that the energy of an asymptotically round
foliation {Σs := {r = ωs}} ⊂ Ω approaches the mass M only if v⃗ = 0 ‘at
infinity’. Clearly this corresponds asymptotically to the r = const foliation
inside Ω i.e. the time symmetric spheres. Herein it seems the difficulty lies in
finding foliations such that EH(Σs) increases to the Trautman-Bondi mass.
Even in Schwarzschild spacetime, if insistent upon the use of EH , our only
choice of foliation increasing to the massM is to foliate with time symmetric
spheres. Not only is this flow highly specialized, it dictates strong restrictions
on our initial choice of Σ. This is to be expected of a quasi-local energy as
mentioned in Section 1.1 due to its inherent sensitivity to boosts in our
abstract reference frame along the flow. In the next Section, with the proof
of Theorem 1.7, we show that appealing to the mass m(Σ) instead of energy
we produce a non-decreasing quantity along any null flow off of a doubly
convex 2-sphere.
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3. Propagation of ρ

Our convention for constructing the Riemann curvature tensor is:

RXY Z := D[X,Y ]Z − [DX , DY ]Z.

Given an orthonormal frame field {E0, E1, E2, E3}, whereby ⟨Ei, Ei⟩ = ϵi for
ϵ0 = −ϵi>0 = −1, the Ricci 2-tensor is given by

Ric(X,Y ) =

3
∑

i=0

ϵi⟨RXEi
Y,Ei⟩,

and the Ricci Scalar by R =
∑3

i=0 ϵiRic(Ei, Ei). In this section we will work
towards proving Theorem 1.7 by finding the propagation of our flux function
ρ along an arbitrary null flow.

3.1. Setup

We adopt the same setup as in [23] which we summarize here in order to
introduce our notation:

Suppose Ω is a smooth connected, null hypersurface embedded in
(M, ⟨·, ·⟩). Here we let

¯
L be a smooth, non-vanishing, null vector field of

Ω,
¯
L ∈ Γ(TΩ). It’s a well known fact (see, for example, [10]) that the inte-

gral curves of
¯
L are pre-geodesic so we’re able to find κ ∈ F(Ω) such that

D
¯
L
¯
L = κ

¯
L. We assume the existence of an embedded 2-sphere Σ in Ω such

that any integral curve of
¯
L intersects Σ precisely once. As previously used,

we will refer to such Σ as cross sections of Ω. This gives rise to a natu-
ral submersion π : Ω → Σ sending p ∈ Ω to the intersection with Σ of the
integral curve γ¯

L
p of

¯
L for which γ¯

L
p (0) = p. Given

¯
L and a constant s0 we

may construct a function s ∈ F(Ω) from
¯
L(s) = 1 and s|Σ = s0. For q ∈ Σ, if

(s−(q), s+(q)) represents the range of s along γ¯
L
q then letting S− = supΣ s−

and S+ = infΣ s+ we notice that the interval (S−, S+) is non-empty.
Given that

¯
L(s) = 1 the Implicit Function Theorem gives for t ∈ (S−, S+)

that Σt := {p ∈ Ω|s(p) = t} is diffeomorphic to S
2 through Σ. For s < S−

or s > S+, in the case that Σs is non-empty, although smooth it may no
longer be connected. We have that the collection {Σs} gives a foliation
of Ω.We construct another null vector field L by assigning at every p ∈ Ω
L|p ∈ TpM be the unique null vector satisfying ⟨

¯
L,L⟩ = 2 and ⟨L, v⟩ = 0 for

any v ∈ TpΣs(p). As before each Σs is endowed with an induced metric γs,

two null second fundamental forms
¯
χ
s
= −⟨I⃗I,

¯
L⟩ and χs = −⟨I⃗I, L⟩ as well
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Σs0

Σs2

Σs3

Σs1

Ω

L

¯
L

s3 < s2 < S− < s0 < S+ < s1

as the connection 1-form (or torsion) ζs(V ) = 1
2⟨DV

¯
L,L⟩. We will need the

following known result (see, for example [32]):

Lemma 3.1. Given V ∈ Γ(TΣs),

DV
¯
L = ⃗

¯
χ
s
(V ) + ζs(V )

¯
L

DV L = χ⃗s(V )− ζs(V )L

D
¯
LL = −2ζ⃗s − κL

where, given V,W ∈ Γ(TΣs), the vector fields ζ⃗s, ⃗
¯
χ
s
(V ), χ⃗s(V ) ∈ Γ(TΣs)

are uniquely determined by ⟨ζ⃗s, V ⟩ = ζs(V ), ⟨⃗
¯
χ
s
(V ),W ⟩ =

¯
χ
s
(V,W ), and

similarly for χ⃗s.

Proof. It suffices to check all identities agree by taking the metric inner
product with vectors

¯
L,L and an extension W satisfying W |Σs

∈ Γ(TΣs)
keeping in mind that [

¯
L,W ]|Σs

∈ Γ(TΣs). We leave this verification to the
reader. □

For any cross section Σ of Ω and v ∈ Tq(Σ) we may extend v along the

generator γ¯
L
q according to

V̇ (s) = DV (s)¯
L

V (0) = v.

Since x ∈ TpΩ ⇐⇒ ⟨
¯
L|p, x⟩ = 0 we see from the fact that

˙(⟨V (s),
¯
L⟩) = ⟨DV (s)¯

L,
¯
L⟩+ κ⟨V (s),

¯
L⟩ = 1

2
V (s)⟨

¯
L,

¯
L⟩+ κ⟨V (s),

¯
L⟩

= κ⟨V (s),
¯
L⟩
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and ⟨V (0),
¯
L⟩ = 0 we can solve to get ⟨V (s),

¯
L⟩ = 0 for all s. As a result any

section W ∈ Γ(TΣ) is extended to all of Ω satisfying [
¯
L,W ] = 0. We also

notice along each generator 0 = [
¯
L,W ]s =

¯
L(Ws) = Ẇs such thatWs|Σ = 0

forces Ws = 0 on all of Ω. We conclude that W |Σs
∈ Γ(TΣs) and denote by

E(Σ) ⊂ Γ(TΩ) the set of such extensions off of Σ along
¯
L. We also note that

linear independence is preserved along generators by standard uniqueness
theorems allowing us to extend basis fields {X1, X2} ⊂ Γ(TΣ) off of Σ as
well.

3.2. The structure equations

We will need to propagate the Christoffel symbols with the following known
result (see, for example [32]):

Lemma 3.2. Given U, V,W ∈ E(Σ),

⟨[
¯
L, /∇VW ], U⟩ = ( /∇V

¯
χ
s
)(W,U) + ( /∇W

¯
χ
s
)(V,U)− ( /∇U

¯
χ
s
)(V,W )

where /∇ the induced covariant derivative on each Σs.

We extend the tensors γs,
¯
χ
s
, χs, ζs to tensors on Ω in the natural way,

specifically, for any X,Y ∈ Γ(TΩ):

γ(X,Y ) := ⟨X,Y ⟩,
¯
χ(X,Y ) := ⟨DX

¯
L, Y ⟩

χ(X,Y ) := ⟨DXL, Y ⟩, ζ(X) :=
1

2
⟨DX

¯
L,L⟩.

Given any basis extension {X1, X2} ⊂ E(Σ), we define Tij := T (Xi, Xj) for
any 2-tensor T of Ω. Assuming Einstein’s summation convention, we then
uniquely define the components γij with the specification γikγkj = δij (δij
the usual Kronecker delta components). Therefore, we may also extend the
metric inverse of γs with γ

−1 := γijXi ⊗Xj .
We wish to understand the propagation of the above tensors along {Σs}.

To that end, for any tensor T on Ω we denote by Ts the restriction to
the appropriate bundle over the leaf Σs, observing that (γ)s = γs, (

¯
χ)s =

¯
χ
s
, (χ)s = χs, and (ζ)s = ζs.
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Proposition 3.3 (Structure Equations).

¯
LK = − tr

¯
χ
s
K − 1

2
/∆tr

¯
χ
s
+ /∇ · ( /∇ · ˆ

¯
χ
s
)(3.1)

(L
¯
Lγ)s = 2

¯
χ
s

(3.2)

(L
¯
L
¯
χ)s = −

¯
αs +

1

2
|ˆ
¯
χ
s
|2γs + tr

¯
χ
s
ˆ
¯
χ
s
+

1

4
(tr

¯
χ
s
)2γs + κ

¯
χ
s

(3.3)

¯
L tr

¯
χ = −1

2
(tr

¯
χ
s
)2 − |ˆ

¯
χ
s
|2 −G(

¯
L,

¯
L) + κ tr

¯
χ
s

(3.4)

(L
¯
Lχ)s =

(

K + ˆ
¯
χ
s
· χ̂s +

1

2
G(

¯
L,L)

)

γs +
1

2
tr
¯
χ
s
χ̂s +

1

2
trχs ˆ

¯
χ
s

(3.5)

− Ĝ− 2S( /∇ζs)− 2ζs ⊗ ζs − κχs

¯
L trχ = G(

¯
L,L) + 2K − 2 /∇ · ζs − 2|ζs|2 − ⟨H⃗, H⃗⟩ − κ trχs(3.6)

(L
¯
Lζ)s = G

¯
L − /∇ · ˆ

¯
χ
s
− tr

¯
χ
s
ζs +

1

2
/d tr

¯
χ
s
+ /dκ(3.7)

where
¯
αs(V,W ) := ⟨R

¯
LV

¯
L,W ⟩, S(T ) is the symmetric part of a 2-tensor T ,

G
¯
L(V ) := G(

¯
L, V ), and Ĝ(V,W ) := G(V,W )− 1

2(tr γsG)⟨V,W ⟩.

Proof. All the identities above are obtained by taking the
¯
L derivative of the

appropriate tensor components under a basis extension {X1, X2} ⊂ E(Σ).
For (3.1)-(3.3) we refer the reader to [32], and for non-vacuum, (3.4)-(3.7)
can be found in [13]. □

From Proposition 3.1 we have the propagation of the Gauss curvature, for
the other terms in the definition of ρ, first we extend the torsion τs to τ =
ζ − d log tr

¯
χ, and recall ⟨H⃗, H⃗⟩s = tr

¯
χ
s
trχs. By a slight abuse of notation,

we omit subscripts where the meaning is clear from context:

Corollary 3.4. For {Σs} expanding along
¯
L = σL− we have,

(L
¯
Lτ)s =− στ − /∇ · (σχ̂−) + σGL− + /d

(

σ(|χ̂−|2 +G(L−, L−))
)

¯
L/∇ · τs =− 2σ /∇ · τ + /∆

(

σ(|χ̂−|2 +G(L−, L−))
)

− 2 /∇ · (σχ̂− · τ)
+ /∇ · (σGL−)− τ( /∇σ)− /∇ · /∇ · (σχ̂−)

¯
L⟨H⃗, H⃗⟩ =− σ

(

⟨H⃗, H⃗⟩(|χ̂−|2 +G(L−, L−))−G(L−, L+) + 2|τ |2
)

− 3

2
σ⟨H⃗, H⃗⟩ − 2σ /∇ · τ + 2σK − 2 /∆σ − 4τ( /∇σ)
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Proof. By combining (3.4) and (3.7):

(L
¯
L(ζ − d log tr

¯
χ))s = (L

¯
Lζ)s − /d

¯
L log tr

¯
χ

= G
¯
L − /∇ · ˆ

¯
χ− tr

¯
χζ +

1

2
/d tr

¯
χ+ /dκ

− /d
(

− 1

2
tr
¯
χ−

|ˆ
¯
χ|2 +G(

¯
L,

¯
L)

tr
¯
χ

+ κ
)

= − tr
¯
χ(ζ − /d log tr

¯
χ)− /∇ · ˆ

¯
χ+G

¯
L + /d

|ˆ
¯
χ|2 +G(

¯
L,

¯
L)

tr
¯
χ

.

The first result follows as soon as we switch to the inflation basis {L−, L+}.
For the second, we note that for any 1-form η on Ω we have a 2-tensor /∇ηs
on Σs. We extend this 2-tensor to all of Ω by extending /∇ηs trivially to all
of TΩ|Σs

for each s. Assuming V,W ∈ E(Σ) we therefore have,

L
¯
L( /∇ηs)(V,W ) =

¯
L(( /∇V ηs)(W )) = V

¯
Lηs(W )−

¯
Lηs( /∇VW )

= V (L
¯
Lη)s(W )− (L

¯
Lη)s( /∇VW )− η([

¯
L, /∇VW ])

= /∇V (L
¯
Lη)s(W )− η([

¯
L, /∇VW ]).

For the inverse metric tensor γ−1, we observe with the aid of a basis ex-
tension that

¯
Lγij = −γik(

¯
Lγkl)γ

lj so that 3.2 gives L
¯
Lγ

−1 = −2
¯
χijXi ⊗Xj

(raising indices with γij). Therefore, denoting by Cab contraction between
the contravariant a-th and covariant b-th slots we find

¯
L( /∇ · ηs) = C1

1C
2
2 (L

¯
Lγ

−1 ⊗ /∇ηs + γ−1 ⊗ L
¯
L( /∇ηs))

= −2
¯
χ · /∇ηs + tr(L

¯
L /∇ηs)

= −2(ˆ
¯
χ+

1

2
tr
¯
χγ) · /∇ηs + /∇ · (L

¯
Lη)s − η(2 ⃗/∇ · ˆ

¯
χ)

where the last term comes from Lemma 3.2 after taking a trace over V,W .
We conclude that

¯
L( /∇ · ηs) = − tr

¯
χ/∇ · ηs − 2 /∇ · (ˆ

¯
χ · ηs) + /∇ · (L

¯
Lη)s.

The second equality of the corollary now straight forwardly follows from the

first by setting η = τ . For the final equality, since trχ = ⟨H⃗,H⃗⟩
σ we have from
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(3.6)

¯
L
⟨H⃗, H⃗⟩
σ

= G(L−, L+) + 2K − 2 /∇ · τ − 2 /∆ log σ − 2|τ |2 − 2|/d log σ|2

− 4τ( /∇ log σ)− ⟨H⃗, H⃗⟩ − κ
⟨H⃗, H⃗⟩
σ

and also from (3.4)

¯
L
⟨H⃗, H⃗⟩
σ

=
1

σ ¯
L⟨H⃗, H⃗⟩ − 1

σ2
⟨H⃗, H⃗⟩

(

− 1

2
σ2 − σ2(|χ̂−|2 +G(L−, L−)) + κσ

)

.

The result follows as soon as we combine these formulae and solve for

¯
L⟨H⃗, H⃗⟩ making use of the substitution

/∆σ

σ
= /∆ log σ + |/d log σ|2.

□

Theorem 3.5 (Propagation of ρ). Assuming {Σs} is expanding along
the flow vector

¯
L = σL− we conclude that

¯
Lρ+

3

2
σρ =

σ

2

(1

2
⟨H⃗, H⃗⟩

(

|χ̂−|2 +G(L−, L−)
)

+ |τ |2 − 1

2
G(L−, L+)

)

+ /∆
(

σ(|χ̂−|2 +G(L−, L−))
)

− 2 /∇ · (σχ̂− · τ) + /∇ · (σGL−)

Proof. From Proposition 3.3 and Corollary 3.4 the proof reduces to a simple
exercise in algebraic manipulation

¯
Lρ =

¯
LK − 1

4 ¯
L⟨H⃗, H⃗⟩+

¯
L/∇ · τ

= −σK − 1

2
/∆σ + /∇ · /∇ · (σχ̂−)

+
σ

2

(1

2
⟨H⃗, H⃗⟩(|χ̂−|2 +G(L−, L−))− 1

2
G(L−, L+) + |τ |2

)

+
3

2
σ
1

4
⟨H⃗, H⃗⟩+ σ

2
/∇ · τ − 1

2
σK +

1

2
/∆σ + τ( /∇σ)

− 2σ /∇ · τ + /∆
(

σ(|χ̂−|2 +G(L−, L−))
)

− 2 /∇ · (σχ̂− · τ)
+ /∇ · (σGL−)− τ( /∇σ)− /∇ · /∇ · (σχ̂−)
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=
σ

2

(1

2
⟨H⃗, H⃗⟩

(

|χ̂−|2 +G(L−, L−)
)

+ |τ |2 − 1

2
G(L−, L+)

)

+ /∆
(

σ(|χ̂−|2 +G(L−, L−))
)

− 2 /∇ · (σχ̂− · τ) + /∇ · (σGL−)

− σ
3

2
(K − 1

4
⟨H⃗, H⃗⟩+ /∇ · τ)

□

Corollary 3.6. For {Σs} expanding along the flow vector
¯
L = σL− and

any u ∈ F(Σs)

∫

Σs

eu
(

¯
Lρ+

3

2
σρ

)

dA =

∫

Σs

σeu
((

|χ̂−|2 +G(L−, L−)
)(1

4
⟨H⃗, H⃗⟩+ /∆u

)

+
1

2
|2χ̂− · /du+ τ |2 +G(L−, | /∇u|2L− − /∇u− 1

4
L+)

)

dA

Proof. We start by integrating by parts on the last three terms of Theorem
3.5
∫

eu
(

/∆(σ(|χ̂−|2 +G(L−, L−)))− 2 /∇ · (σχ̂− · τ) + /∇ · (σGL−)
)

dA

=

∫

σeu
(

e−u( /∆eu)(|χ̂−|2 +G(L−, L−)) + 2χ̂−( /∇u, τ⃗)−G(L−, /∇u)
)

dA

=

∫

σeu
(

( /∆u+ | /∇u|2)(|χ̂−|2 +G(L−, L−)) + 2χ̂−( /∇u, τ⃗)−G(L−, /∇u)
)

dA

=

∫

σeu
(

(|χ̂−|2 +G(L−, L−)) /∆u+ |χ̂−|2| /∇u|2 + 2ˆ
¯
χ( /∇u, τ⃗)

+G(L−, | /∇u|2L− − /∇u)
)

dA.

As a result
∫

eu
(

¯
Lρ+

3

2
σρ

)

dA =

∫

σeu
(

(|χ̂−|2 +G(L−, L−))
(1

4
⟨H⃗, H⃗⟩+ /∆u

)

+ |χ̂−|2| /∇u|2 + 2χ̂−( /∇u, τ⃗) + 1

2
|τ |2 +G(L−, | /∇u|2L− − /∇u− 1

4
L+)

)

dA.

Since χ̂− is symmetric and trace-free it follows that |χ̂− · /du|2 = 1
2 |χ̂−|2| /∇u|2

from which the first three terms of the second line simplifies to give

|χ̂−|2| /∇u|2 + 2χ̂−( /∇u, τ⃗) + 1

2
|τ |2 = 1

2
|2χ̂− · /du+ τ |2

□
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Remark 3.7. An interesting consequence of the above corollary in space-
times satisfying the dominant energy condition is the fact that any u ∈ F(Σ)
gives

∫

eu
(

¯
Lρ+

3

2
σρ

)

dA ≥
∫

σeu(|χ̂−|2 +G(L−, L−))
(1

4
⟨H⃗, H⃗⟩+ /∆u

)

dA

The proof of Theorem 1.7 is a simple consequence of the following corollary:

Corollary 3.8. Assuming {Σs} is expanding along the flow vector
¯
L = σL−

with each Σs of non-zero flux (|ρ(s)| > 0) then

d

ds

∫

Σs

ρ
2

3dA =

∫

Σs
¯
Lρ

2

3 + σρ
2

3dA

=
2

3

∫

Σ

σ

ρ
1

3

((

|χ̂−|2 +G(L−, L−)
)(1

4
⟨H⃗, H⃗⟩ − 1

3
/∆ log |ρ|

)

+
1

2

∣

∣

∣

2

3
χ̂− · /d log |ρ| − τ

∣

∣

∣

2
+G(L−,

1

9
| /∇ log |ρ||2L−

+
1

3
/∇ log |ρ| − 1

4
L+)

)

dA

Proof. From the first variation of Area formula

¯
LdA = −⟨H⃗,

¯
L⟩dA = −σ⟨H⃗, L−⟩dA = σdA

we get the first equality. For the second we apply Corollary 3.6 with eu =
2
3 |ρ|−

1

3 , canceling the sign in the case that ρ < 0. □

3.3. Case of equality

Theorem 3.9. Let Ω be a null hypersurface in a spacetime satisfying the
dominant energy condition with vector field

¯
L tangent to the null generators

of Ω. Suppose {Σs} is an expanding and strict doubly convex foliation defined
as the level sets of a function s : Ω → R satisfying

¯
L(s) = 1 and dm

ds = 0.
Then all foliations achieve equality, moreover, we find an affine level set
function r ∈ F(Ω) with r0 := r|Σs0

◦ π such that any surface Σ := {r = ω ◦
π}, for ω ∈ F(Σs0), has data:

γ = ω2γ0,
¯
χ = ωγ0, tr

¯
χ =

2

ω
,

trχ =
2

ω
(K0 −

r0
ω

− ω2 /∆ logω), ζ = −/d logω, ρ =
r0
ω3
.
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where r20γ0 is the metric on Σs0 and K0 the Gaussian curvature associated
to γ0. In case trχ|Σs0

= 0 our data corresponds with the standard null cone
in Schwarzschild spacetime of mass M = r0

2 .

Proof. Without loss of generality we assume s0 = 0. Immediately from Corol-
lary 3.8 we conclude for this particular foliation that

|χ̂−|2 +G(L−, L−) = 0

|2
3
χ̂− · /d log ρ− τ |2 = 0

G(L−,
1

9
| /∇ log ρ|2L− +

1

3
/∇ log ρ− 1

4
L+) = 0.

So from the first equality we have both χ̂− = 0 and G(L−, L−) = 0. Com-
bined with the second equality we conclude that τ = 0 for this particular
foliation and therefore Corollary 3.4 ensures that GL− = 0 as well. Finally,
we may therefore utilize the final equality to conclude also that G(L+, L−)
= 0 so that, for any p ∈ Ω and any X ∈ TpM , we have

G(L−, X) = 0.

From this and Corollary 3.4 we have for any foliation off of Σ0 generated by
some

¯
La (a > 0) that

L
¯
La
τa + aστa = 0.

Given that τa|Σ0
= τ |Σ0

= 0 this enforces τa = 0 by standard uniqueness
theorems.
We recognise this implies the case of equality for all foliations so without
loss of generality we assume that

¯
L is geodesic. We are now in a position to

show that the flux ρ ∈ F(Ω) is independent of the foliation from which it is
constructed. In particular, for any a > 0, foliating off of Σ0 along the vector
field

¯
La will construct a ρa which we would like to show agrees pointwise on

Ω with ρ.
From Theorem 3.5 we have

¯
Lρ = −3

2
tr
¯
χρ = 3ρ

¯
L log tr

¯
χ

so for any p ∈ Ω, solving this ODE along the geodesic γ¯
L
π(p)(s) gives

ρ ◦ s(p)
ρ(0)

=
(tr

¯
χ(p)

tr
¯
χ(0)

)3
.
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For the vector field
¯
La, Theorem 3.5 gives

¯
Laρa = −3

2
tr
¯
χaρa = 3ρa(

¯
La log tr

¯
χa − κa)

= 3ρa
¯
La(log tr

¯
χa − log a)

= 3ρa
¯
La(log tr

¯
χ)

where the penultimate line comes from the fact that κa
¯
La = D

¯
La¯
La = a

¯
L(a)

¯
L

=
¯
La(log a)

¯
La, and the final line from the fact that tr

¯
χa = a tr

¯
χ. Solving

this ODE along the pregeodesic γ¯
La

π(p)(t), we have

ρa ◦ t(p)
ρa(0)

=
(tr

¯
χ(p)

tr
¯
χ(0)

)3
=
ρ ◦ s(p)
ρ(0)

.

Since we’re foliating off of Σ0 in both cases, and ρ|Σ0
is independent of our

choice of null basis, we have ρ(p) = ρa(p) as desired.
We therefore define the functions r0 and r according to

1

r20
= ρ|Σs0

,
r0 ◦ π
r3

= ρ

(i.e. r|Σ0
= r0) so that Theorem 3.5 gives−3 r0◦πr4 ¯

La(r) =
¯
La(ρ) = −3

2 tr
¯
χaρ =

−3
2 tr

¯
χa

r0◦π
r3 and therefore

¯
La(r) =

1
2 tr

¯
χar. It follows that if we scale

¯
L such

that tr
¯
χ|Σ0

= 2
r0

then
¯
L(tr

¯
χr) = −1

2(tr
¯
χ)2r + tr

¯
χ(12 tr

¯
χr) = 0 implies that

tr
¯
χ = 2

r and
¯
L(r) = 1. So r is in fact our level set function. For r20γ0 the

metric on Σ0, by Lie dragging γ0 along
¯
L to all of Ω we have

L
¯
L(r

2γ0) = 2rγ0 =
2

r
(r2γ0) = tr

¯
χ(r2γ0).

So from (3.2), L
¯
L(r

2γ0 − γ) = tr
¯
χ(r2γ0 − γ) and r20γ0 − γ(r0) = 0 giving

γ(r) = r2γ0 by uniqueness. We conclude that for any 0 ≤ ω ∈ F(Σ0) the
cross-section Σ := {r = ω ◦ π} has metric γω = γ(r)|Σ = ω2γ0 with Gaus-
sian curvature Kω = 1

ω2K0 − /∆ logω. Moreover,

r0 ◦ π
ω3

= ρω = Kω − 1

4
⟨H⃗, H⃗⟩

=
1

ω2
K0 − /∆ logω − 1

2ω
trχω
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having used the fact that ρω = ρ|Σ (from independence of foliation) in the
first line and tr

¯
χω = tr

¯
χ|Σ in the second. We conclude that,

trχω =
2

ω
(K0 −

r0 ◦ π
ω

− ω2 /∆ logω).

In the case that trχ|Σ0
= 0 the strict doubly convex condition forces 1

r20
= ρ|Σ0

to be constant by way of the maximum principle. From our expression for
trχr0 we conclude that K0 = 1 and therefore γ0 is a round metric on S

2. □

Remark 3.10. We bring to the attention of the reader that due the lack
of information regarding the term Ĝ in (3.5) we are unable to conclude with
any knowledge of the datum χ on Σ. In the case of vacuum, this no longer
poses a problem, and one is able to correlate χ|Σ with χ|Σr0

as shown by
Sauter ([32], Lemma 4.3).

4. Foliation comparison

In this section we show how the flux function ρ of an arbitrary cross section
of Ω decomposes in terms of the flux of the background foliation. With the
appropriate asymptotic decay on Ω this allows us to prove Theorem 1.9. We
will need to adapt the Gauss and Codazzi equations (see, for example [25])
to the normal basis {

¯
L,L}:

Proposition 4.1. Suppose Σ is a co-dimension 2 semi-Riemannian sub-
manifold of Mn+1 that locally admits a normal null basis {

¯
L,L}, ⟨

¯
L,L⟩ = 2.

Then,

(n− 1)K − n− 2

n− 1
⟨H⃗, H⃗⟩+ ˆ

¯
χ · χ̂ = −R− 2G(

¯
L,L)− 1

2
⟨R

¯
LL

¯
L,L⟩

(4.1)

/∇ · ˆ
¯
χ(V )− ˆ

¯
χ(V, ζ⃗) +

n− 2

n− 1
tr
¯
χζ(V )− n− 2

n− 1
V tr

¯
χ = G(V,

¯
L)− 1

2
⟨R

¯
LV L,

¯
L⟩

(4.2)

for V ∈ Γ(TΣ) and (n− 1)K the scalar curvature of Σ.

4.1. Additional setup

We follow once again the construction of [23] starting with a background foli-
ation as constructed in Section 3 off of an initial cross-section Σs0 . As before,
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each Σs allows a null basis {
¯
L, l} such that ⟨

¯
L, l⟩ = 2. Also from section 3

we have the diffeomorphism p 7→ (π(p), s(p)) of Ω onto its image. There-
fore any cross-section with associated embedding Φ : S2 → Ω is equivalently
realized with the map Φ̃ = (π, s) ◦ Φ. Expressing the component functions
Ψ := π ◦ Φ and ω := s ◦ Φ we recognize that Ψ : S2 → Σs0 is a diffeomor-
phism and therefore the embedding Φ : S2 → Ω is uniquely characterized
as a graph over Σs0 with graph function ω ◦Ψ−1. Without confusion we
will simply denote the graph function by ω and it’s associated cross section
by Σω.

Ω

ω

Σs0
l

¯
L

L
Σω

q Σs(q)¯
L

We wish to compare both the intrinsic and extrinsic geometry of Σω at a
point q with the geometry of the surface Σs(q). We extend ω to all of Ω in the
usual way by imposing it be constant along generators of

¯
L, in other words,

ω(p) := (ω ◦ π)(p). For the extrinsic geometry of Σω we have the null-normal
basis {

¯
L,L} whereby L is given by the conditions ⟨

¯
L,L⟩ = 2 and ⟨V, L⟩ = 0

for any V ∈ Γ(TΣω). As before, Σω has second fundamental form decom-
posing into the null components

¯
χ (associated to

¯
L) and χ (associated to

L) with torsion ζ. For each Σs we equivalently decompose the second fun-
damental form into the components K (associated to

¯
L) and Q (associated

to l) with torsion t. We will denote the induced covariant derivative on Σs
by ∇ and on Σω by /∇. The following lemma is known ([23],[32]):

Lemma 4.2. Given q ∈ Σω ∩ Σs(q) the map given by

Tω : TqΣs(q) → TqΣω where v → ṽ := v + vω
¯
L

is a well defined isomorphism with natural extension E(Σs0) → E(Σω). More-
over,

γω(Ṽ, W̃ ) = γs(V,W ),
¯
χ(Ṽ, W̃ ) = K(V,W ),

ζ(Ṽ ) = t(V )−K(V,∇ω) + κ⟨V,∇ω⟩,
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χ(Ṽ, W̃ ) = Q(V,W )− 2t(V )⟨W,∇ω⟩ − 2t(W )⟨V,∇ω⟩ − |∇ω|2K(V,W )

− 2Hω(V,W ) + 2K(V,∇ω)⟨W,∇ω⟩+ 2K(W,∇ω)⟨V,∇ω⟩
− 2κ⟨V,∇ω⟩⟨W,∇ω⟩,

trχ = trQ− 4t(∇ω)− 2(∆ω − 2K̂(∇ω,∇ω)) + trK|∇ω|2 − 2κ|∇ω|2.

From Lemma 4.2, it follows that

L = l − |∇ω|2
¯
L− 2∇ω

since it is null, perpendicular to Tω(v) for any v ∈ TqΣs(q), and satisfies
⟨
¯
L, l − |∇ω|2

¯
L− 2∇ω⟩ = ⟨

¯
L, l⟩ = 2. We are now ready to prove our first

main result of this section. On Σω we will denote the flux function (1.1)
by /ρ, and on Σs, by ρ. The following theorem provides comparison between
the two:

Theorem 4.3 (Flux Comparison Theorem). At any q ∈ Σω ∩ Σs we
have

/ρ = ρ+ /∇ ·
( |K̂|2 +G(

¯
L,

¯
L)

trK
/∇ω

)

+
1

2

(

|K̂|2 +G(
¯
L,

¯
L)

)

|∇ω|2

+∇ω |K̂|2 +G(
¯
L,

¯
L)

trK
+G(

¯
L,∇ω)− 2K̂ (⃗t−∇ log trK,∇ω)

Remark 4.4. Revisiting Theorem 3.9 and the case that ˆ
¯
χ = G(

¯
L, ·) = 0,

Theorem 4.3 provides an alternative proof that /ρ agrees with ρ point wise.

Proof. When used, we assume V,W,U ∈ E(Σs0)( =⇒ Ṽ, W̃, Ũ ∈ E(Σω)). We
will need to know how to relate the covariant derivatives between the two
surfaces so first a lemma

Lemma 4.5. Tω

(

∇VW + V ωK⃗(W ) +WωK⃗(V )−K(V,W )∇ω
)

= /∇Ṽ W̃

Proof. Since /∇Ṽ W̃ |q = (S + Sω
¯
L)|q = Tω(S|q) for some S ∈ Γ(TΣs(q)) it fol-

lows that ⟨ /∇Ṽ W̃, U⟩ = ⟨S,U⟩ for any U ∈ E(Σs0). We find

⟨ /∇Ṽ W̃, U⟩ = ⟨DṼ W̃ +
1

2¯
χ(Ṽ, W̃ )L+

1

2
χ(Ṽ, W̃ )

¯
L,U⟩

= ⟨DṼ W̃, U⟩+ 1

2
K(V,W )⟨L,U⟩

= Ṽ ⟨W,U⟩ − ⟨W̃,DṼ U⟩+ 1

2
K(V,W )⟨l − |∇ω|2

¯
L− 2∇ω,U⟩
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= (V + V ω
¯
L)⟨W,U⟩ − ⟨W +Wω

¯
L,DV+V ω

¯
LU⟩ −K(V,W )Uω

= V ⟨W,U⟩+ 2V ωK(W,U)−
(

⟨W,∇V U⟩+ V ωK(W,U)−WωK(V,U)
)

−K(V,W )Uω

=
(

V ⟨W,U⟩ − ⟨W,∇V U⟩
)

+K(W,U)V ω +K(V,U)Wω −K(V,W )Uω

= ⟨∇VW + V ωK⃗(W ) +WωK⃗(V )−K(V,W )∇ω,U⟩

so S = ∇VW + V ωK⃗(W ) +WωK⃗(V )−K(V,W )∇ω since E(Σs0)|Σs(q)

= Γ(TΣs(q)). □

Now we proceed with the proof of Theorem 4.3 in 3 parts:

STEP 1: Comparison between /∇ · ζ and ∇ · t:

From Lemmas 4.2 and 4.5 we have

( /∇Ṽ ζ)(W̃ ) = Ṽ (ζ(W̃ ))− ζ( /∇Ṽ W̃ )

= (V + V ω
¯
L)

(

t(W )−K(W,∇ω) + κ⟨W,∇ω⟩
)

− t
(

∇VW + V ωK⃗(W ) +WωK⃗(V )−K(V,W )∇ω
)

+K
(

∇VW + V ωK⃗(W ) +WωK⃗(V )−K(V,W )∇ω,∇ω
)

− κ⟨∇VW + V ωK⃗(W ) +WωK⃗(V )−K(V,W )∇ω,∇ω⟩.

Isolating the terms of the second line we get

(V + V ω
¯
L)(t(W )−K(W,∇ω) + κWω)

= V t(W ) + V ω
(

G
¯
L(W )−∇ · K̂(W )− trKt(W ) +

1

2
W trK +Wκ

)

− V K(W,∇ω)− V ω(L
¯
LK)(W,∇ω)− V ωK(W, [

¯
L,∇ω])

+ V κWω + κVWω + V ω
¯
LκWω

where (3.7) was used to give the first line. To continue we’ll need an expres-
sion for [

¯
L,∇ω], so we use (3.2):

2K(∇ω, V ) = (L
¯
Lγs)(∇ω, V ) =

¯
L⟨∇ω, V ⟩ − ⟨[

¯
L,∇ω], V ⟩

=
¯
LV ω − ⟨[

¯
L,∇ω], V ⟩ = −⟨[

¯
L,∇ω], V ⟩

since [
¯
L,∇ω] ∈ Γ(TΣs), we conclude that [

¯
L,∇ω] = −2K⃗(∇ω). Substitu-

tion back into our calculation and using (3.3) (specifically L
¯
LK(V,W ) =
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−
¯
α(V,W ) + ⟨K⃗(V ), K⃗(W )⟩+ κK(V,W )) gives

(V + V ω
¯
L)(t(W )−K(W,∇ω) + κWω) = V t(W )− V K(W,∇ω)

+ V ω
(

G
¯
L(W )−∇ · K̂(W )− trKt(W ) +

1

2
W trK +

¯
α(W,∇ω)

+ ⟨K⃗(W ), K⃗(∇ω)⟩
)

+ V ωWκ− κV ωK(W,∇ω) + V κWω + κVWω +
¯
LκV ωWω.

Collecting terms we get

( /∇Ṽ ζ)(W̃ ) = V t(W )− t(∇VW ) +K(∇VW,∇ω)− V K(W,∇ω)

+ V ω
(

G
¯
L(W )−∇ · K̂(W )− trKt(W ) +

1

2
W trK +

¯
α(W,∇ω)

+ ⟨K⃗(W ), K⃗(∇ω)⟩
)

− V ωK(W, t⃗)−WωK(V, t⃗) +K(V,W )t(∇ω)
+ V ω⟨K⃗(W ), K⃗(∇ω)⟩+Wω⟨K⃗(V ), K⃗(∇ω)⟩ −K(V,W )K(∇ω,∇ω)
+ V ωWκ− κV ωK(W,∇ω) + V κWω + κVWω +

¯
LκV ωWω

− κ∇VWω − κV ωK(W,∇ω)− κWωK(V,∇ω) + κK(V,W )|∇ω|2.

So taking a trace over V and W

/∇ · ζ = ∇ · t−∇ · (K⃗(∇ω))
+
(

G
¯
L(∇ω)− (∇ · K̂)(∇ω)− trKt(∇ω)

+
1

2
∇ω trK +

¯
α(∇ω,∇ω) + |K⃗(∇ω)|2

)

− 2K(∇ω, t⃗) + trKt(∇ω) + 2|K⃗(∇ω)|2 − trKK(∇ω,∇ω)
+ 2∇ωκ− 3κK(∇ω,∇ω) + κ∆ω +

¯
Lκ|∇ω|2 + κ trK|∇ω|2

= ∇ · t−
(

∇ · (K⃗(∇ω)) + (∇ · K̂)(∇ω)− 1

2
∇ω trK

)

− 2
(

K(∇ω, t⃗)− 1

2
trKt(∇ω)

)

+ 3|K⃗(∇ω)|2 − trKK(∇ω,∇ω) +G
¯
L(∇ω)− trKt(∇ω) +

¯
α(∇ω,∇ω)

+ 2∇ωκ− 3κK̂(∇ω,∇ω) + κ∆ω +
¯
Lκ|∇ω|2 − 1

2
κ trK|∇ω|2

= ∇ · t−
(

2(∇ · K̂)(∇ω) +Hω ·K
)

− 2K̂(∇ω, t⃗) + 3|K⃗(∇ω)|2

− trKK(∇ω,∇ω) +G
¯
L(∇ω)− trKt(∇ω) +

¯
α(∇ω,∇ω)
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+ 2∇ωκ− 3κK̂(∇ω,∇ω) + κ∆ω +
¯
Lκ|∇ω|2 − 1

2
κ trK|∇ω|2

= ∇ · t− 2(∇ · K̂)(∇ω)−Hω · K̂ − 1

2
trK∆ω − 2K̂(∇ω, t⃗) + 3

2
|K̂|2|∇ω|2

+ 2 trKK̂(∇ω,∇ω) + 1

4
(trK)2|∇ω|2 +G

¯
L(∇ω)− trKt(∇ω)

+
¯
α(∇ω,∇ω) + 2∇ωκ− 3κK̂(∇ω,∇ω) + κ∆ω +

¯
Lκ|∇ω|2 − 1

2
κ trK|∇ω|2.

STEP 2: Comparison between /∇ · ζ − /∆ log tr
¯
χ and ∇ · t−∆ log trK:

Since tr
¯
χ = trK|Σω

we start by comparing /∆ log trK with ∆ log trK

H log tr
¯
χ(Ṽ, W̃ ) = ⟨ /∇Ṽ

/∇ log trK, W̃ ⟩ = Ṽ W̃ log trK − /∇Ṽ W̃ log trK

So isolating the first term we get

Ṽ W̃ log trK = (V + V ω
¯
L)(W +Wω

¯
L) log trK

= VW log trK + (VWω + V ωW +WωV )
¯
L log trK

+ V ωWω
¯
L
¯
L log trK

and then the second

/∇Ṽ W̃ log trK = (∇VW + V ωK⃗(W ) +WωK⃗(V )−K(V,W )∇ω) log trK
+ (∇VW + V ωK⃗(W ) +WωK⃗(V )−K(V,W )∇ω)ω

¯
L log trK

having used Lemma 4.5. Collecting terms

H log trK(Ṽ, W̃ ) = VW log trK −∇VW log trK

+ (VWω −∇VWω)
¯
L log trK + V ωWω

¯
L
¯
L log trK

−
(

V ωK(W,∇ log trK) +WωK(V,∇ log trK)

−K(V,W )⟨∇ω,∇ log trK⟩
)

+
(

K(V,W )|∇ω|2 − V ωK(W,∇ω)−WωK(V,∇ω)

+ V ωW +WωV
)

¯
L log trK.

So that a trace over V and W yields

/∆ log trK = ∆ log trK +∆ω
¯
L log trK + |∇ω|2

¯
L
¯
L log trK

− 2K̂(∇ω,∇ log trK)− 2K̂(∇ω,∇ω)
¯
L log trK + 2∇ω

¯
L log trK.
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We take the opportunity at this point of the calculation to bring to the
attention of the reader that we have not yet used any distinguishing char-
acteristics of the function log trK in comparison to an arbitrary f ∈ F(Ω).
In particular, we notice if f ∈ F(Ω) satisfies

¯
Lf = 0 switching with log trK

above yields the fact /∆f = ∆f − 2K̂(∇ω,∇f). As a result,

Lemma 4.6.

/∆g = ∆g + /∇ · (
¯
Lg /∇ω) +∇ω

¯
Lg − 2K̂(∇ω,∇g)

for any g ∈ F(Ω).

Proof. We have

/∆g = ∆g +∆ω
¯
Lg + |∇ω|2

¯
L
¯
Lg − 2K̂(∇ω,∇g)− 2K̂(∇ω,∇ω)

¯
Lg + 2∇ω

¯
Lg

= ∆g + (∆ω − 2K̂(∇ω,∇ω))
¯
Lg + (∇ω + |∇ω|2

¯
L)

¯
Lg

+∇ω
¯
Lg − 2K̂(∇ω,∇g)

= ∆g + /∆ω
¯
Lg + /∇ω

¯
Lg +∇ω

¯
Lg − 2K̂(∇ω,∇g)

= ∆g + /∇ · (
¯
Lg /∇ω) +∇ω

¯
Lg − 2K̂(∇ω,∇g)

having used the fact that
¯
Lω = 0 and the comment immediately preceding

the statement of Lemma 4.6 to get the third equality. □

Finishing up Step 2 we have

/∇ · ζ − /∆ log tr
¯
χ = ∇ · t−∆ log trK

− 2(∇ · K̂)(∇ω)−Hω · K̂ − 2K̂(∇ω, t⃗−∇ log trK)− trKt(∇ω)

+∇ω trK +
3

2
|K̂|2|∇ω|2 +G

¯
L(∇ω) +

¯
α(∇ω,∇ω)

−
(1

2
trK∆ω +∆ω

¯
L log trK

)

+
(1

4
(trK)2 −

¯
L
¯
L log trK

)

|∇ω|2

−
(

∇ω trK + 2∇ω
¯
L log trK

)

+ 2K̂(∇ω,∇ω)
(

trK +
¯
L log trK

)

+ 2∇ωκ− 3κK̂(∇ω,∇ω) + κ∆ω +
¯
Lκ|∇ω|2 − 1

2
κ trK|∇ω|2

=∇ · t−∆ log trK

− 2(∇ · K̂)(∇ω)−Hω · K̂ − 2K̂(∇ω, t⃗−∇ log trK)− trKt(∇ω)

+∇ω trK + |K̂|2|∇ω|2 +G
¯
L(∇ω) + ˆ

¯
α(∇ω,∇ω) + 1

2

(

|K̂|2 +G(
¯
L,

¯
L)

)

|∇ω|2

+
(

∆ω − 2K̂(∇ω,∇ω)
) |K̂|2 +G(

¯
L,

¯
L)

trK
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+
(

− 1

2
(|K̂|2 +G(

¯
L,

¯
L)− κ trK) +

¯
L
|K̂|2 +G(

¯
L,

¯
L)

trK

)

|∇ω|2

+ 2∇ω |K̂|2 +G(
¯
L,

¯
L)

trK
+ trKK̂(∇ω,∇ω)

− κK̂(∇ω,∇ω)− 1

2
κ trK|∇ω|2

=∇ · t−∆ log trK

− 2(∇ · K̂)(∇ω)−Hω · K̂ − 2K̂(∇ω, t⃗−∇ log trK)− trKt(∇ω)
+∇ω trK + |K̂|2|∇ω|2 +G

¯
L(∇ω) + ˆ

¯
α(∇ω,∇ω)

+ /∆ω
|K̂|2 +G(

¯
L,

¯
L)

trK
+

¯
L
|K̂|2 +G(

¯
L,

¯
L)

trK
|∇ω|2

+ 2∇ω |K̂|2 +G(
¯
L,

¯
L)

trK
+ trKK̂(∇ω,∇ω)− κK̂(∇ω,∇ω)

having used (3.4) to get the last two lines in the second equality, Lemma 4.6
to get ∆ω − 2K̂(∇ω,∇ω) = /∆ω in the second equality followed by cancel-

lation of the terms 1
2

(

|K̂|2 +G(
¯
L,

¯
L)

)

|∇ω|2 and 1
2κ trK|∇ω|2.

STEP 3: Comparison between /ρ and ρ:

If Σs has Gauss curvature C and mean curvature vector h⃗, we have from
(4.1)

K − 1

4
⟨H⃗, H⃗⟩+ 1

2
ˆ
¯
χ · χ̂ = −1

2
R−G(

¯
L,L)− 1

4
⟨R

¯
LL

¯
L,L⟩

= −1

2
R−G(

¯
L, l − |∇ω|2

¯
L− 2∇ω)

− 1

4
⟨R

¯
L l−|∇ω|2

¯
L−2∇ω¯

L, l − |∇ω|2
¯
L− 2∇ω⟩

= C − 1

4
⟨⃗h, h⃗⟩+ 1

2
K̂ · Q̂+ |∇ω|2G(

¯
L,

¯
L)

+ 2G(
¯
L,∇ω)− ⟨R

¯
L∇ωl,

¯
L⟩ − ⟨R

¯
L∇ω

¯
L,∇ω⟩

= C − 1

4
⟨⃗h, h⃗⟩+ 1

2
K̂ · Q̂+

1

2
|∇ω|2G(

¯
L,

¯
L)

+
(

2G(
¯
L,∇ω)− ⟨R

¯
L∇ωl,

¯
L⟩

)

− ˆ
¯
α(∇ω,∇ω)

from this we conclude

(

K − 1

4
⟨H⃗, H⃗⟩+ /∇ · ζ − /∆ log tr

¯
χ
)

−
(

C − 1

4
⟨⃗h, h⃗⟩+∇ · t−∆ log trK

)
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=
1

2

(

K̂ · Q̂− ˆ
¯
χ · χ̂

)

+
1

2
|∇ω|2G(

¯
L,

¯
L) +

(

2G(
¯
L,∇ω)− ⟨R

¯
L∇ωl,

¯
L⟩

)

− ˆ
¯
α(∇ω,∇ω)− 2(∇ · K̂)(∇ω)−Hω · K̂ − 2K̂(∇ω, t⃗−∇ log trK)

− trKt(∇ω) +∇ω trK + |K̂|2|∇ω|2 +G
¯
L(∇ω) + ˆ

¯
α(∇ω,∇ω)

+ /∆ω
|K̂|2 +G(

¯
L,

¯
L)

trK
+

¯
L
|K̂|2 +G(

¯
L,

¯
L)

trK
|∇ω|2

+ 2∇ω |K̂|2 +G(
¯
L,

¯
L)

trK
+ trKK̂(∇ω,∇ω)− κK̂(∇ω,∇ω)

From Lemma 4.2 we have

K̂ · Q̂− ˆ
¯
χ · χ̂ = K̂ · Q̂−

(

K̂ · Q̂− |∇ω|2|K̂|2 − 4K̂(∇ω, t⃗) + 2|K̂|2|∇ω|2

+ 2 trKK̂(∇ω,∇ω)− 2K̂ ·Hω − 2κK̂(∇ω,∇ω)
)

= −|K̂|2|∇ω|2 − 2 trKK̂(∇ω,∇ω) + 2K̂ ·Hω + 4K̂(∇ω, t⃗)
+ 2κK̂(∇ω,∇ω)

so that we finally have

/ρ− ρ =
1

2
|∇ω|2

(

|K̂|2 +G(
¯
L,

¯
L)

)

+G
¯
L(∇ω)− 2K̂(∇ω, t⃗−∇ log trK)

+
(

2G
¯
L(∇ω)− ⟨R

¯
L∇ωl,

¯
L⟩ − 2(∇ · K̂)(∇ω)

+ 2K̂(∇ω, t⃗)− trKt(∇ω) +∇ω trK
)

+ /∆ω
|K̂|2 +G(

¯
L,

¯
L)

trK
+

¯
L
|K̂|2 +G(

¯
L,

¯
L)

trK
|∇ω|2 + 2∇ω |K̂|2 +G(

¯
L,

¯
L)

trK
.

Amazingly, the second line cancels due to (4.2) giving,

/ρ− ρ =
1

2

(

|K̂|2 +G(
¯
L,

¯
L)

)

|∇ω|2 +G
¯
L(∇ω)− 2K̂(∇ω, t⃗−∇ log trK)

+ /∆ω
|K̂|2 +G(

¯
L,

¯
L)

trK
+

¯
L
|K̂|2 +G(

¯
L,

¯
L)

trK
|∇ω|2 + 2∇ω |K̂|2 +G(

¯
L,

¯
L)

trK

and the result then follows from the fact that /∇ω = ∇ω + |∇ω|2
¯
L as well as

/∇ ·
( |K̂|2 +G(

¯
L,

¯
L)

trK
/∇ω

)

= /∆ω
|K̂|2 +G(

¯
L,

¯
L)

trK
+ /∇ω |K̂|2 +G(

¯
L,

¯
L)

trK
.

□
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4.2. Asymptotic flatness

In this section we wish to study the limiting behaviour of our mass functional
in the setting of asymptotic flatness constructed by Mars and Soria [23].
Beyond the assumption that we have a cross section Σs0 of Ω we also assume
for some (hence any) choice of past-directed null geodesic field

¯
L that S+ =

∞. So all geodesics γ¯
L
q are ‘past complete’ with domain (s−(q),∞). We now

take s0 = 0 ignoring all points p satisfying s(p) ≤ S− and conclude that
Ω ∼= S

2 × (S−,∞). Although the value of S− will depend on our choice of
geodesic field

¯
L our interest lies only on the past of Σ0 (i.e. S2 × (0,∞)) so

we ignore this subtlety. A null hypersurface Ω with all the above properties
is called extending to past null infinity.

In order to impose decay conditions of various transversal tensors (i.e.
tensors satisfying T (

¯
L, · · · ) = · · · = T (· · · ,

¯
L) = 0) we choose a local basis on

Σ0 and extend it to a basis field {Xi} ⊂ E(Σ0). Given a transversal k-tensor
T (s) we say,

• T = O(1) iff Ti1...ik := T (Xi1 , ..., Xik) is uniformly bounded and T =
On(s

−m) iff

sm+j(L
¯
L)
jT (s) = O(1) (0 ≤ j ≤ n)

• T = o(s−m) iff lim
s→∞

smT (s)i1...ik = 0 and T = on(s
−m) iff

sm+j(L
¯
L)
jT (s) = o(1) (0 ≤ j ≤ n)

• T = oXn (s
−m) iff

smLXi1
· · · LXij

T (s) = o(1) (0 ≤ j ≤ n).

Now we’re ready to define asymptotic flatness for Ω as given by the
authors of [23]:

Definition 4.7. We say Ω is past asymptotically flat if it extends to past
null infinity and there exists a choice of cross section Σ0 and null geodesic
field

¯
L with corresponding level set function s satisfying the following:

1) There exists two symmetric 2-covariant transversal and
¯
L Lie constant

tensor fields γ̊ and γ1 such that

γ̃ := γ − s2γ̊ − sγ1 = o1(s) ∩ oX2 (s)
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2) There exists a transversal and
¯
L Lie constant one-form t1 such that

t̃ := t− t1
s

= o1(s
−1)

3) There exist
¯
L Lie constant functions θ0 and θ such that

θ̃ := trQ− θ0
s

− θ

s2
= o(s−2)

4) The scalar ⟨RXi1
Xi2

Xi3 , Xi4⟩ is such that lim
s→∞

1

s2
⟨RXi1

Xi2
Xi3 , Xi4⟩ ex-

ists while its double trace satisfies−1
2R−G(

¯
L, l)− 1

4⟨R¯
Ll
¯
L, l⟩ = o(s−2).

We will have the need to supplement the notion of asymptotic flatness of Ω
with a stronger version of the energy flux decay condition (as given in [23])
with the following:

Definition 4.8. Suppose Ω is past asymptotically flat. We say Ω has strong
flux decay if

G(
¯
L,Xi) = o(s−2), t̃ = oX1 (s−1) and Lj

¯
Lγ̃ = oX3−j(s

1−j) for 1 ≤ j ≤ 3

and strong decay if the condition on G
¯
L is dropped.

We will also need some results from [23] (Proposition 3, Lemma 2, Sec-
tion 4) resulting directly from the asymptotically flat restriction on Ω. One
particularly valuable consequence is the ability to choose our geodesic field

¯
L to give any conformal change on the ‘metric at null infinity’, which turns
out to be given by the 2-tensor, γ̊. By the Uniformization Theorem we con-
clude that this covers all possible metrics on a Riemannian 2-sphere. We will
denote the covariant derivative coming from γ̊ by ∇̊.

Proposition 4.9. Suppose Ω is past asymptotically flat with a choice of
null geodesic field

¯
L and corresponding level set function s. Letting γ(s)ij

denote the inverse of γ(s)ij,

γ(s)ij =
1

s2
γ̊ij − 1

s3
γ̊1
ij + o(s−3)(4.3)

Kij = s̊γij +
1

2
γ1ij + o(1)(4.4)

Kγ(s) =
K̊
s2

+ o(s−2)(4.5)
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trQ =
2K̊
s

+
θ

s2
+ o(s−2)(4.6)

trK =
2

s
+ ¯

θ

s2
+ o(s−2)(4.7)

where γ̊ij is the inverse of γ̊ij, tensors with a ˚ring indicate that indices have

been raised with γ̊, and
¯
θ = −1

2 t̊rγ1.
It follows in case L

¯
Lγ̃ = oX1 (1) that

t1 =
1

2
∇̊ · γ1 + /d

¯
θ ⇐⇒ G(

¯
L,Xi) = o(s−2)

Proof. We refer the reader to [23] (Proposition 3) for proof. □

As promised in Remark 1.3 we are now able to prove the following well
known result:

Lemma 4.10. Suppose Ω extends to past null infinity with null geodesic
field

¯
L. Then any cross section Σ →֒ Ω satisfies trK ≥ 0. If Ω is past asymp-

totically flat then Σ is expanding along
¯
L.

Proof. For ω ∈ F(Ω) constructed by Lie dragging s|Σ along
¯
L we have Σ =

Σ1 for the geodesic foliation {Σλ} given by s = ωλ. So it suffices to prove the
result along an arbitrary geodesic foliation for Ω. From (3.4), if trK(si) < 0
for some initial si, then in a neighborhood we have

¯
L
( 1

trK

)

=
1

2
+

|K̂|2 +G(
¯
L,

¯
L)

trK2
≥ 1

2

as long as trK(s) remains negative. Therefore,

1

trK
(s) ≥ 1

trK
(si) +

s− si
2

for any such s ≥ si. So we can find an sf > si such that trK(s)
s→s−f−−−→ −∞.

Since this contradicts smoothness we must have that trK ≥ 0 on all of Ω. If
Ω is past asymptotically flat it follows from Proposition 4.9 that trK(s) > 0
for sufficiently large s. Since (3.4) gives

¯
L(trK) = −1

2
(trK)2 − |K̂|2 −G(

¯
L,

¯
L) ≤ 0

we conclude that trK(si) ≥ trK(sf ) for all si ≤ sf . It follows that trK > 0
on all of Ω. □
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Lemma 4.11. On each Σs the difference tensor

D(V,W ) := ∇VW − ∇̊VW

admits the decomposition

Dk
ij =

1

2
(∇̊iγ̊1

k
j + ∇̊j γ̊1

k
i − ∇̊kγ̊1ij)

1

s
+O(s−2).

Moreover, if f ∈ F(Ω) is Lie constant along
¯
L then

∆f =
1

s2
∆̊f + (−γ̊ij1 ∇̊i∇̊jf − (∇̊i̊γ

ij
1 )f,j +(∇̊i

¯
θ)f,i )

1

s3
+ o(s−3).

Proof. The result follows from the well known fact (see, for example [37])
that we will need later on:

⟨D(V,W ), U⟩ = 1

2
(∇̊V γ(W,U) + ∇̊Wγ(V,U)− ∇̊Uγ(V,W ))

=
s

2
(∇̊V γ1(W,U) + ∇̊Wγ1(V,U)− ∇̊Uγ1(V,W ))

+
1

2
(∇̊V γ̃(W,U) + ∇̊W γ̃(V,U)− ∇̊U γ̃(V,W )).

The second is a simple consequence of the first, we refer the reader to [23]
(Lemma 2) for proof. □

In the next Proposition we show that the decomposition of the metric given
in Definition 4.7 part 1 allows us to find Kγ(s) up to O(s−4):

Proposition 4.12. For a decomposition of the metric γ(s) = s2γ̊ + sγ1 + γ̃
for some fixed s we have:

Kγ(s) =
K̊
s2

+
1

s3
(K̊

¯
θ +

1

2
∇̊ · ∇̊ · γ1 + ∆̊

¯
θ) +O(s−4)(4.8)

Proof. First we take the opportunity to show that V,W ∈ E(Σ0) gives
∇̊VW ∈ E(Σ0). Starting with the Koszul formula

2̊γ(∇̊VW,U) = V γ̊(W,U) +Wγ̊(U, V )− Uγ̊(V,W )− γ̊(V, [W,U ])

+ γ̊(W, [U, V ]) + γ̊(U, [V,W ])

and the fact that γ̊ is Lie constant along
¯
L we conclude that

¯
Lγ̊(∇̊VW,U) =

γ̊([
¯
L, ∇̊VW ], U) on the left, applying

¯
L on the right we find everything van-

ishes since V,W ∈ E(Σ0) =⇒ [V,W ] ∈ E(Σ0). Thus, γ̊([
¯
L, ∇̊VW ], U) = 0.
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Since [
¯
L, ∇̊VW ] ∈ Γ(TΣs) and γ̊ is non-degenerate, [

¯
L, ∇̊VW ] = 0 and

∇̊VW ∈ E(Σ0). To show the decomposition of Kγ(s) we start by finding
the decomposition of the Riemann curvature tensor on Σs:

⟨RsXiXj
Xk, Xm⟩ = ⟨∇[Xi,Xj ]Xk, Xm⟩ −Xi⟨∇Xj

Xk, Xm⟩
+ ⟨∇Xj

Xk,∇Xi
Xm⟩+Xj⟨∇Xi

Xk, Xm⟩ − ⟨∇Xi
Xk,∇Xj

Xm⟩
= ⟨∇̊[Xi,Xj ]Xk, Xm⟩ −Xi⟨∇̊Xj

Xk, Xm⟩
+ ⟨∇̊Xj

Xk, ∇̊Xi
Xm⟩+Xj⟨∇̊Xi

Xk, Xm⟩ − ⟨∇̊Xi
Xk, ∇̊Xj

Xm⟩
+ ⟨D([Xi, Xj ], Xk), Xm⟩ −Xi⟨D(Xj , Xk), Xm⟩+ ⟨D(Xj , Xk), ∇̊Xi

Xm⟩
+ ⟨∇̊Xj

Xk,D(Xi, Xm)⟩+Xj⟨D(Xi, Xk), Xm⟩ − ⟨D(Xi, Xk), ∇̊Xj
Xm⟩

− ⟨∇̊Xi
Xk,D(Xj , Xm)⟩

+ ⟨D(Xj , Xk),D(Xi, Xm)⟩ − ⟨D(Xi, Xk),D(Xj , Xm)⟩.

Using the decomposition γs = s2γ̊ +O(s) we recognize the leading order
term, combining lines 3 and 4, is s2γ̊(R̊XiXj

Xk, Xm). In order to find the next

to leading order term the fact that ⟨RsXiXj
Xk, Xm⟩ − s2γ̊(R̊XiXj

Xk, Xm)
defines a 4-tensor on each Σs allows us to search independently of our choice
of basis {X1, X2}. In particular, we may assume that ∇̊Xi

Xj = 0 at q ∈ Σs
(hence on all of γ¯

L
q , since ∇̊Xi

Xj ∈ E(Σ0)). So assuming restriction to the
generator through q and using Lemma 4.11 we have

⟨RsXiXj
Xk, Xm⟩ − s2γ̊(R̊XiXj

Xk, Xm)

= −sXiγ1(∇̊Xj
Xk, Xm) + sXjγ1(∇̊Xi

Xk, Xm)

− s

2
Xi(∇̊Xj

γ1(Xk, Xm) + ∇̊Xk
γ1(Xj , Xm)− ∇̊Xm

γ1(Xj , Xk))

+
s

2
Xj(∇̊Xi

γ1(Xk, Xm) + ∇̊Xk
γ1(Xi, Xm)− ∇̊Xm

γ1(Xi, Xk))

+O(1)

= −sXiγ1(∇̊Xj
Xk, Xm) + sXjγ1(∇̊Xi

Xk, Xm)
s

2

(

∇̊Xj
∇̊Xi

γ1(Xk, Xm) + ∇̊Xj
∇̊Xk

γ1(Xi, Xm)− ∇̊Xj
∇̊Xm

γ1(Xi, Xk)

− ∇̊Xi
∇̊Xj

γ1(Xk, Xm)− ∇̊Xi
∇̊Xk

γ1(Xj , Xm) + ∇̊Xi
∇̊Xm

γ1(Xj , Xk)
)

+O(1).

It remains to simplify the two terms of the first line in the second equality.
Since

Xiγ1(∇̊Xj
Xk, Xm) = ∇̊Xi

γ1(∇̊Xj
Xk, Xm) + γ1(∇̊Xi

∇̊Xj
Xk, Xm)
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we conclude that

−Xiγ1(∇̊Xj
Xk, Xm) +Xjγ1(∇̊Xi

Xk, Xm) = γ1(R̊XiXj
Xk, Xm).

Moreover, it is easily shown using our choice of basis extension that

1

2
∇̊Xj

∇̊Xi
γ1(Xk, Xm)−

1

2
∇̊Xi

∇̊Xj
γ1(Xk, Xm) + γ1(R̊XiXj

Xk, Xm)

=
1

2
(γ1(R̊XiXj

Xk, Xm)− γ1(R̊XiXj
Xm, Xk)).

So we finally have from the fact that Σs is of dimension 2 that

⟨RsXiXj
Xk, Xm⟩

= s2K̊(̊γikγ̊jm − γ̊imγ̊jk) +
s

2
K̊(̊γikγ1jm − γ̊imγ1jk + γ̊jmγ1ik − γ̊jkγ1im)

+
s

2
(∇̊j∇̊kγ1im − ∇̊j∇̊mγ1ik − ∇̊i∇̊kγ1jm + ∇̊i∇̊mγ1jk) +O(1).

Using (4.3) to take a trace over i, k:

(Rics)jm = K̊γ̊jm − 1

s
K̊
¯
θγ̊jm +

1

2s
(∇̊j(∇̊ · γ1)m + 2∇̊j∇̊m

¯
θ − (∇̊2γ1)jm

+ (∇̊ · (∇̊γ1))mj) +
K̊
s
(2
¯
θγ̊jm + γ1jm) +O(s−2)

= K̊γ̊jm +
1

s

(

K̊
¯
θγ̊jm + K̊γ1jm +

1

2
∇̊j(∇̊ · γ1)m +

1

2
(∇̊ · (∇̊γ1))mj + ∇̊j∇̊m

¯
θ

− 1

2
(∇̊2γ1)jm

)

+O(s−4)

and then over j,m:

2Kγ(s) =
2

s2
K̊ +

1

s3

(

2K̊
¯
θ − 2K̊

¯
θ + ∇̊ · ∇̊ · γ1 + 2∆̊

¯
θ
)

+
2

s3
K̊
¯
θ +O(s−4)

giving the result. □

Remark 4.13. Interestingly, in the case that Ω is asymptotically flat sat-
isfying the energy flux decay condition we conclude that

Kγ(s) =
K̊
s2

+
1

s3
(K̊

¯
θ + ∇̊ · t1) +O(s−4)

according to Proposition 4.12.
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Definition 4.14. For Ω past asymptotically flat with background geodesic
foliation {Σs} we say a foliation {Σs⋆} is asymptotically geodesic provided

s = ϕs⋆ + ξ

with scale factor ϕ > 0 a Lie constant function along
¯
L and

¯
Liξ = oX2−i(s

1−i)
for 0 ≤ i ≤ 2. In addition (similarly to [23]), we will say {Σs⋆} approaches
large spheres provided the class of geodesic foliations measuring ϕ = 1 also
induce γ̊ to be the round metric on S

2.

Remark 4.15. Given a basis extension {Xi} ⊂ E(Σ0) (on {Σs}) and a
foliation {Σs⋆} as in Definition 4.14, Lie dragging s|Σs⋆

along
¯
L to give

ω ∈ F(Ω) we see at q ∈ Σs⋆ :

ωi = ϕis⋆ + ξsωi + ξi

ωij = ϕijs⋆ + ξssωiωj + ξsjωi + ξsωij + ξij

where ωi := Xiω, ωij := XjXiω, ξs :=
¯
Lξ, ξss :=

¯
L
¯
Lξ, ξi := Xi(ξ|Σs(q)), ξsi =

Xi(ξs|Σs
) and ξij = XjXi(ξ|Σs

). The decay on ξ therefore gives us that:

ωi =
ϕis⋆ + ξi
1− ξs

= ϕis⋆ + o(s⋆)

ωij =
1

1− ξs

(

ϕijs⋆ + ξss

(ξi + ϕis⋆
1− ξs

)(ξj + ϕjs⋆
1− ξs

)

+ ξsj

(ξi + ϕis⋆
1− ξs

)

+ ξij

)

= ϕijs⋆ + o(s⋆).

From (4.3) and Lemma 4.11 we conclude that

dω|Σs⋆
= (s⋆ϕ)

2(
−1

s⋆
dϕ−1|Σs⋆

+ o(s−1
⋆ ))

∆ω|Σs⋆
=

1

ϕ2s⋆
∆̊ϕ+ o(s−1

⋆ ).

We will need the following result found by the authors of [23] (Theorem 1):

Proposition 4.16. Suppose Ω is past asymptotically flat and {Σs⋆} is an
asymptotically geodesic foliation with scale factor ϕ > 0. Then

lim
s⋆→∞

EH(Σs⋆) =
1

16π

√

∫

ϕ2d̊A

4π

∫

1

ϕ

(

K̊
¯
θ − θ − ∆̊

¯
θ + 4∇̊ · t1

)

d̊A

with γ̊, K̊,
¯
θ, θ and t1 associated with the background geodesic foliation.
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Remark 4.17. Using the terminology of [23], suppose Ω is a past asymp-
totically flat null hypersurface with a background geodesic foliation {Σs}
approaching large spheres (i.e γ̊ is the round metric at infinity). Then, for
any other geodesic foliation of scale factor ψ, it follows that the metric at
infinity is ψ2γ̊ (see [23], Section 4), and {Σs} approaches large spheres if and
only if ψ solves the equation (recall, Section 2.2)

(4.9) 1− ψ2 = ∆̊ logψ.

Proposition 4.16 shows all asymptotically geodesic foliations {Σs⋆} of the
same scale factor ϕ share the limit

E(ϕ) = lim
s⋆→∞

EH(Σs⋆)

which measures a Trautman-Bondi energy ETB(ψ) if ψ solves (4.9).

Definition 4.18. The Trautman-Bondi mass is therefore given by

mTB = inf
ψ
{ETB(ψ)|1− ψ2 = ∆̊ logψ}.

We observe that the conditions defining asymptotic flatness imposes a
sense of convergence upon the data of Ω towards the standard null cone
in Schwarzschild spacetime. As such, Definition 4.18 clearly identifies the
Schwarzschild mass of Ω according to the discussion of Section 2.2. Including
the references in Section 1.1 on the history of the Trautman-Bondi mass and
how it relates to other definitions of mass, we also refer the reader to [32]
(Section 4.1) for further motivation and context for Definition 4.18.

Theorem 4.19. Suppose Ω is a past asymptotically flat null hypersurface
inside a spacetime satisfying the dominant energy condition. Then given
the existence of an asymptotically geodesic doubly convex foliation {Σs⋆}
approaching large spheres we have

m(0) ≤ ETB

for ETB the Trautman-Bondi energy of Ω associated to {Σs⋆}. If equal-
ity is achieved along a strict doubly convex foliation then ETB = mTB the
Trautman-Bondi mass of Ω. In the case that trχ|Σ0

= 0 we conclude instead
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with the weak Null Penrose inequality

√

|Σ0|
16π

≤ ETB

where equality along a strict doubly convex foliation enforces that any fo-
liation of Ω shares its data (γ,

¯
χ, trχ and ζ) with some foliation of the

standard null cone of Schwarzschild spacetime.

Proof. Since any asymptotically geodesic doubly convex foliation has non-
decreasing mass from Theorem 1.7 and m(Σs⋆) ≤ EH(Σs⋆) from Lemma
2.2, it follows from Proposition 4.16 that m(Σs⋆) converges since EH(Σs⋆)
does. Moreover, lim

s⋆→∞
m(Σs⋆) ≤ lim

s⋆→∞
EH(Σs⋆) and from [23] (Corollary 3)

it follows that lim
s⋆→∞

EH(Σs⋆) is the Trautman-Bondi energy associated to

the abstract reference frame coupled to the foliation {Σs⋆}. Given the case
of equality, Theorem 1.7 enforces thatm(0) = m(Σs⋆) for all s⋆. So Theorem

3.9 applies and we conclude thatm(Σ) = 1
2

(

1
4π

∫

r
2

3

0 dA0

)
3

2

(for some positive

function r0 on Σ0 of area form r20dA0) irrespective of the cross-section Σ ⊂ Ω.
This gives, according to Remark 4.17 and Lemma 2.2,

lim
s⋆→∞

m(Σs⋆) =
1

2

( 1

4π

∫

r
2

3

0 dA0

)
3

2

= ETB ≤ inf
ϕ>0

E(ϕ) ≤ mTB.

Since ETB ≤ inf E(ϕ) ≤ mTB ≤ ETB all must be equal.
If trχ|Σ0

= 0 the doubly convex conditions gives

0 ≥ /∆ log /ρ|Σ0

and the maximum principle implies /ρ|Σ0
= K + /∇ · τ is constant. From the

Gauss-Bonnet and Divergence Theorems we conclude that /ρ|Σ0
= 4π

|Σ0|
and

therefore m(0) =

√

|Σ0|
16π . Under this restriction Theorem 3.9 enforces that

any foliation of Ω corresponds with a foliation of the standard null cone in
Schwarzschild with respect to the data γ,

¯
χ, trχ and ζ. □

From Proposition 4.16 and Lemma 2.2

inf
ϕ>0

E(ϕ) =
1

4

( 1

4π

∫

(K
¯
θ − θ − ∆̊

¯
θ + 4∇̊ · t1)

2

3 d̊A
)

3

2
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provided K
¯
θ − θ − ∆̊

¯
θ + 4∇̊ · t1 ≥ 0. We show, given that Ω satisfies the

strong flux decay condition, this quantity is in fact lim
s⋆→∞

m(Σs⋆). We will

need the following proposition to do so:

Proposition 4.20. Suppose Ω is past asymptotically flat with strong decay.
Given a choice of null geodesic field

¯
L and corresponding level set function

s we have

∇ · ∇ ·K = − 1

2s4
∇̊ · ∇̊ · γ1 + o(s−4)(4.10)

∆ trK =
∆̊
¯
θ

s4
+ o(s−4)(4.11)

∇ · t = 1

s3
∇̊ · t1 + o(s−3)(4.12)

Proof. From Lemma 4.11 and (4.4)

∇iKjm = ∇̊i(s̊γjm +
1

2
γ1jm)−Dk

ijKkm −Dk
imKjk + oX1 (1)

=
1

2
∇̊iγ1jm − ∇̊iγ1jm + oX1 (1)

= −1

2
∇̊iγ1jm + oX1 (1).

where the first term of the second line comes from the fact that ∇̊γ̊ = 0.
Next we compute

∇i∇jKmn = ∇̊i∇jKmn −Dk
ij∇kKmn −Dk

im∇jKkn −Dk
in∇jKmk

= −1

2
∇̊i∇̊jγ1mn + o(1)

So contracting with (4.3) over j,m followed by i, n we get (4.9) and con-
tracting instead over m,n and then i, j (4.10) follows. For (4.11)

∇itj = ∇̊itj −Dk
ijtk

=
1

s
∇̊it1j + o(s−1)

and the result follows as soon as we contract with (4.3) over i, j. □

Theorem 4.21. Suppose Ω is past asymptotically flat with strong flux decay
and {Σs} is some background geodesic foliation. Then for any asymptotically
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geodesic foliation {Σs⋆} with scale factor ϕ > 0 we have

s3⋆/ρ(s⋆) =
1

2ϕ3

(

K̊
¯
θ − θ − ∆̊

¯
θ + 4∇̊ · t1

)

+ o(s0⋆)

Proof. First let us remind ourselves of Theorem 4.3

/ρ = ρ+ /∇ ·
( |K̂|2 +G(

¯
L,

¯
L)

trK
/∇ω

)

+
1

2

(

|K̂|2 +G(
¯
L,

¯
L)

)

|∇ω|2

+∇ω |K̂|2 +G(
¯
L,

¯
L)

trK
+G

¯
L(∇ω)− 2K̂ (⃗t−∇ log trK,∇ω).

Denoting the exterior derivative on Σs by ds, since trK = 2
s + ¯

θ
s2 + o(s−2),

we conclude that ds log trK = 1
2sd¯

θ|Σs
+ o(s−1) giving

K̂ (⃗t−∇ log trK,∇ω)|Σs⋆
= o(s−3

⋆ ).

Since L2

¯
Lγ̃ = oX1 (s−1) ∩ o1(s−1) we also see that

|K̂|2 +G(
¯
L,

¯
L) = −

¯
L trK − 1

2
(trK)2

= −(− 2

s2
− 2

s3¯
θ)− 1

2
(
2

s
+ ¯

θ

s2
)2 + oX1 (s−3) ∩ o1(s−3)

= oX1 (s−3) ∩ o1(s−3)

and therefore, from Remark 4.15:

/∇ ·
( |K̂|2 +G(

¯
L,

¯
L)

trK
/∇ω

)

= /∇ω |K̂|2 +G(
¯
L,

¯
L)

trK
+ /∆ω

|K̂|2 +G(
¯
L,

¯
L)

trK

=
(

∇ω |K̂|2 +G(
¯
L,

¯
L)

trK
+ |∇ω|2

¯
L
|K̂|2 +G(

¯
L,

¯
L)

trK

+ (∆ω − 2K̂(∇ω,∇ω)) |K̂|2 +G(
¯
L,

¯
L)

trK

)
∣

∣

∣

Σs⋆

= o(s−3
⋆ ).

From the strong flux decay condition we have G
¯
L(∇ω)|Σs⋆

= o(s−3
⋆ ) also.

From (4.10) we have

∆ log trK =
∆trK

trK
− |∇ trK|2

(trK)2
=

∆̊
¯
θ

2s3
+ o(s−3)
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and combining this with Propositions 4.12 and 4.20:

/ρ = ρ|Σs⋆
+ o(s−3

⋆ ) =
1

ω3

(1

2
K̊
¯
θ +

1

2
∇̊ · ∇̊ · γ1 + ∆̊

¯
θ − 1

2
θ
)

+
1

ω3
∇̊ · t1

− 1

2ω3
∆̊
¯
θ + o(s−3

⋆ )

=
1

2ω3

(

K̊
¯
θ − θ − ∆̊

¯
θ + 4∇̊ · t1

)

+ o(s−3
⋆ )

having used Proposition 4.9, specifically 1
2∇̊ · ∇̊ · γ1 + ∆̊

¯
θ = ∇̊ · t1, to obtain

the final line. □

Remark 4.22. We refer the reader to [23] (Proposition 3) to observe the
derivation of 4.6 from Definition 4.7, part 4, for an arbitrary geodesic back-
ground foliation.

The only time we use 4.6 in Theorem 4.21 is in the penultimate equal-
ity of the proof. Subsequently, any other geodesic foliation inherits 4.6 as a
result of Theorem 4.21, Propositions 4.12, 4.20, and identity 4.7. In Section
5 we will show 4.6 directly from the metric structure for perturbations from
spherical symmetry. Consequently, we circumvent the use of Definition 4.7,
part 4 altogether.

Corollary 4.23. With the same hypotheses as in Theorem 4.21 we have

lim
s⋆→∞

m(Σs⋆) =
1

4

( 1

4π

∫

(K̊
¯
θ − θ − ∆̊

¯
θ + 4∇̊ · t1)

2

3 d̊A
)

3

2

Proof. From Theorem 4.21 we directly conclude

4π(4m(Σs⋆))
2

3 =

∫

(2/ρ)
2

3dAω

=

∫

1

ω2

(

K̊
¯
θ − θ − ∆̊

¯
θ + 4∇̊ · t1 + o(1)

)
2

3

fω2d̊A

where f =
√

det(γω)ij
ω2det(̊γ)ij

= 1 + o(1), giving

4π(4 lim
s⋆→∞

m(Σs⋆))
2

3 =

∫

(

K̊
¯
θ − θ − ∆̊

¯
θ + 4∇̊ · t1

)
2

3

d̊A

by the Dominated Convergence Theorem. □

Finally we’re ready to prove Theorem 1.9:
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Proof. (Theorem 1.9) The first claim of Theorem 1.9 is a simple consequence
of Theorem 1.7. The doubly convex condition and Theorem 4.21 enforces
that

0 ≤ lim
s⋆→∞

s3⋆/ρ =
1

2ϕ3
(K̊

¯
θ − θ − ∆̊

¯
θ + 4∇̊ · t1)

and therefore Theorem 1.7, Corollary 4.23, Lemma 2.2 and Proposition 4.16
gives

m(Σ0) ≤ lim
s⋆→∞

m(Σs⋆) =
1

4

( 1

4π

∫

(K̊
¯
θ − θ − ∆̊

¯
θ + 4∇̊ · t1)

2

3 d̊A
)

3

2

= inf
ϕ>0

E(ϕ) ≤ mTB.

The rest of the proof is settled identically as in Theorem 4.19. □

5. Spherical symmetry

The Null Penrose conjecture in spherical symmetry is known (see [18]). We
start in this section by providing a proof in order to utilize our results from
prior sections. This will also serve as a template from which to study per-
turbations of the spherically symmetric metric. We will uncover smooth null
cones Ω on which the asymptotic flatness and strong flux decay conditions
are maintained. We also show the existence of an asymptotically geodesic
and strict doubly convex foliation for a certain class of perturbations of the
black hole exterior.

5.1. The metric

In polar areal coordinates [26] the metric takes the form

g = −a(t, r)2dt⊗ dt+ b(t, r)2dr ⊗ dr + r2γ̊

for γ̊ the standard round metric on S
2. From which the change in coordinates

(t, r) → (v(t, r), r) given by

bvt = avr

produces the metric and metric inverse given by

g = −he2βdv ⊗ dv + eβ(dv ⊗ dr + dr ⊗ dv) + r2γ̊

g−1 = e−β(∂v ⊗ ∂r + ∂r ⊗ ∂v) + h∂r ⊗ ∂r +
1

r2
γ̊−1
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where h := (1− 2M(t,r)
r ) = b−2 and eβ = abv−1

t .
It’s a well known fact when M(t, r) = m0 > 0 and β(t, r) = 0 for m0 a

constant the above metric covers the upper-half region in Kruskal space-
time (given by {v > 0}, where the coordinate v is different from above)
namely, the Schwarzschild geometry in ‘ingoing-Eddington-Finkelstein’ co-
ordinates. In spherical symmetry, we will therefore refer to the null hyper-
surfaces Ω := {v = v0} as the standard null cones as they agree with the
similarly named hypersurfaces in the Schwarzschild case.

5.2. Calculating ρ

We approach the calculation similarly to the case of Schwarzschild. Denoting
the gradient of v by Dv we use the identity DDvDv = 1

2D|Dv|2 to see
¯
L :=

Dv = e−β∂r satisfies D
¯
L
¯
L = 0 providing us our choice of geodesic field for Ω

and level set function s (as in Section 3). For convenience we will choose our
background foliation {Σr} of Ω to be the level sets of the coordinate r. Since
β only depends on r, the foliation {Σr} is simply a re-parametrization of the
geodesic foliation {Σs} coming from

¯
L. Moreover, the vector field extensions

0 = [
¯
L, V ] = eβ [∂r, V ] remain unchanged. An arbitrary cross section Σ of Ω

is therefore given as a graph over Σr0 (for some r0) which we Lie drag along
∂r to the rest of Ω giving some ω ∈ F(Ω). On Σ we therefore have the linearly
independent normal vector fields

¯
L = e−β∂r

D(r − ω) = e−β∂v + h∂r −∇ω

where in this subsection (5.2) ∇ will temporarily denote the induced covari-
ant derivative on Σr. We wish to find the null section L ∈ Γ(T⊥Σ) satisfying
⟨L,

¯
L⟩ = 2. Since L = c1

¯
L+ c2D(r − ω) we have

2 = ⟨L,
¯
L⟩ = c2e

−β∂r(r − ω) = c2e
−β

0 = ⟨L,L⟩ = 2c1c2⟨
¯
L,D(r − ω)⟩+ c22⟨D(r − ω), D(r − ω)⟩

= 2c1c2e
−β + c22(e

−2β⟨∂v, ∂v⟩+ |∇ω|2 + 2e−βh⟨∂v, ∂r⟩)
= 2c1c2e

−β + c22(h+ |∇ω|2)

giving c2 = 2eβ and c1 = −e2β(h+ |∇ω|2) so that

L = −eβ(h+ |∇ω|2)∂r + 2∂v + 2heβ∂r − 2eβ∇ω
= 2∂v + eβ(h− |∇ω|2)∂r − 2eβ∇ω
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= 2∂v + eβ(h− | /∇ω|2)∂r − 2eβ( /∇ω − | /∇ω|2∂r)
= 2∂v + eβ(h+ | /∇ω|2)∂r − 2eβ /∇ω

having used the fact that /∇ω = ∇ω + |∇ω|2∂r to get the third equality. We
note from the warped product structure (as for Kruskal spacetime) that
E(Σr0) = L(S2)|Ω where L(S2) is the set of lifted vector fields from the S

2

factor of the spacetime product manifold. As a result we may globally extend
V ∈ E(Σr0) to satisfy [∂v, V ] = 0. The following facts are a direct application
of the Koszul formula, we refer the reader to [25] (pg 206) for the details:

D∂r∂v = −1

2
∂r(he

2β)e−β∂r(5.1)

DV ∂v = 0(5.2)

D∂r∂r = ∂rβ∂r(5.3)

DV ∂r =
1

r
V.(5.4)

Lemma 5.1. Suppose Ω = {v = v0} is the standard null cone in a spheri-
cally symmetric spacetime of metric

g = −he2β(v,r)dv ⊗ dv + eβ(v, r)(dv ⊗ dr + dr ⊗ dv) + r2γ̊

where h = (1− 2M(v,r)
r ) and γ̊ is the round metric on S

2. Then for some
cross section Σr0 ⊂ Ω and ω ∈ F(Σr0), Σ := {r = ω ◦ π} produces the data
(writing ω ◦ π as ω):

γ = ω2γ̊,
¯
χ =

e−β(v0,ω)

ω
γ, tr

¯
χ =

2e−β(v0,ω)

ω
, ζ = −/d logω,

χ = eβ(v0,ω)
(

(h+ | /∇ω|2)γ
ω
− 2H̃ω − 2βr/dω ⊗ /dω

)

,

trχ =
2eβ(v0,ω)

ω
(h− ω2 /∆ logω − ωβr| /∇ω|2),

ρ =
2M(v0, ω)

ω3
+ /∆β +

βr
ω
| /∇ω|2.

Proof. For any V ∈ E(Σr0) Lemma 4.2 gives Ṽ := V + V ω∂r|Σ ∈ Γ(TΣ) so
that the first identity follows directly from the metric restriction. From (5.4):

DṼ ¯
L = e−βDV (∂r) + eβV ωD

¯
L
¯
L =

e−β

r
V
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so the second identity is given by

¯
χ(Ṽ, W̃ ) = ⟨DṼ ¯

L, W̃ ⟩ = e−β

r
⟨V,W ⟩

and a trace over V,W gives the third so that /∆ log tr
¯
χ = − /∆β − /∆ logω.

For the forth identity:

χ(Ṽ, W̃ ) = 2⟨DṼ ∂v, W̃ ⟩+ eβ(h+ | /∇ω|2)⟨DṼ ∂r, W̃ ⟩ − 2eβ⟨DṼ
/∇ω, W̃ ⟩

− 2βre
βṼ ωW̃ω

= eβ(h+ | /∇ω|2) 1
ω
⟨Ṽ, W̃ ⟩ − 2eβH̃ω(Ṽ, W̃ )− 2βre

β(/dω ⊗ /dω)(Ṽ, W̃ )

where ⟨DṼ ∂v, W̃ ⟩ = 0 from (5.1) and (5.2) to give the second equality. Tak-

ing a trace over Ṽ, W̃ we conclude with the fifth identity:

trχ|Σ =
2eβ(v0,ω)

ω
(h+ | /∇ω|2 − ω /∆ω)− 2βre

β(v0,ω)| /∇ω|2

=
2eβ

ω
(h− ω2(

/∆ω

ω
− | /∇ω|2

ω2
))− 2βre

β | /∇ω|2

=
2eβ

ω
(h− ω2 /∆ logω − ωβr| /∇ω|2).

As a result we have that

⟨H⃗, H⃗⟩ = tr
¯
χ trχ =

4

ω2
(h− ω2 /∆ logω − ωβr| /∇ω|2).

Since the metric on Σ is given by ω2γ̊ we conclude that it has Gaussian
curvature

K =
1

ω2
(1− ∆̊ logω) =

1

ω2
− /∆ logω

and therefore

K − 1

4
⟨H⃗, H⃗⟩ = 2M(v0, ω)

ω3
+
βr
ω
| /∇ω|2.

Moreover, the torsion is given by

ζ(Ṽ ) =
1

2
⟨DṼ ¯

L,L⟩ = e−β

2r
⟨V, L⟩ = −1

r
V ω = −1

r
Ṽ ω

from which we conclude ζ(Ṽ )|Σ = −Ṽ logω and /∇ · ζ = − /∆ logω, giving

ρ =
2M(v0, ω)

ω3
+ /∆β +

βr
ω
| /∇ω|2.

□
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Remark 5.2. We recover the data of Lemma 2.1 as soon as we setm0 =M ,
β = 0 and r0 = 2m0 as expected.

So in comparison to Schwarzschild spacetime we have the additional terms
/∆β + βr

ω | /∇ω|2 in the flux function ρ. It turns out that a non-trivial G(
¯
L,

¯
L)

is responsible. Since /∆β = βrr| /∇ω|2 + βr /∆ω and

G(
¯
L,

¯
L) = −

¯
L trK − 1

2
(trK)2 − |K̂|2

= −e−β∂r(
2e−β

r
)− 1

2

4e−2β

r2
=

2βr
r
e−2β

it follows, for arbitrary ω, that /∆β(ω) + βr

ω | /∇ω|2 = 0 if and only if β is
independent of the r-coordinate and therefore G(

¯
L,

¯
L) = 0. For the function

M(v0, r) we look to G(
¯
L,L) along the foliation {Σr} since:

G(
¯
L,L) =

¯
L trχ− 2Ks + 2∇ · t+ 2|⃗t|2 + ⟨H⃗, H⃗⟩s

= e−β∂r(
2eβ

r
(1− 2M

r
))− 2

r2
+

4

r2
(1− 2M

r
)

=
2βr
r

(1− 2M

r
)− 4Mr

r2
.

It follows from Corollary 3.4, on Σr, that

G
¯
L = 0.

Since these components are all that contribute to the monotonicity of (1.2)
for the foliation {Σr} we see that our need of the dominant energy condition
reduces to

0 ≤ hβr ≤
2Mr

r

on {h ≥ 0} ∩ Ω. Next we show that {Σr} is a re-parametrization of a geodesic
and strict doubly convex foliation:

5.3. Asymptotic flatness

We now wish to choose the necessary decay on β and M in order to employ
Theorem 1.9. For

¯
L = e−β∂r the geodesic foliation {Σs} has level set function
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given by

s(r) =

∫ r

r0

eβ(t)dt

for which ω = const. ⇐⇒ s = const. and therefore

ρ(s) =
2M(r(s))

r(s)3
.

It follows from Lemma 5.1 that 1
4⟨H⃗, H⃗⟩ − 1

3
/∆ log ρ = h

r(s)2 > 0 is equivalent

to r(s) > r0 = 2M(v0, r0) as in Schwarzschild.

Lemma 5.3. Choosing |β(v0, r)| = o2(r
−1) integrable, M(v0, r) = m0 +

o(r0) for some constant m0, Ω is asymptotically flat with strong flux de-
cay.

Proof. We’ve already verified that G
¯
L = 0. Since ds

dr = eβ(r) = (1 + β e
β−1
β ),

|β| is integrable and eβ−1
β is bounded it follows that ds

dr = 1 + f where |f | =
o2(r

−1) is integrable. As a result

s = r − r0 +

∫ ∞

r0

f(t)dt−
∫ ∞

r
f(t)dt = r − c0 + o3(r

0)

where β0 =
∫∞
r0
f(t)dt and c0 = r0 − β0. We conclude that r(s) = s+ c0 +

o3(s
0) since our assumptions on β imply that

∫∞
r(s) f(t)dt = o3(s

0). From the
fact that

γs = r2γ̊|Σs
= (s+ c0 + o3(1))

2γ̊ = s2(1 +
c0
s
+ o3(s

−1))2γ̊

= s2γ̊ + 2c0s̊γ + o3(s)̊γ

we see γ̃ = o3(s)̊γ ensuring condition 1 of Definition 4.7 holds up to strong
decay given that all dependence on tangential derivatives falls on the

¯
L Lie

constant tensor γ̊. Since t⃗ = 0 for this foliation condition 2 follows trivially up
to strong decay. If we assume that M(v0, r) = m0 + o(1) for some constant
m0 we see directly from Lemma 5.1

trQ = trχ|Σs
=

2

r
(1− 2M

r
)|Σs

+ o(s−2) =
2

s
(1− c0

s
)(1− 2m0

s
) + o(s−2)

=
2

s
− 2

c0 + 2m0

s2
+ o(s−2)

giving us the third condition of Definition 4.7.
As mentioned in Remark 4.22, strong flux decay bypasses our need of the



✐

✐

“5-Roesch” — 2022/5/2 — 2:04 — page 1900 — #54
✐

✐

✐

✐

✐

✐

1900 Henri P. Roesch

forth condition of Definition 4.7, since trQ = 2K̊
s + o(s−1) is verified above.

□

From Lemma 5.3, Theorem 1.9, Theorem 3.9 and the comments immediately
proceeding Remark 5.2 we have the following proof of the known (see [18])
null Penrose conjecture in spherical symmetry:

Theorem 5.4. Suppose Ω := {v = v0} is a standard null cone of a spheri-
cally symmetric spacetime of metric

ds2 = −
(

1− 2M(v, r)

r

)

e2β(v,r)dv2 + 2eβ(v,r)dvdr + r2
(

dϑ2 + sinϑ2dφ2
)

where

1) |β(v0, r)| = o2(r
−1) is integrable

2) M(v0, r) = m0 + o(r0) for some constant m0 > 0

3) 0 ≤ hβr ≤ 2Mr

r

Then,
√

|Σ|
16π

≤ m0

for m0 the Trautman-Bondi mass of Ω and Σ := {r0 = 2M(v0, r0)}. In the
case of equality we have β = 0 and M = m0 so that Ω is a standard null
cone of Schwarzschild spacetime.

5.4. Perturbing spherical symmetry

We wish to study perturbations off of the spherically symmetric metric
given in Theorem 5.4 for the coordinate chart (v, r, ϑ, φ). We start by choos-
ing a 1-form η such that η(∂r(∂v)) = L∂vη = 0 and a 2-tensor γ satisfying
γ(∂r(∂v), ·) = L∂vγ = 0 with restriction γ|(v,r)×S2 positive definite. Finally,
we choose smooth functions M , β and α. Defining η⃗ to be the unique vec-
tor field satisfying r2γ(η⃗, X) = η(X) for arbitrary X ∈ Γ(TM) and |η⃗|2 :=
r2γ(η⃗, η⃗) the spacetime metric and its inverse are given by

g = −(h+ α)e2βdv ⊗ dv + eβ(dv ⊗ (dr + η) + (dr + η)⊗ dv) + r2γ

g−1 = e−β(∂v ⊗ ∂r + ∂r ⊗ ∂v) + (h+ α+ |η⃗|2)∂r ⊗ ∂r

− (η⃗ ⊗ ∂r + ∂r ⊗ η⃗) +
1

r2
γ−1.
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We see that Ω := {v = v0} remains a null hypersurface with
¯
L(= Dv) =

e−β∂r ∈ Γ(TΩ) ∩ Γ(T⊥Ω). Our metric resembles the perturbed metric used
by Alexakis [1]. We’ll need the following to specify our decay conditions:

Definition 5.5. Suppose Ω extends to past null infinity with level set func-
tion s for some null field

¯
L. For a transversal k-tensor T

• We say T (s, δ) = δoXn (s
−m) if T = oXn (s

−m) and

lim sup
δ→0

sup
Ω

1

δ
|sm(LXi1

...LXij
T )(s, δ)| <∞ for 0 ≤ j ≤ n

• We define

|T |2
H̊m

= |T |2γ̊ + |∇̊T |2γ̊ + · · ·+ |∇̊mT |2γ̊ .

Decay Conditions on Ω:

1) r2γ = r2γ̊ + rδγ1 + γ̃ where:
a) γ̊ is the ∂r-Lie constant, transversal standard round metric on S

2

independent of δ
b) γ1 is a ∂r-Lie constant, transversal 2-tensor independent of δ
c) γ̃ is a transversal 2-tensor satisfying (L∂r)iγ̃ = δoX5−i(r

1−i) for 0 ≤
i ≤ 3

2) α = δα0

r + α̃ where α0 is a ∂r-Lie constant function independent of δ
and |α̃|H̊2 ≤ δh1(r) for h1 = o(r−1)

3) β satisfies:
a) |β| = o2(r

−1) is r-integrable
b) |∇̊β|H̊3 ≤ δh2(r) for some integrable h2 = o(r−1)

c) |∇̊βr|H̊2 = O(r−1)

4) M = m0 + m̃ where m0 > 0 is a constant independent of δ and
|m̃|H̊2 ≤ δh3(r) for h3 = o(1)

5) η is a transversal 1-form satisfying:
a) η = o2(1)
b) |η|H̊3 + r|L∂rη|H̊3 ≤ δh4(r) for h4 = o(1).

5.4.1. The geodesic foliation. As in the spherically symmetric case we
identify the null geodesic field Dv = e−β∂r. We will again for convenience
take the background foliation to be level sets of the coordinate r. We wish
therefore to relate the given decay in r to the geodesic foliation given by
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the field
¯
L := Dv in order to show Ω is asymptotically flat with strong flux

decay.
Once again ds

dr = eβ = 1 + f where f = β e
β−1
β is r-integrable due to decay

condition 3. Taking local coordinates (ϑ, φ) on Σr0 (for some r0) we have

(5.5) s = r − c0(ϑ, φ)− β1(r, ϑ, φ)

for β0(ϑ, φ) :=
∫∞
r0
f(t, ϑ, φ)dt, c0 = r0 − β0 and β1(r, ϑ, φ) =

∫∞
r f(t, ϑ, φ)dt.

Since each Σr is compact, an m-th order partial derivative of f is bounded
by C|∇̊f |H̊m−1 for some constant C independent of r (from decay condition
3). From decay condition 3, provided m ≤ 4, derivatives in ϑ, φ of β0 and β1
pass into the integral (for fixed r) onto f and are bounded. On any Σs (i.e
fixed s) it follows from (5.5) that

∂ϑ(φ)r = −
∫ r
r0
∂ϑ(φ)f(t, ϑ, φ)dt

1 + f
= −e−β

∫ r

r0

βϑ(φ)e
βdt

with bounded derivatives up to third order. It’s a simple verification in local
coordinates, from

r(s, ϑ, φ) = s+ c0(ϑ, φ) + β1(r(s, ϑ, φ), ϑ, φ),

that ∂isβ1 = oX3−i(s
−i) for 0 ≤ i ≤ 3. Coupled with the fact that L

¯
L = e−βL∂r

on transversal tensors we conclude that (L
¯
L)
iγ̃ = oX3−i(s

1−i) for 0 ≤ i ≤ 3
and therefore

(5.6) γs = r2γ|Σs
= s2γ̊ + sΓ1 + Γ̃

where

Γ1 = 2c0γ̊ + δγ1

Γ̃ =
(

2sβ1 + (β1 + c0)
2
)

γ̊ + δ(β1 + c0)γ1 + γ̃

satisfies the requirements towards strong decay.

5.4.2. Calculating ρ. Since we will compare computations for the folia-
tion {Σr} with the geodesic foliation of 5.4.1 we will revert back to denoting
the covariant derivative on Σs by ∇ and the covariant derivative on Σr by
/∇. Beyond Definition 5.5, we will also need to explicitly refer to vector field
extensions [∂r, V ] = 0 off of some Σr0 which, given β = β(r, ϑ, φ), distin-
guishes from extensions along

¯
L (denoted by E(Σr0)). We therefore contrast

by using the subscript V ∈ E∂r(Σr0).
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For the foliation {Σr} we have the linearly independent normal vector
fields

¯
L = e−β∂r

Dr = e−β∂v + (h+ α+ |η⃗|2)∂r − η⃗

from which similar calculations as in spherical symmetry yield the unique
null normal satisfying ⟨

¯
L,L⟩ = 2 to be given by

L = 2∂v + eβ(h+ α+ |η⃗|2)∂r − 2eβ η⃗.

Lemma 5.6. We have

¯
χ = e−β(rγ̊ +

δ

2
γ1 +

1

2
(L∂r γ̃))

tr
¯
χ = e−β(

2

r
+
δ
¯
θ

r2
) + δoX4 (r−2)

for
¯
θ := −1

2 t̊rγ1. Moreover,

/∇m

¯
χ = −e−β δ

2
∇̊mγ1 + δoX4−m(1), 0 ≤ m ≤ 4.

Proof. First we extend V,W ∈ E∂r(Σr0) off of Ω such that [∂v, V (W )] = 0.
Then for

¯
χ:

¯
χ(V,W ) = ⟨DV (e

−β∂r),W ⟩ = e−β⟨DV ∂r,W ⟩ = e−β
1

2
∂r⟨V,W ⟩

= e−β(rγ̊(V,W ) +
δ

2
γ1(V,W ) +

1

2
L∂r γ̃(V,W ))

having used the Koszul formula to get the third equality. So using a basis
extension {X1, X2} ⊂ E∂r(Σr0) Proposition 4.9 provides the inverse metric
γ(r)ij = 1

r2 γ̊
ij − δ

r3 γ̊1
ij + δoX5 (r−3) and tr

¯
χ follows by contracting γ(r)−1

with
¯
χ. For the final identity we note from Lemma 4.11 we have for the

decomposition γ(r) = r2γ̊ + rδγ1 + γ̃ the difference tensor

⟨D(V,W ), U⟩ = ⟨ /∇VW − ∇̊VW,U⟩

=
rδ

2

(

∇̊V γ1(W,U) + ∇̊Wγ1(V,U)− ∇̊Uγ1(V,W )
)

+
1

2

(

∇̊V γ̃(W,U) + ∇̊W γ̃(V,U)− ∇̊U γ̃(V,W )
)
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for V,W,U ∈ E∂r(Σr0). So proceeding as in Proposition 4.20

/∇i
¯
χjk = ∇̊i

¯
χjk −Dm

ij
¯
χmk −Dm

ik
¯
χjm

= ∇̊i(re
−β γ̊jk + e−β

δ

2
γ1jk + e−β

1

2
(L∂r γ̃)jk)− e−βδ∇̊i(γ1jk) + δoX4 (1)

= rγ̊jk∇̊i(e
−β)− e−β

δ

2
∇̊iγ1jk +

δ

2
γ1jk∇̊i(e

−β) + δoX3 (1)

= −e−β δ
2
∇̊iγ1jk + δoX3 (1).

Iteration provides our result

/∇m

¯
χ = −e−β δ

2
∇̊mγ1 + δoX4−m(1), 1 ≤ m ≤ 4

from decay condition 3. □

For χ we have

χ(V,W ) = 2⟨DV ∂v,W ⟩+ eβ(h+ α+ |η⃗|2)⟨DV ∂r,W ⟩ − 2⟨DV e
β η⃗,W ⟩

= 2⟨DV ∂v,W ⟩+ e2β(h+ α+ |η⃗|2)
¯
χ(V,W )− 2 /∇V (e

βη)(W )

and using the Koszul formula on the first term we see

2⟨DV ∂v,W ⟩ = V (eβη(W )) + ∂v⟨V,W ⟩ −W (eβη(V ))− ⟨V, [∂v,W ]⟩
+ ⟨∂v, [W,V ]⟩+ ⟨W, [V, ∂v]⟩

= /∇V (e
βη)(W )− /∇W (eβη)(V )

= curl(eβη)(V,W )

so that a trace over V,W yields trχ = e2β(h+ α+ |η⃗|2) tr
¯
χ− 2 /∇ · (eβη) and

therefore

⟨H⃗, H⃗⟩ = e2β(h+ α+ |η⃗|2)(tr
¯
χ)2 − 2 /∇ · (eβη) tr

¯
χ

=
(

1− 2M

r
+ δ

α0

r

)(2

r
+
δ
¯
θ

r2

)2
+ δoX2 (r−3)

=
(

1− 2M

r
+ δ

α0

r

)( 4

r2
+

4δ
¯
θ

r3

)

+ δoX2 (r−3)

=
4

r2

(

1− 2m0

r
+ δ¯

θ

r
+ δ

α0

r

)

+ δoX2 (r−3)

from decay conditions 2-5. For ζ we have

ζ(V ) = ⟨DV (e
−β∂r), ∂v⟩ − eβ⟨DV (e

−β∂r), η⃗⟩
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= −V β + e−β⟨DV ∂r, ∂v⟩ − ⟨DV ∂r, η⃗⟩
= −V β + e−β⟨DV ∂r, ∂v⟩ − eβ

¯
χ(V, η⃗).

From the Koszul formula

2⟨DV ∂r, ∂v⟩ = V ⟨∂r, ∂v⟩+ ∂r⟨V, ∂v⟩ − ∂v⟨V, ∂r⟩ − ⟨V, [∂r, ∂v]⟩+ ⟨∂r, [∂v, V ]⟩
+ ⟨∂v, [V, ∂r]⟩

= eβV β + ∂r(e
βη(V )) = eβV β + L∂r(eβη)(V )

from which we conclude that ζ(V ) = −1
2V (β) + e−β

2 L∂r(eβη)(V )− eβ
¯
χ(V, η⃗)

and

/∇ · ζ = −1

2
/∆β +

1

2
/∇ · (e−βL∂r(eβη))− /∇ · (eβ

¯
χ(η⃗))

= −1

2
/∆β +

1

2
/∇ · (βrη) +

1

2
/∇ · (L∂rη)− eβ

¯
χ( /∇β, η⃗)− eβ /∇ · (

¯
χ(η⃗))

= δoX2 (r−3)

having used decay conditions 3, 5, and Lemma 5.6 for the final line.

Lemma 5.7. Ω satisfies conditions 1, 2 and 3 of Definition 4.7. Ω addi-
tionally satisfies the strong flux decay condition if and only if

1

2
∇̊ · γ1 + d

¯
θ = 0

for
¯
θ = −1

2 t̊rγ1 and is subsequently past asymptotically flat.

Proof. Having already verified condition 1 up to strong decay for γs of our
geodesic foliation {Σs} we continue to show conditions 2 and 3.
Given V ∈ E∂r(Σr0) Lemma 4.2 ensures V − V s

¯
L|Σs

∈ Γ(TΣs) and we see
that

[V − V s
¯
L,

¯
L] = [V,

¯
L] +

¯
LV s

¯
L = eβV (e−β)

¯
L+ e−βV (∂rs)

¯
L

= (eβV (e−β) + e−βV (eβ))
¯
L = 0.

So V − V s
¯
L ∈ E(Σ0) and Lemma 4.2 gives

t(V − V s
¯
L) = t(V ) = ζ(V ) +

¯
χ(V, /∇s)

= −1

2
V (β) +

1

2
βrη(V ) +

1

2
(L∂rη)(V )− eβ

¯
χ(V, η⃗) +

¯
χ(V, /∇s)
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= (δoX3 (r−1) ∩ o1(r−1))(V ) +
¯
χ(V, /∇s)

= (δoX3 (r−1) ∩ o1(r−1))(V ) + re−β γ̊(V,
1

r2
∇̊s)

=
e−β

r
V β0 + (δoX3 (r−1) ∩ o1(r−1))(V )

having used decay conditions 3 and 5 to get the second line, Lemma 5.6 for
the third and (5.5) for the last. Moreover,

(LV−V s
¯
Lt)(W −Ws

¯
L) = (V − V s

¯
L)(t(W −Ws

¯
L))− t([V,W ])

= (LV t)(W )− V s
¯
L(t(W ))

= (LV − e−βV sL∂r)(
dβ0
r

)(W ) + o(r−1)

=
1

r
LV (dβ0)(W ) + o(r−1)

=
1

r
(LV−V s

¯
Ldβ0)(W −Ws

¯
L) + o(r−1)

where the last line follows since β0 is
¯
L-Lie constant. With a basis extension

{Xi} ⊂ E(Σ0) we therefore conclude that LXi
t = 1

sLXi
dβ0 + o(s−1) so that

condition 2 for asymptotic flatness is satisfied up to strong decay with t1 =
dβ0. From Proposition 4.9 and (5.6):

trK =
2

s
− 1

2s2
t̊rΓ1 + o(s−2) =

2

s
− 1

2s2
t̊r(2c0γ̊ + δγ1) + o(s−2)

=
2

s
+
δ
¯
θ − 2c0
s2

+ o(s−2)

and

K̂ = K − 1

2
trKγs = s̊γ +

1

2
Γ1 −

1

2

(2

s
+
δ
¯
θ − 2c0
s2

+ o(s−2)
)

γs + o(1)

= s̊γ +
1

2
(2c0γ̊ + δγ1)−

1

2
(
2

s
+
δ
¯
θ − 2c0
s2

)(s2γ̊ + s(2c0γ̊ + δγ1)) + o(1)

= −δ
2
(γ1 +

¯
θγ̊) + o(1).

For condition 3 we take r|Σs
∈ F(Σs) and Lie drag it to the the rest of Ω

along ∂r (hence
¯
L) to give rs ∈ F(Ω). Using Lemma 4.2 from the vantage

point of the cross section Σs amongst the background foliation {Σr}:

e−β trQ = e−β trχ− 4(ζ + /d log eβ)( /∇rs)− 2∆rs + | /∇rs|2eβ tr
¯
χ− 2βr| /∇rs|2
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From the expression of r(s) in 5.4.1, recalling Remark 4.15, we see drs =
−dβ0 + o(1) from which Lemma 4.11 implies that ∆rs = − 1

s2 ∆̊β0 + o(s−2).
From decay conditions 3, 5, and Lemma 5.6 we have

trQ = trχ|Σs
+ 2

∆̊β0
s2

+ o(s−2)

=
(

e2β(h+ α+ |η⃗|2) tr
¯
χ− 2 /∇ · (eβη)

)

|Σs
+ 2

∆̊β0
s2

+ o(s−2)

= (
2

s
+
δ
¯
θ − 2c0
s2

)(1− 2M

s
+ δ

α0

s
) + 2

∆̊β0
s2

+ o(s−2)

=
2

s
+
δ
¯
θ − 2c0 − 4M + 2δα0

s2
+ 2

∆̊β0
s2

+ o(s−2)

=
2

s
− 2

c0 + 2M

s2
+

1

s2
(δ
¯
θ + 2∆̊β0 + 2δα0) + o(s−2)

and condition 3 follows as soon as we setM = m0 + δoX2 (1). As in the spher-

ically symmetric case the highest order term for trQ agrees with 2K̊
s where

K̊ = 1 is the Gaussian curvature of γ̊. We recall that our need for condi-
tion 4 depends on whether Ω has strong flux decay (Remark 4.22). From
Proposition 4.9 and 5.6 we will have strong flux decay if and only if

dβ0 = t1 =
1

2
∇̊ · Γ1 −

1

2
/dt̊rΓ1

=
1

2
∇̊ · (2c0γ̊ + δγ1) + /d(δ

¯
θ − 2c0)

=
1

2
d(−2β0) +

δ

2
∇̊ · γ1 + δd

¯
θ + 2dβ0

= dβ0 + δ(
1

2
∇̊ · γ1 + d

¯
θ)

which in turn holds if and only if 1
2∇̊ · γ1 + d

¯
θ = 0. □

Henceforth we will assume the conditions of Lemma 5.7 for Ω. From Propo-
sition 4.12

Kr2γ =
1

r2
+

δ

r3

(

¯
θ +

1

2
∇̊ · ∇̊ · γ1 + ∆̊

¯
θ
)

+ δoX4 (r−3)

=
1

r2
+

δ

r3¯
θ + δoX4 (r−3).

From Lemma 5.6 we have

/∇i /∇j
¯
χmn = −δ

2
∇̊i∇̊jγ1mn + δoX2 (1)



✐

✐

“5-Roesch” — 2022/5/2 — 2:04 — page 1908 — #62
✐

✐

✐

✐

✐

✐

1908 Henri P. Roesch

so that contraction with γ(r)−1 first in mn then ij gives

/∆tr
¯
χ =

δ

r4
∆̊
¯
θ + δoX2 (r−4)

which we use in /∆ log tr
¯
χ =

/∆tr
¯
χ

tr
¯
χ − | /∇ tr

¯
χ|2

(tr
¯
χ)2 to conclude

/∆ log tr
¯
χ =

δ

2r3
∆̊
¯
θ + δoX2 (r−3).

Finally we have ρ

ρ = Kr2γ −
1

4
⟨H⃗, H⃗⟩+ /∇ · ζ − /∆ log tr

¯
χ

=
1

r2
+

δ

r3¯
θ − 1

r2
+

2m0

r3
− δ ¯

θ

r3
− δ

α0

r3
− δ

2r3
∆̊
¯
θ + δoX2 (r−3)

=
2m0

r3
− δ

r3
(
1

2
∆̊
¯
θ + α0) + δoX2 (r−3)

=
2m0

r3
− δ

r3
(
1

2
∆̊
¯
θ + α0) + δoX2 (r−3)

and

1

4
⟨H⃗, H⃗⟩ − 1

3
/∆ log ρ =

1

r2

(

1− 2m0

r
+ δ¯

θ

r
+ δ

α0

r

)

− 1

3
/∆ log

(2m0

r3
− δ

r3
(
1

2
∆̊
¯
θ + α0) + δoX2 (r−3)

)

+ δoX2 (r−3).

We may now use Lemma 4.11 to decompose the last term

/∆ log
(2m0

r3
− δ

r3
(
5

2
∆̊
¯
θ + α0) + δoX2 (r−3)

)

=
1

r2
∆̊ log

(

1− δ

2m0
(
1

2
∆̊
¯
θ + α0) + δoX2 (1)

)

+ δo(r−2)

=
1

r2
∆̊ log

(

1− δ

2m0
(
1

2
∆̊
¯
θ + α0)

)

+ δo(r−2)

giving

1

4
⟨H⃗, H⃗⟩ − 1

3
/∆ log ρ =

1

r2

(

1− 2m0

r
− 1

3
∆̊ log

(

1− δ

2m0
(
1

2
∆̊
¯
θ + α0)

))

+ δo(r−2).

Sincem0 > 0 we notice for sufficiently small δ our perturbation ensures ρ > 0
for all r > 0. However, from our construction so far it’s not yet possible to
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conclude that some δ > 0 will enforce 1
4⟨H⃗, H⃗⟩ ≥ 1

3
/∆ log ρ along the foliation.

Moreover, the existence of a horizon (trχ = 0) is equally questionable.

5.4.3. Smoothing to spherical symmetry. We will solve this diffi-
culty by ‘smoothing’ away all perturbations in a neighborhood of the (de-
sired) horizon in order to obtain spherical symmetry on r < r1 for some
r1 > 0 yet to be chosen. The resulting spherical symmetry will uncover
the horizon at r = r0 < r1 and will also provide a choice of δ > 0 so that
1
4⟨H⃗, H⃗⟩ > 1

3
/∆ log ρ away from it, causing the foliation {Σr} to be strict

doubly convex.

We will use a smooth step function 0 ≤ Sδ(r) ≤ 1 such that Sδ(r) = 0
for r < r1 and Sδ(r) = 1 for r > r2 for some finite r2(δ) chosen to ensure
|S′
δ(r)| ≤ δ. We start off by choosing parameter functions, β̃(v, r), M̃(v, r),

according to the conditions of Theorem 5.4 for the desired spherically sym-
metric region. Therefore, r0 = 2M̃(v0, r0), 2M̃(v0, r) ≤ r for r > r0, M̃r ≥ 0,
and M̃ = m0 + o(1). We induce spherical symmetry on r < r1 with the fol-
lowing substitutions:

γ̃ → δr(Sδ(r)− 1)γ1 + Sδ(r)γ̃

β(r, ϑ, φ) → Sδ(r)β(r, ϑ, φ) + (1− Sδ(r))β̃(v0, r)

M(r, ϑ, φ) → Sδ(r)M(r, ϑ, φ) + (1− Sδ(r))M̃(v0, r)

α̃→ Sδ(r)α̃− (1− Sδ(r))
δα0

r
η → Sδ(r)η.

We leave the reader the simple verification that these changes to our pertur-
bation tensors γ̃, β, M , α̃ and η maintain the decay conditions 1-5. Clearly
for r > r2 our substitutions leave the metric unchanged while inducing spher-
ical symmetry on r < r1 with the spherical parameter functions β̃ , M̃ :

An example Sδ(r) is given by the function

Sδ(r) =















0 r ≤ r1
e

k
r1−r

e
k

r1−r +e
k

r−r2

r1 < r < r2

1 r2 ≤ r

where k = 4
δ and r2(δ) = r1 + k. Since Sδ(r) = P ( 1

r1−r
+ 1

r2−r
), P (r) = ekr

1+ekr

satisfies the logistic equation

P ′(r) = kP (1− P )
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r0 = 2M̃(v0, r0)

r = r1

r > r1

we have

S′
δ(r) = kSδ(r)(1− Sδ(r))(

1

(r − r1)2
+

1

(r − r2)2
)

= k
Sδ(r)

(r − r1)2
(1− Sδ(r)) + kSδ(r)

1− Sδ(r)

(r − r2)2

≤ k
( Sδ(r)

(r − r1)2
+

1− Sδ(r)

(r − r2)2

)

.

Elementary analysis reveals on the interval r1 < r < r2 that

0 ≤ e
k

r1−r

(r − r1)2
≤ 4

k2e2

0 ≤ 1

e
k

r1−r + e
k

r−r2

≤ 1

2
e2

yielding from simple symmetry arguments that both Sδ(r)
(r−r1)2

, 1−Sδ(r)
(r−r2)2

≤ 2
k2

and therefore

0 ≤ S′
δ(r) ≤ k

4

k2
= δ

as desired. Denoting m(r, δ) := Sδ(r)m0 + (1− Sδ(r))M̃(r) the new metric
gives

ρ =

{

2M̃(v0,r)
r3 , r < r1

2m(r,δ)
r3 − δ

r3 (
1
2∆̊¯

θ + α0) + δoX2 (r−3), r1 ≤ r

and

1

4
⟨H⃗, H⃗⟩ − 1

3
/∆ log ρ =







1
r2 (1−

2M̃(v0,r)
r ), r < r1

1
r2

(

1− 2m(r,δ)
r − 1

3∆̊ log
(

1− δ
2m(r,δ)(

1
2∆̊¯

θ + α0)
))

+ δo(r−2), r1 ≤ r.
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Sincem0 ≥ m(r, δ) ≥ r0
2 , we see for any choice of r1 > 2m0, sufficiently small

δ induces strict double convexity on the foliation {Σr}. If we therefore re-
strict to perturbations satisfying the dominant energy condition on Ω, then
Theorem 1.9 implies the following:

Theorem 5.8. Let gδ be a metric perturbation off of spherical symmetry
given by

gδ = −(h+ α)e2βdv ⊗ dv + eβ(dv ⊗ (dr + η) + (dr + η)⊗ dv) + r2γ

where

1) r2γ = r2γ̊ + rδγ1 + γ̃ is trasversal with γ̊ the transversal ∂r-Lie
constant round metric on S

2 independent of δ, γ1 a transversal ∂r-
Lie constant 2-tensor independent of δ satisfying ∇̊ · γ1 = d(t̊rγ1) and
(L∂r)iγ̃ = δoX5−i(r

1−i) for 0 ≤ i ≤ 3.

2) α = δα0

r + α̃ where α0 is a ∂r-constant function independent of δ and
|α̃|H̊2 ≤ δh1(r) for h1 = o(r−1)

3) β satisfies:
a) |β| = o2(r

−1) is r-integrable
b) |∇̊β|H̊3 ≤ δh2(r) for some integrable h2 = o(r−1)

c) |∇̊βr|H̊2 = O(r−1)

4) M = m0 + m̃ where m0 > 0 is a constant, independent of δ and
|m̃|H̊2 ≤ δh3(r) for h3 = o(1)

5) η is a transversal 1-form satisfying:
a) η = o2(1)
b) |η|H̊3 + r|L∂rη|H̊3 ≤ δh4(r) for h4 = o(1).

Then, for sufficiently small δ, Ω := {v = v0} is past asymptotically flat with
strong flux decay. In addition, for any choice of spherical parameters β̃, M̃
as in Theorem 5.4, smoothing to spherical symmetry with a step function
Sδ(r), such that S′

δ(r) ≤ δ, whereby:

γ̃ → δr(Sδ(r)− 1)γ1 + Sδ(r)γ̃

β(r, ϑ, φ) → Sδ(r)β(r, ϑ, φ) + (1− Sδ(r))β̃(r)

M(r, ϑ, φ) → Sδ(r)M(r, ϑ, φ) + (1− Sδ(r))M̃(r)

α̃→ Sδ(r)α̃− (1− Sδ(r))
δα0

r
η → Sδ(r)η
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we have that Σ := {r0 = 2M̃(v0, r0)} is marginally outer trapped and the
coordinate spheres {Σr}r≥r0 are strict doubly convex. Moreover, if gδ respects
the dominant energy condition on Ω we have the Penrose inequality:

√

|Σ|
16π

≤ mTB

where mTB is the Trautman-Bondi mass of Ω.
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