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We establish a high order Hopf lemma type result for holomorphic
mappings into classical domains, and find its applications in study-
ing the boundary behavior of holomorphic isometric and proper
maps.
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1. Introduction

The classical Hopf lemma for subharmonic functions has been applied exten-
sively in complex analysis to study holomorphic maps between domains or
CR maps between real hypersurfaces. It is often used to obtain transversal-
ity of the map at a boundary point when the target domain or hypersurface
satisfies certain types of “convexity” conditions. See Proposition 2.1 for a
typical application of the Hopf lemma. Much effort has been made to gen-
eralize the classical Hopf lemma to more applicable settings to study the
transversality and the unique continuation problem for holomorphic maps.
Here we mention the papers [A2], [ABR], [BR1-2], [HKMP], [HK], [L], [BH]
and references therein.
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DMS-2045104.
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In this paper we establish a Hopf lemma type result of different flavor
from the aforementioned literature — a high order Hopf lemma for holo-
morphic mappings into classical domains. The mapping problem between
bounded symmetric domains is an important subject in complex analysis
and geometry. Due to the special geometric structure of bounded symmetric
domains, many striking phenomena such as rigidity property have been dis-
covered for proper and isometric maps since the classical result of Poincaré
[Po]. For many results along this line, see [A1], [Fr], [Hu], [HJ], [DX1-2],
[TH], [Ts], [Ng3], [M1-5], [YZ], [KZ1-2], [Km] and references therein. See
also recent survey articles [NTY], [CXY] for more detailed account and ref-
erences on this subject. Our Hopf lemma may shed new light on the study
of the boundary behavior of mappings into bounded symmetric domains. As
a first exploration, we will restrict ourselves to the case of classical domains
in this article.

To explain our results, we first recall the notion of bounded symmetric
domains. A complex manifold X with a Hermitian metric h is said to be a
Hermitian symmetric space if, for every point p ∈ X, there exists an invo-
lutive holomorphic isometry σp of X such that p is an isolated fixed point.
An irreducible Hermitian symmetric space of noncompact type can be, by
the Harish-Chandra embedding (See [Wo]), realized as a bounded domain in
some complex Euclidean space. Such domains are convex, circular and some-
times called bounded symmetric domains. Irreducible bounded symmetric
domains can be classified into Cartan’s four types of classical domains and
two exceptional domains (See [M1]). See more details on classical domains
in Section 3.

The rank r of a bounded symmetric domain D, can be defined as the di-
mension of the maximal polydisc that can be totally geodesically embedded
into D. Write KD(Z,Z) for the Bergman kernel of an irreducible bounded
symmetric domain D. Then there is a Hermitian polynomial QD(Z,Z) such
that KD(Z,Z) =

1
QD(Z,Z)

. Moreover, QD(Z,Z) = ADρ(Z,Z)
n, where AD

is a positive constant, n is a positive integer both depending on D, and
ρ(Z,W ) is an irreducible holomorphic polynomial satisfying ρ(Z,Z) > 0
in D and ρ(Z,Z) = 0 on the boundary ∂D. Furthermore, let P be the
maximal polydisc ∆r × {0} in Ω in Harish-Chandra coordinates, then for
Ẑ = (z1, · · · , zr;0) ∈ P , we have

ρ(Ẑ, Ẑ) =

r∏

i=1

(1− |zi|2).
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See [M1], [H], [FK], [Lo] for more details on KD and ρ. The function ρ is
sometimes called the generic norm associated to the domain D. We include
the explicit formulas of ρ for classical domains in Section 3. Write K ⊂
Aut0(D) for the isotropy subgroup at 0 ∈ D. An important property of ρ is
the invariance under K : ρ(Z,Z) = ρ(γ(Z), γ(Z)) for every γ ∈ K.

We next recall the boundary fine structure of an irreducible bounded
symmetric domain D (cf. [Wo]). By Borel embedding (See [M1], [Wo]), D
can be canonically embedded into its dual Hermitian symmetric manifolds
X of compact type. Under the embedding, every automorphism g ∈ Aut(D)
extends to an automorphism of X and D becomes an open orbit under
the action of Aut(D) on X. Moreover, denoting the rank of D by r, the
topological boundary ∂D of D decomposes into exactly r orbits under the
action of the identity component Aut0(D) of Aut(D) : ∂D = ∪ri=1Ei, where
Ek lies in the closure of El if k > l (The explicit formulas to define E′

ks can
be found in Section 3 for classical domains). Moreover, Ek is the smooth part
of the semi-analytic variety ∪rj=kEj (See the proof of Lemma 2.2.3 in [MN]).
In particular E1 is the unique open orbit, which is indeed the smooth part
of ∂D, and Er is the Shilov boundary. We recall in general for a bounded
domain D, its Shilov boundary S is defined to be the (unique) smallest
closed subset of ∂D such that for every holomorphic function f defined in a
neighborhood of D, it holds that

sup
z∈D

|f(z)| = sup
z∈S

|f(z)|.

Note the boundary ∂D of a bounded symmetric domain D is non-smooth
and contains complex varieties, unless D is biholomorphic to the unit ball.

We now introduce our main result. Let ρ and E′
ks be as above which are

associated to an irreducible bounded symmetric domain D. Write ρ ◦ F =
ρ(F, F ) for a holomorphic map F into D.

Theorem 1. Let Ω ⊂ Cn be a domain and D an (irreducible) classical
domain in Cm with rank r. Fix 1 ≤ k ≤ r. Let F be a holomorphic map
from Ω to D and extends C1−smoothly to a smooth boundary point a ∈ ∂Ω.
Assume F (a) ∈ Ek. Then

(1) The following limit exists (as a finite number) and satisfies the sign
condition:

(1.1) (−1)k lim
t→0−

ρ ◦ F (a+ tν)

tk
> 0.

Here ν is the outward pointing unit normal vector of Ω at a.
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(2) If in addition F is Ck near a, then all derivatives of ρ ◦ F of order
≤ k − 1 must vanish at a. Moreover,

(1.2) (−1)k
∂k(ρ ◦ F )
∂νk

∣∣
a
> 0;

(1.3) Lk(ρ ◦ F )
∣∣
a
̸= 0.

Here L is the complex normal direction of ∂Ω at a with ∂
∂ν

= 2ReL.

Remark 1.1. (i). Note ρ ◦ F is always positive in Ω, and thus part (1) in
Theorem 1 is equivalent to say the limit in (1.1) is finite and nonzero. In
this case, we will say ρ ◦ F vanishes to the kth order at the point a along
the normal direction. This conclusion may fail if in Theorem 1 we merely
assume the map F has a Hölder continuous extension to the point a. See
Example 1.1.

(ii). In part (2) since all derivatives of ρ ◦ F of order ≤ k − 1 vanish at
a, the quantities on the left hand side of (1.2) and (1.3) do not depend on
the extensions of ∂

∂ν
and L to a neighborhood of a.

(iii). Note the equation (1.2) follows from (1.1) when F is Ck smooth at
a. In the proof, however, we indeed establish part (2) of Theorem 1 first.

Example 1.1. Let ∆ ⊂ C be the unit disc and DIV
m the classical domain of

type IV (See Section 3.4 for the definition of the latter). Let F : ∆ → DIV
m

be defined by

F (ξ) = (ξ, 0, · · · , 0, 1−
√

1− ξ2).

Then F is holomorphic in ∆ and admits a Hölder continuous extension up
to the circle ∂∆. Set a = 1 ∈ ∂∆. Then F (a) = (1, 0, · · · , 0, 1) ∈ E2 (thus
k = 2, see Section 3.4 for the explicit defining formula of E2 for type IV
domains) and F does not have a C1−extension to the point a. In this case,
the outward pointing normal unit vector of ∂∆ at a is ν = (1, 0) ∈ R2 = C.

We compute limt→0−
ρ◦F (a+tν)

t
= −2. Thus ρ ◦ F vanishes only to the first

order at a along the normal direction.

We next recall the following definition.

Definition 1.1. Let k ≥ 1. Let U be an open subset in RN and ψ ∈ Ck(U).
Denote by x = (x1, · · · , xN ) the coordinates in RN and for a multi-index
α = (α1, · · · , αN ), write ∂|α|

∂xα = ∂|α|

∂x
α1
1 ···∂xαN

N

and |α| = α1 + · · ·+ αN . We say

ψ vanishes to the kth order at p ∈ U if ∂|α|ψ
∂xα (p) = 0 for all |α| ≤ k − 1 and

∂|β0|ψ
∂xβ0

(p) ̸= 0 for some multi-index β0 with |β0| = k.
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To prove the main theorem, the first step is to establish the following
characterization of the boundary orbits of classical domains. Note when
k = 1, Theorem 2 follows from Lemma 2 in [M5].

Theorem 2. Let D be an (irreducible) classical domain in Cm with rank
r. Let 1 ≤ k ≤ r. Then

Ek = {b ∈ ∂D : ρ(Z,Z) vanishes to the kth order at b}.

Remark 1.2. From Theorem 1 and 2, one immediately sees that under
the setting of Theorem 1, there exists some component of the map F whose
normal derivative is nonzero at a.

We next discuss applications of our Hopf lemma in studying holomorphic
isometric maps into classical domains. The study of metric-preserving maps
dates back to the work of Calabi [Ca] and Bochner [Bo]. More recently,
the isometric mappings between bounded symmetric domains attract lots
of attention from many researchers. One particular motivation comes from
arithmetic geometry in the work of Clozel-Ullmo [CU] in understanding the
modular correspondence problem, which was reduced to a rigidity problem
for isometric mappings in purely complex geometric settings (See [CU] for
more details). Mok (cf. [M2-5]) then led an extensive study on such holo-
morphic isometric mapping problem. Let F : (Ω, λds2Ω) → (D, ds2D) be an
isometric mapping between bounded symmetric domains Ω and D which
we equip with the Bergman metrics ds2Ω and ds2D. When D is irreducible
and of rank at least 2, Clozel-Ullmo [CU] observed the proof of Hermitian
metric rigidity of Mok (See [M1] and [M3]) yields already the total geodesy
of F . When Ω is a complex unit ball Bn(n ≥ 2), and D is a product of some
unit balls, Yuan-Zhang ([YZ], See also [M3], [Ng1] for related work) showed
F must be totally geodesic. Hence, if we assume Ω is irreducible and has
dimension at least two, then the simplest case that one can expect a non-
totally geodesic map F is when Ω is the unit ball Bn and D is irreducible
and of rank ≥ 2. Mok [M5] initiated the study of isometric maps from the
unit ball to bounded symmetric domains of higher rank, and in partiular
proved the existence of such non-totally geodesic maps. Since the work of
Mok [M5], various authors contributed along this direction of understanding
isometric maps from the unit ball to bounded symmetric domains of higher
rank, including [CM], [Ch1], [UWZ], [XY1-2], etc. More related results on
metric-preserving or volume-preserving mappings between Hermitian sym-
metric spaces can be found in [HY], [MN], [Ng2-3], [Y], [FHX], [Ch2], [CY],
[X] and references therein.
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Let D be an irreducible bounded symmetric domain. Denote by ωD and
ωBn the normalized Bergman metric (Kähler-Einstein metric) such that the
minimal disc is of constant Gaussian curvature −2 for D and Bn, respec-
tively. One can verify the normalized Bergman metric ωD of D is given by
ωD =

√
−1∂∂ log ρ−1(Z,Z), where ρ is the generic norm associated to D.

Let F : Bn → D be an isometric map satisfying F ∗(ωD) = λωBn for some
positive constant λ. Chan-Mok [CM] showed that λ must be an integer and
1 ≤ λ ≤ r.We have the following consequence of Theorem 1 on the boundary
behavior of such isometric maps.

Theorem 3. Let F be a holomorphic isometric map from Bn(n ≥ 1) to an
(irreducible) classical domain D of rank r : F ∗(ωD) = λωBn for some positive
constant λ. Fix 1 ≤ k ≤ r. Then the following statements are equivalent:

(1) λ = k.

(2) There is a point a ∈ ∂Bn such that F has a C1 smooth extension to a
and F (a) ∈ Ek.

(3) For every ξ ∈ ∂Bn to which F has a C1 smooth extension, it must hold
that F (ξ) ∈ Ek.

Remark 1.3. (i). By Mok [M1], every (local) holomorphic isometry be-
tween bounded symmetric domains must be algebraic and thus extends holo-
morphically across a generic boundary point. Hence Theorem 3 implies that
λ = k if and only if F maps a generic boundary point to Ek. Note this fact
was known to Mok [M5] when k = 1.

(ii). In particular, if F is a holomorphic polynomial isometric map from
Bn to an (irreducible) classical domain D of rank r, i.e., F ∗(ωD) = kωBn for
some 1 ≤ k ≤ r, then F maps every point on ∂Bn to Ek.

We have the following consequences of Theorem 3.

Corollary 1.1. Let F be a holomorphic isometric map from Bn(n ≥ 1) to
an (irreducible) classical domain of with rank r : F ∗(ωD) = kωBn for some
1 ≤ k ≤ r. Assume a ∈ ∂Bn and there is a sequence {ai}∞i=1 ⊂ Bn converging
to a such that limi→∞ F (ai) ̸∈ Ek. Then F cannot be extended C1−smoothly
to a.

Corollary 1.2. Let F be a holomorphic isometric map from Bn to an (irre-
ducible) classical domain D of rank r, i.e., F ∗(ωD) = kωBn for some 1 ≤ k ≤
r. Assume F extends continuously to a point ξ ∈ ∂Bn. Then F (ξ) ∈ ∪rl=kEl.
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Remark 1.4. (i). Under the assumption of Corollary 1.2, where F only
extends continuously to ξ, one cannot expect F (ξ) ∈ Ek in general. See Ex-
ample 1.2.

(ii). When n = 1, i.e., the source domain is the unit disc ∆, it follows
from [M3] that F must extend continuously to the closed disc ∆. Thus the
conclusion in Corollary 1.2 holds for every boundary point of ∆.We remark,
however, for larger n, there exists a holomorphic isometric map from Bn to
a classical domain which fails to extend continuously to the whole boundary
∂Bn. See Example 1.3.

The following result shows that the image of a non-totally geodesic iso-
metric map F : Bn → D cannot touch the Shilov boundary of D at a high
order.

Corollary 1.3. Let F be a holomorphic isometric map from Bn to an (ir-
reducible) classical domain D. If F extends C1−smoothly to a point ξ ∈ ∂Bn

and maps ξ to the Shilov boundary of D, then F must be totally geodesic.

Remark 1.5. The conclusion in Corollary 1.3 fails if we only assume F
has a Hölder continuous extension to the point ξ. See Example 1.2.

In the following two examples, let DIV
m and DI

p,q be classical domains of
type IV and I, respectively. (See Section 3 for their definitions).

Example 1.2. Let F be a holomorphic map from Bn to DIV
m (m ≥ n+ 1)

given by 
z1, · · · , zn−1, zn, 0, · · · , 0, 1−

√√√√1−
n∑

j=1

z2j


 .

One can verify that F is an isometric map satisfying F ∗(ωD) = ωBn and F
is not totally geodesic. Let V be the real subvariety of ∂Bn defined by

V = {z ∈ ∂Bn :

n∑

i=1

z2j = 1}.

Then for every point a ∈ V, F admits a Hölder continuous extension to a, and
F (a) ∈ E2, the Shilov boundary of DIV

m . However, F has no C1−extension
to a. This supports the assertions in Corollary 1.1 and Remark 1.5.

Example 1.3. Let q ≥ p ≥ 2. Write the coordinates in Bp+q−1 as ξ =
(ξ1, · · · , ξp, η2, · · · , ηq). Let F : Bp+q−1 → DI

p,q be the following isometric
map with respect to the normalized Bergman metrics (This example is taken
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from equation (42) in [XY2]):

F (ξ) =




ξ1 ξ2 ... ξq
η2 f22 ... f2q
... ... ... ...

ηp fp2 ... fpq


 ,

where fij =
ηiξj
ξ1−1 , 2 ≤ i ≤ p, 2 ≤ j ≤ q. Then F has no continuous exten-

sion to the point a := (1, 0, · · · , 0). Indeed, one can verify F has differ-
ent limits when ξ goes to a along the two paths: (1− t, t, t, 0, · · · , 0) and
(1− t2, t√

2
, t√

2
, 0, · · · , 0) where 0 < t << 1.

More generally, we can use Theorem 1 to study isometric maps be-
tween reducible bounded symmetric domains. Let Ω = Ω1 × · · · × ΩN ⊂
Cn1 × · · · × CnN be a bounded symmetric domain, where Ωi

′s are the irre-
ducible factors of Ω, andD = D1 × · · · ×DN ′ ⊂ Cm1 × · · · × CmN′ a product
of irreducible classical domains. Assume rank(Ωi) = ri for 1 ≤ i ≤ N so that
rank(Ω) = r :=

∑N
i=1 ri. Similarly, assume rank(Dj) = tj for 1 ≤ j ≤ N ′ so

that rank(D) = t =
∑N ′

j=1 tj . Write the decomposition of the boundaries of

Ωi and Dj as ∂Ωi = ∪ris=1E
i
s and ∂Dj = ∪tjs=1Ẽ

j
s respectively, for 1 ≤ i ≤

N, 1 ≤ j ≤ N ′. We will also write Ei0 = Ωi, 1 ≤ i ≤ N and Ẽ
j
0 = Dj , 1 ≤

j ≤ N ′ so that Ωi = ∪ris=0E
i
s and Dj = ∪rjs=0Ẽ

j
s . Let F = (F1, · · · , FN ′) be

a holomorphic isometric map from Ω = (Ω1, λ1ωΩ1
)× · · · × (ΩN , λNωΩN

)
to D = (D1, µ1ωD1

)× · · · × (DN ′ , µN ′ωDN′ ) for some positive constants λi
′s

and µj
′s in the sense that

(1.4)

N ′∑

j=1

µjF
∗
j (ωDj

) =

N⊕

i=1

λiωΩi
.

Then we have the following result for the boundary behavior of F .

Theorem 4. Let Ω, D be as above and F : Ω → D a holomorphic isometric
map satisfying (1.4). Assume F extends C1−smoothly to a neighborhood of
a boundary point a of Ω. Write a = (a1, · · · , aN ), where ai ∈ Ωi and F (a) =
(b1, · · · , bN ′), where bj ∈ Dj . Assume for each 1 ≤ i ≤ N, ai ∈ Eili for some

0 ≤ li ≤ ri. Similarly, for each 1 ≤ j ≤ N ′, assume bj ∈ Ẽ
j
kj

for some 0 ≤
kj ≤ tj . Then

(1.5)

N∑

i=1

λili =

N ′∑

j=1

µjkj .
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Corollary 1.4. Let Ω, D be as above, U a connected open subset of Ω,
and F : U → D a holomorphic isometric map satisfying (1.4) in U . Then
(λ1, · · · , λN ) and (µ1, · · · , µN ′) satisfy the following number theoretic condi-
tion: For any N−tuple of integers (σ1, · · · , σN ) with 0 ≤ σi ≤ ri, there exists
an N ′−tuple of integers (η1, · · · , ηN ′) with 0 ≤ ηj ≤ tj such that

(1.6)

N∑

i=1

λiσi =

N ′∑

j=1

µjηj .

In particular, each λi, 1 ≤ i ≤ N, is a linear combination of µj
′s with integer

coefficients:

(1.7) λi =

N ′∑

j=1

cijµj ,

where each cij is an integer and 0 ≤ cij ≤ tj.

Theorem 1 can be also applied to study the transversality of proper maps
into classical domains. Recall a map F :M →M ′ between real hypersurfaces

is said to be CR-transversal at p ∈M if T
(1,0)
F (p)M

′ + T
(0,1)
F (p)M

′ + dF (CTpM) =

CTF (p)M
′(See [BER]). The following proposition generalizes a transversality

result of Mok (Lemma 7 in [M4]) when the target is a classical domain.

Proposition 1.1. Let F be a holomorphic map from a domain Ω in Cn

to an (irreducible) classical domain D in Cm with rank r. Let p ∈ ∂Ω be a
smooth boundary point of Ω. Assume F extends C1−smoothly across p and
F maps an open piece of ∂Ω near p to Ek for some 1 ≤ k ≤ r. Then there
exists a germ of real algebraic smooth real hypersurface M ′ in Cm containing
Ek near F (p) such that F is CR transversal to M ′ at p. In particular, it

holds that dF (CTp(∂Ω)) ̸⊂ T
(1,0)
F (p)Ek + T

(0,1)
F (p)Ek.

The paper is organized as follows. Section 2 discusses a typical applica-
tion of the classical Hopf lemma(i.e. Proposition 2.1), from which Theorem 1
follows in the special case k = 1. We prove the general case of Theorem 1
and Theorem 2 in Section 3. As applications of our high order Hopf lemma,
we prove in Section 4 Theorem 3, Theorem 4, and Proposition 1.1, as well
as their corollaries.

To end this section, we explain our strategy to prove our main theorem
(Theorem 1). The proof heavily relies on the invariance property of the
generic norm ρ under the action of the isotropy group K ⊂ Aut0(D). This
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allows us to apply the action of the group K to normalize the map F .
Under a special normalization, to prove part (2) of Theorem 1 we show the

kth derivatives ∂k(ρ◦F )
∂νk

∣∣
a
and Lk(ρ ◦ F )

∣∣
a
only depend on the first jet of F at

a. This also explains why the C1−smoothness assumption is essential in part
(1). Furthermore, under this normalization, the hypothesis that F (a) ∈ Ek
can be used to construct some holomorphic functions (from the map F )
which attain the maximal modulus at a. In this way, we can apply the
classical Hopf lemma to obtain certain non-degeneracy in the first jet of F
at a. Although we stick to this basic strategy, due to the distinct structures
ofK and expressions of ρ, we have to treat the four types of classical domains
case by case.

Acknowledgment: The author thanks Sui-Chung Ng for valuable dis-
cussions on Hermitian symmetric spaces and Shan Tai Chan for careful
reading and helpful comments on the article. He also thanks the anonymous
referees whose comments help improve the exposition of the paper.

2. A transversality result

We first observe in the case k = 1, Theorem 1 is just a consequence of the
classical Hopf Lemma. For completeness, we sketch a proof for the following
folklore transversality result (See [Fo]). For a function h in U ⊂ Cn and
a ∈ U, we will often switch between the notations h|a and h(a) which both
denote the value of h at a.

Proposition 2.1. Let Ω ⊂ Cn be a domain and D a convex domain in
Cm(m ≥ n ≥ 1). Assume b is a smooth point of ∂D and r a local defining
function of D in a small neighborhood V of b :

D ∩ V = {W ∈ V : r(W,W ) < 0}, dr ̸= 0 in V.

Let F be a holomorphic map from Ω to D and extends C1−smoothly up to
a smooth point a ∈ ∂Ω. If F (a) = b, then ∂(r◦F )

∂ν
|a > 0 and L(r ◦ F )|a ̸= 0.

Here ν is the outward pointing normal vector of Ω at a, and L is complex
normal direction of ∂Ω at a such that ∂

∂ν
= 2ReL.

Remark 2.1. LetD be an irreducible bounded symmetric domain. ThenD
is convex, and recall b ∈ ∂D is smooth if and only if b ∈ E1 (See Lemma 2.2.3
in [MN]). Moreover, the function −ρ, where ρ was introduced in Section 1, is
a local defining function of D (See Lemma 2 in [M5]) at every smooth point.
Then Theorem 1 follows from Proposition 2.1 in the special case k = 1.
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Proof of Proposition 2.1: We first recall the following well-known fact
(cf. [Ho], [Kr]) about convex sets.

Lemma 2.1. If b is some smooth boundary point of a convex open set
D ⊂ Rm, then there exists a neighborhood V̂ of b and some smooth defining
function φ of D in V̂ such that φ is convex in V̂ . That is,

(2.1)

m∑

j,k=1

∂2φ(x)

∂xj∂xk
ujuk ≥ 0

for every x ∈ V̂ and u = (u1, · · · , um) ∈ Rm.

Lemma 2.1 yields that there exists a smooth local defining function φ of
D in some neighborhood V̂ of b such that φ is convex in V̂ (in the sense of
(2.1)). This implies in particular φ is plurisubharmonic in V̂ . Pick a small
neighborhood U of a, such that F maps Ω ∩ U to V̂ . As F is holomorphic in
Ω, we conclude φ ◦ F := φ(F, F ) is plurisubharmonic and thus subharmonic
in Ω ∩ U. Note φ(F, F ) < 0 in Ω ∩ U and φ(F (a), F (a)) = 0. It follows from

the classical Hopf lemma that ∂(φ◦F )
∂ν

|a > 0. Recall L = 1
2(

∂
∂ν

+
√
−1 ∂

∂µ
) for

some unit vector µ tangent to ∂Ω at a. Note φ ◦ F, when restricted to ∂Ω,
attains its local maximum at a. It follows that ∂(φ◦F )

∂µ
|a = 0, and thus L(φ ◦

F )|a ̸= 0. Since r and φ are both defining functions of D at the smooth
point b, we conclude that r = hφ near b for some positive smooth function h
in a small neighborhood of b. This implies ∂(r◦F )

∂ν
|a = h(b)∂(φ◦F )

∂ν
|a > 0 and

L(r ◦ F )|a = h(b)L(φ ◦ F )|a ̸= 0. We have thus established Proposition 2.1.

3. Proof of Theorem 1 and 2

The classical domains are classified into four different types, which are called
Cartan’s four types of classical domains. Due to their distinct structures, we
will prove Theorem 1 (as well as Theorem 2) separately for the four types
of domains.

3.1. Hopf lemma for type I case

Assume p ≤ q and write Cp×q for the space of p× q matrices with entries of
complex numbers. The classical domain of type I is defined by:

DI
p,q = {Z ∈ C

p×q : Ip − ZZ
t
> 0}.
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The Bergman kernel of DI
p,q is given by

KDI
p,q
(Z,Z) = cI

(
det(Ip − ZZ

t
)
)−(p+q)

,

where cI is some positive constant. The generic norm ρ for DI
p,q is given by

ρ(Z,Z) = det(Ip − ZZ
t
).

The boundary of DI
p,q is given by

∂DI
p,q = {Z ∈ C

p×q : Ip − ZZ
t ≥ 0; det(Ip − ZZ

t
) = 0}.

Note the rank of DI
p,q is of rank p and the boundary ∂DI

p,q decomposes into

p orbits under the action of the identity component of Aut(DI
p,q) : ∂D

I
p,q =

∪pi=1Ei. Here Ek lies in the closure of El when k > l;E1 is the smooth part
of ∂DI

p,q, and Ep is the Shilov boundary. More explicitly in this type I case,

Ek = {Z ∈ ∂DI
p,q : the corank of Ip − ZZ

t
equals k}, 1 ≤ k ≤ p.

To better illustrate the boundary, we recall the following basic fact from
linear algebra. Let Z be a p× q(p ≤ q) matrix. Then there exist a p× p

unitary matrix U and a q × q unitary matrix V which normalize Z into the
following form:

(3.1) Z = U




r1 0 · · · 0 0 · · · 0
0 r2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · rp 0 · · · 0


 V

with r1 ≥ r2 ≥ · · · ≥ rp ≥ 0. The above equation is often called the singular
value decomposition of Z. The ri’s are called the singular values of Z and
their squares give the eigenvalues of ZZ

t
. The strata Ek

′s are then equiva-
lently given by

Ek = {Z ∈ C
p×q : 1 = r1 = · · · = rk > rk+1 ≥ · · · ≥ rp ≥ 0}

where ri’s are singular values of Z as above.
We recall the following well known Laplacian expansion for the determi-

nant of a square matrix in linear algebra. Let B be anm×mmatrix. Let 1 ≤
i1 < · · · < is ≤ m and 1 ≤ j1 < · · · < js ≤ m. We denote by B

(i1 · · · is
j1 · · · js

)
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the determinant of the submatrix of B formed by its i1
th, · · · , isth rows and

j1
th, · · · , jsth columns.

Proposition 3.1. Let B = (Bij)1≤i,j≤m be an m×m matrix. Fix 1 ≤ s <

m. Then

(3.2) detB =
∑

1≤j1<···<js≤m
Ej1···jsB

( 1 · · · s

j1 · · · js

)
B
(s+ 1 · · · m

js+1 · · · jm

)

where j1, · · · , js, js+1, · · · , jm is a permutation of 1, 2, · · · ,m with js+1 <

· · · < jm. Here we write Ej1···js = (−1)1+2+···+s+j1+···+js .

We first give a proof for Theorem 2 in the type I case. The proof for this
case is inspired by [LT].

Proof of Theorem 2 for the type I case: Fix 1 ≤ k ≤ p and Z0 ∈ Ek.

As discussed above, there exist a p× p unitary matrix U and a q × q unitary
matrix V such that the single value decomposition in (3.1) holds for Z0 with
1 = r1 = · · · = rk < rk+1 ≤ · · · ≤ rp. Note ρ is invariant under the action of
U and V , we can thus assume Z0 takes the normalized form in (3.1), i.e.,

(3.3) Z0 =
(
D(Z0) 0p×(q−p)

)
,

where D(Z0) = diag(1, · · · , 1, rk+1, · · · , rp) is the p× p diagonal matrix and
0s×t denotes the s× t zero matrix. Write the p× p matrix

(3.4) A(Z) = A(Z,Z) = Ip − ZZ
t
.

In particular,

(3.5) A(Z0, Z0) = diag(0, · · · , 0, 1− r2k+1, · · · , 1− r2p)

where the first k entries on the diagonal are all zero.
In the following, we will denote by I a k−tuple of integers from 1 to p

in the increasing order:

I = (i1, · · · , ik), 1 ≤ i1 < i2 < · · · < ik ≤ p.

The length of I is defined to be k and will be denoted by [I] = k. For each
I = (i1, · · · , ik), we will write

AI(Z) = A
(1 · · · k

i1 · · · ik

)
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for the determinant of the submatrix of A(Z) (defined in (3.4)) formed by
its 1th, · · · , kth rows and ith1 , · · · , ithk columns. It follows from (3.5) that all
entries of A(Z) in the first k rows vanish at Z = Z0. Consequently, AI(Z)
vanishes at least to the kth order at Z = Z0 for any I with length [I] = k.

For I = (i1, · · · , ik), we write JI(Z) for the complement minor of AI(Z),
i.e., the determinant of the submatrix of A(Z) obtained by deleting the
1st, · · · , kth rows and ith1 , · · · , ithk columns. In the special case k = p, JI(Z) is
understood to be identically 1. Again it follows from (3.5) that when k < p,

(3.6) JI(Z0) =

{
0, if I ̸= (1, · · · , k)
∏p
i=k+1(1− r2i ), if I = (1, · · · , k)

By Proposition 3.1, we have

(3.7) ρ(Z,Z) = det(A(Z)) =
∑

|I|=k
EIAI(Z)JI(Z).

Here EI is the sign defined in Proposition 3.1. As AI(Z) vanishes at least to
the kth order at Z0 for each I, it follows that ρ(Z,Z) vanishes at least to the
kth order as well. To prove it vanishes precisely to the kth order, we establish
the following lemma. Write the coordinates Z of Cp×q in the matrix form
Z = (zij)1≤i≤p,1≤j≤q.

Lemma 3.1.
∂kρ(Z,Z)

∂z11∂z22 · · · ∂zkk
∣∣
Z0

̸= 0.

Proof. Note AI(Z) vanishes at least to the kth order at Z0 for all I with
length [I] = k and JI(Z) vanishes at Z0 unless I = I0 := (1, · · · , k). Thus
AI(Z)JI(Z) vanishes at least to (k + 1)th order at Z0 if I ̸= I0. It then
follows from (3.7) that

∂kρ

∂z11∂z22 · · · ∂zkk
∣∣
Z0

= EI0
(

∂kAI0
∂z11∂z22 · · · ∂zkk

∣∣
Z0

)
JI0(Z0)(3.8)

=

(
∂kAI0

∂z11∂z22 · · · ∂zkk
∣∣
Z0

)
JI0(Z0).

Claim:
∂kAI0

∂z11∂z22 · · · ∂zkk
∣∣
Z0

̸= 0.
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Proof of Claim: Write C(Z) for the submatrix of A(Z) formed by its
1st, · · · , kth rows and 1st, · · · , kth columns and thus AI0(Z) = det C(Z). It
follows from (3.5) that C(Z0) = 0k×k. We write

C(Z) =




c1(Z)
· · ·
· · ·

ck(Z)


 = (cst(Z))1≤s,t≤k,

where cj , 1 ≤ j ≤ k, is the jth row of C(Z). Note that

(3.9) cst(Z) =

{
−
∑q

l=1 zslztl, if s ̸= t;

1−
∑q

l=1 zslzsl, if s = t.

One can easily verify

∂cst(Z)

∂zjj

∣∣
Z0

= − (δsjztj) |Z0
= 0, if 1 ≤ s ̸= t ≤ k.

Here δsj is the Kronecker symbol, i.e., δsj takes the value 1 if s = j and 0
otherwise. Similarly,

∂css(Z)

∂zjj

∣∣
Z0

= − (δsjzsj) |Z0
= −δsj , for 1 ≤ s ≤ k.

Consequently,

(3.10)
∂cs(Z)

∂zjj
|Z0

=

{
(0, · · · , 0), if j ̸= s,

(0, · · · , 0,−1, 0, · · · , 0), if j = s,

where “− 1” is at the jth position.
Note for any first order differential operator Λ in Cp×q, we have

ΛAI0(Z) = Λ (det C(Z)) =

∣∣∣∣∣∣∣∣

Λc1
c2
· · ·
ck

∣∣∣∣∣∣∣∣
+ · · ·+

∣∣∣∣∣∣∣∣

c1
· · ·
ck−1

Λck

∣∣∣∣∣∣∣∣
.
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Using this property, we successively apply ∂
∂z11

, · · · , ∂
∂zkk

to AI0 . Then we
evaluate at Z0 and use the fact that C(Z0) = 0k×k to obtain

(3.11)
∂kAI0

∂z11∂z22 · · · ∂zkk
∣∣
Z0

=
∑

i1,··· ,ik

∣∣∣∣∣∣∣

∂c1(Z0)
∂zi1i1

· · ·
∂ck(Z0)
∂zikik

∣∣∣∣∣∣∣

where
∑

i1···ik is the sum over all possible permutations i1, · · · , ik of
1, 2, · · · , k. It then follows from (3.10) that

∂kAI0
∂z11∂z22 · · · ∂zkk

∣∣
Z0

=

∣∣∣∣∣∣∣

∂c1(Z0)
∂z11

· · ·
∂ck(Z0)
∂zkk

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

−1 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 −1

∣∣∣∣∣∣
= (−1)k ̸= 0.

This establishes the claim.
Now Lemma 3.1 follows from the claim and (3.8). □

Lemma 3.1 yields that ρ vanishes to the kth order at Z0. We thus establish
Theorem 2 for the type I case.

Proof of Theorem 1 in type I case: We will prove part (2) and (1) of
Theorem 1 separately. Write the coordinates in Cn as ξ = (ξ1, · · · , ξn).

1. Proof of part (2): We will first prove part (2) of Theorem 1 and now
assume F extends Ck−smoothly to ξ = a. Write Z0 = F (a). By assumption,
Z0 ∈ Ek. By Theorem 2, ρ(Z,Z) vanishes to the kth order at Z0. It follows
that ρ(F (ξ), F (ξ)) vanishes at least to kth order at ξ = a. Thus it suffices to
prove equations (1.2) and (1.3).

Again as ρ is invariant under the actions of unitary matrices: ρ(F, F ) =
ρ(UFV,UFV ). Replacing F by UFV with suitable unitary matrices U, V
if necessary, we can assume Z0 takes the form as in (3.3). Write A(F ) =

A(F, F ) = Ip − FF
t
, where F is in the matrix form: F = (fij)1≤i≤p,1≤j≤q.

By (3.7), we have

(3.12) ρ(F, F ) = det(A(F )) =
∑

|I|=k
EIAI(F )JI(F )

Again as AI(Z) vanishes at least to the kth order at Z0 for all I with
length [I] = k and JI(Z) vanishes at Z0 unless I = I0 := (1, · · · , k).We have
all kth order derivative of AI(F )JI(F ) vanishes at a if I ̸= I0. Then (3.12)
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yields that

Lkρ(F, F )
∣∣
a
=EI0

(
LkAI0(F )

∣∣
a

)
JI0(F )

∣∣
a
=
(
LkAI0(F )

∣∣
a

)
JI0(F )

∣∣
a
;

∂kρ(F, F )

∂νk

∣∣
a
=EI0

(
∂kAI0(F )

∂νk

∣∣
a

)
JI0(F )|a =

(
∂kAI0(F )

∂νk

∣∣
a

)
JI0(F )

∣∣
a
.

(3.13)

We pause to prove the following lemma. Recall F is written in the matrix
form: F = (fij)1≤i≤p,1≤j≤q.

Lemma 3.2. (i) The k × k matrix (Lfij(a))1≤i,j≤k is nondegenerate.

(ii) The determinant of the k × k matrix
(
∂(fij+fji)

∂ν
(a)
)

1≤i,j≤k
is positive.

Proof. Write the matrices

M = (Lfij(a))1≤i,j≤k ;N =

(
∂(fij + fji)

∂ν
(a)

)

1≤i,j≤k
.

By a well-known fact in linear algebra, there is a k × k unitary matrix T

such that TMT
t
is lower-triangular. Note N is Hermitian, thus there exists

a k × k unitary matrix R such that RNR
t
is diagonal. Now let

U1 =

(
T 0k×(p−k)

0(p−k)×k Ip−k

)
, V1 =

(
T
t

0k×(q−k)
0(q−k)×k Iq−k

)
;

Similarly, let

U2 =

(
R 0k×(p−k)

0(p−k)×k Ip−k

)
;V2 =

(
R
t

0k×(q−k)
0(q−k)×k Iq−k

)
.

Clearly U ′
l s, V ′

l s are p× p and q × q unitary matrices, respectively.

Set F̃ = U1FV1 and F̂ = U2FV2. Write F̃ = (f̃ij)1≤i≤p,1≤j≤q and F̂ =

(f̂ij)1≤i≤p,1≤j≤q, respectively. Noting that Z → UlZVl is an automorphism
of DI

p,q for each l = 1, 2, one can readily check the following facts hold:

(1) F̃ and F̂ both map Ω to DI
p,q;

(2) F̃ (a) = U1F (a)V1 = U1Z0V1 = Z0. Similarly, F̂ (a) = U2F (a)V2 =
U2Z0V2 = Z0;
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(3)
(
Lf̃ij(a)

)

1≤i,j≤k
= T

(
Lfij(a)

)
1≤i,j≤kT

t
= TMT

t
is lower-triangular;

(
∂(f̂ij+f̂ji)

∂ν
(a)

)

1≤i,j≤k
= R

(
∂(fij+fji)

∂ν
(a)
)

1≤i,j≤k
R
t
= RNR

t
is diago-

nal.

By (1), we have Ip − F̃ F̃
t

> 0, and Ip − F̂ F̂
t

> 0 in Ω. In particular, we

must have for each 1 ≤ i ≤ p, |f̃ii|2 < 1 and |f̂ii|2 < 1 in Ω. Note by (2),
f̃ii(a) = 1 and f̂ii(a) = 1 for every 1 ≤ i ≤ k. By the classical Hopf lemma,
∂|f̃ii|2
∂ν

∣∣
a
> 0 and ∂|f̂ii|2

∂ν

∣∣
a
> 0 for 1 ≤ i ≤ k. Consequently, ∂(Ref̂ii)

∂ν

∣∣
a
> 0 and

∂(Ref̃ii)
∂ν

∣∣
a
> 0. The latter in particular implies Lf̃ii(a) ̸= 0.

Now as
(
Lf̃ij(a)

)

1≤i,j≤k
is lower-triangular and each of its diagonal

entries Lf̃ii(a) is nonzero, the matrix must be nondegenerate. By the fact
(3) above,

(
Lfij(a)

)
1≤i,j≤k is also nondegenerate. This proves part (i) of

Lemma 3.2.

Similarly, as ∂(Ref̂ii)
∂ν

∣∣
a
> 0, i.e., ∂(f̂ii+f̂ii)

∂ν

∣∣
a
> 0, we conclude each of its

diagonal entries and thus the determinant of

(
∂(f̂ij+f̂ji)

∂ν
(a)

)

1≤i,j≤k
are pos-

itive. By the fact (3), the determinant of
(
∂(fij+fji)

∂ν
(a)
)

1≤i,j≤k
is positive as

well. This proves part (ii) of the lemma. □

We now continue to prove the quantity in (3.13) is nonzero. For that we
establish the following lemma.

Lemma 3.3. LkAI0(F )|a ̸= 0 and (−1)k
∂kAI0 (F )

∂νk

∣∣
a
> 0.

Proof. Let C(Z) be as in the proof of Lemma 3.1. Then AI0 (F (ξ)) =
det C(F (ξ)), and

C(F ) =




c1(F )
· · ·
· · ·

ck(F )


 = (cst(F ))1≤s,t≤k.

Moreover, C(F (a)) = 0k×k. It follows from (3.9) that

cst(F ) =

{
−
∑q

l=1 fslf tl, if s ̸= t;

1−
∑q

l=1 fslf sl, if s = t.
.
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It follows that for each 1 ≤ s, t ≤ k,

(3.14) Lcst(F ) = −
q∑

l=1

Lfslf tl;

and

(3.15)
∂cst(F )

∂ν
= −

(
q∑

l=1

∂fsl

∂ν
f tl +

q∑

l=1

fsl
∂f tl
∂ν

)
.

Similarly as in (3.11), we apply L (or ∂
∂ν
) to AI0(F ) for k times, evaluate

at ξ = a and use the fact that C(F (a)) = 0k×k to obtain

(3.16) LkAI0(F )
∣∣
a
= k!

∣∣∣∣∣∣

L c1(F )|a
· · ·

L ck(F )|a

∣∣∣∣∣∣
= k! det

(
LC(F )|a

)
;

(3.17)
∂kAI0(F )

∂νk

∣∣
a
= k!

∣∣∣∣∣∣∣

∂c1(F )
∂ν

|a
· · ·

∂ck(F )
∂ν

|a

∣∣∣∣∣∣∣
= k! det

(
∂C(F )

∂ν
|a
)
.

Note (3.14) yields that
(3.18)

(
LC(F )|a

)
=

(
−

q∑

l=1

Lfslf tl
∣∣
a

)

1≤s,t≤k

= − (Lfij |a)1≤i≤k,1≤j≤q ·B
t

where the k × q matrix B = (fij |a)1≤i≤k,1≤j≤q . Similarly,
(3.19)(
∂C(F )

∂ν

∣∣
a

)
=

(
q∑

l=1

∂fsl

∂ν

∣∣
a
f tl|a +

q∑

l=1

fsl|a
∂f tl
∂ν

∣∣
a

)

1≤s,t≤k

= −ABt −BA
t
.

Here A =
(
∂fij
∂ν

∣∣
a

)

1≤i≤k,1≤j≤q
. As F (a) = Z0, we have B =

(
Ik 0k×(q−k)

)
.

We substitute this into (3.18) and (3.19) to obtain

(
LC(F )|a

)
= −

(
Lfij

∣∣
a

)
1≤i,j≤k ;(3.20)

(
∂C(F )

∂ν

∣∣
a

)
= −

(
∂(fij + fji)

∂ν

∣∣
a

)

1≤i,j≤k
.
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With equations (3.16), (3.17), and (3.20), Lemma 3.3 becomes a consequence
of Lemma 3.2. □

Now part (2) of Theorem 1 in the type I case follows from equation
(3.13) and Lemma 3.3 (Note JI0(F )|a is positive by (3.6)).

2. Proof of Part (1): By assumption, F extends C1−smoothly to a. Denote
by F ∗ the first order truncation of F at a. That is, writing a = (a1, · · · , an) ∈
Cn,

(3.21) F ∗(ξ) = F (a) +

n∑

i=1

∂F (a)

∂ξi
(ξi − ai).

Here F ∗ is also understood as a matrix-valued function: F ∗ =
(f∗ij)1≤i≤p,1≤j≤q. By Taylor’s theorem,

(3.22) F (ξ) = F ∗(ξ) + oa(1).

Here we say a (vector-valued) function h(ξ) is oa(l) for some positive integer

if limξ→a
||h||

||ξ−a||l = 0. Recall by Theorem 2, ρ(Z,Z) vanishes to the kth order
at Z0. We write

(3.23) ρ(Z,Z) = Pk(Z − Z0, Z − Z0) + oZ0
(k),

where we say a function φ(Z,Z) is oZ0
(k) if limZ→Z0

|φ|
||Z−Z0||k = 0. Here

Pk(η, η) is a homogeneous polynomial in η and η of degree k, where η ∈ Cp×q.
Recall F (a) = Z0. Since F is C1 at a, we have

F (ξ)− Z0 = F (ξ)− F (a) = Oa(1).

Here we say a vector-valued function ψ(ξ) is Oa(l) if ||ψ(ξ)||
||ξ−a||l ≤ C for some

positive constant C when ξ is close to a. Consequently, if φ(Z,Z) is oZ0
(k),

then φ(F, F ) and φ(F ∗, F ∗) are both oa(k). We now substitute Z = F and
Z = F ∗ respectively into (3.23) to obtain,

(3.24) ρ(F, F ) = Pk(F (ξ)− F (a), F (ξ)− F (a)) + oa(k);

(3.25) ρ(F ∗, F ∗) = Pk(F
∗(ξ)− F (a), F ∗(ξ)− F (a)) + oa(k).
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Combining (3.22) and (3.24) and using the fact that F ∗(ξ)− F (a) = Oa(1),
we have

ρ(F, F ) =Pk

(
F ∗(ξ)− F (a) + oa(1), F ∗(ξ)− F (a) + oa(1)

)
+ oa(k)

=Pk

(
F ∗(ξ)− F (a), F ∗(ξ)− F (a)

)
+ oa(k).

(3.26)

Now it follow from (3.25) and (3.26) that

(3.27) ρ(F, F ) = ρ(F ∗, F ∗) + oa(k), when ξ is close to a.

We next prove the following fact.

Lemma 3.4.

(−1)k
∂kρ(F ∗, F ∗)

∂νk

∣∣
a
> 0 and Lkρ(F ∗, F ∗)

∣∣
a
̸= 0.

Proof of Lemma 3.4: The argument that we applied to derive (3.13) also
leads to
(3.28)
∂kρ(F ∗, F ∗)

∂νk

∣∣
a
= EI0

(
∂kAI0(F

∗)
∂νk

∣∣
a

)
JI0(F

∗)|a =
(
∂kAI0(F

∗)
∂νk

∣∣
a

)
JI0(F )|a;

(3.29)

Lkρ(F ∗, F ∗)
∣∣
a
= EI0

(
LkAI0(F

∗)
∣∣
a

)
JI0(F

∗)
∣∣
a
=
(
LkAI0(F

∗)
∣∣
a

)
JI0(F )

∣∣
a
.

Writing F ∗ in the matrix form F ∗ = (f∗ij)1≤i≤p,1≤j≤q, we claim the following
facts hold.

(I). The k × k matrix
(
∂(f∗

ij+f
∗
ji)

∂ν
(a)
)

1≤i,j≤k
has positive determinant.

(II). (−1)k
∂kAI0

(F ∗)
∂νk

∣∣
a
> 0

Note part (I) follows from part (ii) of Lemma 3.2. Part (II) can be proved
similarly as Lemma 3.3 by applying part (I). Indeed, we only used the in-
formation of the first jet of F at a in the proof of Lemma 3.3. Then the
first equation of Lemma 3.4 follows from part (II) and equations (3.28) and
(3.6). The second equation of Lemma 3.4 can be proved similarly using
(3.29), Lemma 3.2, and (the proof of) Lemma 3.3.

We apply an appropriate linear holomorphic change of coordinates in Cn

to make a = 0 ∈ Cn and the outward pointing unit normal vector ∂
∂ν

= ∂
∂x
,

where ξn = x+
√
−1y. Set the real line H := {(0, · · · , 0, x) ∈ Cn : x ∈ R}.

As F (a) ∈ Ek, Theorem 2 implies ρ(F ∗, F ∗) vanishes to at least kth order
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at a. It then follows from Lemma 3.4 that ρ(F ∗, F ∗)|H = cxk + o0(k) near
x = 0 for some constant c satisfying (−1)kc > 0. We substitute this into
(3.27) to conclude part (1) of Theorem 1 for type I domains.

We have thus established Theorem 1 for type I domains.

3.2. Hopf Lemma for type III domain

We postpone the proof for type II case and now discuss the type III case.

Denote by C

m(m+1)

2

III = {Z ∈ Cm×m : Z = Zt} the set of all symmetric square
matrices of size m×m. Recall the classical domain of type III is defined by

DIII
m = {Z ∈ C

m(m+1)

2

III : Im − ZZ
t
> 0}.

The Bergman kernel of DIII
m is given by

KDIII
m

= cIII

(
det(Im − ZZ

t
)
)−(n+1)

for some positive integer cIII . The generic norm for DIII
m is given by

ρ(Z,Z) = det(Im − ZZ
t
). The boundary of DIII

m is given by

∂DIII
m = {Z ∈ C

m(m+1)

2

III : Im − ZZ
t ≥ 0; det(Im − ZZ

t
) = 0}.

Note DIII
m is of rank m and the boundary ∂DIII

m decomposes into m or-
bits under the action of the identity component G0 of Aut(DIII

m ) : ∂DIII
m =

∪mi=1E
III
i , where we use the superscript “III” to distinguish the notations

from other types. Here EIIIk lies in the closure of EIIIl when k > l. More
explicitly in this type III case,

EIIIk = {Z ∈ ∂DIII
m : the corank of Ip − ZZ

t
equals k}, 1 ≤ k ≤ m.

The type III classical domain DIII
m can be realized as a submanifold

of the type I domain DI
m,m by the canonical embedding from DIII

m to

DI
m,m : i(Z) = Z. Recall the boundary of DI

m,m is decomposed intom orbits:

∂DI
m,m = ∪mi=1E

I
i as in Section 3.1. Under the canonical embedding i, the

boundary orbit EIIIk is embedded into EIk for each 1 ≤ k ≤ m. Moreover, if
we write ρI and ρIII respectively for the function ρ in the type case DI

m,m
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and the type III case DIII
m , then

ρI(i(Z), i(Z)) = ρIII(Z,Z) = det(Im − ZZ
t
).

Proof of Theorem 1 and 2 for type III domains: By the facts
mentioned above, Theorem 1 and 2 in the type III case for DIII

m follows
from the theorems in the type I case for DI

m,m.

3.3. Hopf Lemma for type II domain

Denote by C

m(m−1)

2

II = {Z ∈ Cm×m : Z = −Zt} the set of all skew-symmetric
square matrices of size m×m. Recall the classical domain of type II is
defined by

DII
m = {Z ∈ C

m(m−1)

2

II : Im − ZZ
t
> 0}.

The boundary of DIII
m is given by

∂DII
m = {Z ∈ C

m(m−1)

2

II : Im − ZZ
t ≥ 0; det(Im − ZZ

t
) = 0}.

Note the rank of DII
m is of rank r = ⌊12m⌋. Here ⌊·⌋ denotes the floor func-

tion, i.e., 2r = m if m is even and 2r + 1 = m if m is odd. The boundary
∂DII

m decomposes into r orbits under the action of the identity component
G0 of Aut(DII

m ) : ∂DII
m = ∪ri=1E

II
i , where we use the superscript “II” to

distinguish the notations from other types. Here EIIk lies in the closure of
EIIl if k > l. In particular, EII1 is the smooth part of ∂Ω, EIIr is the Shilov
boundary. More explicitly in this type II case (See [Wo] for more details),

EIIk = {Z ∈ ∂DII
m : the corank of Ip − ZZ

t
equals 2k}, 1 ≤ k ≤ r.

The type II domain DII
m can be realized as a submanifold of the type I

domain DI
m,m by the canonical embedding from DII

m to DI
m,m : i(Z) = Z.

Under the canonical embedding i, the boundary orbit EIIk is embedded into
EI2k for each k, where ∂DI

m,m = ∪mi=1E
I
i . If we write ρI(Z,Z) and ρII(Z,Z)

respectively for the function ρ in the type case DI
m,m and the type II case

DII
m , then

(3.30) ρI(i(Z), i(Z)) =
(
ρII(Z,Z)

)2
= det(Im − ZZ

t
).
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Indeed, we have if Z ∈ C

m(m−1)

2

II , then (cf. Lemma 4.3 in [X])

det(In − ZZ
t
) =

(
1 +

∑
1≤k≤n,2|k(−1)

k

2

(∑
1≤i1<...<ik≤n

∣∣∣∣Z
(
i1 ... ik
i1 ... ik

)∣∣∣∣
))2

.

Here “2|k” means that k is divisible by 2. The expression in the big paren-
theses on the right hand side gives the formula for ρII(Z,Z).

Proof of Theorem 2 for type II domains: Fix 1 ≤ k ≤ r. Let Z0 ∈
EIIk . By the discussion above, under the canonical embedding i, Z0 ∈ EI2k.

By Theorem 2 for type I case,we have ρI(Z,Z) vanishes to the (2k)th or-
der. Then it follows from (3.30) that ρII(Z,Z) vanishes to kth order. This
establishes Theorem 2.

Proof of Theorem 1 for type II domains: By assumption, F is C1

at a. As in the type I case, we set F ∗ to be the first order truncation of F
as in (3.21), and thus (3.22) holds. By the same argument as in Section 3.1,
we can obtain similarly as in (3.27):

(3.31) ρII(F, F ) = ρII(F ∗, F ∗) + oa(k), when ξ is close to a.

Note ρII(F ∗, F ∗) is smooth (Indeed it is a real polynomial). Theorem 2
yields that ρII(F ∗, F ∗) vanishes to at least kth order at a. It follows from
(3.30) that

(3.32) ρI(F ∗, F ∗) =
(
ρII(F ∗, F ∗)

)2
.

By Lemma 3.4, as F ∗(a) = F (a) ∈ EI2k,

L2kρI(F ∗, F ∗)
∣∣
a
̸= 0;

∂2kρI(F ∗, F ∗)
∂ν2k

∣∣
a
> 0.

Combining this with (3.32), we conclude

(3.33) LkρII(F ∗, F ∗)
∣∣
a
̸= 0;

∂kρII(F ∗, F ∗)
∂νk

∣∣
a
̸= 0.

As before, we apply an appropriate linear holomorphic change of coordinates
in Cn to make a = 0 ∈ Cn and the outward pointing unit normal vector ∂

∂ν
=

∂
∂x
, where ξn = x+

√
−1y. Set the real line H := {(0, · · · , 0, x) ∈ Cn : x ∈

R}. It follows from (3.33) that ρII(F ∗, F ∗)|H = cxk + o0(k) near x = 0 for
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some c ̸= 0. Substituting this into (3.31), we get ρII(F, F )|H = cxk + o0(k)
for x near 0. This implies

lim
t→0−

ρII
(
F (a+ tν), F (a+ tν)

)

(−t)k = c̃ := (−1)kc ̸= 0.

As ρII(F, F ) > 0 in Ω, we conclude c̃ > 0. This establishes part (1) of The-
orem 1. Moreover, when F is Ck smooth at a, it follows that

(−1)k
∂k(ρII ◦ F )

∂νk

∣∣
a
> 0;

and by equations (3.31), (3.33), we conclude Lk(ρII ◦ F )
∣∣
a
̸= 0. This estab-

lishes part (2) of Theorem 1 for the type II case.

3.4. Hopf lemma for the type IV case:

Recall the type IV classical domain DIV
m (m ≥ 2), often called the Lie ball,

is defined by

DIV
m = {Z = (z1, · · · , zm) ∈ C

m : ZZ
t
< 2, 1− ZZ

t
+

1

4
|ZZt|2 > 0}.

When m = 2, DIV
2 is biholomorphic to the bidisc. The Bergman metric of

DIV
m is given by

KDIV
m

= cIV

(
1− ZZ

t
+

1

4
|ZZt|2

)−m

for some positive constant cIV . The generic norm ρ for DIV
m is given by

ρ(Z,Z) = 1− ZZ
t
+

1

4
|ZZt|2.

The boundary of DIV
m is given by

∂DIV
m = {Z = (z1, · · · , zm) ∈ C

m : ZZ
t ≤ 2, 1− ZZ

t
+

1

4
|ZZt|2 = 0}.

Since the type IV domain DIV
m is always of rank two, its boundary is strat-

ified into two orbits: ∂DIV
m = E1 ∪ E2, where E1 is the smooth boundary
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and E2 is the Shilov boundary of DIV
m . Note

(3.34) E1 = {Z = (z1, · · · , zm) ∈ C
m : ZZ

t
< 2, 1− ZZ

t
+

1

4
|ZZt|2 = 0};

E2 = {Z ∈ C
m : ZZ

t
= 2, 1− ZZ

t
+

1

4
|ZZt|2 = 0}(3.35)

= {Z ∈ C
m : ||Z||2 = |ZZt| = 2}.

We first observe the following characterization of points on the Shilov
boundary of DIV

m . Let Sm−1 := {x = (x1, · · · , xm) ∈ Rm : ||x|| = 1} be the
unit sphere in Rm.

Proposition 3.2. Let Z = (z1, · · · , zm) ∈ Cm. Then Z ∈ E2 if and only if
there exists some θ ∈ (−π, 0] such that 1√

2
eiθZ ∈ Sm−1 ⊂ Rm.

Proof. Note Z ∈ E2 if and only if ||Z||2 = |ZZt| = 2. This is equivalent to
the existence of some α ∈ [0, 2π) such that for each 1 ≤ i ≤ n, we have z2i =
eiαri. Here ri ≥ 0 and

∑m
i=1 ri = 2. Consequently, if we take θ = −α

2 , then
1√
2
eiθzi = ±

√
ri
2 . The conclusion thus follows. □

Theorem 2 can be easily proved for type IV domains in which case the
rank r always equals 2.

Proof of Theorem 2 for type IV case:When k = 1, the result follows
from [M5] or one can directly compute that dρ(Z,Z) ̸= 0 when ||Z||2 < 2.
Once we have the result for k = 1, since ∂Ω = E1 ∪ E2, we must have

E2 ⊃ {q ∈ ∂DIV
m : ρ(Z,Z) vanishes to the second order at q}

To prove the other inclusion for k = 2, we note first if Z0 ∈ E2, then by
Proposition 3.2, Z0 =

√
2eiαx for some α ∈ [0, π) and x = (x1, · · · , xm) ∈

Sm−1 ⊂ Rm. This implies for each 1 ≤ j ≤ m,

∂ρ

∂zj
(Z0) = (−zj +

1

2
zj

m∑

i=1

zi
2)|Z0

= 0.

Moreover,

∂2ρ

∂z2j
(Z0) =

1

2

n∑

i=1

z2i |Z0
̸= 0, 1 ≤ j ≤ m.

Hence ρ(Z,Z) vanishes to the second order at Z0. This proves Theorem 2
for the case k = 2.
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To establish Theorem 1, we first note the following fact for mappings
into type IV domain.

Lemma 3.5. Let Ω be a domain in Cn and F be a holomorphic map from
Ω to DIV

m and extends C1−smoothly up to a smooth point a ∈ ∂Ω. Assume
F (a) ∈ E2. Then

m∑

j=1

Fj |aLFj |a ̸= 0,

m∑

j=1

Fj |a
∂Fj

∂ν
|a ̸= 0.

Here ν and L are the same as in Theorem 1.

Proof. Set h = FF t =
∑m

i=1 F
2
i . Note |h|2 is subharmonic in Ω and achieves

a maximal value at a. Indeed, |h| < 2 in Ω and |h(a)| = 2 by the defining
equation (3.35) of E2. Then it follows from the classical Hopf lemma that
∂|h|2
∂ν

|a ̸= 0. Consequently, ∂h
∂ν
|a ̸= 0, and thus Lh|a ̸= 0. The conclusion then

follows easily by a direct computation. □

Proof of Theorem 1 for type IV domains: Again we will prove part
(2) of Theorem 1 first.
1. Proof of Part (2): The case k = 1 is covered by Proposition 2.1. We now
assume k = 2, and F extends C2−smoothly to a and F (a) ∈ E2. It follows
from Theorem 2 that all first order derivatives of ρ(F, F ) vanish at a. It

remains to prove (1.2) and (1.3), i.e., ∂2ρ(F,F )
∂ν2

∣∣
a
> 0 and L2ρ(F, F )

∣∣
a
̸= 0.

We will prove them separately.

Proposition 3.3. ∂2ρ(F,F )
∂ν2

∣∣
a
> 0.

Proof. We assume F is merely C1−smooth at the point amomentarily. Write
Z0 = F (a) ∈ E2. By Proposition 3.2, there exists θ ∈ (−π, 0] and a (real)
orthogonal matrix T such that eiθZ0T = (

√
2, 0, · · · , 0). As ρ is invariant

under the action Z → eiθZT, i.e., ρ(Z,Z) = ρ(eiθZT, eiθZT ), we can thus
assume Z0 = F (a) = (

√
2, 0, · · · , 0).We write ∂F

∂ν
|a = (τ1, · · · , τm) and prove

the following lemma. We emphasize that in Lemma 3.6, we only need to
assume F is C1−smooth at a(This fact will be used later).

Lemma 3.6. (Reτ1)
2 −

∑m
j=2(Imτj)

2 > 0.
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Proof of Lemma 3.6: Suppose not, i.e., suppose (Reτ1)
2 −

∑m
i=2(Imτi)

2 ≤
0. Then there exists (c2, · · · , cm) ∈ Sm−2 ⊂ Rm−1 such that

(3.36) Reτ1 =

m∑

j=2

cj(Imτj).

We next set ψ(Z) = Z1 + i
∑m

j=2(cjZj) and make the following claim.

Claim: |ψ(Z)| <
√
2 for Z ∈ DIV

m .

Proof of Claim: We first note

sup
Z∈DIV

m

∣∣Z1 + i

m∑

j=2

(cjZj)
∣∣ ≤ sup

Z∈DIV
m

∣∣Z1 + i

m∑

j=2

(cjZj)
∣∣

≤ sup
Z∈E2

∣∣Z1 + i

m∑

j=2

(cjZj)
∣∣.

The last inequality holds due to the definition of the Shilov boundary. Now
fix Z ∈ E2. By Proposition 3.2, there exists some β ∈ [0, π) such that Z =√
2eiβx, where x = (x1, · · · , xm) ∈ Sm−1 ⊂ Rm. Then

r(Z) := |ψ(Z)| =
∣∣Z1 + i

m∑

j=2

(cjZj)
∣∣ =

√
2
∣∣x1 + i

m∑

j=2

(cjxj)
∣∣.

We further conclude, by the Cauchy-Schwarz inequality,

r2(Z)

2
= (x1)

2 +




m∑

j=2

cjxj




2

≤ (x1)
2 +




m∑

j=2

c2j






m∑

j=2

x2j


 ≤

m∑

j=1

x2j ≤ 1.

Hence r(Z) ≤
√
2 for Z ∈ DIV

m . As ψ(Z) = Z1 + i
∑m

j=2(cjZj) is non-

constant, we must have r(Z) <
√
2 for Z ∈ DIV

m . This proves the claim.

Now set h(ξ) = F1 + i
∑m

j=2(cjFj), where F = (F1, · · · , Fm). As F maps

Ω to DIV
m , it follows from the above claim that |h(ξ)| <

√
2 for ξ ∈ Ω. On

the other hand, by the normalization of F , h(a) = F1(a) =
√
2. Thus |h(ξ)|

attains its maximal values at ξ = a. By the classical Hopf lemma, we con-
clude ∂|h|2

∂ν
|a > 0. Consequently, ∂Reh

∂ν
|a > 0. This implies, by the definition
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of h,

Reτ1 −
m∑

j=2

(cjImτj) > 0.

This is a contradiction to (3.36). We have thus established Lemma 3.6.

We now assume F is C2−smooth at a and compute under the normal-
ization F (a) = (

√
2, 0, · · · , 0) :

∂2ρ(F, F )

∂ν2
|a =

m∑

i=1

(
∂Fi

∂ν
|a −

∂F i

∂ν
|a
)2

+ 2

∣∣∣∣∣

m∑

i=1

Fi|a
∂Fi

∂ν
|a

∣∣∣∣∣

2

=

m∑

j=1

(τj − τj)
2 + 4|τ1|2 = 4


(Reτ1)

2 −
m∑

j=2

(Imτj)
2


 .

(3.37)

This is nonzero by Lemma 3.6. This establishes Proposition 3.3. □

Proposition 3.4. L2ρ(F, F )|a ̸= 0.

Proof. Write v = LF |a. Note there exists α ∈ [0, 2π) such that Re(eiαv)
and Im(eiαv) are orthogonal. Then there exists a (real) orthogonal matrix
T such that eiαvT = (c1, c2i, 0, · · · , 0) with c1, c2 ∈ R. Note eiαT is an auto-
morphism of DIV

m and ρ(Z,Z) is invariant under the action of eiαT. Thus, by
applying this automorphism, we can assume v = LF |a = (c1, c2i, 0, · · · , 0).

We next set F̃ = FT̃ , where T̃ is a (real) orthogonal matrix of form:

T̃ =

(
T1 02×(m−2)

0(m−2)×2 T2

)

where T1, T2 are 2× 2 and (m− 2)× (m− 2) orthogonal matrices, respec-
tively. Here 0k×l denotes a k × l zero matrix. In light of Proposition 3.2, we
can choose appropriate orthogonal matrices T1 and T2 such that

F̃ |a = e−iθ(A, 0, B, 0, · · · , 0), LF̃ |a = (λ̃, µ̃, 0, · · · , 0).

Here θ ∈ [0, 2π), A,B ∈ R, A ≥ 0, and λ̃, µ̃ ∈ C. In this way, replacing F by
eiθF̃ if necessary, we can assume F satisfies the following normalization:

(3.38) F |a = (A, 0, B, 0, · · · , 0) ∈ E2, LF |a = (λ, µ, 0, · · · , 0),

where A,B ∈ R, A ≥ 0 and λ, µ ∈ C. Since F (a) ∈ E2, by (3.35) we have
A2 +B2 = 2. It follows from Lemma 3.5 that Aλ ̸= 0. Consequently, A > 0.
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We will need the following lemma.

Lemma 3.7. λ2 + µ2 ̸= 0.

Proof of Lemma 3.7: We will prove by contradiction. Suppose λ2 + µ2 =
0. Then µ = ±λi. Replacing F by F̂ := (F1,−F2, F3, · · ·Fm) if necessary,
we can assume µ = λi. Set the vector u = (1, i, B

A
, 0, · · · , 0) ∈ Cm. Then we

have LF |a · ut = λ+ µi = 0. Set h := F · ut. Note h is holomorphic in Ω
and extends C2−smoothly to a. Moreover, Lh|a = 0.We make the following
claim:

Claim: |h| attains its maximal value at a. More precisely, |h(a)| > |h(ξ)| for
all ξ ∈ Ω.
Proof of Claim: we first note

supZ∈DIV
m
|Z · ut| ≤ supZ∈DIV

m
|Z · ut| = supZ∈E2

|Z · ut|.

The last equality holds as E2 is the Shilov boundary ofDIV
m . Now fix Z ∈ E2.

By Proposition 3.2, there exists some β ∈ [0, π) such that Z =
√
2eiβx, where

x = (x1, · · · , xm) ∈ Sm−1 ⊂ Rm. Consequently,

r(Z) := |Z · ut| =
√
2|x · ut| =

√
2|x1 + ix2 +

B

A
x3|.

Then

r2 = 2(x1 +
B

A
x3)

2 + 2x22 ≤ 2

(
(1 +

B2

A2
)(x21 + x23) + x22

)

≤ 2

(
(1 +

B2

A2
)(1− x22) + x22

)
.

Here we have used the Cauchy-Schwarz inequality. Recall A2 +B2 = 2. We
thus have

r2 ≤ 2

(
2

A2
(1− x22) + x22

)
=

4

A2
+ 2(1− 2

A2
)x22 ≤

4

A2
.

Hence r = |Z · ut| ≤ 2
A
for Z ∈ DIV

m . Note the function φ(Z) := Z · ut is non-
constant. We must have, for every Z ∈ DIV

m , |Z · ut| < 2
A
. As F maps Ω to

DIV
m , we have |h(z)| < 2

A
in Ω. On the other hand,

h(a) = F |a · ut = A+
B2

A
=

2

A
.

This establishes the claim.
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Note |h|2 is subharmonic and by the claim, it attains the maximal value

at a. By the classical Hopf lemma, ∂|h|
2

∂ν
|a > 0. Consequently, ∂h

∂ν
|a ̸= 0 and

thus Lh|a ̸= 0. This is a contradiction. We have thus established Lemma 3.7.

Now we compute, by using Lemma 3.7 and the fact that F |a ∈ Rm,

L2(ρ ◦ F )|a = −
m∑

i=1

L2Fi
∣∣
a
F i
∣∣
a

+
1

2

(
m∑

i=1

(LFi
∣∣
a
)2 +

m∑

i=1

Fi
∣∣
a
L2Fi

∣∣
a

)
m∑

i=1

F
2
i

∣∣
a

= λ2 + µ2 ̸= 0.

This proves Proposition 3.4. □

Part (2) of Theorem 1 thus follows from Propositions 3.3 and 3.4.

2. Proof of Part (1): The statement follows from Proposition 2.1 in
the case k = 1. It remains to prove the case k = 2. Assume F extends
C1−smoothly to a and F (a) ∈ E2. As before, we can assume F (a) =
(
√
2, 0, · · · , 0). Again write ∂F

∂ν
|a = (τ1, · · · , τm). Recall Lemma 3.6 only re-

quires C1−smoothness of F at a and thus still holds in this setting. Now let
F ∗ be the first order truncation of F at a. Using the same argument as in
Section 3.1, we conclude equation (3.27) also holds in this case:

(3.39) ρ(F, F ) = ρ(F ∗, F ∗) + oa(2), when ξ is close to a.

Write F ∗ = (F ∗
1 , · · · , F ∗

m). Then one can compute, similarly as in (3.37),

∂2ρ(F ∗, F ∗)
∂ν2

|a =
m∑

i=1

(
∂F ∗

i

∂ν
|a −

∂F ∗
i

∂ν
|a
)2

+ 2

∣∣∣∣∣

m∑

i=1

F ∗
i |a

∂F ∗
i

∂ν
|a

∣∣∣∣∣

2

=4


(Reτ1)

2 −
m∑

j=2

(Imτj)
2


 > 0.

(3.40)

Then equation (1.1) follows from (3.40) and (3.39) by the same argument
as we did for the type I case. This proves part (1) of Theorem 1.

Theorem 1 is thus established for type IV case.
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4. Applications of Theorem 1

In this section, as consequences of Theorem 1, we prove Theorem 3, 4, and
their corollaries, as well as Proposition 1.1.

Proof of Theorem 3: We first establish the following lemma.

Lemma 4.1. Let F be as in Theorem 3, a holomorphic isometric map from
Bn to D with F ∗(ωD) = λωBn . If F extends C1−smoothly across a ∈ ∂Bn and
F (a) ∈ Ek, then λ = k.

Proof of Lemma 4.1: By Chan-Mok [CM], we must have λ = k̂ for some
1 ≤ k̂ ≤ r. By the metric-preserving assumption, we have

(4.1) ∂∂ log ρ(F, F ) = k̂∂∂ log(1− ||ξ||2).

By composing F with an automorphism of D if necessary, we assume F (0) =
0. Moreover, Since the automorphisms of D preserve each Ek, we still have
F (a) ∈ Ek. Now by standard reduction, as ρ(Z,Z) = 1 when Z = 0 and
ρ(Z,Z)− 1 consists of only mixed terms in Z and Z (cf. [CXY]), we derive
from (4.1) that

(4.2) ρ(F (ξ), F (ξ)) = (1− ||ξ||2)k̂.

We compare the vanishing order of both sides of (4.2) at a along the normal
direction ν. Note

(4.3) lim
t→0−

(1− ||a+ tν||2)k̂
(−t)l = lim

t→0−

(
1− (1 + t)2

)k̂

(−t)l =

{
0, if l < k̂

c1, if l = k̂

for some constant c1 ̸= 0. On the other hand, as F (a) ∈ Ek, it follows from
Theorem 1 that

(4.4) lim
t→0−

ρ
(
F (a+ tν), F (a+ tν)

)

(−t)l =

{
0, if l < k

c2, if l = k

for some constant c2 ̸= 0. By comparing (4.3) and (4.4), we conclude k = k̂.

By Mok’s algebraicity theorem [M3], the isometric map F must be al-
gebraic, and thus extends holomorphically across a generic boundary point.
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Combining this fact with Lemma 4.1, one easily sees ”(1) ⇔ (2)” and ”(1)
⇔ (3)”. This establishes Theorem 3.

We next prove the corollaries.

Proof of Corollary 1.1: Suppose not, i.e., suppose F has a C1−extension
to ξ. Then by assumption, F (ξ) = limi→∞ F (ξi) ∈ El for some l ̸= k. This
contradicts Theorem 3. We have thus proved Corollary 1.1.

Proof of Corollary 1.2: Again as F is an isometric map, by Mok’s al-
gebraicity theorem [M3], F is algebraic and extends holomorphically across
a dense open subset of the boundary ∂Bn. In particular, there exists a se-
quence {ξi}∞i=1 ⊂ ∂Bn converging to ξ such that F extends holomorphically
across every ξi. By Theorem 3, F (ξi) ∈ Ek. By continuity of F at ξ, we
conclude F (ξ) = limi→∞ F (ξi) ∈ Ek = ∪rl=kEl.

Proof of Corollary 1.3: By assumption, F is C1 at ξ and F (ξ) ∈ Er, the
Shilov boundary of D. It follows from Theorem 3 that F ∗(ωD) = rωBn . Then
by a result of Chan and Mok (Proposition 1 in [CM]), F is totally geodesic.

Proof of Theorem 4: Let Ki be the isotropy group of Ωi ⊂ Cmi at 0
for each 1 ≤ i ≤ N. By the polydisc theorem(cf. [M1], [Wo]), there exists
an automorphism γi ∈ Ki, such that γi(ai) takes the following form in the
Harish-Chandra coordinates:

(4.5) (1, · · · , 1, ηli+1, · · · , ηri , 0, · · · , 0),

where the first li components all equal to 1, and all |ηs| < 1 for li + 1 ≤ s ≤
ri. Hence, without loss of generality, we assume each ai takes the form in
(4.5). We define a holomorphic isometric map J from the unit disc ∆ to Ω :

J(ξ) = (J1(ξ), · · · , JN (ξ)), ξ ∈ ∆.

Here each Ji maps ∆ to Ωi and takes the following form in the Harish-
Chandra coordinates of Ωi: Ji(ξ) = (ξ, · · · , ξ, ηli+1, · · · , ηri , 0, · · · , 0) with
the first li components all equal to ξ. Note Ji(1) = ai and thus J(1) = a.

Moreover, we have J∗
i (ωΩi

) = liω∆. It then follows that

J∗
(

N⊕

i=1

λiωΩi

)
=

N∑

i=1

λiJ
∗
i (ωΩi

) = (

N∑

i=1

λili)ω∆.
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We now consider the map H := F ◦ J from ∆ to D. It follows from the
assumption (1.4) that

(4.6) H∗(ωD) = J∗(F ∗(ωD)) = (

N∑

i=1

λili)ω∆.

Moreover, note H(1) = F (a) = (b1, · · · , bN ′) and H extends C1−smoothly
across ξ∗ = 1. Pick an appropriate automorphism β ∈ Aut(D1)× · · · ×
Aut(DN ′) such that β ◦H(0) = 0. For simplicity, we still denote the new
map β ◦H byH and the image of ξ∗ = 1 under the new map by (b1, · · · , bN ′).
Note, as the boundary orbit Ẽjkj is preserved by Aut(Dj), we still have

bj ∈ Ẽ
j
kj

for each j. Moreover, the new H has a C1−extension to ξ∗ as well.

By (4.6),

(4.7) (

N∑

i=1

λili)∂∂ log(1− |ξ|2) = ∂∂ log

N ′∏

j=1

(ρj(Hj , Hj))
µj ,

where ρj is the generic norm associated to Ωj and H = (H1, · · · , HN ′) where
each Hj , 1 ≤ j ≤ N ′, maps ∆ to Dj . Note the generic norm ρ of a classical
domain D has the property (cf. [CXY]) that

ρ(Z,Z) = 1 +Q(Z,Z),

where Q, with Q(0) = 0, is a real polynomial that only has mixed terms in
Z and Z. Using this fact, we conclude from (4.7) by a standard reduction
that

(4.8) (1− |ξ|2)
∑

N

i=1 λili =

N ′∏

j=1

(ρj(Hj , Hj))
µj , ξ ∈ ∆.

Write Φ1(ξ) and Φ2(ξ) for the functions on the left and right hand side of
(4.8), respectively. Let ν be the outward pointing unit normal vector of ∆
at ξ∗. Then

(4.9) lim
t→0−

Φ1(ξ
∗ + tν)

(−t)s =

{
0, if s <

∑N
i=1 λili

C, if s =
∑N

i=1 λili

for some constant C ̸= 0. On the other hand, by Theorem 1, we have
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lim
t→0−

ρj

(
Hj(ξ

∗ + tν), Hj(ξ∗ + tν)
)

(−t)s =

{
0, if s < kj

Cj , if s = kj

for some Cj ̸= 0. Consequently,

(4.10) lim
t→0−

Φ2(ξ
∗ + tν)

(−t)s =

{
0, if s <

∑N ′

j=1 µjkj

Ĉ, if s =
∑N ′

j=1 µjkj

for some Ĉ ̸= 0. We compare equations (4.9) and (4.10) to obtain∑N
i=1 λili =

∑N ′

j=1 µjkj . This proves Theorem 4.

Proof of Corollary 1.4: We now prove the first part (i.e., equation
(1.6)) of Corollary 1.4. By applying the automorphisms of Ω and D if nec-
essary, we can assume 0 ∈ U and F (0) = 0.

Fix (σ1, · · · , σN ) with 0 ≤ σi ≤ ri. Note (1.6) is trivially true if all σi
′s

are zero. Now assume σi
′s are not all zero. We define a holomorphic isometric

map I from ∆ to Ω :

I(ξ) = (I1(ξ), · · · , IN (ξ)).

Here Ii(ξ) = (ξ, · · · , ξ, 0, · · · , 0) in the Harish-Chandra coordinates of Di,

with the first σi components all equal to ξ. Note I∗i (ωΩi
) = σiω∆. Set G =

F ◦ I. Then G is a holomorphic isometric map from a small neighborhood
V ⊂ ∆ of 0 to D :
(4.11)

G∗(ωD) = I∗(
N ′∑

j=1

µjF
∗(ωDj

)) = I∗
(

N⊕

i=1

λiωΩi

)
=

(
N∑

i=1

λiσi

)
ω∆ in V.

By Theorem 4.25 in [CXY], G is algebraic and extends to a proper map from
∆ to D. Consequently, G extends holomorphically across some boundary
point ξ∗ ∈ ∂∆. Then we apply Theorem 4 to the map G at the point ξ∗ to
conclude (1.6).

The second part (equation (1.7)) of Corollary 1.4 then follows from (1.6)
if we take (σ1, · · · , σN ) = (0, · · · , 0, 1, 0, · · · , 0), where ”1” is at the ith posi-
tion.

Proof of Proposition 1.1: When k = 1, E1 itself is a real algebraic
hypersurface and the conclusion follows from Proposition 2.1. Now assume
k ≥ 2. Write x = (x1, · · · , x2m) for the underlying real coordinates of Cm. It
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follows from Theorem 2 that for every b ∈ Ek and every multi-index β with
|β| = k − 1 it holds

(4.12)
∂|β|ρ
∂xβ

∣∣
b
= 0.

As before, write F ∗ for the first order truncation of F at a. We make the
following claim.

Claim: There is a multi-index β0 with |β0| = k − 1 such that

(4.13)
∂

∂ν

(
∂|β0|ρ
∂xβ0

(F ∗, F ∗)

) ∣∣
a
̸= 0.

Consequently, there is some xj0 , 1 ≤ j0 ≤ 2m, such that ∂
∂xj0

(
∂|β0|ρ
∂xβ0

) ∣∣
F (a)

̸=
0.

Proof of Claim: Suppose not, that is, suppose for every multi-index β
with |β| = k − 1, it holds that

(4.14)
∂

∂ν

(
∂|β|ρ
∂xβ

(F ∗, F ∗)

) ∣∣
a
= 0.

Note by Theorem 2, (4.14) also holds when |β| < k − 1. On the other hand,
since F ∗ is a linear polynomial, by chain rule we have

∂k−1ρ(F ∗, F ∗)
∂νk−1

= P

((
∂|α|ρ(F ∗, F ∗)

∂xα

)

1≤|α|≤k−1

,

(
∂ReF ∗

∂ν

)
,

(
∂ImF ∗

∂ν

))

for some real polynomial P . Combining this with (4.12) and (4.14), we con-
clude

∂kρ(F ∗, F ∗)
∂νk

∣∣
a
=

∂

∂ν

(
∂k−1ρ(F ∗, F ∗)

∂νk−1

) ∣∣
a
= 0.

This, however, contradicts with (the proof of) Theorem 1(See Lemma 3.4 for
type I case and equation (3.40) for type IV case). We have thus established
the claim.

We now set ρ̂ = ∂|β0|ρ
∂xβ0

. By the claim, dρ̂ ̸= 0 near F (a). ThusM ′ = {Z ≈
F (a) : ρ̂(Z) = 0} is a germ of real algebraic smooth real hypersurface at
F (a). Note M ′ contains Ek near F (a) by Theorem 2. Moreover, it follows
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from (4.13) that

∂ρ̂(F, F )

∂ν
|a =

∂

∂ν

(
∂|β0|ρ
∂xβ0

(F, F )

) ∣∣
a
̸= 0.

Hence F is CR transversal to M ′ at a.
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