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We prove that for a suitable class of metric measure spaces the
abstract notion of tangent module as defined by the first author
can be isometrically identified with the space of L2-sections of the
‘Gromov-Hausdorff tangent bundle’. The key assumption that we
make is a form of rectifiability for which the space is ‘almost iso-
metrically’ rectifiable (up to m-null sets) via maps that keep un-
der control the reference measure. We point out that RCD∗(K,N)
spaces fit in our framework.
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Introduction

In the context of metric geometry there is a well established notion of tangent
space at a point: the pointed-Gromov-Hausdorff limit of the blow-up of the
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space at the chosen point, whenever such limit exists. More recently, the
first author proposed in [11] an abstract definition of tangent bundle to a
generic metric measure space, such notion being based on the concepts of
L∞-module and Sobolev functions.

It is then natural to ask whether there is any relation between these two
notions and pretty easy to realize that without some regularity assumption
on the space there is no hope to find any: on the one hand, in general, the
study of Sobolev functions might lead to no information about the metric
structure of the space under consideration (this is the case, for instance,
of spaces admitting no non-constant Lipschitz curves), on the other the
pointed-Gromov-Hausdorff limits of the blow-ups can fail to exist at every
point.

We restrict the attention to the class of strongly m-rectifiable spaces
(X, d,m), defined as those spaces whose associated Sobolev space W 1,2(X)
is reflexive and such that for every ε > 0 there exist a sequence of Borel sets
(Ui) covering m-a.e. X and maps φi : Ui → R

ki such that for every i

φi is (1 + ε)-biLipschitz with its image and (φi)∗(m|Ui) ≪ Lki |φi(Ui).

We notice that from this latter assumption only one would expect W 1,2(X)
to be Hilbert, and thus in particular reflexive. Yet for technical reasons we
will need to assume reflexivity a priori in order to make proper use of such
charts (see Theorem 2.5). The fact that W 1,2(X) is Hilbert will be obtained
in Theorem 5.1 as simple consequence of the main result in there. We also
recall that a sufficient condition forW 1,2(X) to be reflexive is that the metric
space (X, d) is doubling (as proved in [1]).

The main results of this paper, namely Theorems 5.1 and 5.3, state that
for this class of spaces the two notions of tangent spaces are intimately con-
nected. More specifically, in Theorem 5.1 we show that the abstract tangent
module L2(TX) is canonically and isometrically embedded in the space of
sections of the bundle whose fibre at any point x is the pointed-Gromov-
Hausdorff limits of rescaled spaces (and it can be proved that such limit is
a.e. a Euclidean space, see Theorem 6.7). It is then natural to ask whether
such embedding is surjective and simple examples based on fat Cantor sets
show that in general this is not the case: see Example 5.2.

Still, in Theorem 5.3 we show that surjectivity is ensured provided for
any Lipschitz function f : X → R the local Lipschitz constant lip(f) equals
the minimal weak upper gradient |Df | at m-a.e. point (see (5.6)). As it is
well known, in Cheeger’s celebrated paper [7] it is proved that such condition
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Equivalence of two different notions 3

holds if a local doubling and a local Poincaré inequality are valid in the given
space.

The ‘analytic’ tangent module L2(TX) and the ‘geometric’ tangent mod-
ule L2(TGHX) will be introduced in Definitions 1.17 and 4.5, respectively.

Looking for an analogy, one might think at this result as a kind of
Rademacher’s theorem: in either case when defining a notion of differentia-
bility/tangent space there is on one side a ‘concrete’ and ‘geometric’ notion
obtained by ‘blow-ups’ and on the other an ‘abstract’ and ‘analytic’ no-
tion obtained by looking at ‘weak’ derivatives. For general functions/spaces
these might be very different, but under appropriate regularity assumptions
(Lipschitz/strongly m-rectifiable) they a.e. coincide.

The motivating example of strongly m-rectifiable space are RCD∗(K,N)
spaces. Indeed, the local doubling and Poincaré inequality are proved in
[19] and [18] respectively. For the rectifiability, the existence of (1 + ε)-
biLipschitz charts was obtained by Mondino-Naber in [17] and the fact that
those maps send the reference measure into something absolutely continuous
w.r.t. the Lebesgue one has been independently proved by Kell-Mondino in
[16] and by the authors in [14] (in both cases relying on the recent powerful
results of De Philippis-Rindler [8]).

Finally, we remark that part of our efforts here are made to give a
meaning to the concept of ‘measurable sections of the bundle formed by the
collection of blow-ups’. Let us illustrate the point with an example.

Suppose that we have a metric space (X, d) such that for every x ∈ X
the tangent space at x in the sense of pointed-Gromov-Hausdorff limit is
the Euclidean space of a certain fixed dimension k. Then obviously all such
tangent spaces would be isometric and we might want to identify all of them
with a given, fixed R

k. Once this identifications are chosen, given x ∈ X and
v ∈ R

k we might think at v as an element of the tangent space at x and
thus a vector field should be thought of as a map from X to R

k. However,
the choice of the identifications/isometries of the abstract tangent spaces
with the fixed R

k is highly arbitrary and affects the structure that one is
building: this is better seen if one wonders what it is, say, a Lipschitz vector
field, or a continuous, or a measurable one. In fact, in general there is no
answer to such questions, in the sense that there is no canonical choice of
these identifications: the problem is that, by the very definition, a pointed-
Gromov-Hausdorff limit is the isometric class of a metric space, rather than
a ‘concrete’ one.
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As we shall see, the situation changes if one works on a strongly m-
rectifiable metric measure space: much like in the smooth setting the charts
of a manifold are used to give structure to the tangent bundle, in this case
the presence of charts allows for a canonical identification of the tangent
spaces while also ensuring existence and uniqueness of a measurable struc-
ture on the resulting bundle (and in general nothing more than this, so that
we still can’t define continuous vector fields). The construction of such mea-
surable bundle, which we call Gromov-Hausdorff tangent bundle and denote
by TGHX, is done in Section 4.2, while in Section 6 we show that its fibres
are the pointed-Gromov-Hausdorff limits of the rescaled spaces, thus justi-
fying the terminology. Let us remark that while the initial definition of the
Gromov-Hausdorff tangent bundle - and in particular its measurable struc-
ture - is simply given by a product, in fact we shall show in Section 6 that
such measurable structure is natural, because it is compatible with ‘taking
all the pGH-limits at the same time’, see Theorem 6.6.

Acknowledgment. This research has been supported by the MIUR SIR-
grant ‘Nonsmooth Differential Geometry’ (RBSI147UG4).

1. Preliminaries

1.1. Metric measure spaces

For the purpose of this paper, a metric measure space is a triple (X, d,m),
where

(1.1)
(X, d) is a complete and separable metric space,
m ̸= 0 is a non-negative Borel measure on X, finite on balls.

Given two metric measure spaces (X, dX,mX) and (Y, dY,mY), we will always
implicitly endow the product space X×Y with the product distance dX × dY

given by

(dX × dY)
(
(x1, y1), (x2, y2)

)2
:= dX(x1, x2)

2 + dY(y1, y2)
2

and the product measure mX ⊗mY. The notation B(X) denotes the Borel
σ-algebra on X.
Given a metric measure space (X, d,m) and a point x ∈ spt(m), we say that
the reference measure m is pointwise doubling at x if

(1.2) lim
r→0

m

(
B2r(x)

)

m

(
Br(x)

) < +∞.



✐

✐

“1-Gigli” — 2022/6/20 — 18:37 — page 5 — #5
✐

✐

✐

✐

✐

✐
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A metric measure space (X, d,m) is said to be doubling provided there exists
C > 0 such that

(1.3) m

(
B2r(x)

)
≤ C m

(
Br(x)

)
for every x ∈ X and r > 0

and the least such constant C is called the doubling constant of the space. It
is clear that the reference measure of a doubling space is pointwise doubling
at all points.

Definition 1.1 (Vitali space). Let (X, d,m) be a metric measure space.
Then X is said to be a Vitali space provided the following condition is sat-
isfied: given a Borel set A ⊆ X and a family F of closed balls in X such that
inf

{
r > 0 : Br(x) ∈ F

}
= 0 holds for m-a.e. x ∈ A, there exists a countable

family G ⊆ F of pairwise disjoint balls such that m
(
A \⋃B∈GB

)
= 0.

By slightly modifying the arguments contained in the proof of [15, The-
orem 1.6], one can readily prove that
(1.4)
m is pointwise doubling at m-a.e. x ∈ X =⇒ (X, d,m) is a Vitali space.

A fundamental property of the Vitali spaces is the Lebesgue differentiation
theorem, whose proof can be found e.g. in [15]:

Theorem 1.2 (Lebesgue differentiation theorem). Let (X, d,m) be a
Vitali space. Fix a function f ∈ L1

loc(X). Then

(1.5) f(x) = lim
r→0

1

m

(
Br(x)

)
∫

Br(x)
f dm for m-a.e. x ∈ X.

Given a point x ∈ X and a Borel subset E of X, we say that x is of

density λ ∈ [0, 1] for E if

(1.6) DE(x) := lim
r→0

m

(
E ∩Br(x)

)

m

(
Br(x)

) = λ.

By applying Theorem 1.2 to the function χE , we deduce that

(1.7) DE(x) = 1 for m-a.e. x ∈ E.
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In the sequel, the following class of metric measure spaces will play a fun-
damental role:

(X, d,m) is a metric measure space with the following property:

for every Borel set E ⊆ X and for m-a.e. x̄ ∈ E, it holds that

∀ε > 0 ∃ r > 0 : ∀x ∈ Br(x̄) ∃ y ∈ E : d(x, y) < ε d(x, x̄).

(1.8)

A sufficient condition for satisfying the previous property is given by the
next result.

Lemma 1.3. Let (X, d,m) be a metric measure space. Fix A ∈ B(X). Sup-
pose that there exist constants r̄, C > 0 such that m

(
B2r(x)

)
≤ C m

(
Br(x)

)

for every 0<r<r̄ and x ∈ A. Then the metric measure space
(
A, d|A×A,m|A

)

satisfies (1.8).
In particular, any doubling metric measure space (X, d,m) satisfies (1.8).

Proof. Fix a Borel set E ⊆ A and any point x̄ ∈ E such that DE(x̄) = 1. We
claim that

(1.9) ∀ε > 0 ∃ r > 0 : ∀x ∈ Br(x̄) ∩A ∃ y ∈ E : d(x, y) < ε d(x, x̄).

In light of (1.7), this would be enough to prove the statement (notice that(
A, d|A×A,m|A

)
is a Vitali space). We now show the validity of the claim

(1.9) arguing by contradiction: assume the existence of ε > 0 and of points
{xr}r>0 ⊆ A with d(xr, x̄) < r for every r > 0, such that

(1.10) E ∩Bε d(xr,x̄)(xr) = ∅ for every r > 0.

Fix n ∈ N such that 2n ε ≥ 2 + ε. Thus Bε d(xr,x̄)(xr) ⊆ B(1+ε) d(xr,x̄)(x̄) ⊆
B2n ε d(xr,x̄)(xr) for every r > 0, hence in particular it holds that

m

(
Bε d(xr,x̄)(xr)

)
≥

m

(
B2nε d(xr,x̄)(xr)

)

Cn
(1.11)

≥
m

(
B(1+ε) d(xr,x̄)(x̄)

)

Cn
if 0 < r <

r̄

2n−1 ε
.
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Therefore

DE(x̄) = lim
r→0

m

(
B(1+ε) d(xr,x̄)(x̄) ∩ E

)

m

(
B(1+ε) d(xr,x̄)(x̄)

)

(by (1.10)) ≤ lim
r→0

m

(
B(1+ε) d(xr,x̄)(x̄) \Bε d(xr,x̄)(xr)

)

m

(
B(1+ε) d(xr,x̄)(x̄)

)

= lim
r→0

m

(
B(1+ε) d(xr,x̄)(x̄)

)
−m

(
Bε d(xr,x̄)(xr)

)

m

(
B(1+ε) d(xr,x̄)(x̄)

)

(by (1.11)) ≤ 1− 1

Cn
< 1,

which contradicts our assumption DE(x̄) = 1. □

1.2. Lipschitz functions

Let (X, dX) and (Y, dY) be metric spaces. A function f : X → Y is said to
be Lipschitz (or, more precisely, λ-Lipschitz) if there exists λ ≥ 0 such that
dY

(
f(x), f(y)

)
≤ λ dX(x, y) for every x, y ∈ X. The smallest λ ≥ 0 such that

f is λ-Lipschitz is denoted by Lip(f) and is called Lipschitz constant of f .
Given any subset E of X, we indicate by Lip(f ;E) the Lipschitz constant
of f |E . The family of all the Lipschitz functions from X to Y is denoted

by LIP(X,Y). For the sake of brevity, we shall write LIP(X) instead of
LIP(X,R). We say that a function f : X → Y is λ-biLipschitz if it is invert-
ible and f , f−1 are λ-Lipschitz.

Definition 1.4 (Local Lipschitz constant). Let (X, d) be a metric space.
Let f ∈ LIP(X). Then the local Lipschitz constant of f is the function
lip(f) : X → [0,+∞), which is defined by lip(f)(x) := 0 if x ∈ X is an iso-
lated point and by
(1.12)

lip(f)(x) := lim
y→x

y∈X\{x}

∣∣f(y)− f(x)
∣∣

d(y, x)
if x ∈ X is an accumulation point.

Definition 1.5 (Asymptotic Lipschitz constant). Let (X, d) be a me-
tric space and let f ∈ LIP(X). Then the asymptotic Lipschitz constant of f
is the map lipa(f) : X → [0,+∞), which is defined by

(1.13) lipa(f)(x) := inf
r>0

Lip
(
f ;Br(x)

)
for every x ∈ X.
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One can easily prove that lip(f) ≤ lipa(f) ≤ Lip(f) and that

(1.14) lip(f ◦ φ) ≤ Lip(φ) lip(f) ◦ φ

for any couple of metric spaces (X, dX), (Y, dY) and functions φ ∈ LIP(X,Y)
and f ∈ LIP(Y).

Given a metric space (X, d), a Lipschitz function f ∈ LIP(X) and a Borel
set E ∈ B(X), we have that lip

(
f |E

)
(x) ≤ lip(f)(x) is satisfied for every x ∈

X, where lip
(
f |E

)
is taken in the metric space

(
E, d|E×E

)
. Simple examples

show that in general equality does not hold; however, if we restrict to the case
of a doubling metric measure space, then Lemma 1.3 grants that equality
holds at least on density points of E:

Proposition 1.6. Let (X, d,m) be a doubling metric measure space. Fix a
Borel set E ∈ B(X) and a Lipschitz function f ∈ LIP(X). Then

(1.15) lip
(
f |E

)
(x) = lip(f)(x) for m-a.e. x ∈ E.

More precisely, the equality above holds at every Lebesgue point x ∈ E of
density 1.

Proof. It suffices to prove that lip(f)(x) ≤ lip
(
f |E

)
(x) for every point x ∈ E

of density 1. Thus fix x ∈ E with DE(x) = 1. If x is an isolated point in X,
then lip(f)(x) = lip

(
f |E

)
(x) = 0. If x is an accumulation point, then take a

sequence (xn)n ⊆ X \ {x} converging to x. Up to passing to a suitable subse-
quence, we can assume that limn

∣∣f(xn)− f(x)
∣∣/d(xn, x) is actually a limit.

Moreover, possibly passing to a further subsequence, Lemma 1.3 provides
the existence of a sequence (yn)n ⊆ E satisfying d(xn, yn) < d(xn, x)/n for
every n ≥ 1. In particular, limn yn = x and yn ̸= x for every n ≥ 1. Therefore

lim
n→∞

∣∣f
(
xn)− f(x)

∣∣
d(xn, x)

≤ lim
n→∞

∣∣f(xn)− f(yn)
∣∣

d(xn, yn)

d(xn, yn)

d(xn, x)

+ lim
n→∞

∣∣f(yn)− f(x)
∣∣

d(yn, x)

d(yn, x)

d(xn, x)

≤ Lip(f) lim
n→∞

1

n
+ lim
n→∞

∣∣f(yn)− f(x)
∣∣

d(yn, x)
lim
n→∞

(
1 +

1

n

)

≤ lip
(
f |E

)
(x).

The arbitrariness of (xn)n gives the conclusion. □
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In what follows we shall frequently use the following fact:

Given a metric space (X, d), a subset E of X and f ∈ LIP(E),

there exists f̄ ∈ LIP(X) such that f̄ |E = f and Lip(f̄) = Lip(f).
(1.16)

An explicit expression - called McShane extension - for such a function f̄ is
given by the formula f̄(x) := inf

{
f(y) + Lip(f) d(x, y)

∣∣ y ∈ E
}
, x ∈ X.

Arguing componentwise, from this fact we also directly deduce that:

Given a metric space (X, d), a subset E of X and f ∈ LIP(E,Rn),

there exists f̄ ∈ LIP(X,Rn) such that f̄ |E = f and Lip(f̄) ≤ √
nLip(f).

Let us briefly discuss the case of Lipschitz functions from R
k into itself.

Let End(Rk) be the set of linear maps from R
k to itself, E ⊂ R

k be Borel
and f : E → R

k be a Lipschitz function. Find a Lipschitz extension f̃ of f to
the whole Rk and use Rademacher theorem to obtain that f̃ is differentiable
Lk-a.e.. Call df̃(x) ∈ End(Rk) such differential at the point x, whenever it is
defined. Then it is well-known (cf., for instance, [9]) that for Lk-a.e. x ∈ E
the value of df̃(x) does not depend on the chosen extension f̃ , so that the
formula

df(x) := df̃(x) for Lk-a.e. x ∈ E,

is well-posed and defines a bounded strongly measurable map from E to
End(Rk) satisfying

∥∥df(x)
∥∥ ≤ Lip(f) for Lk-a.e. x ∈ E.

1.3. Hausdorff measures

Given a metric space (X, d) and k ∈ N, we denote by Hk the k-dimensional
Hausdorff measure on X. We recall that, taken two metric spaces (X, dX)
and (Y, dY), it holds that

(1.17) Hk
(
f(A)

)
≤ Lip(f)k Hk(A) for every f ∈ LIP(X,Y) and A ⊆ X.

Another important property of the Hausdorff measures is the following, for
whose proof we refer to [6, Theorem 2.4.3].
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Proposition 1.7. Let (X, d, µ) be a metric measure space and k ∈ N. Let
A ⊆ X be a Borel set and λ ∈ (0,+∞). Then

(1.18) lim
r→0

µ
(
Br(x)

)

ωk rk
≥ λ for every x ∈ A =⇒ λHk(A) ≤ µ(A),

where ωk denotes the Lebesgue measure of the unit ball in R
k.

Given a metric space (X, d), we say that a Borel set A ⊆ X is countably
Hk-rectifiable provided there exist a sequence of Borel sets (Bn)n ⊆ B(Rk)
and Lipschitz maps fn : Bn → X such that Hk

(
A \⋃n fn(Bn)

)
= 0.

We recall a fundamental property of countably Hk-rectifiable sets, see
[5, Theorem 5.4]:

Theorem 1.8 (Spherical density). Let (X, d) be a metric space and k ∈
N. Let A ⊆ X be a countably Hk-rectifiable set and θ : A→ (0,+∞) a Borel
map. Define µ := θHk|A and suppose that µ is a finite measure. Then

(1.19) lim
r→0

µ
(
Br(x)

)

ωk rk
= θ(x) holds for Hk-a.e. x ∈ A.

1.4. Sobolev calculus

The scope of this section is to recall how to build the Sobolev spaceW 1,2(X)
on a metric measure space. The following definitions and results are taken
from [4] and [12].

Let (X, d,m) be a metric measure space, which will be fixed for the whole
section. We say that a curve γ ∈ C

(
[0, 1],X

)
is absolutely continuous if there

exists f ∈ L1(0, 1) such that

(1.20) d(γt, γs) ≤
∫ s

t
f(r) dr for every t, s ∈ [0, 1] with t < s.

We will denote by AC
(
[0, 1],X

)
the set of all the absolutely continuous

curves in X. Given any curve γ ∈ AC
(
[0, 1],X

)
, the limit

(1.21) |γ̇t| := lim
h→0

d(γt+h, γt)

|h|

exists for L1-a.e. t ∈ [0, 1] and defines an L1-function. Such map, called
metric speed of γ, is the minimal (in the a.e. sense) L1-function which can
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be chosen as f in the right hand side of (1.20). For a proof of these results,
we refer to Theorem 1.1.2 of [2].
For every t ∈ [0, 1], we denote by et : C

(
[0, 1],X

)
→ X the evaluation map

at time t, namely

(1.22) et(γ) := γt for every γ ∈ C
(
[0, 1],X

)
.

Recall that C
(
[0, 1],X

)
is a metric space, with respect to the sup distance.

Hence we can consider a Borel probability measure π on C
(
[0, 1],X

)
. We

say that π is a test plan provided

(et)♯π ≤ C m for every t ∈ [0, 1], for some constant C > 0,
∫∫ 1

0
|γ̇t|2 dt dπ(γ) < +∞, where

∫ 1

0
|γ̇t|2 dt := +∞ if γ /∈ AC

(
[0, 1],X

)
.

(1.23)

In particular, any test plan must be necessarily concentrated onAC
(
[0, 1],X

)
.

Definition 1.9 (Sobolev class). The Sobolev class S2(X) (resp. S2loc(X))
is the space of all the Borel maps f : X → R such that there exists G ∈ L2(m)
(resp. G ∈ L2

loc(m)) satisfying
(1.24)∫ ∣∣f(γ1)− f(γ0)

∣∣ dπ(γ) ≤
∫∫ 1

0
G(γt) |γ̇t| dt dπ(γ) for every test plan π.

Here and in what follows, L2
loc(m) is the space of functions which for

every x ∈ X coincide with some function in L2(m) on some neighbourhood
of x. Similarly for other spaces.

Given f ∈ S2(X), it is possible to prove that there exists a minimal
function |Df | in the m-a.e. sense which can be chosen as G in (1.24). We
call |Df | the minimal weak upper gradient of f .

The main calculus properties of minimal weak upper gradients are the
following:
Locality. If f, g ∈ S2

loc
(X) and N ∈ B(R) satisfies L1(N) = 0, then

(1.25)
|Df | = 0
|Df | = |Dg|

m-a.e. in f−1(N),
m-a.e. in {f = g}.

Lower semicontinuity. Let (fn)n ⊆ S2(X) satisfy limn fn(x) = f(x) for
m-a.e. x ∈ X, for some f : X → R. Assume that |Dfn|⇀ G weakly in L2(m)
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as n→ ∞, for some G ∈ L2(m). Then f ∈ S2(X) and

(1.26) |Df | ≤ G m-a.e. in X.

Subadditivity. If f, g ∈ S2
loc
(X) and α, β ∈ R, then αf + βg ∈ S2

loc
(X)

and

(1.27)
∣∣D(αf + βg)

∣∣ ≤ |α||Df |+ |β||Dg| m-a.e. in X.

Leibniz rule. If f, g ∈ S2
loc
(X) ∩ L∞

loc
(m), then fg ∈ S2

loc
(X) ∩ L∞

loc
(m) and

(1.28)
∣∣D(fg)

∣∣ ≤ |f ||Dg|+ |g||Df | m-a.e. in X.

Chain rule. Let f ∈ S2
loc
(X) and φ ∈ LIP(R). Then φ ◦ f ∈ S2

loc
(X) and

(1.29)
∣∣D(φ ◦ f)

∣∣ = |φ′| ◦ f |Df | m-a.e. in X,

where |φ′| ◦ f is arbitrarily defined at the non-differentiability points of φ.
Notice that for f ∈ LIP(X), we trivially have that (1.24) is satisfied for
G := lip(f), so that f ∈ S2loc(X) and

(1.30) |Df | ≤ lip(f) m-a.e. in X.

The Sobolev space W 1,2(X) is defined as

(1.31) W 1,2(X) := S2(X) ∩ L2(m).

Whenever ambiguities may arise, we write W 1,2
m (X) and |Df |m in place of

W 1,2(X) and |Df |, respectively. It turns out thatW 1,2(X) is a Banach space
if endowed with the norm

(1.32) ∥f∥W 1,2(X) :=
√

∥f∥2L2(m) +
∥∥|Df |

∥∥2
L2(m)

for every f ∈W 1,2(X).

However, in general W 1,2(X) is not a Hilbert space. We then give the fol-
lowing definition:

Definition 1.10 (Infinitesimally Hilbertian). The metric measure space
(X, d,m) is said to be infinitesimally Hilbertian providedW 1,2(X) is a Hilbert
space.

It has been proved in [3] that Sobolev functions can be approximated
by Lipschitz ones:
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Theorem 1.11 (Density in energy of Lipschitz functions). Let
(X, d,m) be any metric measure space. Then for any function f ∈W 1,2(X)
there exists a sequence (fn)n ⊆ LIPc(X) such that fn → f and lipa(fn) →
|Df | in L2(m). Moreover, if W 1,2(X) is reflexive then (fn)n can be cho-
sen so that

∣∣D(fn − f)
∣∣ → 0 in L2(m), in other words LIPc(X) is dense in

W 1,2(X) with respect to the W 1,2(X)-norm.

We conclude recalling that

(1.33) (X, d,m) doubling =⇒ W 1,2(X) is a reflexive space.

This non-trivial result, which in fact only requires the doubling property of
the distance, has been proved in [1].

1.5. Cotangent and tangent modules

Here we recall some definitions and concepts introduced by the first author
in [11], referring to [11] and [10] for a more detailed discussion.

Let (X, d,m) be a metric measure space, which will be fixed throughout
the whole section. We first give the definition of L2(m)-normed L∞(m)-
module:

Definition 1.12 (L2(m)-normed L∞(m)-module). Let M be a Banach
space. Then M is said to be an L2(m)-normed L∞(m)-module provided
it is endowed with a bilinear map L∞(m)× M ∋ (f, v) 7→ fv ∈ M , called
multiplication, and a function | · | : M → L2(m)+, called pointwise norm,
which satisfy the following properties:

(i) (fg)v = f(gv) for every v ∈ M and f, g ∈ L∞(m).

(ii) 1v = v for every v ∈ M , where 1 ∈ L∞(m) is the function identically
1.

(iii)
∥∥|v|

∥∥
L2(m)

= ∥v∥
M

for every v ∈ M .

(iv) |fv| = |f | |v| m-a.e. in X, for every v ∈ M and f ∈ L∞(m).

Given a Borel set A ∈ B(X), we define the ‘restriction’ M |A of M to A
as

(1.34) M |A :=
{
v ∈ M

∣∣χAc · v = 0
}
.

Notice that M |A inherits the structure of L2(m)-normed L∞(m)-module.
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Given two L2(m)-normed L∞(m)-modules M and N , we say that a map
T : M → N is a module morphism provided it is linear continuous and it
satisfies

(1.35) T (fv) = f T (v) for every v ∈ M and f ∈ L∞(m).

An important class of L2(m)-normed L∞(m)-modules is that of Hilbert mo-
dules, namely those modules H that are Hilbert spaces when seen as normed
spaces. It turns out that a given normed module H is a Hilbert module if
and only if its pointwise norm satisfies the pointwise parallelogram identity

(1.36) |v + w|2 + |v − w|2 = 2 |v|2 + 2 |w|2 m-a.e. in X

for any couple of elements v, w ∈ H .

Definition 1.13 (Dual module). Let M be an L2(m)-normed L∞(m)-
module. Then we define the dual module M ∗ of M as the family of all linear
continuous maps T : M → L1(m) such that T (fv) = f T (v) holds m-a.e. in
X for any v ∈ M and f ∈ L∞(m).

The space M ∗ naturally comes with the structure of L2(m)-normed
L∞(m)-module: it is a Banach space with respect to the pointwise vec-
tor operations and the operator norm, while the multiplication fT between
f ∈ L∞(m) and T ∈ M ∗ is defined as

(1.37) (fT )(v) := f T (v) m-a.e. in X, for every v ∈ M

and the pointwise norm |T | of T ∈ M ∗ is given by

(1.38) |T | := ess sup
v∈M ,

|v|≤1 m-a.e.

∣∣T (v)
∣∣ for every T ∈ M

∗.

We recall the notion of local dimension:

Definition 1.14 (Local dimension of normed modules). Let M be an
L2(m)-normed L∞(m)-module. Let A ∈ B(X) be such that m(A) > 0. Then:

(i) Finitely many elements v1, . . . , vn ∈ M are said to be independent on
A provided for any f1, . . . , fn ∈ L∞(m) it holds that

(1.39)

χA

n∑

i=1

fivi = 0 ⇐⇒ fi = 0 m-a.e. in A, for every i = 1, . . . , n.
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(ii) We say that a set S ⊂ M generates M |A provided M |A is the closure

of the set of finite sums of objects of the form χAfv for f ∈ L∞(m)
and v ∈ S.

(iii) We say that some elements v1, . . . , vn ∈ M constitute a basis for M |A
if they are independent on A and generate M |A.

(iv) The local dimension of M on A is defined to be equal to n ∈ N if M

admits a basis of cardinality n on A, while it is defined to be equal
to ∞ provided M is not finitely-generated on any Borel subset of A
having positive m-measure.

Observe that the notion of local dimension is well-defined, in the sense
that two different bases for M on A must necessarily have the same cardi-
nality.

By using the language of L2(m)-normed L∞(m)-modules described so
far, we can now introduce the cotangent module L2(T ∗X) associated to
(X, d,m). Its definition is based upon the following result, whose proof can
be found in [10]:

Theorem 1.15. There exists (up to unique isomorphism) a unique couple
(M , d), where M is an L2(m)-normed L∞(m)-module and d : W1,2(X) →
M is a linear map, such that

(i) |df | = |Df | holds m-a.e. in X, for every f ∈W 1,2(X),

(ii)
{
df : f ∈W 1,2(X)

}
generates M on X.

Namely, if two couples (M , d) and (M ′, d′) as above fulfill both (i) and
(ii), then there exists a unique module isomorphism Φ : M → M ′ such that
Φ ◦ d = d′.

Definition 1.16 (Cotangent module and differential). The module
provided by the previous theorem is called cotangent module and denoted by
L2(T ∗X); its elements are called 1-forms on X. The map d will be called
differential.

The tangent module is then introduced by duality:

Definition 1.17 (Tangent module). We call tangent module the dual
of L2(T ∗X) and denote it by L2(TX). Its elements are called vector fields
on X.
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In case of ambiguity, we shall make use of the notation L2
m
(T ∗X), dmf

and L2
m
(TX) instead of L2(T ∗X), df and L2(TX), respectively.

It can be proved that the space (X, d,m) is infinitesimally Hilbertian if
and only if

(1.40) L2(T ∗X) and L2(TX) are Hilbert modules.

For this and other equivalent characterizations, we refer to [11, Proposi-
tion 2.3.17].

Remark 1.18 (Localisation of the cotangent module). Let (X, d,m)
be a metric measure space. Fix an open set Ω ⊆ X and define m̃ := m|Ω.
Then the cotangent module L2

m̃
(T ∗X) can be canonically identified with

L2
m
(T ∗X)|Ω, in the following sense: there exists a (unique) linear isomorphism

ι : L2
m̃
(T ∗X) → L2

m
(T ∗X)|Ω such that

∣∣ι(v)
∣∣ = |v| m̃-a.e. for every v ∈ L2

m̃
(T ∗X),

ι(d
m̃
f) = dmf for every f ∈W 1,2

m
(X)

with dist
(
spt(f),X \ Ω

)
> 0.

(1.41)

First of all, observe that the second line in (1.41) makes sense, because any
map f ∈W 1,2

m (X) with dist
(
spt(f),X \ Ω

)
> 0 belongs to W 1,2

m̃
(X) and sat-

isfies |Df |
m̃
= |Df |

m
m̃-a.e. (see [4, Theorem 4.19]). Then to check that ι

is well defined by the above it is sufficient to verify that the differentials
of functions f ∈W 1,2

m̃
(X) with dist

(
spt(f),X \ Ω

)
> 0 generate the whole

L2
m̃
(T ∗X). In turn, by definition of ‘generate’ and the trivial identity Ω =⋃

λ∈Q+

{
x ∈ Ω : d(x,X \ Ω) > λ

}
, it is sufficient to check that the same

set of differentials generate L2
m̃
(T ∗X) on

{
x ∈ Ω : d(x,X \ Ω) > λ

}
for any

λ > 0. But this is trivial, indeed let ηλ be a Lipschitz and bounded cut-off
function with dist

(
spt(ηλ),X \ Ω

)
> 0 and ηλ ≡ 1 on

{
x ∈ Ω : d(x,X \ Ω) >

λ
}

. Then for every f ∈W 1,2
m (X) we have that fηλ ∈W 1,2

m (X) satisfies
dist

(
spt(fηλ),X \ Ω

)
> 0 and d

m̃
f = d

m̃
(fηλ) on

{
x ∈ Ω : d(x,X \ Ω) > λ

}
,

whence the claim follows.
Therefore it immediately follows that there exists a (uniquely deter-

mined) linear and continuous isomorphism ι : L2
m̃
(TX) → L2

m
(TX)|Ω such

that

ι(ω)
(
ι(v)

)
= ω(v) holds m̃-a.e. in X,(1.42)

for every ω ∈ L2
m̃
(T ∗X) and v ∈ L2

m̃
(TX).
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In particular, the equality
∣∣ι(v)

∣∣ = |v| is satisfied m̃-a.e. in X for every v ∈
L2
m̃
(TX). ■

We conclude the section discussing the case of X = R
k. Let us denote by

L2(Rk,Rk) the standard space of L2 vector fields on R
k and by L2(Rk, (Rk)∗)

its dual, i.e. the space of L2 1-forms. Notice that the dual of L2(Rk, (Rk)∗)
is L2(Rk,Rk).

We know that the Sobolev spaceW 1,2(Rk) as defined here coincides with
the classically defined one via distributional derivatives and that for f ∈
W 1,2(Rk) if we consider its distributional differential, which for a moment
we denote d̂f and which naturally belongs to L2(Rk, (Rk)∗), we have that
its norm |d̂f | coincides with the minimal weak upper gradient |Df | (see [3]).
Also, it is readily verified that 1-forms of the kind

∑n
i=1

χAi d̂fi, for n ∈
N, (Ai) a partition of Rk and (fi) ⊂W 1,2(Rk), are dense in L2(Rk, (Rk)∗).
Thanks to Theorem 1.15, these facts are sufficient to conclude that the
‘concrete’ space of L2 1-forms L2(Rk, (Rk)∗) and the abstract cotangent
module L2(T ∗

R
k) can be canonically identified by an isomorphism which

sends d̂f to df .
Once this identification is done, it follows that also the space of L2

vector fields L2(Rk,Rk) can be canonically identified with the tangent mod-
ule L2(TRk). Such identification allows us to identify, for a given Borel set
E ⊂ R

k, the restricted module L2(TRk)|E with L2(E,Rk).

Finally, we point out that for every function f ∈ LIP(Rk) ∩W 1,2(Rk) it
holds that

(1.43) |df | = lip(f) is satisfied Lk-a.e. in R
k,

which represents a reinforcement of property (1.30).

2. Maps of bounded deformation

Fix two metric measure spaces (X, dX,mX) and (Y, dY,mY). We report here
some definitions and results that are taken from [11] and [10], where it is
described how the notions of pullback of 1-forms and of differential can be
built for a special class of mappings between X and Y, which are said to be
of bounded deformation.

We start by recalling what it means for a map φ : X → Y to be of
bounded deformation:
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Definition 2.1 (Map of bounded compression/deformation). A map
φ : X → Y is said to be of bounded compression if it satisfies

(2.1) φ∗mX ≤ C mY for a suitable constant C > 0.

The least such C is called compression constant and is denoted by Comp(φ).
Moreover, the map φ is said to be of bounded deformation provided it

is both Lipschitz and of bounded compression.

For maps of bounded compression/deformation, we have at disposal two
notions of pullback :

i) Suppose that φ : X → Y is a map of bounded compression. Given
any L2(mY)-normed L∞(mY)-module M , there exists (up to unique
isomorphism) a unique couple

(
φ∗M , [φ∗]

)
, where φ∗M is an L2(mX)-

normed L∞(mX)-module and [φ∗] : M → φ∗M is a linear and contin-
uous operator, such that

∣∣[φ∗]v
∣∣ = |v| ◦ φ holds mX-a.e., for every v ∈ M ,{

[φ∗]v : v ∈ M
}

generates the whole φ∗
M .

(2.2)

We say that φ∗M is the pullback module of M and that [φ∗] is the
pullback map. We shall sometimes write [φ∗v] instead of [φ∗]v.
In general, φ∗M ∗ is only isometrically embedded into (φ∗M )∗, but
the two modules are actually isomorphic provided, for example, the
space M ∗ is separable.

ii) Suppose that φ : X → Y is a map of bounded deformation. One has
that f ◦ φ ∈W 1,2(X) whenever f ∈W 1,2(Y) and that

∣∣d(f ◦ φ)
∣∣ ≤

Lip(φ) |df | ◦ φ holds mX-a.e.. Then there exists a unique linear and
continuous operator φ∗ : L2(T ∗Y) → L2(T ∗X), called pullback of 1-
forms, such that

φ∗df = d(f ◦ φ) for every f ∈W 1,2(Y),

φ∗(hω) = h ◦ φφ∗ω for every ω ∈ L2(T ∗Y) and h ∈ L∞(mY).
(2.3)

Moreover, it holds that

(2.4) |φ∗ω| ≤ Lip(φ) |ω| ◦ φ mX-a.e., for every ω ∈ L2(T ∗Y).

We point out that the above two notions of pullback are rather different.
The former can be associated to any map of bounded compression, while
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the latter is tailored for maps of bounded deformation and 1-forms. The
most evident discrepancy between them is the following fact: given a map of
bounded deformation φ : X → Y, the pullback map [φ∗] defined in i) takes
values into φ∗L2(T ∗Y), while the pullback map φ∗ defined in ii) takes values
into L2(T ∗X).

With this said, we are in a position to introduce the differential dφ
of a map of bounded deformation φ : X → Y by combining the above two
concepts of pullback:

Theorem 2.2 (Differential of a map of bounded deformation). Let
φ : X → Y be a map of bounded deformation. Assume that L2(TY) is separa-
ble. Then there exists a unique linear and continuous operator dφ : L2(TX) →
φ∗L2(TY), called differential of φ, such that

(2.5) [φ∗ω]
(
dφ(v)

)
= φ∗ω(v) for every ω ∈ L2(T ∗Y) and v ∈ L2(TX).

In particular, the map dφ is L∞(mX)-linear and satisfies

(2.6)
∣∣dφ(v)

∣∣ ≤ Lip(φ) |v| mX-a.e., for every v ∈ L2(TX).

In order to continue our analysis, we now need to show that the differential of
a map of bounded deformation is a local object, as explained in the following
two results.

Lemma 2.3. Let φ : X → Y be a map of bounded deformation. Fix a Borel
set E ⊆ X. Then

χE
∣∣d(f ◦ φ)

∣∣ ≤ Lip(φ;E)χE |df | ◦ φ holds mX-a.e.,(2.7)

for every f ∈W 1,2(Y).

Proof. Choose a sequence (fn)n ⊆ LIPc(Y) such that fn → f and lipa(fn) →
|df | in L2(mY). Let n ∈ N be fixed. Given any x ∈ E and r > 0, there ex-
ists a Lipschitz map g ∈ LIP(X) such that Lip(g) = Lip

(
fn ◦ φ;E ∩Br(x)

)

and g|E∩Br(x)
= fn ◦ φ|E∩Br(x)

. Since φ
(
E ∩Br(x)

)
is contained in the ball

BLip(φ)r

(
φ(x)

)
, we have that

χE∩Br(x)

∣∣d(fn ◦ φ)
∣∣ = χE∩Br(x) |dg| ≤ Lip(g)(2.8)

≤ Lip(φ;E) Lip
(
fn;BLip(φ)r

(
φ(x)

))
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holds mX-a.e.. Given that BLip(φ)r

(
φ(x)

)
⊆ B2Lip(φ)r

(
φ(y)

)
is satisfied for

every y ∈ Br(x), we deduce from (2.8) and Lindelöf lemma that

∣∣d(fn ◦ φ)
∣∣(x) ≤ Lip(φ;E) Lip

(
fn;B2Lip(φ)r

(
φ(x)

))
(2.9)

for mX-a.e. x ∈ E.

By letting r → 0 in the above inequality (2.9), we thus obtain that

χE
∣∣d(fn ◦ φ)

∣∣ ≤ Lip(φ;E)χE lipa(fn) ◦ φ holds mX-a.e.,(2.10)

for every n ∈ N.

Notice that
∣∣d(fn ◦ φ)

∣∣ ≤ Lip(φ) |dfn| ◦ φ ≤ Lip(φ) lipa(fn) ◦ φ is satisfied
mX-a.e., thus accordingly the set of all functions

∣∣d(fn ◦ φ)
∣∣, with n ∈ N, is

norm bounded in L2(mX). In particular, possibly passing to a (not relabeled)
subsequence, one has that

∣∣d(fn ◦ φ)
∣∣⇀ h weakly in L2(mX) for a suitable

map h ∈ L2(mX). By lower semicontinuity of minimal weak upper gradients,
we deduce that

∣∣d(f ◦ φ)
∣∣ ≤ h holds mX-a.e.. Since lipa(fn) ◦ φ ⇀ |df | ◦ φ

weakly in L2(mX), we finally conclude by recalling (2.10) that

χE
∣∣d(f ◦ φ)

∣∣ ≤ χE h ≤ Lip(φ;E)χE |df | ◦ φ holds mX-a.e.,

yielding (2.7) and accordingly the statement. □

Corollary 2.4. Let (X, dX,mX), (Y, dY,mY) be metric measure spaces such
that L2(TY) is separable. Let φ : X → Y be a map of bounded deformation.
Fix a Borel set E ⊆ X. Then

(2.11)
∣∣dφ(v)

∣∣ ≤ Lip(φ;E) |v| holds mX-a.e., for every v ∈ L2(TX)|E .

Proof. Given any simple form ω =
∑n

i=1
χAi dfi ∈ L2(T ∗Y), with (Ai)

n
i=1 ⊆

B(Y) disjoint and (fi)
n
i=1 ⊆W 1,2(Y), one has mX-a.e. that

χE |φ∗ω| =
n∑

i=1

χφ−1(Ai)∩E

∣∣d(fi ◦ φ)
∣∣

(2.7)

≤ Lip(φ;E)

n∑

i=1

χE
(
χAi |dfi|

)
◦ φ = Lip(φ;E)χE |ω| ◦ φ,
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which grants that χE |φ∗ω| ≤ Lip(φ;E)χE |ω| ◦ φ mX-a.e. for every ω ∈
L2(T ∗Y). Hence

χE

∣∣∣[φ∗ω]
(
dφ(v)

)∣∣∣ = χE
∣∣φ∗ω(v)

∣∣ ≤ χE |φ∗ω| |v| ≤ Lip(φ;E)χE |ω| ◦ φ |v|
= Lip(φ;E)χE

∣∣[φ∗ω]
∣∣|v| holds mX-a.e.,

which implies that
∣∣dφ(v)

∣∣ ≤ Lip(φ;E) |v| is satisfied mX-a.e. in E. □

In the next section we will deal with functions φ defined on some Borel
set E ⊆ X and taking values into the Euclidean space R

k. In addition, the
map φ : E → φ(E) under consideration will be of bounded deformation,
invertible and with inverse of bounded deformation.

Thanks to the high regularity of the target space R
k and to the invert-

ibility of φ, it will be possible to associate to any element v ∈ L2(TX)|E a

‘concrete’ vector field dφ(v) in L2
(
φ(E),Rk

)
. Such new notion of differential

dφ, tailored for this kind of maps φ, is described in the following result.

Theorem 2.5. Let (X, d,m) be a metric measure space such thatW 1,2(X) is
a reflexive space. Let E ⊆ X be a Borel set and let φ : E → R

k be a Lipschitz
map. Suppose that there exist constants L,C > 1 such that

φ : E → φ(E) is L-biLipschitz,

C
−1Lk|φ(E)

≤ φ∗

(
m|E

)
≤ CLk|φ(E)

.
(2.12)

Then there exists a unique linear and continuous operator dφ : L2(TX)|E →
L2

(
φ(E),Rk

)
, called differential of φ, which satisfies the following condi-

tions for any v ∈ L2(TX)|E:

dg
(
dφ(v)

)
=

(
d(g ◦ φ)(v)

)
◦ φ−1 for every g ∈ LIPc(R

k),

dφ(fv) = f ◦ φ−1 dφ(v) for every f ∈ L∞(m),
(2.13)

where φ : X → R
k is any Lipschitz extension of φ. Moreover, we have that

(2.14) L
−1 |v| ◦ φ−1 ≤

∣∣dφ(v)
∣∣ ≤ L |v| ◦ φ−1 holds Lk-a.e. in φ(E),

for every vector field v ∈ L2(TX)|E.

Proof. Fix any Lipschitz extension φ : X → R
k of φ. We divide the proof

into several steps:
Step 1. We claim that it is enough to prove the statement for m finite.



✐

✐

“1-Gigli” — 2022/6/20 — 18:37 — page 22 — #22
✐

✐

✐

✐

✐

✐

22 Nicola Gigli and Enrico Pasqualetto

Indeed, suppose the statement holds for finite measures and consider any
(not necessarily finite) reference measure m on X. There is a sequence (Kn)n
of disjoint compact subsets of E with m

(
E \⋃nKn

)
= 0, by inner regularity

of m. Given that m is also outer regular, we can find a sequence (Ωn)n of
open subsets of X such that Kn ⊆ Ωn and m(Ωn) < +∞ for every n ∈ N. Fix
any n ∈ N and call mn := m|Ωn . Hence we can apply the theorem to the map

φ|Kn , thus obtaining a linear and continuous operator Tn : L2
mn

(TX)|Kn →
L2

(
φ(Kn),R

k
)
such that the following conditions are satisfied Lk-a.e. in

φ(Kn) for any v ∈ L2
mn

(TX)|Kn :

dg
(
Tn(v)

)
=

(
d(g ◦ φ)(v)

)
◦
(
φ|Kn

)−1
for every g ∈ LIPc(R

k),

Tn(fv) = f ◦
(
φ|Kn

)−1
Tn(v) for every f ∈ L∞(mn),

L
−1 |v| ◦

(
φ|Kn

)−1 ≤
∣∣Tn(v)

∣∣ ≤ L |v| ◦
(
φ|Kn

)−1
.

(2.15)

Denote by ιn : L2
mn

(TX) → L2
m
(TX)|Ωn the isomorphism built in Remark

1.18. Therefore we can ‘glue’ together the functions Tn obtained above (by
the third line in (2.15)), in the sense that there exists a unique map dφ :
L2
m
(TX)|E → L2

(
φ(E),Rk

)
such that

χφ(Kn) dφ(v) = Tn
(
ι−1
n (χΩnv)

)
holds Lk-a.e. in φ(Kn),

for every v ∈ L2
m
(TX)|E and n ∈ N.

We then deduce from (2.15) that dφ is a linear and continuous operator
satisfying both (2.13) and (2.14), as required.
Step 2. From now on, let us suppose that m is a finite measure. Define
µ := φ∗m, so that µ is a finite Borel measure on R

k. In particular, we have
that LIPc(R

k) ⊆W 1,2
µ (Rk). The tangent module L2

µ(TR
k) turns out to be

isometrically embedded into the space L2(Rk,Rk;µ) of all the L2(µ)-vector
fields from R

k to itself, as proved in [14, Proposition 2.10], thus L2
µ(TR

k) is
separable. Since φ is of bounded deformation when viewed as a function from
(X, d,m) to

(
R
k, | · |, µ

)
, we can then consider its differential dφ : L2(TX) →

φ∗L2
µ(TR

k). Now fix a vector field v ∈ L2(TX)|E . The family of all finite

sums
∑n

i=1
χAi dgi, where (Ai)

n
i=1 is a Borel partition of φ(E) and (gi)

n
i=1 ⊆

LIPc(R
k), is a dense vector subspace of L2

(
φ(E), (Rk)∗

)
. Given any such

simple 1-form ω =
∑n

i=1
χAi dgi ∈ L2

(
φ(E), (Rk)∗

)
, let us define

(2.16) Tv(ω) :=

n∑

i=1

χAi [φ
∗dµgi]

(
dφ(v)

)
◦ φ−1 ∈ L1

(
φ(E)

)
.
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The operator Tv is well-defined, as granted by the following Lk|φ(E)
-a.e.

inequalities:

∣∣Tv(ω)
∣∣ =

n∑

i=1

χAi

∣∣∣[φ∗dµgi]
(
dφ(v)

)∣∣∣ ◦ φ−1

≤
∣∣dφ(v)

∣∣ ◦ φ−1
n∑

i=1

χAi |dµgi| ◦ φ ◦ φ−1

≤
∣∣dφ(v)

∣∣ ◦ φ−1
n∑

i=1

χAi lip(gi) =
∣∣dφ(v)

∣∣ ◦ φ−1 |ω|.

(2.17)

Another consequence of property (2.17) is that the operator Tv can be
uniquely extended to a vector field dφ(v) ∈ L2

(
φ(E),Rk

)
, for which∣∣dφ(v)

∣∣ ≤
∣∣dφ(v)

∣∣ ◦ φ−1 holds Lk-a.e. in φ(E). Furthermore, it can be read-
ily verified that dφ is the unique operator satisfying (2.13).
Step 3. In order to conclude the proof, it only remains to show (2.14).
Then let v ∈ L2(TX)|E be fixed. It directly follows from Corollary 2.4 that∣∣dφ(v)

∣∣ ≤ L |v| ◦ φ−1 holds Lk-a.e. in φ(E). To prove the other inequality
in (2.14), we need a more refined argument: fix any ε > 0. Given that
|v| = ess sup ω(v), where the essential supremum is taken among all the
ω ∈ L2(T ∗X) with |ω| ≤ 1 mX-a.e., there exists ω ∈ L2(T ∗X)|E such that

|ω| = 1 and ω(v) ≥ (1− ε) |v| are verified mX-a.e. in E. Since the simple
forms

∑
i
χAi dfi ∈ L2(T ∗X) are dense in L2(T ∗X), we can apply Egorov

theorem to obtain a partition (Kn)n∈N of E (up to mX-negligible sets)
into compact sets and a sequence (fn)n ⊆W 1,2(X) such that |dfn| < 1 and
dfn(v) ≥ (1− ε)2 |v| hold mX-a.e. in K

n for every n ∈ N. By using the as-
sumption about reflexivity of W 1,2(X), applying Theorem 1.11 and Egorov
theorem, we can find a partition (Kn

m)m∈N of Kn (up to mX-negligible
sets) into compact sets and a sequence of maps (fnm)m ⊆ LIP(X) ∩W 1,2(X)
such that lipa(f

n
m) ≤ 1 and dfnm(v) ≥ (1− ε)3 |v| are satisfied mX-a.e. in

Kn
m for every m ∈ N. Denote by ψnm the inverse of φ|Kn

m

: Kn
m → φ(Kn

m)

and pick a compactly supported Lipschitz map hnm ∈ LIPc(R
k) such that

hnm|φ(Kn
m)

= fnm ◦ ψnm. Observe that the following statement holds Lk-a.e. in

φ(Kn
m):

(2.18)
|dhnm|

(1.43)
= lip(hnm)

(1.15)
= lip

(
hnm|φ(Kn

m)

)

(1.14)

≤ Lip(ψnm) lip(f
n
m) ◦ ψnm ≤ L.
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Moreover, the fact that fnm|Kn
m

= hnm ◦ φ|Kn
m

yields χKn
m
dfnm = χKn

m
d(hnm ◦

φ), so that

∣∣∣
(
χφ(Kn

m) dh
n
m

)(
dφ(v)

)∣∣∣

= χφ(Kn
m)

∣∣∣[φ∗dµh
n
m]

(
dφ(v)

)∣∣∣ ◦ φ−1

≥ χφ(Kn
m)

(
φ∗dµh

n
m(v)

)
◦ φ−1

= χφ(Kn
m)

(
d(hnm ◦ φ)(v)

)
◦ φ−1

= χφ(Kn
m)

(
dfnm(v)

)
◦ φ−1

≥ (1− ε)3 χφ(Kn
m) |v| ◦ φ−1 holds Lk-a.e. in φ(Kn

m).

In particular, (2.18) grants that
∣∣dφ(v)

∣∣ ≥ (1− ε)3 L−1 |v| ◦ φ−1 is satisfied
L k-a.e. in φ(Kn

m) for any n,m ∈ N, hence also L k-a.e. in all of φ(E). By
letting ε↘ 0, we finally obtain that the inequality

∣∣dφ(v)
∣∣ ≥ L

−1 |v| ◦ φ−1

holds L k-a.e. in φ(E), concluding the proof of (2.14). Therefore the state-
ment is achieved. □

3. Strongly m-rectifiable spaces

We introduce a new class of metric measure spaces, called strongly m-
rectifiable spaces. Roughly speaking, these spaces can be partitioned (up
to negligible sets) into countably many Borel sets, which are biLipschitz
equivalent to suitable subsets of the Euclidean space, by means of maps
that also keep under control the measure.

For the sake of simplicity, it is convenient to use the following notation:
given a measured space (S,M, µ), we say that (Ei)i∈N ⊆ M is a µ-partition
of E ∈ M provided it is a partition of some F ∈ M such that F ⊆ E and
µ(E \ F ) = 0. Moreover, given two µ-partitions (Ei)i and (Fj)j of E, we say
that (Fj)j is a refinement of (Ei)i if for every j ∈ N with Fj ̸= ∅ there exists
(a unique) i ∈ N such that Fj ⊆ Ei.

Definition 3.1 (Strongly m-rectifiable space). A metric measure space
(X, d,m) is said to be m-rectifiable provided it is a disjoint union X=

⋃
k∈NAk

of suitable (Ak)k ⊂ B(X), such that the following condition is satisfied: given
any k ∈ N, there exists an m-partition (Ui)i∈N ⊆ B(X) of Ak and a sequence
(φi)i∈N of maps φi : Ui → R

k such that

(3.1) φi : Ui → φi(Ui) is biLipschitz and (φi)∗(m|Ui) ≪ Lk for every i ∈ N.
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The partition X =
⋃
k∈NAk - which is clearly unique up to modification of

negligible sets - is called dimensional decomposition of X.
The space (X, d,m) is said to be strongly m-rectifiable provided it satis-

fies the following property: given any ε > 0, there exists a family of couples
(Ui, φi) as above so that all the maps φi are (1 + ε)-biLipschitz.

Remark 3.2. Given an m-rectifiable space (X, d,m) with dimensional de-
composition (Ak)k, we have that each set Ak is countably Hk-rectifiable.
Moreover, observe that each measure Hk|Ak is σ-finite, therefore it follows

from (1.17), (3.1) and the Radon-Nikodým theorem (cf. also the discussion
preceding Theorem 5.4 in [5]) that there exists a sequence (Nk)k of Borel
sets Nk ⊆ Ak with m(Nk) = 0 such that

(3.2) m|Ak\Nk = θkH
k|Ak\Nk for every k ∈ N,

where the density θk is a suitable Borel map θk : Ak \Nk → (0,+∞). ■

When working on m-rectifiable spaces, it is natural to adopt the following
terminology, which is inspired by the language of differential geometry:

Definition 3.3 (Charts and atlases). Let (X, d,m) be an m-rectifiable
metric measure space. A chart on X is a couple (U,φ), where U ∈ B(Ak)
for some k ∈ N and φ : U → R

k satisfies

φ : U → φ(U) is biLipschitz,

C−1Lk|φ(U)
≤ φ∗

(
m|U

)
≤ C Lk|φ(U)

,
(3.3)

for a suitable constant C ≥ 1. An atlas on (X, d,m) is a family A =⋃
k∈N

{
(Uki , φ

k
i )
}
i∈N

of charts on (X, d,m) such that (Uki )i∈N is an m-partition
of Ak for every k ∈ N.

The chart (U,φ) is said to be an ε-chart provided φ : U → φ(U) is (1 +
ε)-biLipschitz and an atlas is said to be an ε-atlas provided all of its charts
are ε-charts.

We collect few simple facts about atlases which we shall frequently use
in what follows:

i) Any m-rectifiable space admits an atlas and any strongly m-rectifiable
space admits an ε-atlas for every ε > 0. Indeed, for (Ui, φi) as in (3.1)
we can consider the density ρi of φ∗

(
m|Ui

)
w.r.t. the Lebesgue mea-

sure and the sets Ui,j := φ−1
i

(
{2j ≤ ρi < 2j+1}

)
, j ∈ Z. It is clear that
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(
Ui,j , φi|Ui,j

)
is a chart for every j and that the Ui,j ’s provide an m-

partition of Ui, so that repeating the construction for every i yields
the desired atlas.

ii) Let (Ui, φi)i∈N be an atlas and, for every i, let (Ui,j)j∈N an m-partition
of Ui. Then

(
Ui,j , φi|Ui,j

)
i,j∈N

is also an atlas. In particular, by inner

regularity of m, every m-rectifiable space admits an atlas whose charts
are defined on compact sets.

Remark 3.4. Using the finite dimensionality results obtained by Cheeger
in [7] it is not hard to see that the dimensional decomposition (Ak)k of a
PI space (i.e. a doubling metric measure space supporting a weak (1, 2)-
Poincaré inequality) which is also m-rectifiable must be so that m(Ak) = 0
for all k sufficiently large. Yet, our discussion is independent on this specific
result and thus we won’t insist on this point. ■

Proposition 3.5. Let (X, d,m) be an m-rectifiable space. Then X is a Vitali
space. In particular, given any Borel subset E of X it holds that m-a.e. x ∈ E
is of density 1 for E.

Proof. By recalling (1.4), it is sufficient to prove that m is pointwise dou-
bling at m-almost every point of X. To this aim, call (Ak)k the dimensional
decomposition of X and fix k ∈ N. Let (Nk)k be as in Remark 3.2 and call
A′
k := Ak \Nk for all k ∈ N. We claim that

(3.4) lim
r→0

m

(
B2r(x) \A′

k

)

ωk 2k rk
= 0 holds for Hk-a.e. x ∈ A′

k.

We argue by contradiction: if not, there exist a Borel set P ⊆ A′
k with

Hk(P ) > 0 and a constant λ > 0 such that

lim
r→0

m

(
B2r(x) \A′

k

)
/(ωk 2

k rk) ≥ λ

holds for any point x ∈ P . Hence (1.18) with µ := m|X\A′

k

yields λHk(P ) ≤
m(P \A′

k) = 0, which leads to a contradiction.
Therefore (1.19) and (3.4) grant that for Hk-a.e. (thus also m-a.e.) point

x ∈ A′
k it holds

lim
r→0

m

(
B2r(x)

)

m

(
Br(x)

) ≤ lim
r→0

m

(
B2r(x) ∩A′

k

)

m

(
Br(x) ∩A′

k

) + lim
r→0

m

(
B2r(x) \A′

k

)

m

(
Br(x) ∩A′

k

) = 2k,

getting the statement. □
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When we restrict our attention to the smaller class of strongly m-rectifiable
spaces, we have a geometric characterization of the tangent module. Sec-
tion 5 will be entirely devoted to describe such result. In order to fur-
ther develop our theory in that direction, we need to provide any strongly
m-rectifiable space (X, d,m) with a special sequence of atlases, which are
aligned in a suitable sense.

Definition 3.6 (Aligned family of atlases). Let (X, d,m) be a strongly
m-rectifiable space. Let εn ↓ 0 and δn ↓ 0. Let (An)n∈N be a sequence of at-
lases on X. Then we say that (An)n is an aligned family of atlases of pa-
rameters εn and δn provided the following conditions are satisfied:

(i) Each An =
{
(Uk,ni , φk,ni )

}
k,i

is an εn-atlas and the domains Uk,ni are
compact.

(ii) The family (Uk,ni )k,i is a refinement of (Uk,n−1
j )k,j for any n ∈ N

+.

(iii) If n ∈ N
+, k ∈ N and i, j ∈ N satisfy Uk,ni ⊆ Uk,n−1

j , then

(3.5)

∥∥∥∥ d
(
idRk − φk,n−1

j ◦
(
φk,ni

)−1
)
(y)

∥∥∥∥ ≤ δn for Lk-a.e. y ∈ φk,ni (Uk,ni ).

The discussions made before grant that any strongly m-rectifiable space
admits atlases satisfying (i), (ii) above. In fact, as we shall see in a moment,
also (iii) can be fulfilled by an appropriate choice of atlases, but in order to
show this we need a small digression.

Recall that O(Rk) denotes the group of linear isometries of Rk and for
ε > 0 let us introduce

Oε(Rk) :=
{
T : Rk → R

k linear, invertible

and such that ∥T∥, ∥T−1∥ ≤ 1 + ε
}
.

Notice that Oε(Rk) - being closed and bounded - is compact for every ε > 0
and that O(Rk) =

⋂
ε>0O

ε(Rk). Then we have the following simple result:

Proposition 3.7. Let k ∈ N and δ > 0. Then there exist ε > 0 and a Borel
function R : Oε(Rk) → O(Rk) whose image has finite cardinality such that

∥∥T −R(T )
∥∥ ≤ δ for every T ∈ Oε(Rk).

Proof. From the compactness of O(Rk) we know that there are T1, . . . , Tn ∈
O(Rk) such that O(Rk) ⊂ Uδ :=

⋃
iBδ(Ti). We claim that there exists ε > 0
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such that Oε(Rk) ⊂ Uδ and argue by contradiction. If not, the compact
set Kε := Oε(Rk) \ Uδ would be not empty for every ε > 0. Since clearly
Kε ⊂ Kε′ for ε ≤ ε′, the family Kε has the finite intersection property, but
on the other hand the identity O(Rk) =

⋂
ε>0O

ε(Rk) yields
⋂
ε>0K

ε = ∅,
which is a contradiction. Thus there exists ε > 0 such that Oε(Rk) ⊂ Uδ.
For such ε we define R : Oε(Rk) → O(Rk) to be equal to T1 on Bδ(T1) and
then recursively to be equal to Tn on Bδ(Tn) \

⋃
i<nBδ(Ti). □

Using Proposition 3.7 it is possible to show that any strongly m-rectifiable
space admits an aligned family of atlases:

Theorem 3.8. Let (X, d,m) be a strongly m-rectifiable metric measure
space. Let εn ↓ 0 and δn ↓ 0 be two given sequences. Then X admits an
aligned family (An)n of atlases of parameters εn and δn.

Proof. Let (Ak)k be the dimensional decomposition of X and notice that to
conclude it is sufficient to build, for every k ∈ N, aligned charts as in (iii) of
Definition 3.6 covering m-almost all Ak. For k, n ∈ N, let ε′n,k be associated
to δn and k as in Proposition 3.7 and choose ε̄n,k > 0 such that
(3.6)
ε̄n,k ≤ εn and (1 + ε̄n−1,k)(1 + ε̄n,k) ≤ 1 + ε′n,k for every k, n ∈ N.

We now construct the required aligned family (An)n of atlases by recur-
sion: start observing that since (X, d,m) is strongly m-rectifiable, there ex-
ists an atlas A0 such that the charts with domain included in Ak are
ε̄0,k-biLipschitz. Now assume that for some n ∈ N we have already defined
A0, . . . ,An−1 satisfying the alignment conditions and say that An−1 ={
(Uki , φ

k
i )
}
k,i
. Again using the strong m-rectifiability of X, find an atlas{

(V k
j , ψ

k
j )
}
k,j

whose domains (V k
j )k,j constitute a refinement of the domains

(Uki )k,i of An−1 and such that those charts with domain included in Ak are
ε̄n,k-biLipschitz.

Fix k, j ∈ N and let i ∈ N be the unique index such that V k
j ⊆ Uki . For

the sake of brevity, let us denote by τ the transition map φki ◦ (ψkj )−1 :

ψkj (V
k
j ) → φki (V

k
j ) and observe that it is (1 + ε′n,k)-biLipschitz by (3.6).

Hence its differential dτ satisfies
∥∥dτ(y)

∥∥,
∥∥dτ(y)−1

∥∥ ≤ 1 + ε′n,k, or equiv-

alently dτ(y) ∈ Oε
′

n,k(Rk), for Lk-a.e. y ∈ ψkj (V
k
j ).

Let R : Oε
′

n,k(Rk) → O(Rk) be given by Proposition 3.7 with δ := δn
and denote by F kj ⊂ O(Rk) its finite image. For T ∈ F kj let PT := (R ◦
dτ)−1(T ) ⊂ R

k, so that (PT )T∈F kj is a Lk-partition of ψkj (V
k
j ). For Lk-a.e.
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y ∈ T (PT ) ⊂ R
k we have

∥∥∥d
(
φki ◦

(
T ◦ ψkj

)−1 − idRk
)
(y)

∥∥∥ =
∥∥∥d

(
τ ◦ T−1 − idRk

)
(y)

∥∥∥

=
∥∥∥d

(
(τ − T ) ◦ T−1

)
(y)

∥∥∥
≤

∥∥dτ(T−1(y))− T
∥∥∥∥T−1

∥∥
=

∥∥dτ(T−1(y))− T
∥∥

(because T−1(y) ∈ PT ) =
∥∥dτ(T−1(y))−R

(
dτ(T−1(y))

)∥∥
(by definition of R) ≤ δn.

(3.7)

We therefore define

(3.8) Ūkj,T := (ψkj )
−1(PT ) and φ̄kj,T := T ◦ ψkj |Ūkj,T for every T ∈ F kj ,

so that accordingly

(3.9) An :=
{(
Ūkj,T , φ̄

k
j,T

)
: k, j ∈ N, T ∈ F kj

}

is an atlas on (X, d,m), which fulfills (ii), (iii) of Definition 3.6 and such that
the charts with domain included in Ak are ε̄n,k-biLipschitz.

Up to a further refining we can assume that the charts in An have
compact domains and, since ε̄n,k ≤ εn for every k, n ∈ N, the statement is
proved. □

4. Gromov-Hausdorff tangent module

4.1. Measurable banach bundle

Let (X, d,m) be a fixed metric measure space. We propose a notion of mea-
surable Banach bundle:

Definition 4.1 (Measurable Banach bundle). The quadruplet T :=(
T,M, π,n

)
is said to be a measurable Banach bundle over (X, d,m) pro-

vided:

i) M is a σ-algebra over the set T .

ii) π is a measurable map from (T,M) to
(
X,B(X)

)
which we shall call

projection and

(4.1) Tx := π−1
(
{x}

)
is an R-vector space for m-a.e. x ∈ X.
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iii) n : T → [0,+∞) is a measurable map which we shall call norm such
that for m-a.e. x ∈ X it holds:

n|Tx is a norm on Tx,(
Tx,n|Tx

)
is a Banach space,

B(Tx) = M|Tx :=
{
E ∩ Tx : E ∈ M

}
.

(4.2)

iv) The measurable sections of T, i.e. those measurable maps v : X → T
for which the identity π ◦ v = idX holds m-a.e. in X, satisfy the follow-
ing properties:
a) The null section X ∋ x 7→ 0 ∈ Tx is a measurable section of T.
b) Let v,w be measurable sections of T and let α, β ∈ R. Then the

pointwise linear combination α v + β w : X → T , given by (α v +
β w)(x) := α v(x) + β w(x) ∈ Tx for m-a.e. x ∈ X, is a measurable
section of T as well.

c) Let (vn)n be a sequence of measurable sections of T. Suppose that
the limit

v(x) := lim
n

vn(x) ∈ Tx

exists for m-a.e. x ∈ X. Then v : X → T is a measurable section of
T as well.

Remark 4.2. Intuitively speaking, item iv) is what describes ‘how the
various fibres are glued to each other’ and as such is not a consequence of
i), ii) and iii).

Concerning the relation among iv-a) , iv-b) , iv-c) we notice that iv-a)
follows from iv-b) by taking α = β = 0 provided the collection of measurable
sections is not empty and that it is not hard to build examples satisfying
iv-a) and iv-c) but not iv-b).

We believe that it is also possible to build examples for which iv-a) and
iv-b) hold while iv-c) does not, but constructing such example is outside the
scope of this paper. ■

Given two measurable Banach bundles Ti =
(
Ti,Mi, πi,ni

)
, i = 1, 2, a

bundle morphism is a measurable map φ : T1 → T2 such that for m-a.e.
x ∈ X it holds

φ maps (T1)x into (T2)x,

φ|(T1)x
is linear and 1-Lipschitz from

(
(T1)x,n1|(T1)x

)
to

(
(T2)x,n2|(T2)x

)
.

(4.3)
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Two bundle morphisms φ, ψ : T1 → T2 are declared to be equivalent pro-
vided

(4.4) φ|(T1)x
= ψ|(T1)x

for m-a.e. x ∈ X

and accordingly two measurable Banach bundles Ti =
(
Ti,Mi, πi,ni

)
, i =

1, 2 are declared to be isomorphic provided there are bundle morphisms
φ : T1 → T2 and ψ : T2 → T1 such that φ ◦ ψ ∼ idT2

and ψ ◦ φ ∼ idT1
, which

is the same as to say that

ψ ◦ φ|(T1)x
= id(T1)x and φ ◦ ψ|(T2)x

= id(T2)x for m-a.e. x ∈ X,

φ|(T1)x
: (T1)x → (T2)x is an isometric isomorphism for m-a.e. x ∈ X.

Let T =
(
T,M, π,n

)
be a measurable Banach bundle over X. We denote by

[v] the equivalence class of any measurable section v of T with respect to
m-a.e. equality. We define L2(T) as

(4.5) L2(T) :=

{
[v]

∣∣∣∣ v is a section of T with

∫

X

n

(
v(x)

)2
dm(x) < +∞

}
.

With a (common) slight abuse of notation, the elements of L2(T) will be tipi-
cally denoted by v instead of [v]. Notice that L2(T) has a canonical structure
of L2(m)-normed L∞(m)-module on X: for v ∈ L2(T) and h ∈ L∞(m) define

(hv)(x) := h(x) v(x) ∈ Tx,

|v|(x) := n

(
v(x)

)
,

(4.6)

for m-a.e. x ∈ X. The fact that hv ∈ L2(T) follows from these observations:
given any A ⊆ X Borel, it holds that χAv is a measurable section of T, as
item a) of Definition 4.1 gives that

(χAv)
−1(B) =

(
A ∩ v

−1(B)
)
∪ {x ∈ X \A : 0Tx ∈ B}

is a Borel subset of X

for all B ∈ M; this fact, together with item b) of Definition 4.1, grant that hv
is a measurable section of T whenever h is a simple function, whence also for
any other h ∈ L∞(m) by an approximation argument together with item c)

of Definition 4.1; finally, we have hv ∈ L2(T) since
∫
X n

(
(hv)(x)

)2
dm(x) ≤

∥h∥2L∞(m)

∫
X n

(
v(x)

)2
dm(x) < +∞.
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Remark 4.3. The collection of measurable Banach bundles on X and of
isomorphism classes of bundle morphisms form a category, which we shall
denote by MBB(X).

Similarly, the collection of L2(m)-normed L∞(m)-modules on X and of
1-Lipschitz module morphisms between them form a category, which we
denote by Mod2−L∞(X).

The map which sends each measurable Banach bundle T to the space
of its L2-sections L2(T) and each bundle morphism φ : T1 → T2 to the map
L2(T1) ∋ v 7→ φ ◦ v ∈ L2(T2), is easily seen to be a fully faithful functor, so
that MBB(X) can be thought of as a full subcategory of Mod2−L∞(X).

■

Remark 4.4. Consider measurable Banach bundles where the fibres are
Hilbert spaces. This object is closely related to the notion of direct integral
of Hilbert spaces (we refer the interested reader to [20] for a detailed account
on this topic). The difference between the two concepts is in how measu-
rable sections are specified: here we impose an a priori set of compatibility
conditions for them (in item iv) of the definition) while for direct integrals
this is instead required by coupling a section with a given set of ‘measurable
test sections’ specified in advance (and typically countable).

In fact, under appropriate separability assumptions the two notions can
be seen to fully coincide. A way to see this is by observing if one consid-
ers only separable Hilbert bundles (where separability is intended at the
level of L2 sections), then the tensor described in the previous remark pro-
vides in fact an equivalence with the category of Hilbert modules: this is a
consequence of the characterization given in [11, Theorem 1.4.11]. Then re-
calling that separable Hilbert modules and direct integral of Hilbert spaces
provide different descriptions of the same mathematical object (see [11, Re-
mark 1.4.12]), we obtain the claimed identification of the concepts of Hilbert
bundles and direct integral of Hilbert spaces. We omit the details. ■

4.2. Gromov-Hausdorff tangent bundle

Recall that given a measurable space (S,M), a set S′ and a function f :
S → S′, the push-forward f∗M of M via f is the σ-algebra on S′ defined by

(4.7) f∗M :=
{
E ⊆ S′ : f−1(E) ∈ M

}
.

Notice that f∗M is the greatest σ-algebra M′ on S′ for which the function
f is measurable from (S,M) to (S′,M′).
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With this said, let (X, d,m) be a strongly m-rectifiable metric measure
space, (Ak) its dimensional decomposition and define the following objects:

i) The set TGHX is defined as

(4.8) TGHX :=
⊔

k∈N

Ak × R
k

and the σ-algebra MGH(X) is given by

(4.9) MGH(X) :=
⋂

k∈N

(ιk)∗B(Ak × R
k),

where ιk : Ak × R
k →֒ TGHX is the natural inclusion, for every k ∈ N.

In other words, a subset E of TGHX belongs to MGH(X) if and only
if E ∩ (Ak × R

k) is a Borel subset of Ak × R
k for every k ∈ N.

ii) The projection π : TGHX → X of TGHX is given by

(4.10) π(x, v) := x for every (x, v) ∈ TGHX.

iii) The norm n : TGHX → [0,+∞) on TGHX is given by

(4.11) n(x, v) := |v|Rk for every k ∈ N and (x, v) ∈ Ak × R
k ⊆ TGHX.

Definition 4.5 (Gromov-Hausdorff tangent bundle). The Gromov-
Hausdorff tangent bundle of (X, d,m) is the measurable Banach bundle

(4.12)
(
TGHX,MGH(X), π,n

)
.

The space of the L2-sections of such bundle is called Gromov-Hausdorff
tangent module and is denoted by L2(TGHX).

Since all fibers are assumed to be Euclidean, we could have called TGHX
the Hilbertian Gromov-Hausdorff tangent bundle. We preferred to omit the
adjective ‘Hilbertian’ from our terminology for the sake of simplicity, since
this is the only notion of GH bundle we are actually concerned with. Nev-
ertheless, in other metric contexts it would be surely interesting to con-
sider Gromov-Hausdorff tangent bundles whose fibers are not necessarily
Euclidean.

The choice of this measurable structure on TGHX could seem to be näıve,
but we now prove that it is the only one coherent with some (thus any) atlas
on (X, d,m), in the sense which we now describe.
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Let us fix an ε-atlas A =
{
(Uki , φ

k
i )
}
k,i

on (X, d,m). For every k, i ∈ N,

choose a constant Cki ≥ 1 such that

(4.13) (Cki )
−1Lk|φki (Uki ) ≤ (φki )∗

(
m|Uki

)
≤ Cki L

k|φki (Uki ).

Fix a sequence of radii rj ↓ 0 and define φ̂kij : U
k
i × Uki → Ak × R

k as

(4.14) φ̂kij(x̄, x) :=

(
x̄ ,

φki (x)− φki (x̄)

rj

)
for every (x̄, x) ∈ Uki × Uki .

For the sake of brevity, for k, i, j ∈ N let us call

W k
ij := φ̂kij(U

k
i × Uki ),

W k :=
⋃

i,j∈N
W k
ij

(4.15)

and notice that simple computations yield

φ̂kij : U
k
i × Uki →W k

ij is
√

1 + (1 + ε)2/(rj)2 -biLipschitz,

(rj)
k

Cki
(m⊗ Lk)|W k

ij

≤
(
φ̂kij

)
∗

(
(m⊗m)|Uki ×Uki

)
≤ (rj)

kCki (m⊗ Lk)|W k
ij

.

(4.16)

In particular,W k
ij ∈ B(Ak × R

k) for every k, i, j, thus accordingly alsoW k ∈
B(Ak × R

k). Put Nk := (Ak × R
k) \W k.

Lemma 4.6. With the notation just introduced, for every k ∈ N we have

(m⊗ Lk)(Nk) = 0.

Proof. For k ∈ N put

Dk :=
⋃

i∈N

{
x ∈ Uki : φki (x) is a point of density 1 for φki (U

k
i )
}
.

From (4.13) and (1.7) we see thatm(Ak \Dk) = 0, therefore for every i,m, h ∈
N and x̄ ∈ Dk, there is j ∈ N such that

1 ≥
Lk

(
φki (U

k
i )−φ

k
i (x̄)

rj
∩Bm(0)

)

Lk
(
Bm(0)

) =
Lk

(
φki (U

k
i ) ∩Bmrj

(
φki (x̄)

))

Lk
(
Bmrj

(
φki (x̄)

)) > 1− 1

h
,
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whence Lk
(
Bm(0) \

⋃
j

(
φki (U

k
i )− φki (x̄)

)
/rj

)
= 0 for all i,m ∈ N and x̄ ∈

Dk. Therefore by Fubini’s theorem we deduce

(m⊗ Lk)
((
Ak ×Bm(0)

)
\W k

)

=
∑

i∈N

(m⊗ Lk)
((
Uki ×Bm(0)

)
\W k

)

≤
∑

i∈N

∫

Dk

Lk
(
Bm(0) \

⋃
j

(
φki (U

k
i )− φki (x̄)

)
/rj

)
dm(x̄) = 0,

so that (m⊗ Lk)(Nk) = limm(m⊗ Lk)
((
Ak ×Bm(0)

)
\W k

)
= 0. □

We now endow TGHX with a new σ-algebra M
(
A , (rj)

)
, depending on the

atlas A and the sequence (rj). Let ῑk : N
k →֒ TGHX be the inclusion maps,

then define

(4.17) M
(
A , (rj)

)
:=

⋂

k∈N

(
(ῑk)∗B(Nk) ∩

⋂

i,j∈N

(ιk ◦ φ̂kij)∗B(Uki × Uki )

)
.

Equivalently, a subset E of TGHX belongs to M
(
A , (rj)

)
if and only if E ∩

Nk ∈ B(Nk) for every k ∈ N and (φ̂kij)
−1

(
E ∩ (Ak × R

k)
)
∈ B(Uki × Uki )

for every k, i, j.
The fact that our choice of the σ-algebra MGH(X) on TGHX is canonical

is encoded in the following proposition:

Proposition 4.7. Let (X, d,m) be a strongly m-rectifiable metric measure
space, A an ε-atlas and rj ↓ 0 a given sequence. Then

(4.18) MGH(X) = M
(
A , (rj)

)
.

Proof. If E ∈ MGH(X) then ι−1
k (E) ∈ B(Ak × R

k) for every k ∈ N, so ac-
cordingly E ∩Nk belongs to B(Nk) and (φ̂kij)

−1
(
ι−1
k (E)

)
belongs to B(Uki ×

Uki ) for every k, i, j, which proves that E ∈ M
(
A , (rj)

)
.

Conversely, let E ∈ M
(
A , (rj)

)
. Hence E ∩Nk ∈ B(Nk) ⊆ B(Ak × R

k),
while F kij := (φ̂kij)

−1
(
ι−1
k (E)

)
∈ B(Uki × Uki ) implies that E ∩W k

ij =

φ̂kij(F
k
ij) ∈ B(Ak × R

k). Thus ι−1
k (E) = (E ∩Nk) ∪⋃

i,j(E ∩W k
ij) ∈ B(Ak ×

R
k) for every k ∈ N, which is equivalent to saying that E ∈ MGH(X). □

Remark 4.8. This last proposition does not use the strong m-rectifiability
of the space but only the m-rectifiability, as seen by the fact that we did
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not consider a sequence of εn-atlases. We chose this presentation because
the reason for the introduction of the Gromov-Hausdorff tangent module is
in the statement contained in the next section, which grants that the space
of its sections is isometric to the abstract tangent module L2(TX), a result
which we have only for strongly m-rectifiable spaces (under some additional
assumptions on X). ■

5. Equivalence of L2(TX) and L
2(TGHX)

The main result of this article is the following: the two different notions of
tangent modules described so far, namely the “analytic” tangent module
L2(TX) and the “geometric” Gromov-Hausdorff tangent module L2(TGHX),
can be actually identified (under some additional assumptions on X). More
precisely, given a strongly m-rectifiable space X whose associated Sobolev
space is reflexive, there exists an embedding of L2(TX) into L2(TGHX) which
preserves the pointwise norm and, as the construction, such embedding can
be canonically chosen once an aligned sequence of atlases is given. Further-
more, if the space X under consideration additionally satisfies (5.6), then
such embedding is actually an isometric isomorphism.

Theorem 5.1 (Embedding of L2(TX) in L2(TGHX)). Let (X, d,m) be a
strongly m-rectifiable space such that W 1,2(X) is reflexive. Then there exists
an isometric embedding of modules I : L2(TX) → L2(TGHX), so that in
particular it holds

(5.1)
∣∣I (v)

∣∣ = |v| m-a.e. in X, for every v ∈ L2(TX).

As a consequence, L2(TX) is a Hilbert module and thus (X, d,m) is infinites-
imally Hilbertian.

Proof. Consider an aligned family (An)n of atlases An =
{
(Uk,ni , φk,ni )

}
k,i

on (X, d,m), of parameters εn := 1/2n and δn := 1/2n, whose existence is
guaranteed by Theorem 3.8. Now let v ∈ L2(TX) and n ∈ N be fixed. For
k, i ∈ N put V k,n

i := φk,ni
(
Uk,ni

)
∈ B(Rk) and recall that φk,ni : Uk,ni → V k,n

i

and its inverse are maps of bounded deformation. Thus it makes sense to
consider dφk,ni

(
χ
Uk,ni

v
)
∈ L2(V k,n

i ,Rk) and we can define

w
k,n
i (x) :=

{ (
dφk,ni

(
χ
Uk,ni

v
))(

φk,ni (x)
)

0

for m-a.e. x ∈ Uk,ni ,

for m-a.e. x ∈ X \ Uk,ni .
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The bound (2.14) gives

(5.2)
∣∣wk,ni

∣∣(x) ≤ Lip(φk,ni ) |v|(x) for m-a.e. x ∈ Uk,ni ,

so that
∥∥wk,ni

∥∥
L2(TGHX)

≤ (1 + 2−n)
∥∥|v|

∥∥
L2(Uk,ni )

. In particular, the series
∑

i,k w
k,n
i converges in L2(TGHX) to some vector field In(v) whose norm

is bounded by (1 + 2−n)
∥∥|v|

∥∥
L2(X)

and which satisfies

(5.3) χ
Uk,ni

In(v) = w
k,n
i for every k, i ∈ N.

It is then clear that In : L2(TX) → L2(TGHX) is L
∞-linear, continuous and

satisfying
∣∣In(v)

∣∣ ≤
(
1 + 2−n

)
|v|m-a.e. for every v ∈ L2(TX). We now claim

that

(5.4) the sequence (In)n is Cauchy w.r.t. the operator norm.

To prove this, let v ∈ L2(TX), k, i, j ∈ N with Uk,n+1
i ⊆ Uk,nj . For m-a.e.

point x ∈ Uk,n+1
i , putting for brevity y := φk,n+1

i (x), it holds that

∣∣In+1(v)− In(v)
∣∣(x) =

∣∣∣∣
(
dφk,n+1

i

(
χ
Uk,n+1
i

v
))(

φk,n+1
i (x)

)

−
(
dφk,nj

(
χ
Uk,n+1
i

v
))(

φk,nj (x)
)∣∣∣∣

((2.13), (2.14)) ≤
∥∥∥∥ d

(
idV k,n+1

i
− φk,nj ◦

(
φk,n+1
i

)−1
)
(y)

∥∥∥∥

×
∣∣∣dφk,n+1

i

(
χ
Uk,n+1
i

v
)∣∣∣(y)

(δn+1 = 2−n−1) ≤ 1

2n+1

∣∣∣dφk,n+1
i

(
χ
Uk,n+1
i

v
)∣∣∣
(
φk,n+1
i (x)

)

(εn+1 = 2−n−1) ≤ 1

2n+1

(
1 +

1

2n+1

)
|v|(x) ≤ 1

2n
|v|(x).

It follows that
∥∥In+1(v)− In(v)

∥∥
L2(TGHX)

≤ 2−n ∥v∥L2(TX) which by the ar-

bitrariness of v means that

∥∥In+1 − In

∥∥ ≤ 1

2n
,

where the norm in the left hand side is the operator one. Hence∑∞
n=0

∥∥In+1 − In

∥∥ < +∞ and the claim (5.4) is proved.
Let I : L2(TX) → L2(TGHX) be the limit of (In)n and notice that being

the limit of L∞-linear maps, it is also L∞-linear. Moreover, the fact that
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In(v) → I (v) in L2(TGHX) implies that
∣∣In(v)

∣∣ →
∣∣I (v)

∣∣ in L2(X), hence
- up to subsequences - we have

∣∣I (v)
∣∣(x) = lim

n→∞

∣∣In(v)
∣∣(x)(5.5)

≤ lim
n→∞

(
1 +

1

2n

)
|v|(x) = |v|(x) for m-a.e. x ∈ X.

Moreover, it follows from the lower bound in (2.14) that

|wk,ni |(x) ≥ |v|(x)
Lip

(
(φk,ni )−1

) for every n, k, i ∈ N and m-a.e. x ∈ Uk,ni ,

thus accordingly (up to subsequences) it holds that

∣∣I (v)
∣∣(x) = lim

n→∞

∣∣In(v)
∣∣(x) ≥ lim

n→∞

|v|(x)
1 + 2−n

= |v|(x) for m-a.e. x ∈ X.

This proves that the map I is an isometric embedding.
For the last claim we simply observe that any couple of vector fields

v, w ∈ L2(TGHX) trivially satisfies (1.36). Thus (5.1) ensures that the same
holds for elements of L2(TX), which accordingly is a Hilbert module. By
duality L2(T ∗X) is a Hilbert module and therefore (X, d,m) is infinitesimally
Hilbertian by (1.40). □

It is natural to wonder whether the embedding I built in the previous
theorem is surjective or not. The next simple example shows that this is not
always the case:

Example 5.2. Let (X, d,m) be a fat Cantor subset of [0, 1] equipped with
the Euclidean distance and (the restriction of) the Lebesgue measure. Then
the canonical inclusion φ of X in [0, 1] is 1-biLipschitz with its image and
satisfies φ∗m ≤ L1, showing that X is strongly m-rectifiable. Also, since X
is totally disconnected, any continuous curve in X must be constant and
thus any test plan must be concentrated on constant curves. Then a direct
verification of Definition 1.9 shows that any Borel function belongs to S2(X)
with 0 minimal weak upper gradient. In particular W 1,2(X) ∼ L2(X) and
thus the space is infinitesimally Hilbertian and Theorem 5.1 above applies.

Now notice that since the minimal weak upper gradient of any Borel
function is 0, the cotangent module - and thus also the tangent one - re-
duces to the 0 module. On the other hand, the very definition of TGHX
gives TGHX = X× R and thus L2(TGHX) = L2(X) ̸= 0, showing that I :
L2(TX) → L2(TGHX) is not surjective. ■
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We can prove surjectivity of I on spaces (X, d,m) such that

(5.6) lip(f) = |Df | m− a.e. for every f : X → R Lipschitz.

We recall that the seminal paper of Cheeger [7] ensures that (5.6) holds on
locally doubling spaces supporting a local, weak 1-2 Poincaré inequality.

We then have the following result:

Theorem 5.3 (Surjectivity of the embedding of L2(TX) into
L2(TGHX)). With the same assumptions and notation of Theorem 5.1 above,
assume furthermore that (5.6) holds.

Then the embedding I : L2(TX) → L2(TGHX) given by Theorem 5.1 is
surjective.

Proof. Since clearly the dimension of L2(TGHX) on Ak is k, to conclude it
is enough to prove that the dimension of L2(TX) is ≥ k on the same set.
Thus fix ε > 0, let U ⊂ Ak and (φ1, . . . , φk) = φ : U → φ(U) ⊂ R

k be as in
Definition 3.1. By the arbitrariness of such U the theorem will be proved if
we show that dφ1 . . . , dφk are independent on U .

Let ℓ : Rk → R be linear and y a Lebesgue point of φ(U). Then Propo-
sition 1.6 gives that

∥ℓ∥ = lip(ℓ)(y) = lip(ℓ|φ(U)
)(y) = lip

(
(ℓ ◦ φ) ◦ φ−1

)
(y)

≤ Lip(φ−1) lip(ℓ ◦ φ)(φ−1(y))

and thus (5.6) and φ∗(m|U ) ≪ Lk give (1 + ε)−1∥ℓ∥ ≤ |D(ℓ ◦ φ)| m-a.e. on U

(here the quantity |D(ℓ ◦ φ)| is well defined m|U -a.e. - thanks to the locality

of the minimal weak upper gradient - as |Df | for any f Lipschitz which coin-
cides with ℓ ◦ φ on U). Writing ℓ(z) =

∑
i aizi we have d(ℓ ◦ φ) = ∑

i aidφi
and thus the last inequality can be written as

(5.7) (1 + ε)−1

√∑

i

|ai|2 ≤
∣∣∑

i

aidφi
∣∣ m− a.e. on U.

It is then trivial to notice that the above also holds for any choice of
ai : U → R attaining only a finite number of values. Since these functions
are dense in L0(U) and since both sides of (5.7) are continuous in ai as func-
tions from L0(U) to itself, we conclude that (5.7) holds for any a1, . . . , ak ∈
L0(U). The independence of dφ1 . . . , dφk is now easily obtained: suppose
that

∑
i aidφi = 0 on U . Then (5.7) shows that a1 = . . . = ak = 0 m-a.e. on

U , as desired. □
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6. Geometric interpretation of TGHX

6.1. Gromov-Hausdorff Convergence

The aim of this conclusive section is to discuss in which sense for strongly m-
rectifiable spaces the space TGHX can be obtained by looking at the pointed
measured Gromov limits of the rescalings of X around (almost) all of its
points.

Since we are dealing with possibly non-compact and non-doubling spaces,
we shall work with the notion of pointed measured Gromov convergence that
had been proposed in [13]. In order to introduce it, we first need to give some
preliminary definitions.

We say that (X, d,m, x̄) is a pointed metric measure space provided
(X, d,m) is a metric measure space and the reference point x̄ ∈ X belongs to
spt(m). Two pointed metric measure spaces (X, dX,mX, ȳ) and (Y, dY,mY, ȳ)
are said to be isomorphic if there exists an isometric embedding ι : spt(mX)
→ Y such that ι∗mX = mY and ι(x̄) = ȳ. The equivalence class of a given
space (X, d,m, x̄) under this isomorphism relation will be denoted by
[X, d,m, x̄].

Finally, given a complete and separable metric space (X, d) and a se-
quence (µn)n∈N∪{∞} of non-negative Borel measures on X that are finite on
bounded sets, we say that µn weakly converges to µ∞ as n→ ∞, briefly
µn ⇀ µ∞, provided

(6.1) lim
n→∞

∫
f dµn =

∫
f dµ∞ for every f ∈ Cbs(X),

where Cbs(X) denotes the space of all bounded continuous maps on X having
bounded support.

We can now give the definition of pointed measured Gromov conver-
gence. It is convenient for our purposes to follow the so-called ‘extrinsic
approach’, cf. [13, Definition 3.9]:

Definition 6.1 (Pointed measured Gromov convergence). Fix a se-
quence of pointed metric measure spaces (Xn, dn,mn, x̄n), n ∈ N ∪ {∞}.
Then we say that the sequence of classes [Xn, dn,mn, x̄n] converges to
[X∞, d∞,m∞, x̄∞] in the pointed measured Gromov sense, or briefly pmG-
sense, provided there exist a complete and separable metric space (W, dW)
and a sequence of isometric embeddings ιn : Xn → W, for n ∈ N ∪ {∞},
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such that

lim
n→∞

ιn(x̄n) = ι∞(x̄∞) ∈ spt
(
(ι∞)∗m∞

)
,

(ιn)∗mn ⇀ (ι∞)∗m∞ as n→ ∞.
(6.2)

Let us fix a shorthand notation: given a pointed metric measure space
(X, d,m, x̄) and a radius r > 0, we define the normalized measure m

x̄
r on X

as

(6.3) m
x̄
r :=

m

m

(
Br(x̄)

) .

We can now introduce the notion of tangent cone to a pointed metric measure
space:

Definition 6.2 (Tangent cone). Let (X, d,m, x̄) be a pointed metric mea-
sure space. Then we denote by Tan[X, d,m, x̄] the family of all the classes
[Y, dY,mY, ȳ] that are obtained as pmG-limits of

[
X, d/rn,m

x̄
rn , x̄

]
, for a

suitable sequence rn ↘ 0. We will call Tan[X, d,m, x̄] the tangent cone of
[X, d,m, x̄].

Proposition 6.3 (Locality of the tangent cone). Fix a metric measure
space (X, d,m) and a Borel set A ⊆ X. Let x̄ ∈ A be a point of density 1 for
A such that m is pointwise doubling at x̄. Then

(6.4) Tan[X, d,m, x̄] = Tan
[
A, d|A×A,m|A, x̄

]
.

Proof. For the sake of simplicity, let us denote d
′ := d|A×A and m

′ := m|A.
Suppose that the class [Y, dY,mY, ȳ] is the pmG-limit of

[
X, d/rn,m

x̄
rn , x̄]

for some rn ↘ 0. Then there exist a complete and separable metric space
(Z, dZ), an isometric embedding ιY : Y → Z and a sequence (ιn)n of isome-
tries ιn :

(
X, d/rn

)
→ (Z, dZ) such that ιn(x̄) → ιY(ȳ) ∈ spt

(
(ιY)∗mY

)
and

(ιn)∗m
x̄
rn ⇀ (ιY)∗mY. Hence let us define ι

′
n := ιn|A for every n ∈ N. Clearly

each map ι′n is an isometry from
(
A, d′/rn

)
to (Z, dZ). To conclude that

[Y, dY,mY, ȳ] ∈ Tan[A, d′,m′, x̄], it is enough to show that (ι′n)∗(m
′)x̄rn ⇀

(ιY)∗mY. Thus fix f ∈ Cbs(Z). Choose R > 0 such that spt(f) ⊆ BR
(
ιY(ȳ)

)
,

whence spt(f ◦ ιn) ⊆ B2Rrn(x̄) for n big enough. Then

∫
f d(ι′n)∗(m

′)x̄rn =
m

(
Brn(x̄)

)

m

(
Brn(x̄) ∩A

)
∫
f d(ιn)∗m

x̄
rn

− 1

m

(
Brn(x̄) ∩A

)
∫

B2Rrn (x̄)\A
f ◦ ιn dm.
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Since DA(x̄) = 1 and m is pointwise doubling at x̄, one has

∣∣∣
∫
B2Rrn (x̄)\A

f ◦ ιn dm
∣∣∣

m

(
Brn(x̄) ∩A

) ≤ m

(
B2Rrn(x̄) \A

)

m

(
B2Rrn(x̄)

)

× m

(
Brn(x̄)

)

m

(
Brn(x̄) ∩A

) m

(
B2Rrn(x̄)

)

m

(
Brn(x̄)

) max
Z

|f | n−→ 0,

which grants that
∫
f d(ι′n)∗(m

′)x̄rn →
∫
f d(ιn)∗mY, as required.

Conversely, let [Y, dY,mY, ȳ] be the pmG-limit of
[
A, d′/rn, (m

′)x̄rn , x̄
]

for some rn ↘ 0. Then take a complete separable metric space (W, dW),
an isometric embedding ι′Y : Y → W and a sequence of maps ι′n : A→
W, which are isometries from

(
A, d′/rn

)
to (W, dW), such that ι′n(x̄n) →

ι′Y(ȳ) ∈ spt
(
(ι′Y)∗mY

)
and (ι′n)∗(m

′)x̄rn ⇀ (ι′Y)∗mY. Hence there exist a com-
plete separable metric space (Z,mZ), an isometric embedding ιW : W → Z
and a sequence of maps ιn : X → Z, which are isometries from

(
X, d/rn

)

to (Z, dZ), such that ιn|A = ιW ◦ ι′n holds for every n ∈ N, see for instance

[13, Proposition 3.10]. Denote ιY := ιW ◦ ι′Y. We clearly have that ιn(x̄) =
ιW

(
ι′n(x̄)

)
→ ιY(ȳ) ∈ spt

(
(ιY)∗mY

)
as n→ ∞, thus it only remains to prove

that (ιn)∗m
x̄
rn ⇀ (ιY)∗mY as n→ ∞. To this aim, fix f ∈ Cbs(Z). Observe

that

∫
f d(ιn)∗m

x̄
rn =

m

(
A ∩Brn(x̄)

)

m

(
Brn(x̄)

)
∫
f ◦ ιW d(ι′n)∗(m

′)x̄rn

+
1

m

(
Brn(x̄)

)
∫

X\A
f ◦ ιn dm.

The first addendum in the right hand side of the previous equation tends
to

∫
f ◦ ιW d(ι′Y)∗mY, because DA(x̄) = 1 and f ◦ ιW ∈ Cbs(W). To esti-

mate the second one, take any R > 0 such that spt(f) ⊆ BR
(
ιY(ȳ)

)
, so that

spt(f ◦ ιn) ⊆ B2Rrn(x̄) for n sufficiently big. Then

∣∣∣∣∣
1

m

(
Brn(x̄)

)
∫

X\A
f ◦ ιn dm

∣∣∣∣∣

≤ m

(
B2Rrn(x̄) \A

)

m

(
B2Rrn(x̄)

) m

(
B2Rrn(x̄)

)

m

(
Brn(x̄)

) max
Z

|f | −→ 0.

Therefore
∫
f d(ιn)∗m

x̄
rn →

∫
f d(ιY)∗mY, proving that [Y, dY,mY, ȳ] ∈

Tan[X, d,m, x̄] and accordingly the statement. □
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The previous result will allow us to concentrate our attention only on spaces
that satisfy (1.8).

In such context, it is easier to study the blow-ups of the space by means
of a different notion of convergence (see [13, Definition 3.24]):

Definition 6.4 (Pointed measured Gromov-Hausdorff convergence).
Fix a sequence of pointed metric measure spaces (Xn, dn,mn, x̄n), n ∈ N ∪
{∞}. Then we say that the sequence of spaces (Xn, dn,mn, x̄n) converges
to (X∞, d∞,m∞, x̄∞) in the pointed measured Gromov-Hausdorff sense, or
briefly pmGH-sense, provided for any fixed ε,R > 0 with ε < R there exist
n̄ ∈ N and a sequence of Borel maps fn : BR(x̄n) → X∞, for n ≥ n̄, such
that

i) fn(x̄n) = x̄∞ for every n ≥ n̄,

ii)
∣∣∣d∞

(
fn(x), fn(y)

)
− dn(x, y)

∣∣∣ ≤ ε for every n ≥ n̄ and x, y ∈ BR(x̄n),

iii) the ε-neighbourhood of fn
(
BR(x̄n)

)
contains BR−ε(x̄∞) for every n ≥

n̄,

iv) (fn)∗
(
mn|BR(x̄n)

)
⇀ m∞|BR(x̄∞)

as n→ ∞, for a.e. R > 0.

As shown in [13, Proposition 3.30], the relation between the two notions
of convergence for pointed metric measure spaces introduced so far is the
following:

Proposition 6.5 (From pmGH to pmG). Let (Xn, dn,mn, x̄n) be a se-
quence of pointed metric measure spaces that converges to some (X∞, d∞,
m∞, x̄∞) in the pmGH-sense. Then the sequence of classes [Xn, dn,mn, x̄n]
pmG-converges to [X∞, d∞,m∞, x̄∞].

6.2. Limits of the rescaled spaces

Let us now focus on metric measure spaces (X, d,m) satisfying the following
properties:

(X, d,m) is a strongly m-rectifiable space which satisfies (1.8),

having constant dimension k ∈ N and whose reference measure is

given by m = θHk, for some continuous density θ : X → (0,+∞).

(6.5)

Consider a family An =
{
(Uni , φ

n
i )
}
i∈N

of εn-atlases on (X, d,m), with com-
pact domains Uni . We can use the atlases to build Borel maps Ψn : X×
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(
1
rn
X
)
→ TGHX which are ‘bundle maps’, i.e. which fix the first coordinate,

and that are approximate isometries as maps on the second variable in the
following way. We first recall that for any closed subset U of X there exists
a Borel map PU : X → U such that

d
(
x, PU (x)

)
≤ 2d(x, U) for every x ∈ X.

This can be built by first considering a countable dense subset (xn)n of U
and then by declaring PU (x) := x for x ∈ U and for x /∈ U defining

PU (x) := xn, where n is the least number such that d(x, xn) ≤ 2d(x, U).

Then given a sequence rn ↓ 0 we put

(6.6) Φn(x, y) :=
φni

(
PUni (y)

)
− φni (x)

rn
∈ R

k for every x ∈ Uni and y ∈ X,

while Φn(x, y) := 0Rk if x /∈ ⋃
i U

n
i . Finally we define

Ψn(x, y) :=
(
x,Φn(x, y)

)
for every x, y ∈ X.

Notice that the function Ψn is Borel for every n ∈ N. In the next theorem
we show that for m-a.e. x ∈ X the maps y 7→ Φn(x, y) provide approximate
measured isometries from X rescaled by a factor 1

rn
to R

k, thus showing

not only that the tangent space of X at x is R
k, but also that there is a

‘compatible’ choice of approximate isometries making the resulting global
maps, i.e. Ψn, Borel.

Theorem 6.6. Let (X, d,m) be a space satisfying (6.5). Let εn ↓ 0 and let
An =

{
(Uni , φ

n
i )
}
i
be a family of εn-atlases with compact domains Uni . Then

there exists a sequence rn ↓ 0 such that, defining Φn as in (6.6), for m-a.e.
x ∈ X the following holds: for every R > ε > 0 there is n̄ ∈ N so that for
every n ≥ n̄ we have

∣∣∣∣
∣∣Φn(x, y0)− Φn(x, y1)

∣∣
Rk

− d(y0, y1)

rn

∣∣∣∣ ≤ ε for every y0, y1 ∈ BrnR(x),

BR−ε(0Rk) ⊂ ε-neighbourhood of
{
Φn(x, y) : y ∈ BrnR(x)

}
,

Φn(x, ·)∗
(
m
x
rn |BrnR(x)

)
⇀ ω−1

k Lk|BR(0) as n→ ∞.

(6.7)

In particular, the space
(
X, d/rn,m

x
rn , x

)
pmGH-converges to

(
R
k, dRk ,

Lk/ωk, 0
)
as n→ ∞.
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Proof. For any i, n ∈ N put V n
i := φni (U

n
i ). Note that from (3.3) we see that

for m-a.e. x ∈ Uni the point φni (x) is of density 1 for V n
i . Let us call D

′ the
set of all the points x ∈ X that satisfy Hk

(
Br(x) ∩ Uni(n)

)
/(ωk r

k) → 1 as

r ↘ 0 for every n ∈ N, where i(n) ∈ N is chosen so that x ∈ Uni(n). Since each

domain Uni is countably Hk-rectifiable, we thus deduce from Theorem 1.8
that Hk(X \D′) = 0. Hence the set

D := D′ ∩
⋂

n

⋃

i

{
x ∈ Uni : x, φni (x) are points of density 1

for Uni , V
n
i , respectively

}

is Borel and m(X \D) = 0. Fix x̄ ∈ D and R > ε > 0. Let i(n) ∈ N be such
that x̄ ∈ Uni(n). For brevity, call Bn := BrnR(x̄), Un := Uni(n), Vn := V n

i(n) and
φn := φni(n). Let us denote

avgn :=
1

Hk(Bn ∩ Un)

∫

Bn∩Un

θ dHk for every n ∈ N.

Step 1. Fix ε̄ < ε/max{4R,R− ε} positive and repeatedly apply property
(1.8) to x̄, Un and to φn(x̄), Vn, with ε̄ in place of ε, to find a sequence
rn ↓ 0 such that for n ∈ N it holds

d
(
y, PUn(y)

)
≤ 2 ε̄ rnR for every y ∈ Bn,

dRk(z, Vn) ≤ ε̄
∣∣z − φn(x̄)

∣∣ for every z ∈ BrnR
(
φn(x̄)

)
.

(6.8)

Furthermore, since x̄ ∈ D and the map θ is continuous, we can also require
that

lim
n→∞

Hk(Bn ∩ Un)
ωk rknR

k
= lim

n→∞

(1 + εn)
k Lk

(
Vn ∩BrnR/(1+εn)

(
φn(x̄)

))

ωk rknR
k

= 1,

∣∣θ(x)− avgn
∣∣ ≤ 1

n
for every n ∈ N

+ and x ∈ Bn ∩ Un,

lim
n→∞

m(Bn ∩ Un)
m

(
Brn(x̄)

) = Rk.

(6.9)
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From the fact that φn is (1 + εn)-biLipschitz we see that for any y0, y1 ∈ Bn
it holds that

∣∣Φn(x̄, y0)− Φn(x̄, y1)
∣∣
Rk

≤ 1 + εn
rn

d
(
PUn(y0), PUn(y1)

)

(by (6.8)) ≤ 1 + εn
rn

(
d(y0, y1) + 4 ε̄ rnR

)
.

Similarly we get
∣∣Φn(x̄, y0)− Φn(x̄, y1)

∣∣
Rk

≥ 1
(1+εn)rn

(
d(y0, y1)− 4 ε̄ rnR

)
,

thus
∣∣∣∣
∣∣Φn(x̄, y0)− Φn(x̄, y1)

∣∣− d(y0, y1)

rn

∣∣∣∣ ≤ 2Rmax

{
2(1 + εn)ε̄+ εn,

2ε̄+ εn
1 + εn

}

for every y0, y1 ∈ BrnR(x̄). Since ε̄ < ε/(4R), this is sufficient to show that
the first in (6.7) is fulfilled for n large enough.
Step 2. For the second in (6.7), let w ∈ R

k be with |w| < R− ε and put
zn := φn(x̄) + rnw. Thus the point zn belongs to BrnR

(
φn(x̄)

)
. From the

second in (6.8) and the compactness of Un, we deduce that there exists
yn ∈ Un such that

(6.10)
∣∣zn − φn(yn)

∣∣ ≤ ε̄ rn|w|.

Since the right hand side is bounded from above by ε̄ rnR, for n sufficiently
large it is bounded above by ε, so that to conclude it suffices to show that,
independently on the choice of w, for all n sufficiently large it holds that
yn ∈ Bn. To see this, recall that the inverse of the function φn is (1 + εn)-
Lipschitz to get that

d(x̄, yn) ≤ (1 + εn)
∣∣φn(x̄)− φn(yn)

∣∣

≤ (1 + εn)
(∣∣φn(x̄)− zn

∣∣+
∣∣zn − φn(yn)

∣∣
)

by (6.10) ≤ rn(1 + εn)(1 + ε̄) |w| ≤ rn(1 + εn)(1 + ε̄)(R− ε).

Since ε̄ < ε/(R− ε) we have that (1 + ε̄)(R− ε) < R, therefore for n suffi-
ciently large we have that rn(1 + εn)(1 + ε̄)(R− ε) < rnR, which concludes
the proof of the second in (6.7).
Step 3. Let us now denote ψn := φn ◦ PUn − φn(x̄), so that Φn(x̄, ·) = ψn/rn.
We have that

(6.11) Lk
(
ψn(Bn ∩ Un)

rn
∆BR(0)

)
−→ 0 when n→ ∞,
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as one can easily prove by using (6.9), which grants that

Hk(Bn ∩ Un)/Hk(Bn) → 1.

To prove the third in (6.7), fix f ∈ Cc(R
k). Observe that

∫
f dΦn(x̄, ·)∗

(
m
x̄
rn |Bn

)

can be written as Q1(n)m(Bn ∩ Un)/m
(
Brn(x̄)

)
+Q2(n) +Q3(n), where

Q1(n) :=
1

Hk(Bn ∩ Un)

∫
f( · /rn) d(ψn)∗

(
Hk|Bn∩Un

)
,

Q2(n) :=
1

m

(
Brn(x̄)

)
∫

Bn∩Un

f ◦ Φn(x̄, ·)
(
θ − avgn

)
dHk,

Q3(n) :=
1

m

(
Brn(x̄)

)
∫

Bn\Un

f ◦ Φn(x̄, ·) dm.

First of all, it directly follows from the last two statements in (6.9) that

∣∣Q2(n)
∣∣ ≤ 1

n

m(Bn ∩ Un)
m

(
Brn(x̄)

) max
Rk

|f | −→ 0,

∣∣Q3(n)
∣∣ ≤ m(Bn \ Un)

m

(
Brn(x̄)

) max
Rk

|f | −→ 0.

(6.12)

Moreover, (1.17) yields (1 + εn)
−k Lk|ψn(Bn∩Un) ≤ (ψn)∗

(
Hk|Bn∩Un

)
≤ (1 +

εn)
k Lk|ψn(Bn∩Un), thus accordingly it holds that

(1 + εn)
−k rkn

Hk(Bn ∩ Un)

∫

ψn(Bn∩Un)

rn

f dLk(6.13)

≤ Q1(n) ≤
(1 + εn)

k rkn
Hk(Bn ∩ Un)

∫

ψn(Bn∩Un)

rn

f dLk.

Finally, by recalling (6.11) we can immediately deduce that

∣∣∣∣
∫

ψn(Bn∩Un)

rn

f dLk −
∫

BR(0)
f dLk

∣∣∣∣

≤ Lk
(
ψn(Bn ∩ Un)

rn
∆BR(0)

)
max
Rk

|f | −→ 0.
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Therefore the first in (6.9) gives Q1(n) → (ωk R
k)−1

∫
BR(0)

f dLk, which to-

gether with (6.12) and the third in (6.9) grant that ω−1
k

∫
BR(0)

f dLk =

limn

∫
f dΦn(x̄, ·)∗

(
m
x̄
rn |Bn

)
. This means that Φn(x, ·)∗

(
m
x̄
rn |Bn

)
⇀

ω−1
k Lk|BR(0), which proves the statement. □

By combining several results obtained so far, it is then easy to prove the
following:

Theorem 6.7 (Euclidean tangent cone). Let (X, d,m) be a strongly
m-rectifiable space, whose dimensional decomposition is denoted by (Ak)k.
Then for every k ∈ N it holds that

(6.14) Tan[X, d,m, x] =
{[

R
k, dRk ,L

k/ωk, 0
]}

for m-a.e. x ∈ Ak.

Proof. Let the sequence (Nk)k be as in Remark 3.2 and define A′
k := Ak \Nk

for every k ∈ N. Fix k ∈ N and write m|A′

k

= θkH
k|A′

k

for a suitable Borel

density θk : A
′
k → (0,+∞). Let

Aik :=
{
x ∈ A′

k : 2i ≤ θk(x) < 2i+1
}

for every i ∈ Z,

then (Aik)i constitutes a Borel partition of A′
k. Thus fix i ∈ Z. By arguing as

in the proof of Proposition 3.5, one can see that limr→0m
(
Br(x)

)
/(ωk r

k) =
θk(x) for m-a.e. x ∈ Aik. By applying Lusin theorem and Egorov theorem, we

can cover m-a.a. of Aik with countably many compact sets Aijk ⊆ Aik, where
j ∈ N, in such a way that the maps θk|Aijk are continuous and

∣∣∣∣∣
m

(
Br(x)

)

ωk rk
− θk(x)

∣∣∣∣∣ < 2i−1 for every x ∈ Aijk and r > 0

smaller than some rijk > 0.

In particular, it holds that

ωk r
k 2i−1 < m

(
Br(x)

)
< 5ωk r

k 2i−1 for every x ∈ Aijk and r < rijk .

Therefore Aijk fulfills the hypotheses of Lemma 1.3, so accordingly each space

Aijk (with the restricted distance and measure) satisfies (6.5). Hence Theo-
rem 6.6 and Proposition 6.5 give

Tan
[
Aijk , d|Aijk ×Aijk

,m|Aijk , x
]
=

{[
R
k, dRk ,L

k/ωk, 0
]}

for m-a.e. x ∈ Aijk ,
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since rn ↓ 0 in Theorem 6.6 can be actually chosen among the subsequences
of any fixed sequence converging to 0 and the pmG topology is metrizable,
cf. [13, Theorem 3.15]. Given that m-a.e. point of Aijk is of density 1 for

Aijk itself and m is pointwise doubling at m-a.e point by Proposition 3.5, we
deduce from Proposition 6.3 that

[
R
k, dRk ,L

k/ωk, 0
]
is the unique element

of Tan[X, d,m, x] for m-a.e. x ∈ Aijk . By arbitrariness of i and j, we finally
conclude that (6.14) is satisfied, proving the statement. □
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