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Regularity of Lie groups

MAXIMILIAN HANUSCH

We solve the regularity problem for Milnor’s infinite dimensional
Lie groups in the C°-topological context, and provide necessary
and sufficient regularity conditions for the (standard) C*-
topological setting. Specifically, we prove that if G is an infinite
dimensional Lie group in Milnor’s sense, then the evolution map is
C®-continuous on its domain iff G is locally p-convex — This is a
continuity condition imposed on the Lie group multiplication that
generalizes the triangle inequality for locally convex vector spaces.
We furthermore show that if the evolution map is defined on all
smooth curves, then G is Mackey complete — This is a complete-
ness condition formulated in terms of the Lie group operations that
generalizes Mackey completeness as defined for locally convex vec-
tor spaces; so that we generalize the well known fact that a locally
convex vector space is Mackey complete if each smooth (compactly
supported) curve is Riemann integrable. Then, under the presump-
tion that G is locally p-convex, we show that each C*-curve, for
k € N>q U {lip, 0o}, is integrable (contained in the domain of the
evolution map) iff G is Mackey complete and k-confined. The lat-
ter condition states that each C*-curve in the Lie algebra g of G
can be uniformly approximated by a special type of sequence con-
sisting of piecewise integrable curves — A similar result is proven
for the case k = 0; and we provide several mild conditions that
ensure that G is k-confined for each k& € N U {lip, co}. We finally
discuss the differentiation of parameter-dependent integrals in the
standard topological context (C*-topology). In particular, we show
that if the evolution map is defined and continuous on C*([0, 1], g)
for k € NU {oo}, then it is smooth thereon:

e For £k =0: iff if it is differentiable at zero

iff g is integral complete.
e For k € N>y U{oo}: 4ff ifitis differentiable at zero
iff g is Mackey complete.

This result is obtained by calculating the directional derivatives
explicitly — recovering the standard formulas (Duhamel) that hold,
e.g., in the Banach (finite dimensional) case.
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The right logarithmic derivative and its inverse — the evolution map — play
a central role in Lie theory. For instance, the existence of the exponential
map — indispensable for structure theory of Lie groups — is based on the
integrability of each constant curve (each such curve is contained in the
domain of the evolution map). Moreover, given a principal fibre bundle, the
existence of holonomies — essential for gauge field theories — is based on the
integrability of curves that are pairings of a smooth connection with the
derivative of a smooth curve in the base manifold. In this paper, we discuss
the evolution map in the infinite dimensional setting introduced by Milnor
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[2, 16, 8, [9]. Specifically, we consider an infinite dimensional Lie group G as
defined in [2] that is modeled over a Hausdorff locally convex vector space
E, with system of continuous seminorms 3. We denote the Lie algebra of
G by (g,[,"]), the inversion of G by inv: G 3 g+ g~ € G, the Lie group
multiplication by m: G x G — G; and define L, := m(g, -) as well as Ry :=
m(-, g) for each g € G. We furthermore let Ad: G x g — g denote the adjoint
action; and fix a chart Z: G O U — V € E with V convex, e € U, and =Z(e) =
0. The right logarithmic derivative is defined by

5" CY(D,G) — C°(D,g),  ur> d Ry (j2)

for D C R a non-singleton interval and p~!

maps by

= inv o u; and, the evolution

Evol: D — CY([0,1],G),  &"(n)
evol: D — G, )

e (0)

= (1) - (0)

for u € D := 5"(C*(]0,1],G)). Then, the differential equation to be investi-
gated is

(1) ¢ =0"(n) for ¢ € C%D,g), neCY(D,G);

whereby, in contrast to the Banach case, no theory of ODE’s is available
in the generic locally convex case — The core of this problem is rather the
“infinite dimensionality” of the locally convex topology than the infinite
dimensionality of the vector space E itself. More specifically, in the context
of a given continuous (linear) map ¢: E — E, continuous seminorms can
usually only be estimated against each other but not against themselves — In
general, this prevents the Banach fixed-point theorem (Picard-Lindel6f) and
the Gronwall lemma to WOI"kH Thus, given a specific differential equation,
one has to use its particular “symmetries” in order to prove existence and
uniqueness of solutions for arbitrary initial values. The “symmetries” hidden

'Even if F is metrizable via d: E x E — R, this metric usually fails to have the
important property that d(A-X + X - X',0) < |\ -d(X,0)+ [X]-d(X’,0) holds
for all A, ) € R and X, X’ € E [13] — making it incompatible with the Riemann

integral (mean values).
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in are

6"(n-g)=06"(n) and  5"(n D

D) = 06" (1)
o) 5 (po0) =4+ (57 (1o 0)
0" (p-v)=06"(p) + Ad,(8"(v)) implying
6" (n™ ) = Ady1 (67 (v) = 6" ()

for all u,v € CY(D,G), g€ G,I3> D' C D €7J,and each p: 3> D" — D of
class C'; where J denotes the set of all non-singleton intervals in R.

For instance, already in the Banach (finite dimensional) case, the first line in
is used to glue together local solutions that are provided by the Picard-
Lindel6f theorem in this context. Following this philosophy, we will apply
the second line in to Riemann integrals of suitable bump functions to
prove that (cf. Theorem [2):

Theorem. G is Mackey complete if C°°([0,1],9) € D holds; i.e., if each
smooth curve is integrable.

Here, Mackey completeness is a condition formulated in terms of the Lie
group operations that generalizes Mackey completeness as defined for locally
convex vector spaces. The above theorem thus generalizes the well-known
fact that (cf., e.g., Theorem 2.14 in [7]) a Hausdorff locally convex vector
space E is Mackey complete if the Riemann integral of each (compactly
supported) smooth curve (in F) exists in E.

Now, there is a further property of the evolution map that can be encoded
in a topological condition imposed on the Lie group operations: We consider
the restriction evoly: DN C¥([0,1],g) — G for each k € NU {lip,c}; and
say that evoly is CP-continuous for p < k (p =0 for k = lip) iff it is con-
tinuous w.r.t. the subspace topology that is inherited by the CP-topology
on C*([0,1],g). We furthermore say that G is locally p-convez iff for each
u € P, there exists some u < 0 € P with

(3) (uoE)(E X)) ... -2 HXp)) < o(X1) + ... +0(X,)

for all X1,...,X, € E, with o(X1) + ... + 0(X,,) < 1P Then, using the sec-
ond line in (2]), we will show that (cf. Theorem :

2This notion was originally introduced in [3] as a tool to investigate regularity
properties of weak direct products of Lie groups.
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Theorem. evoly is C°-continuous iff G is locally p-conver iff evols, is
CP-continuous.

Evidently, generalizes the triangle inequality for locally conver vector
spaces; and, due to the above theorem, it is independent of the explicit choice
of the chart Z.

Then, using the above two theorems, we will be able to partially answer the
question under which circumstances G is C*-semiregular [3] for some given
k € N U {lip, oo}; i.e., under which circumstances C*([0, 1], g) C D holds (cf.
Theorem :

Theorem. Suppose that G is locally p-convex. Then, G is C*-semireqular
for k € N>y U{lip, o0} iff G is Mackey complete and k-confined. Moreover,
G is CO-semireqular if G is sequentially complete and 0-confined.

Here, k-confinedness is an approximation property for C*-curves that is
automatically fulfilled, e.g., if (g, [-,-]) is submultiplicative; or, if G admits
an exponential map, and (g, [, -]) is constricted. The precise definitions, and
more conditions can be found in Sect. [[.2] or in Sect. 2.4

In the last part of this paper, we will discuss the differentiation of parameter-
dependent integrals in the standard topological setting. We first show that
if G is C*-semiregular and evoly, is C*-continuous for k € N U {lip, oo}, then
the directional derivative (w.r.t. the C*-topology) of evol; at zero along
some ¢ € C*([0,1], g) exists in the completion g of g, as explicitly given by

g evolp(h - ¢) = [¢(s)ds €.

More generally: Recall that g is said to be integral complete [3] iff [ ¢(s) ds €
g exists for each ¢ € C?([0,1],g); and let

[*¢:=Evol(¢)(s) aswellas [¢:= ("¢ VoeD, sel0,1].
Then, the above statement generalizes to (cf. Theorem :

Theorem.

1) Suppose that G is C°-semiregular and that evoly is C°-continuous. Then,
evoly is of class C' iff g is integral complete iff evoly is differentiable at
zero.

2) Suppose that G is C*-semiregular and that evoly is C*-continuous, for
k € N>y U {lip, c}. Then, evoly, is of class Ct iff g is Mackey complete
iff evoly is differentiable at zero.
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Here, for k =0 in the first case, and k € N> U {lip, 0o} in the second case,
we have

(dpevoli) () = deLgo( [ Adyp - (0(s) ds) Vo, € ([0, 1].g).

For k € NU{oo}, Theorem E in [3] additionally shows that evoly is even
smooth.

Recall that G is said to be C*-regular for k € NU {lip, 00} iff G is C*-
semiregular and evol; is smooth (w.r.t. the C*-topology). Then,

e the first point in the above theorem generalizes Theorem C.(a) in [3], stat-
ing that each C-regular Lie group has an integral complete Lie algebra
(modeling space). It furthermore generalizes Theorem F in [3], as it drops
the presumption that there exists a point-separating family (o;);cs of
smooth Lie group homomorphisms a;: G — Hj to CO-regular Lie groups
H;.

e since C*°-regular Lie groups are C'*°-semiregular, the second point in the
above theorem generalizes the result announced in Remark I1.5.3.(b) in
[11], stating that each C'*°-regular Lie group has a Mackey complete Lie
algebra.

Actually, the last theorem is a consequence of a more general theorem con-
cerning differentiation of parameter-dependent integrals. We write s < k for
s € N and

e ke N ff s<k holds,
e k=1lip iff s=0 holds,
e k=00 iff s€ N holds.

We furthermore recall that the C*-topology on CF([r,r'],g) for r <1’ is
generated by the seminorms

(4) Pio(0) == sup{(p o deZ) (¢ (1)) [0 < m <, t € [r,77]}
V¢ e CH(r,r'],g)

for p € P and s < k; and let Jpoo = p2, for each p € PB. Then, we will show
that (cf. Theorem [f)):

Theorem. Suppose that G is CF-semiregular and that evol, is C*-
continuous, for some k € NU{lip,c0}. Let furthermore ®: I x [0,1] — g
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(I CR open) be given with ®(z,-) € C*([0,1],g) for each z € I. Then,

oo (S @@ 7 S @@+ hy)]) = [ Adjp o)1 (1D(2,5)) ds € §
holds for x € I, provided that

a) We have (01®)(x,-) € C*([0,1],9).
b) For each p € P and s < k, there exists L, s > 0, as well as I, s C I open
with x € I, s, such that

B P (@(@ + hy) = @(x,0)) < Ly VheRz with x+h € Iy

In particular, in Sect. we will derive Duhamel’s formula from the above
theorem. This paper is organized as follows:

e In Sect. 2] we give a precise synopsis of the results obtained in this paper,
and compare them to the results obtained in the literature so far.

e In Sect.[3] we provide the basic definitions, and prove the most elementary
properties of the core mathematical objects of this paper.

e In Sect. [ we prove certain continuity properties of the evolution map;
and discuss piecewise integrable curves.

e In Sect. [5, we show equivalence of C%-continuity and local p-convexity.

e In Sect. [6] we show that each C'*°-semiregular Lie group is Mackey com-
plete; and prove certain approximation statements that are relevant for
our discussion in Sect. [T.2l

e In Sect.[7] we show that, under the presumption that G is locally u-convex,
G is C*-semiregular for k € N> U {lip, oo} iff G is Mackey complete and
k-confined. Similar statements are proven for the case k = 0.

e In Sect. 8] we discuss the differentiation of parameter-dependent integrals.

2. Precise synopsis of the results
In this section, we give a precise synopsis of the most important results
obtained in this paper, and compare them to the results obtained in the
literature so far, primarily in [2].
2.1. Setting the stage
We are concerned with the following situation in this paper. We are given

a Lie group G in the sense of [2] (cf. Definition 3.1 and Definition 3.3 in
[2]) that is modeled over a Hausdorff locally convex vector space E, with
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system of continuous seminorms . We denote Lie algebra of G by g, fix
a chart Z: G DU -V C E with V convex, e € U, Z(e) = 0; and identify
g with F via d.=: g — E — more specifically, this means that we define
the seminorms {.p :=pod.= | p € P} on g. We denote the inversion in G by
inv: G 3 g~ g~! € G, the Lie group multiplication by m: G x G — G; and
let Ly :=m(g, ) as well as R, :=m(:, g) for each g € G. The adjoint action
is denoted by Ad: G x g — g; i.e., we have

Ad(g, X) = Ady(X) := d.Conj,(X)  with  Conj,: G2 hrrg-h-g "

for each X € g and g € G. The differential equation under consideration
then is

(5) ¢=0"(n) =d,Ru-1 () for ¢eC'D,g), peCYD,G), De7T,

where J denotes the set of all non-singleton intervals D C R. It is immediate
from the definitions that

(6) 6" (- g) = 6" () and 6" (ulpr) = 6" (1)l
(7) 8" (o o) =20-(6"(n)o0)
(8) 6" (p-v)=406"(p) + Ad,(8"(v)) implying

5" (1) = Ady 1 (87 (v) — 57 (1))

holds, for all u,v € CY(D,G),g € G,3> D' C D € J,andeach p: 3> D" —
D of class C! (we write = = inv o u1). Together with smoothness of the Lie
group operations, and

9) A =)= [H(s)ds e F vte ], ve Ol rr],F)

for F' a Hausdorff locally convex vector space, these are the only properties
we have in hand to investigate Equation . Let now K C J denote the set
of all non-singleton compact intervals [r, '] C R. Then,

e It follows from () that (cf. Lemmall0)) for k € N, we have
o 87 CK([r,r'], G) — C*([r, 7], ).
o p € CMY([r,'],G) for each p € C'([r,7'], G) with 8" (1) € C*([r, 7], 9).
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e It is now immediate from (9 and the right side of (8 that (cf. Lemma [9)
8" CE N ([r,r),G) = CM ('), )
is injective for k > 0, with
CE([r, 1], G) = {u € C*FH([r,r"), G) | lr) = e}

We let D, := 6" (C([r,7'],G)) for each [r,r'] € &, as well as @ﬁr/] =
D N Ck([r,r'],g) for each k € NU {lip,00}. Then, (we let lip+ 1 :=1,
o0+ 1:=00)

Evolﬁj,} . Dk Y CHY([r,7"], @), 8" () = - ()

[r,

is well defined for k € N U {lip, oo}, as well as surjective for k € N U {oo}.
We define

(10) evolf .. DF

] ]

=G, ¢ Evol,.(6)(r)

with Evolj, .1 = Evol?ryr,}, for each k € N U {lip, co}; and denote

w)),  So=JT 6, [oi=e,
j:¢:[r,r']9tb—>ﬁ,q§

§ ¢ := Evolj, (¢

for each ¢ € D ), with 7 <a <b < r" and ¢ € [r,r']. There are now several
issues to be clarified. We first discuss

2.2. Semiregularity and Mackey completeness

We say that G is C*-semiregular for k € N U {lip, co} iff ”Dfoﬂ = C*([0,1], g)
holds. In this case,

e (G is CP-semiregular for each p > k (we let 1 > lip > lip > 0).
e it is straightforward from that Qﬁ“r’} = C*([r,7'], g) holds for each
[r,7] € & (cf. Lemma |12]).

One then clearly wants to have criteria in hand for G to be C*-semiregular
for some given k € N U {lip, oo}. We provide the following necessary condi-
tion (cf. Theorem :

Theorem I. G is Mackey complete if G is C*°-semiregqular.
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Here, G is said to be Mackey complete iff each Mackey-Cauchy sequence
converges in G; i.e., each sequence {gy }nen C G, such that

(pOE)(g;zl'gn)gcp'Am,n Vm,n >, peP

holds for certain {cy}pep € R>o, {lp}pep € N, and R D {/\m,n}(mm)eNxN
— 0.

e This definition is independent of the explicit choice of the chart = (cf.
Remark .

e This definition specializes to Mackey completeness as defined for locally
convex vector spaces; i.e., the case where (G,-) = (E, +) equals the addi-
tive group of a locally convex vector space FE.

Theorem [I| thus generalizes the well-known fact (cf. Theorem 2.14 in
[7]) that a locally convex vector space is Mackey complete if each smooth
(compactly supported) curve is Riemann integrable.

e Mackey completeness is exemplarily verified in Example [3| for Banach Lie

groups; and the setting considered in [5].

Remark I. The idea of the proof of Theorem[] is to construct some ¢ €
C*(]0,1],9) whose integral | ¢ is the limit of a (subsequence of a) given
Mackey-Cauchy sequence {gn}nen C G. Roughly speaking, we will use
to glue together smooth curves whose integrals equal g, ' - g1 via suitable
bump functions. Here, it is important that (1.) a Mackey-Cauchy sequence
converges iff one of its subsequences converges, and (2.) passing to a subse-
quence if necessary, we can achieve that (p o Z)(g,, ' - gn_1) decreases suitably
fast — namely, (up to a factor ¢y) in the same way for all seminorms p € °P:
This ensures that the so-constructed ¢ is defined and smooth at 1 (where all
of its derivatives must necessarily be zero). i

2.3. Topologies and continuity

We say that evolﬁ, -1 18 CP-continuous for p < k € NU {lip, oo} and [r, r'le R
iff it is continuous w.r.t. the seminorms , for s <X p. We say that G is

e p.k-continuous for p < k iff evolﬁﬂ’r,] is CP-continuous for each [r, '] € &,

e k-continuous iff G is k.k-continuous.

It is straightforward from and the right side of that (cf. Lernrna

Lemma I. G is p.k-continuous iff evol’f0 1 s CP-continuous at zero.
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Under the presumtion that G is C*-semiregular (for k € NU {oo}), it
had already been shown in Theorem D in [3] that evolf“O 1 C*-continuous

iff it is C*-continuous at zero.

Clearly, for k > 1, the C-topology is strictly coarser than the C*-topology;
so that 0.k-continuity implies k-continuity but usually not vice versa. Any-
how, it is straightforward from and that (cf. Lemma :

Lemma II. If G is abelian, then G is k-continuous for k € NU {oo} iff G
s 0.k-continuous.

The important feature of 0.k-continuity is that it can be encoded in a con-
tinuity property of the Lie group multiplication: Recall that G is said to be
locally p-convex iff holds. We will show that (cf. Theorem :

Theorem 1II. G is 0-continuous iff G is locally p-convex iff G is 0.00-
continuous.

Specifically, for k € N U {oo} and [r, '] € &, let DP*([r,7'], g) denote the set
of all maps ¢: [r,7'] — g such that there exist r =ty < ... <t, =r' and
o[p] Eﬁﬁ i, forp=0,...,n—1 with

Blit, ) = PPNt t000) Vp=0,...,n—1

Moreover, define the integral of ¢ by (well-definedness is straightforward

from ()

an fro=Ji, 0 S oo =11 §j ol0]

Vte (tytyr], p=0,...,n—1.
Then, the one direction in Theorem [l1}is covered by (cf. Proposition :

Proposition I. Suppose that G is locally p-convex. Then, for each p € B,
there exists some p < q € B, such that

[a(e(s))ds <1 for ¢ eDP([r,r'],g)
— (poZ)(S20) < [7.ale(s)) ds,

for each [r,r'] € R.

Remark II. Apart from Proposition @ the set ®PF([r,7'],g) plays an im-
portant role in the proof of the other direction in Theorem [Il. Here, the
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key observation is that ¢ € DPF([r,7'],g) given with «qoo(¢) < 1/2 for some
q € P, it is possible to construct o: [r,7'] — [r,7'] smooth with |9| < 2, such
that

g-(qﬁog)egﬁm/] as well as fo=J0-(¢o0)

holds; i.e., «qoo(0- (¢ 0 0)) <1 (cf. Lemma . Continuity ofevolﬁ,’r,} w.r.t.
to the seminorms {JPoctpesy thus carries over to the set OP*([r,1'],g); and,
then is a straightforward consequence of . Here, o is obtained by
glueing together (and then integrating) suitable bump functions; so that the
argument fails on the level of the C*-topology for k > 1, just because the
higher derivatives of a so-constructed o become that larger that finer the
decomposition of [r,r'] is made. i

Finally, we say that G is L!-continuous iff evol?r’r,] is continuous w.r.t. the
L'-seminorms

(12) Pr(0) = [p(o(s))ds VpeP, ¢, g)

for each [r,7'] € K. Then, Theorem [lI| and Proposition [[| show that G is
L'-continuous iff G is locally p-convex iff G is 0.c0-continuous; which gen-
eralizes Lemma 14.9 in [3]. Here, the equivalence of L!-continuity and 0-
continuity is already straightforward from (cf. cf. Lemma .

2.4. Integrability

We now come back to the question under which circumstances a given
¢ € C°([0,1],g) is integrale, i.e., contained in @?071]. A sequence {¢y, }nen C
DPY([0,1],g) is said to be tame iff for each v € B, there exists some v <
o € P, such that

'UOAdU;@J*l <.to VnéeN

holds. Moreover, {¢, }nen € DPY([0,1],g) is said to be a

e Cauchy sequence iff to each p € P and ¢ > 0, there exists some p € N
With oo (Pm — ¢n) < € for all m,n > p.

e Mackey-Cauchy sequence iff there exists a net R>0 2 {A\n}(mn)enxn —
0, as well as constants {cp}pep € R>p and {l,}yeqp € N, such that for
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each p € B, we have

'poo(d)m - d’n) <c¢p- )\m,n Ym,n > [p.
Then, ¢ € C°([0,1], g) is said to be

e s-integrable iff there exists a tame Cauchy sequence {¢,}nen C
DPY([0,1],9) with {¢n}nen — ¢ uniformly (i.e., w.rt the seminorms

{'poo}PG‘ﬁ)-
e m-integrable iff there exists a tame Mackey-Cauchy sequence {¢,, }nen C

DPY([0,1],¢) with {¢p }nen — ¢ uniformly.
We will show that (cf. Lemma [31] and Proposition [3):

Proposition II. Suppose that G is locally p-convex.

1) If G is sequentially complete, then ¢ € @?0 1] holds for ¢ € C°([0,1],g)
iff ¢ is s-integrable. .

2) If G is Mackey complete, then ¢ € Qﬁfl] holds for ¢ € C'"([0,1],9) iff ¢
is m-integrable.

Remark III. The one direction in Proposition [I1] is immediate from the
fact that p: t — jg ¢ has compact image, for each ¢ € 5‘3([)071]. For the other
direction (in analogy to the Riemann integral) one defines

pu(t) := limy, §§ on Vtelo,1];

and then has to wverify (1.) that the limit exists pointwise, i.e., that p is
defined, (2.) that p1 is continuous, (3.) that {§§ éntnen — 1 converges uni-
formly, and (4.) that u is of class Ct with 6" (1) = ¢. I

We say that G is k-confined

e for k=0: iff each ¢ € C°([0,1], g) is s-integrable,
e for k € N> U {lip, oo}: iff each ¢ € C*(]0,1], g) is m-integrable;

and obtain from Theorem [[] that (cf. Theorem [3)):

Theorem III. Suppose that G is locally u-convex. Then, G is C*-semi-
regular for k € N>j U{lip, 00} iff G is Mackey complete and k-confined.
Moreover, G is CV-semiregular if G is sequentially complete and 0-confined.

For instance, G is k-confined for each k € N U {lip, oo} (cf. Sect. [7.2)):
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e If G is abelian; or, more generally, if (g, [-,-]) is submultiplicative.

e If G is locally u-convex and reliable; i.e., if for each v € 3, there exists
a symmetric neighbourhood V' C G of e, and a sequence {w,, }nen., C P,
such that )

WwoAdy o...0Ady, <.v, Vagi,....gn €V, n>1.

This is the case, e.g., for the unit group A* of a continuous inverse algebra
A fulfilling the condition (*) (cf. (59)) formulated in the theorem proven
in [5].
e If G admits an exponential map, is constricted, and has a sequentially
complete Lie algebra.
Here, the first condition means that ¢X|[071] € Djg,1) holds, for each
constant curve ¢x: R>t— X € g; i.e., that

(13) exp: g3 X > [ ox €G

is defined. Moreover, constrictedness states that for each bounded subset
B C g, and each v € 13, there exist C > 0 and v < to € 3, such that

Wwoad Xj0...0ad X,, <C" -.tv VXi,....,.Xp, €B, n>1

holds, with ad X: g2 Y — [X,Y] € g for each X € g.

In particular,

Corollary I. If G is abelian, then G is C*°-semiregular and co-continuous
iff G is Mackey complete and locally p-convez iff G is C*-semiregular and
k-continuous for each k € N> U {lip, 0o}.

Proof. If G is C'*°-semiregular and oo-continuous, then G is Mackey com-
plete by Theorem [[} as well as 0.co-continuous by Lemma [[T; thus, locally
p-convex by Theorem [[Il Conversely, if G is locally p-convex, then G is
(even 0.)k-continuous for each k € N> U {lip,co} by Theorem Since
G is lip-confined, Theorem shows that G is C*-semiregular for each
k € N> U {lip, 00} if G is additionally Mackey complete. O

2.5. Smoothness and differentiation
In Sect. 8, we will discuss the differentiation of parameter-dependent inte-

grals in the standard setting; i.e., w.r.t. the C*-topology. Our key observation
there is (cf. Proposition [7)):
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Proposition ITI. Suppose that G is k-continuous for k € N U {lip, co}; and
that (—0,9) - ¢ C Q@w] holds for some ¢ € C*([r,7'],g) for [r,r'] € & and
6 > 0. Then, we have

&g evolf i (h-¢) = [¢(s)ds €.

k

[r,r']
Ck([r,r'],8) always exists; namely, in the completion g of g.

Thus, the directional derivative of evol at zero along such a ¢ €

We say that g is integral complete [3] iff [ ¢(s)ds € g exists for each ¢ €
C°([0,1], g); and recall that g is Mackey complete iff [ ¢(s)ds € g exists for
each ¢ € C*°([0, 1], g). Then, the above proposition immediately shows that
(cf. Corollary [9)):

Corollary II.

1) Suppose that G is 0-continuous and C°-semireqular. Then, evol([)0 1] 18
differentiable at zero iff g is integral complete.

2) Suppose that G is k-continuous for some k € N> U {lip, 00}, as well as
C°-semiregqular. Then, eVOlﬁ),l]‘coo([o,u,g) is differentiable at zero iff g s
Mackey complete.

Here, the first point generalizes Theorem C.(a) in [3] stating that each C°-
regular Lie group has an integral complete Lie algebra (modeling space). The
second point generalizes the analogous result announced in Remark I1.5.3.(b)
in [I1] stating that each C'*°-regular Lie group has a Mackey complete Lie
algebra — Recall that G is said to be C*-regular for k € NU {lip, 0o} iff G
is C*-semiregular and evolﬁm is smooth w.r.t. the C*-topology.

Next, using the above proposition, we show that, cf. Theorem

Theorem IV. Suppose that G is k-continuous and C*-semiregular for
some k € NU {lip,00}; and let ®: I x [r,r'] = g (I C R open) be fized with
®(z,-) € C*([r,7"], @) for each z € I. Then,

f*h‘hzo([f‘b(% ')]_l[j(l)(li + I, )]) = fAdU"i@(m,-)]*l(al(I)(xv 5)) ds € g

holds for x € I, provided that
a) We have (0,®)(z,-) € C*([r,7'], 9).
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b) For each p € P and s < k, there exists Ly s > 0, as well as I, s C I open
with x € I, s, such that

[ Pe(@@ b )~ @@, ) SLps  VhERyz with v+ h € L.

For instance, we obtain (cf. Corollary [L1):

Corollary III. Suppose that G is co-continuous, and C*-semireqular; and
that g is Mackey complete. Then, for X: I — g of class C', we have

9. exp(X(x)) = deLexp(x(2)) ( [ Adexp(—s-x(a)) (0:X(x)) ds) Vezel.

Imposing further presumptions, this specializes to Duhamel’s formula (cf.

Proposition :
(Actually, in Proposition@ a slightly more general situation is considered.)

Proposition IV. Suppose that G is co-continuous, C°°-semiregular, and
constricted; and that g is sequentially complete. Then, for each X: I — g of
class C", we havd’|

idg —exp(—ad X(z
8, exp(%(z)) = deLeXp(x(w))< p(-od 2(a) (azae(x))) Vael
Now, Theorem E in [3] states that evolﬁ)’u is smooth if G is C*-semiregular,

and evolfO’l] is of class C'. Combining this with Corollary [II| and Theorem
we obtain (cf. Theorem [4)):

Theorem V.

1) If G is 0-continuous and C°-semiregular, then evol([)r,r,} s smooth for each
[r,r'] € R iff g is integral complete iff evol?OJ] is differentiable at zero.

2) If G is k-continuous and C*-semiregular for k € N>q L {oc}, then evolfm,]
is smooth for each [r,r'] € R iff g is Mackey complete iff evolf“O’l] is dif-

ferentiable at zero.

Here, for k = 0 in the first-, and k € N> Ll {oo} in the second case, we have

(dg evolf ) (1) = deLyg ([ Adygs g2 (¥(s)) ds)

14
(14) Vo, p € CF([r,r],9), [rr] € &

3The precise definition of the expression in the parentheses on the left side can

be found in Sect. (cf. Equation (95)).
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Sketch of the Proof given in Sect.[8.4) By Corollary [[I] it suffices to show
that (under the given presumptions) evolf“m,,] is smooth and fulfills ,
namely

o for k=0 if g is integral complete,
o for k € N> U {oo} if gis Mackey complete.

Now, in both cases, formula is immediate from Theorem [[V|applied to

@6, )1 (0,1) x [r,7'] 3 (h, t) = ¢(t) + - (1) V¢, € CF([r,r'], 9),

whereby the right side of is easily seen to be continuous (cf. Lemma
. It thus follows from Theorem E in [3] that evolﬁ] 1 18 smooth. Then,

smoothness of evolf“r w1 for [r, '] € R is clear from

k

evol[m,] = evolf“o’u o 1,
for n: C*([r,7'],g) = C*([0,1],g) given by

n(¢) = 0-(¢poo)=|r'—7[-(¢o0)
with  0:[0,1] — [r,7], t=r+t | =7,

as 7 is evidently smooth. g

Remark IV.

e Up to the point where Theorem E from [3] is applied, the above argument

also works for the Lipschitz case (cf. Corollary ; i.e., we have:

2°) If G is lip-continuous as well as C'P-semireqular, then evolFrI?T,] s of

class C1 for each [r,r'] € R iff g is Mackey complete iff evoll[gjl} is
differentiable at zero.

e Then, instead of using Theorem E from [3] in the above argument, one
might use the explicit formula to prove smoothness of evolﬁn] mduc-
tively for k € NU{lip, 0o}, which would strengthen the statement in the
previous point of course. The details, however, seem to be quite elaborate
and technical; so that we leave this issue to another paper.

Now, Theorem [V] shows:

A) G is CP-regular iff G is C°-semiregular and 0-continuous, with g integral
complete.
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B) G is Ck-regular for k€ N>j U{oo} iff G is C*-semiregular and k-
continuous, with g Mackey complete.

Here, generalizes Theorem F in [3] stating that G is CC-regular if G is
C"-semiregular and 0-continuous with integral complete Lie algebra, such
that there exists a point-separating family (co;)jes of smooth Lie group
homomorphisms «;: G — H; to C-regular Lie groups H;.

Moreover, let us say that G admits a C''-exponential map iff exp as defined
in is of class C'. We then have

Lemma III. Suppose that G is abelian. Then,

1) G is C-reqular iff G admits a C'-exponential map, and g is integral
complete.
2) G is C®-reqular iff G admits a C*-exponential map, and g is Mackey

complete.
iff G is C*-regular for each k € N>, U {lip, oo}.

Proof. If G is abelian and exp: g — G is of class C', then we have (cf.

Remark [2|13))

¢ =exp([¢(s)ds) foreach ¢ e C°[0,1],9)
with  [J¢(s)dseg Vtelo,1];

which is obviously continuous w.r.t. the seminorms {.poc }pegs. Thus,

o G is C%semiregular and 0-continuous if g is integral complete; thus, C°-

regular by

e G is C*-semiregular and k-continuous for each k € Nx L {lip, oo} if g is
Mackey complete; thus, CF-regular for each k € N>y U {lip, 0o} by

Since exp is of class C! if G is C®°-regular (cf. Remark [2/12))), the rest is clear
from |A)| and ]

Then, using Proposition V.1.9 in [10], we obtain:

Proposition V. Suppose that G is connected and abelian. Then,

1) G is CO-regular iff G = E/T holds for a discrete subgroup I' C E, with
FE integral complete

iff G admits a C'-exponential map, and E is integral
complete.
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2) G is C*®-regular iff G = E/I' holds for a discrete subgroup I' C E,
with E Mackey complete
iff G admits a C'-exponential map, and E is Mackey
complete

iff G is CF-reqular for each k € N>1 U {lip, 0o}.

Proof. Observe that F is integral/Mackey complete iff g is integral/Mackey
complete; and that, by Lemma [[TI] it suffices to show the equivalences in

the first line of |1)[ and

o If G is C*-regular for k € {0,00}, then G is C™-regular. Then, exp is
smooth (cf. Remark ; and, by and FE is Mackey complete
— even integral complete for k = 0. Consequently, G = E/I" holds for a
discrete subgroup I' C E, by Proposition V.1.9 in [10].

e Suppose that G = E/T" holds for a discrete subgroup I' C E = g; and let
k € {0,000} be fixed. Suppose furthermore that E is Mackey complete for
k = oo, and integral complete for k¥ = 0. Then, the evolution map
(for [r,7"] =[0,1]) of (E,+) is given by

[k CF(0,1,E) > B, ¢ [¢(s)ds,

which is obviously smooth w.r.t. the C?-topology (as it is linear and con-
tinuous therein); and the canonical projection 7: E — E/I' is a smooth
Lie group homomorphism — confer Example for more details concern-
ing the Lie group structure on E/T". We thus have (confer, e.g., statement

in Sect.
evolfy 1(¢) = (w0 J5 ) () V¢ € CH(0,1], B);

which is evidently smooth w.r.t. the C°-topology. It is thus clear that G
is C*-regular.

The claim now follows from Lemma [[T1l O

Evidently, Proposition [V| generalizes Theorem C.(b),(c) in [3] stating that
(E,+) is CO-regular iff E is integral complete; and that (E, +) is C'l-regular
iff F is Mackey complete.
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3. Preliminaries

In this section, we fix the notations; and recall the most important facts
concerning locally convex vector spaces, differentiable maps, and Lie groups
that we will need in the main text.

3.1. Conventions

Intervals are non-empty, non-singleton, connected subsets of R. In the follow-
ing, D always denotes an arbitrary-, I an open-, and K a compact interval.
The set of all intervals is denoted by J, and the set of all compact ones by K.
Let F be a (Hausdorff) locally convex vector space with corresponding sys-
tem of continuous seminorms . We recall that £ is filtrating, i.e., that for
qi,---,qn € Q with n > 1 given, there exists some q € Q with q1,...,q, < g.
For ¢ > 0 and g € 9, we define

Bge ={X e F|qX)<e} Bye:={X € F|q(X)<e}

and write g <V (or V = q) for g€ Q and V C F iff By C V holds. We
say that B C F' is bounded iff it is von Neumann bounded, i.e., iff we have

sup{q(X) | X € B} < > Vqen.

We let F denote the completion of F; as well as q the (unique) extension of
geEQtoF.

Manifolds and Lie groups are always assumed to be in the sense of [2]
(cf. Definition 3.1 and Definition 3.3 in [2]); i.e., smooth, Hausdorff, and
modeled over a Hausdorff locally convex vector space: The corresponding
differential calculus is reviewed in Sect. If f: M — N is a C'-map
between the manifolds M and N, then df: TM — TN denotes the cor-
responding tangent map between their tangent manifolds; and we write
def =df(z,-): TuM — TN for each x € M. A curve is a continuous
map v: D — M, where M is a manifold and D € J an interval. If D =1 is
open, then + is said to be of class C* for k € NU {oco} iff it is of class C¥
when considered as a map between the manifolds I and M. We say that
v: D — M is of class C* for k € N1 {oo} — and write v € C¥(D, M) — iff
v = J|p holds for some 5: I — M of class C*¥ with D C I. If v: D — M is
of class C' (or differentiable), we let 4(t) € T.,;yM denote the corresponding
tangent vector at y(¢t) € M. The same conventions also hold if M = F'is a
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Hausdorff locally convex vector space — In this case, we let C'"P([r, 7], F') de-
note the set of all Lipschitz curves on [r, 7] € &; i.e., all curves v: [r,7'] = F
with

q(’}/(t) - V(t/)) < Lq : |t - t/’ Vtat/ € [Tv T/]a qe Q

for certain Lipschitz constants {Lq}qeq € R>g. We let 0o + 1 := 0o as well
as lip+1:=1; and, for k € NU {lip, 00} and [r,r'] € &, we define

(7)== q(+"¥),
05 (7) =sup {q(+™(®)) |0 <m <s, t €[]},

Goo = 05
for each s < k and v € C*([r,7'], F) — Here, s < k means

e s<k for k€N,
e s=0 for k= lip,
e se N for k= o0.

The C*-topology on C*([r,r'], F) is the Hausdorff locally convex topology
that is generated by the seminorms ¢, for each q € Q and s < k.

In this paper, G will always denote an infinite dimensional Lie group (in
Milnor’s sense) that is modeled over a Hausdorff locally convex vector space
E, with system of continuous seminorms 3. We denote the Lie algebra of G
by (g,[,]), fix a chart Z: G D U — V C E with V convex, e € U, ZE(e) = 0;
and identify g with F via d.=: F — g — specifically, we define

.‘B:Z {.pzpodeE:g%Rzo\pe‘B}.
We denote the inversion and the Lie group multiplication by

1

nv:G—=G, g~ g and m:GxG—G, (9,9)—g-7,

respectively, say that A C G is symmetric iff inv(A) = A holds; and recall
the product ruleﬁ

(15) dgpm(v,w) = dgRp(v) +dpLy(w)  Vg,h € G, ve TG, weT,G.

4Confer, e.g., le)|in Sect. m



74 Maximilian Hanusch

We let Conj: G'x G > (g, h) — Conj,(h) € G with
Conj, :=LyoRy-1 for Ry:= m(-,g) and Ly :=m(g,-) VgeGqG,

define Ad, := d.Conj,: g — g for each g € G; and let Ad: G x g > (9,X) —
Ady(X) € g denote the adjoint action. We furthermore let

ad X(YV) :=d.Ad[Y](X) VXeg
for Ad[Y]: G>g— Ady(Y) € g;

and recall that ad X(Y) = [X, Y] holds for each X,Y € g.

3.2. Locally convex vector spaces

Let Fy, ..., F, be (Hausdorff) locally convex vector spaces with correspond-
ing system of continuous seminorms £, ...,Q,. Obviously, the Tychonoff
topology on F := F} x ... x F,, is the (Hausdorff) locally convex topology
that is generated by the seminorms

(16)  m[qu,...,q,): F' > (X1,..., X)) —» max{qp(Xx) |k =1,...,n},

with qx € Qi for k = 1,...,n. Let E be a further locally convex vector space
with system of continuous seminorms 8. We then have

Lemma 1. Let X be a topological space; and let ®: X x Fy X ... X F, —
E be continuous with ®(x,-) n-multilinear for each x € X. Then, for each
x € X and p €, there exist seminorms q1 € Q1,...,qn € Qy as well as
V C X open with x € V, such that

holds for all X1 € F1,..., X, € F,.
Proof. The proof is elementary, and can be found in Appendix O

Corollary 1. Let X be a topological space; andlet ®: X x Fy x ... x F,, —
E be continuous with ®(x,-) n-multilinear for each x € X. Then, for each
compact K C X and each p € B, there exist seminorms q1 € Qi,...,qn €
9, as well as O C X open with K C O, such that

(17) (po(b)(yqua---7Xn)§q1<X1>""'qn(Xn> VyGO

holds for all X1 € Fy,..., X, € F,.
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Proof. The proof is elementary, and can be found in Appendix O

Let us finally recall the following standard result concerning completions.

Lemma 2. Let Fy,..., F,, E be Hausdorff locally convex vector spaces; and
let ®: F} x ... x F, — E be continuous and n-multilinear. Then, ® extends
uniquely to a continuous n-multilinear map ®: F1 x ... X F,, = F.

3.3. Differentiation and integrals

In this subsection, we recall the differential calculus from [2], [6] 8, @]; and
provide some facts that we will need to work efficiently in the main text.

3.3.1. Differentiable maps. Let E and F' be Hausdorff locally convex
vector spaces with systems of continuous seminorms 3 and £, respectively.
Let U C F be open, and f: U — E be a map.

We say that f is differentiable at z € U iff

(Dyf)(z) :=limyo 3 - (f(z+t-v) — f(z) € E

exists for each v € F'. Moreover,

e f is said to be differentiable iff it is differentiable at each x € U; i.e., iff
D,f: U — FE is defined for each v € F.
e f is said to be k-times differentiable for k& > 1 iff

Dy,...onf = Dy (Do, ,(-..(Dy,(f))...)): U= E

is defined for each vq,...,v; € F; implicitly meaning that f is p-times
differentiable for each 1 < p < k. In this case, we define

dP f(vi,...,vp) = dPf(x,v1,...,vp) i:= Dy, .0, f(2)
VeeU, vi,...,v € F,
forp=1,...,k; and let df = d'f, as well as d,.f = dLf for each x € U.
Then,

e f is said to be of class CY iff it is continuous; and we let d°f = f in this
case.



76 Maximilian Hanusch

e f is said to be of class C* for k > 1 iff it is k-times differentiable, such
that

Pf:UXFP =B, (2,01,...,0) = Dy, f()

is continuous for p =0, ..., k.
In this case, dbf is symmetric and p-multilinear for each z € U and
p=1,...,k, cf. [2].
e f is said to be of class C iff it is of class C* for each k € N.

We have the following differentiation rules, cf. [2]:

a) Amap f: F DU — Eisofclass C* for k > 1 iff df is of class C*~! when
considered as amap F' DU’ - Efor '=F x Fand U =U x F.

b) If f: F — E is linear and continuous, then f is smooth; with dlf = f
for each = € F, as well as d*f = 0 for each k > 2.

c) Let Fy,..., E, be Hausdorff locally convex vector spaces; and f,: F 2
U — E, be of class C* for k > 1 and u=1,...,m. Then,

f=fix...Xfm:U—=E; x...xX Ep, = (fi(x),..., fm(z))

if of class C* with dP f = dP fyx --- x dPfy, for p=1,.... k.

d) Suppose that f: F O U - U' C F' and f': F' D U' — F” are of class
C* for k > 1, for Hausdorff locally convex vector spaces F, F', F”. Then,
flof:U — F" is of class C* with

de(f o f) = dp@)f odaf VzeU.

e) Let F,..., F,,, E be Hausdorff locally convex vector spaces, and f: F} X
...x F,, DU — E be of class CY. Then, f is of class C! iff the “partial
derivatives”

Ouf: UXFE,> ((z1,...,Tm), V)

l—)limt_m%-(f(xl,...,xu—I—t-vu,...,:rm) — f(z1,. -y Tm))

exist in £ and are continuous, for u = 1,...,m. In this case, we have

d(xl,.‘.,:pm)f(vh v 7”771) = Z;nzl 8uf(($17 s ,Slim),'l)u)
= df((@1,. ..y 2m), (0,...,0,v,,0,...,0))

for all (z1,...,2y,) €U,and v, € F, foru=1,...,m.
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Finally, for f: F D U — E of class C* for k > 1, we have Taylor’s formula,
cf. [2]

fla+A) = f@) + dpf(A) +.. + gty (AL A)

(18) 1 _
o Jo (L= 9)F b Af(A L A) ds

for each z € U and A € F with z +[0,1] - A C U. Here, [ ds denotes the

Riemann integral, discussed in Sect. below.

3.3.2. Differentiable curves. We now consider the situation where f =
v: I — FE holds — i.e., we have FF =R, and U =1 is an open interval. It
is then not hard to see that ~ is of class C* for k > 1 iff 4, inductively
defined by v(© := ~ an

Y PU(t) :=Timp0 § - (VPO (E+ h) —4PD(1)) Vtel, p=1,...,k,

exists and is continuous for p = 0,..., k. Then, for v € C*(D, E) with ex-
tension 7: D D I — E, we define 4®) :=5®)|, for p=0,...,k, and let
v =~

¥ =7YIp.

Lemma 3. Suppose that v € C*(D, E) holds for k > 1 and D € 3. Then,
7 is of class C*Y iff ~ is of class C* with v%) of class C1.

Proof. The proof is elementary, and can be found in Appendix U

Lemma 4. Let Fy, F5, E be Hausdorff locally convex vector spaces; and
vi: D — W; C Fy be of class C* for i =1,2, for some k > 1. Suppose fur-
thermore that Q: W1 x Wa — E is smooth. Then, §: D 3 t — Q(y1(t), v2(t))
is of class C%; and 6P, for 0 < p < k, can be written as a finite sum of terms
of the form

(19)  a=w( )

1

for some 0<z1,cc,2m <p, 1 <01,...,tm <2, m2> 2,

whereV: V=V, x...xV, — E issmooth with open neighbourhoods V;, C
E;, foru=1,...,m.

Proof. The proof is elementary, and can be found in Appendix O

SWe have yP)(t) = dPy(1,...,1) for p=1,...,k, t € I.



78 Maximilian Hanusch

Corollary 2. Let F,E be Hausdorff locally convex vector spaces; and sup-
pose that v1: D — Wy C F is of class ct, vo: D — Wy C F is of class Ck
for some k > 1, and that 41 = Q(y1,72) holds for a smooth map Q: Wy X
Wo — E. Then, v, is of class C*T1.

Proof. This follows inductively from Lemma [3| and Lemma O

Corollary 3. Let I, Fy, E be Hausdorff locally convexr vector spaces; and
vi: D — W; C F; be of class C* for i = 1,2, for some k > 1. Suppose fur-
thermore that 2: Wy x Fy — E is smooth, as well as linear in the second
argument. Then, §: D 3 t — Q(y1,72) is of class C*; and 6P, for1 < p < k,
can be written as a finite sum of terms of the for

([81]mQ) (’717 7{21)7 s a7£ZM)77§q))
for certain 0<2z1,eo,2mqg<p, m>1.

Proof. Lemma 4] shows that § is of class C*; and the rest follows inductively

from@@,@ [l

Lemma 5. Let Fy, Fs, E be Hausdorff locally convex vector spaces with sys-
tems of continuous seminorms Q1, s, V. Suppose that Wi C F} is open; and
that Q: Wy x Fy — E is smooth, as well as linear in the second argument.
Then, the following statements hold:

1) Forp € B and u € N fized, there exist m € Q1 and q € Qo, such that for
each [r,r'] € 8 and v € C*([r,r'], W1) with m¥% (y) < 1, we have

pP(Q27, ) < aP(¥) Ve C¥[r,r],F2), 0<p<u

2) ForpePB,ueN, andy € C*([r,7'],W1) fized, there exists some q € Qo
with

pP (v, ¥)) < aP(¥) Ve O ([r,r'], ), 0<p<u
Proof. The proof is elementary, and can be found in Appendix O

3.3.3. The Riemann integral. Let I’ be a Hausdorff locally convex vec-
tor space with system of continuous seminorms £, and completion F. We

6Evidently, [0;]™( is continuous, as well as multilinear in the last m + 1 argu-
ments.
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denote the Riemann integral of v € CO([r,+’], F) by [~(s)ds € F. We fur-
thermore define

S () ds = [ Al (s) ds
(20) Jiiv(s) ds := — f;*y(s) ds
Jiv(s)ds =0

for r <a<b<r' celrr'] € R Clearly, the Riemann integral is linear,
with

(21) f ()ds—f v(s) d5+fb’y ds Vr<a<b<e<r,
(22) ﬁ(f v(s) ds) <f q(v(s)) ds Vitelrr], qe Q.
It is furthermore not hard to see that

(23) I e CY[r,"],F) with I'=~
holds for T [r,r] 3+ [F~(s)ds
More importantly, we have, cf. [2]

24) () =)= [A(s)ds€ F Vte '], v e Cl[r,r'], F).

From this, we obtain

[ (s) ds = T(o(¢')) — T(o(6) 'fatrom( ) ds
fg (s))ds

for each v € C%([r,7'], F), and each g: [¢, '] — [r,7] of class C! with o(£) = r
and o(¢') = r’. Moreover,

(25)

IIE ||

Lemma 6. For each v € CY([r,7'], F), we have
90 = y(r) < [la(3(s))ds  Vie[nr], geQ.
Proof. Combine (22) with ( . O

Remark 1 (Banach Spaces). Suppose that E, F are Banach spaces; and
that f: F D U — E is of class C™* for some n > 1. Then, using Lemma
and Lemma[6, one can show that f is of class C™ in the Fréchet sense, cf.
also [9]. In particular, if f is of class C*°, then f is smooth in the Fréchet
sense. i
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Lemma 7. Let F,E be Hausdorff locally convexr vector spaces; and let
f: F2OU — E be of class C?. Suppose that v: D — F C F is continuous
att € D, such that limp_o 5 - (y(t + h) — y(t)) =t X € F exists. Then,

limy, 0 4 - (F(y(t+ 1) = F(3(1)) = dy F(X).
Proof. The proof is elementary, and can be found in Appendix O

We finally need to discuss the Riemann integral for piecewise continuous
curves:

e We let CPO([r,7'], F) denote the set of piecewise CO-curves on [r, 7] € &;
i.e., all y: [r,7'] — F such that there exist r =ty < ... <t, =1’ as well
as y[p] € CO([tp, tps1), F) for p=0,...,n — 1 with

’Y’(tp,tpH) = W[P”(tp,tp“) Vp=0,...,n—1

e We let CoP([r,r'],F) denote the set of piecewise constant curves on
[r,r'] € R; i.e., all y: [r,7] = F, such that there exist r =ty < ... <t, =
r’ as well as Xg,...,X,,_1 € F with

ity toin) = Xp Vp=0,...,n—1.

We clearly have CoP([r,7'], F) C CP°([r,r'], F); and for v € CP°([r,+'], F)

as above, we define

(26) J(s)ds = 32575 [4lpl(s) ds.

A standard refinement argument in combination with then shows that
this is well defined; i.e., independent of any choices we have made. We define

f; v(s) ds and [ ~(s) ds as in (20)); and observe that is linear and fulfills
(21).

3.4. Some estimates for Lie groups

In this subsection, we collect some elementary estimates concerning Lie
group operations and coordinate changes that will be relevant for our argu-
mentation in the main text. Let thus G be an infinite dimensional Lie group
(in Milnor’s sense) that is modeled over the Hausdorff locally convex vector
space F, with system of continuous seminorms P8 in the following.
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3.4.1. Lie group operations. We observe that Ad: G x g — g is smooth
(continuous) by [a)] because Conj smooth with

Adg(X) = d(gve)Conj(O,X) Vge G, X eg.
We thus obtain from Lemma [I] and Corollary [I] that:

e For each q € B3, there exists some q < n € B, as well as V' C G symmetric
open with e € V', such that

(27) «q(Ady (X)) <.n(X) VgeV, Xeg.

e For each n € B, and each compact C C G, there exists some n < m € L,
as well as O C GG open with C C O, such that

(28) noAd, <.m VgeO.
Similarly, the maps

(29) w:VxE g, (#,X) = dz-1 () Rig-1 ()1 (deE7H (X))
(30) wv:Vxg—E,  (2,X)~ (dz-1(n)ZE o deRa-1(y)) (X)

are smooth, as they can be written as
(31) w(z, X) = dz,2) (0, X) and v(z, X) = d(z,¢ (0, X)
for the smooth maps

Q:VxV—G, (z,y) = m(E(y), [E )]
T:VxU-— E, (z,9) —

Thus, by Lemmal[l] for each v € 93, there exists some V > tv € P with v < v,
such that

(32) D(w(z, X)) < w(X) Vz€Bp1, XEE
(33) o(v(z, X)) <o (X) V2 €B.w1, X E€g.

More generally, we obtain from Eﬂ and Eﬂ that w is smooth with
(34) wln] == [01]"w: V x E" g

continuous as well as multilinear in the last n + 1 arguments, for each n € N.
For each p € N and v € 3, there thus exists some V < tv € ¥ with v < 1o,
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such that
(35) (.U ow[q])(m,Xl, . ,Xq+1) < I’U(Xl) o m(Xq+1)

holds for all # € By 1, X1,...,Xg+1 € E, and 0 < ¢ < p.

Finally, since inv: G — G is smooth, for each m € 3, there exists some V <
n € P with m < n, such that mod,(Eoinvo="1) <n holds for each = €
Bn,1. We thus obtain from Lemma |§| that

(36) moZoinvoE~! <n holds on B,
just by considering the curve yx: [0,1] 3 ¢+ ¢ - X for each X € By 1.

3.4.2. Coordinate changes. For h € G, we define Z;,(g) := Z(h~ ! g)
for each g € h - U; i.e.,

Zn] Hz) =h- 27 (2) VeV,

Let now C C U be a fixed compact:

e We choose (NJ,UQU open with C C C and e c U, such that (NJ-UQU
holds.
e We let U’ := Z(U), and observe that

ECxU 5V,  (Gu)— (Eom)EE"))

is defined and smooth; i.e., that © = 05¢: CxU x E— Eis continuous,
and linear in E.

Let now p € B be fixed:
e Corollary |1, applied to ® =0, X = QX U, F; =FE, and K= C x {0},

provides us with an open subset O C C' x U’ containing C x {0}, as well
as u = q; €33, such that
(poB)(z,X) <u(X) VzeO, Xe€E

holds. We fix an open neighbourhood W C U of e with C- W x Z(W) C
O, and obtain

(37) (po©)(g-hE(9), X) <u(X) VgeC, heW, qgeW, XeE.
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e Here, we can assume that Z(W) is convex; and choose V' C W symmetric
open with e € V and V - V C W. Moreover, since ‘B is filtrating, we can
additionally assume that B, ; C Z(V') holds.

We obtain
Lemma 8. Let C C U be compact. Then, for each p € B, there exists some

p <uePB, and a symmetric open neighbourhood V.C U of e with C-V C U
and By1 C E(V), such that

[1]

p(E(q) — E(¢)) < u(Egn(q) — Egnld)) Vg, d €g-V, heV

holds for each g € C.

Proof. We choose V, W, u as above. Then, for g € C,q,¢’ € g-V,and h eV
fixed, we define

o 1v:=Zgp(q), ' :=Egn(d) € E(V-V) CEW),
¢ 0:[0,1] = E(W), t—a +t (z—1'),

o v:=¢(g-h,0).

We conclude from and Lemma @] that

p(E(q) —E(¢) = p(&(g - h,0(1)) — E(g - h,5(0))
=p(v(1) = 7(0)) = p( [ 4(s) ds)
=p([O(g-h,d(s),8(s)) ds)
< [u(d(s))ds = [u(z —a')ds
= u(Egn(q) — Egn(d)
holds, which shows the claim. ]

3.5. The evolution map

We now introduce the central object of this paper — the evolution map —
and discuss its most important properties.

3.5.1. The right logarithmic derivative. The right logarithmic deriva-
tive is defined by

§": CHD,G) — C%D,g), prr d,Ry-1(1) VDe3.
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Then, for each 4 € CY(D,G), g € G, 3> D' C D, and each g: 3> D" — D
of class C', we have

6" (- g) = 96" (1)
(38) 6" (ulpr) = 6" (1)l

6" (poo)=20-(6"(n)o o).

Moreover, for p,v € C1(D, G), we conclude from the product rule that

(39) 8" (p-v) = 38" (1) + Ad, (67 (v))

holds; thus,

(40) 0=206"(u 'p) = 6" (") + Ady1 (5" ()
— 8 (u") = —Ad, (67 (1))

(41) " () = 8"(u ) + Ad,-1 (87 (v)).

Here, we denote i~ := inv o i1 for each u € C°(D, g) in the following. Then,

combining with the second line in , we obtain
(12) 6T = Adya(67W) — (W) Vv e CYD,G).
We conclude that
Lemma 9. Let pu,v € CY(D,G) for D €7 be given. Then, we have
0" (n) = 6" (v) — v=yp-g holds for some g€ G.

Proof. By (38), we have 6" (u) = 6" (p - g) for each g € G; which shows the
one direction. For the other direction, we fix 7 € D, define o := u~'v - g for
g :=v (1) - u(7), and obtain

@)

57 () B 57 (1) B o,

thus, & = 0 as dyR,-: is bijective for each g € G. For each [r,r'] C D with
7 € [r,7'] and a([r,7']) C U, we thus obtain from that (2o )|, =0
holds; so that the claim follows from a standard supremum-contradiction
argument. [l

We furthermore obtain

Lemma 10. Let D € J and k € N be fived. Then,
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1) 8" (u) € C*(D,g) holds for each u € C*1(D,G).
2) p € C*Y(D,G) holds for each u € CY(D,G) with 6" (1) € C*(D, g).

Proof. By the second identity in , in both situations it suffices to show
that for each t € D there exists an open interval J C R containing ¢, such
that the claim holds for v := u|pns. Moreover, by the first identity in ,
we can additionally assume that im[r] C U holds, just by shrinking J if
necessary. We let v := = o v, and obtain

e 6" (v) = w(y,%) for w defined by (29)); so that [I)]is clear from Lemma
o 4 =uv(v,0"(v)) for v defined by ; so that [2)|is clear from Corollary

This establishes the proof. O

Finally, if H is a Lie group, and ¥: G — H a C'-Lie group homomorphism,
we immediately obtain

(43)  O"(Wou)=d.Wed"(n)  VueC'(D,H), Ded.
3.5.2. The product integral. We define

D =, eq Opry With Dppp = 67(CH([r,7], G))
for each [r,r'] € &.
Then, Lemma |§| shows that Evoly, ,.: Dy, = C!([r, '], G) given by
Evoly (07 (1) = -5 r) Ype CH[rr).G), ) € 8
is well defined; and we let
Evolﬁ,,r,} = Evol\gﬁml] for @ﬁ,,r,} = D) N C*([r,7'], 9)
evolﬁqm,]: @IFM,] > ¢ — Evolj,.,.1(9)(r') € G

for [r,7'] € & and k € NU {lip, 0co}. Moreover, for k € NU {oo} and [r,r'] €
R, we define

CL([r, 1], G) == {p € C*([r,7'), G) | u(r) = e};
and obtain that
Corollary 4. For each k € NU {lip, 00} and [r,7'] € R, we have

Evolf. .i: DF. . = CEY([r, ], G).

[ =]
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Proof. The claim is clear from Lemma [10}f2)] O

The product integral is given byﬂ

Jod=Evolf, y(dlg) ),  Sé:=JT 6 Jigi=e
fro:nr1at=§¢

r

for each ¢ € @ﬁ jwith k€ NU {lip, 00}, 7 < a < b <7’ and ¢ € [r,7’]. Then,

a) We conclude from that
§ro-Jow =50+ Adpy(¥) V9 € Dy, € [0,
b) We conclude from that
[ o] ' [510] = SiAdgr (0 =6) V6,0 €D, tE [
¢) We conclude from that
[550]7" = 5 ~Adygr -1(9) V€D, telnr]

d) Forr =ty <...<t,=r"and ¢ € Dy, we conclude from the first two
identities in that

Jio=J3 6§ 6 S o Vte (tytpr], p=0,...,n— 1.

e) For o: [(,¢'] — [r,7'] of class C', we conclude from the last identity in

that
§2o=1[F20 (o0 [§29¢] V€D

f) We conclude from that for each C'-Lie group homomorphism ¥: G —
H, we have

Vo f*hp=f"dVog V€D

"Observe that the first expression is defined by the second equality in as
well as Lemma
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Example 1. For [r,r] € R fized, we let o: [r,r'] = [r,7'], t—=r+1" —t;
and define

D 2i0(¢) =0 (po0): [rr'] 2t = —p(r +1" — 1) Vo €Dy,
We let [¢,0'] = [r,7’]; and obtain from [e)] that

=50 o7 ino()] - [§7 6] holds, thus  [f ¢! = f ino(@),
which will be useful for our argumentation in Sect. [7.2.3, T

Lemma 11. Let [r,r'] € &, and k € NU {lip, 0o} be fized; and suppose that
we are given € CF([r,r'],g) andr =ty < ... < t, = ', such that Blit, t,41] €

Qﬁp,tpﬂ] holds for p=0,...,n — 1. Then, we have ¢ € @f“m,] with
ji¢:j§p¢-j§g_l¢-...- no Vte (tytyr], p=0,...,n—1.
Proof. The proof is elementary, and can be found in Appendix [A:7] O

3.5.3. Semiregularity. We say that G is C*-semiregular for k € N LI

{lip, 00} iff D, ,; = C*([0,1], g) holds. Then,

Lemma 12. G is C*-semireqular iff
@fcm,] = C*([r,7'], 9) holds for each [r, 7] € R

Proof. The one direction is evident. For the other direction, we fix [r, '] € &,
and let
o: [r,7'] = 10,1], tt—r|/|r —r|

Then, for ¢ € CF([r,7’],g) given, we define ¢ :=|r' —r|-¢poo ' e
C*([0,1],9), and choose v € C**+1([0,1],g) with 67 (v) = 4. Then, the last
identity in gives

S (voo)=|r'—r|7t- (Yoo) =,
which proves the claim. O

We say that G admits an exponential map iff ¢x/|o,1] € Do) holds for
each constant curve ¢px: R3¢t +— X € g; i.e., iff

exp:gBXHj(l)¢X€G

is defined.
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3.5.4. Continuity. We say that evol[ - is CP-continuous for p < k € NUJ
{lip, 0o} (we let 0 <lip <lip < 1) and [r '] € R iff it is continuous w.r.t.
the seminorms {.p3 }pep, s<p. We say that G is

e p.k-continuous for p < k iff evolfm,,] is CP-continuous for each [r,r'] € R,
e k-continuous iff G is k.k-continuous.

Then,

Lemma 13. We have Ad,(¢) € C*([r,r'],9) for each p € C*1([r,+'],G),
¢ € C*([r,r'],9), and k € N {lip, co}.

Proof. Since Ad: G x g — g is smooth, the claim is clear for £ € N U {oc0}.
The case where k = lip holds is proven in Appendix O

Lemma 14. Let[r,r'] € &, k € NU {lip, 0}, and ¢ € ’DE“ be fized. Then,
for each p € P and s <X k, there exists some p < q € P wzth

PP (Ad(ge -1 (1)) < qP () Vi e CF([r,r'],9), 0<p<s.

Proof. Decomposing [r, '] if necessary, we can assume that im[ " ¢] is con-

talned in the domain of a fixed chart =. The claim then follows from Lemma
applied to © = Ad(invo Z71(:),-), u=s, and the CS-curve vy =Zo

jr d) D
We obtain that

Lemma 15. G is p.k-continuous iff evolf“o,l] is CP-continuous at zero.

Proof. The one direction is evident; and the other direction follows from
Lemma Lemma and once we have shown that evolfm,] is CP-

continuous at zero if evolﬁ, - is CP-continuous at zero. For this, we apply
to the map

0: [0,1] = [rr'],  te vttt —rf;

and conclude that evol[r v = evol]fm] o 7 holds, for the CP-continuous map

1186@
n: C*([r,1'],9) = CH([0,1],9), ¢ d-(po0) =] —1| (¢00).

From this, the claim is clear. ([
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3.6. Supplementary material

In this subsection, we provide the proofs of the supplementary statements
made but not verified in Sect. 2] First,

Lemma 16. Suppose that G is abelian; and let k € N U {lip, co} be fized.
Then, G is k-continuous iff G is 0.k-continuous.

Proof. The one directions is evident. For the other direction, we suppose
that G is k-continuous. Then, p € P given, there exist q € P and s <Xk,
such that

(44) () <1 for Y eDp S (poE)(fv) <1

Then, for QSE’DFO 1] with .qoo(¢) < 1, we choose n >1 such large that
43, (¢) < n holds; and define

Yy :=¢pop, for ,:[0,1/n]>t—p/n+tecp/n,(p+1)/n]
Vp=0,...,n—1.

m we have j¢|[p/n (p+1)/n] = § ¥p for p=10,...n — 1; and obtain from
and.tha
o= Ftnt-woo §t0= 50" b1+ ...+t
(45) :jél/n‘(¢o+---+¢n71)OQ

¢e©%ﬂ

holds, for p: [0,1] 5t~ t/n € [0,1/n]. Then, @ gives ¢3,(¥) < 1; so that
provides us with

(poB)(fo) = (poB)(Jv) <1

The rest is clear from Lemma d

Second, let us say that G is L'-continuous iff evol([)r - is continuous w.r.t.
the seminorms (12)) for each [r,r’] € K. Then,

Lemma 17. G is 0-continuous iff G is L'-continuous.

81t is obvious from the definitions that Ad, = idy holds for each g € G if G is
abelian.
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Proof. The one direction is evident. Let thus G be 0-continuous, fix p € J;
and choose q € B with

(46) aw(¥) <1 for peDf, = (poE)(J¥) <1

Then, for ¢ € ’D[[)T ] with .qf(cb) <1, we define

Al = (0,2, te 22 (2—.qp(0)) + [y -a(6(s)) ds

and consider the C!-diffeomorphism o := A71: [0,2] — [r,7’]. Then, (¢ =
§ 4 holds for ¢ := ¢ - (¢op) € 9[0,2] by Wlth

o= Ao =2 @)/l —rl+.a(¢oo) "t <.alpoo)
We thus have .qo0 (1)) < 1; so that the claim is clear from ([46)). O
Finally, let us collect some properties of the exponential map.

Remark 2.

1) Suppose we have ¢px|jo.1) € Djo,1) for some X € g. Then, Lemma (and
shows that ¢X’[0,n} € Do,y holds for each n > 1; and, @ applied to
0:[0,1] = [0,s-n], tr—s-n-t for0<s<1, gives

8'”¢X|E:z|j(1]¢5.n.xEexp(s-n-X) V0<s<l1.
We thus have R>q - X C dom|exp] with
(47) exp(t - X) jo bx Vt>0.
It follows that R 5 t — exp(t - X) is a smooth Lie group homomorphism,
cf. Appendiz[A.9.

2) Suppose that G is C™°-semiregular; and that evolTy o1] s of class CP w.r.t.
the C*°-topology, for somep € N U {oo}. Then, exp is of class CP, because

Poo (Px) = p(X) VpeP, seN, Xeg

shows that g 5 X — ¢x € C*°([0,1],9) is smooth.
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3) If G is abelian with exp: g — G of class C1, then we have (cf. Appendiz
A. 10

[ o=-exp([¢(s)ds) foreach ¢ e C°([0,1],9)
with fg ¢(s)dseg for each te]|0,1];

which is obviously continuous w.r.t. the seminorms oo, p forp € P. 1
4. Auxiliary results

In this section, we prove further continuity statements for the evolution map;
and discuss piecewise integrable curves.

4.1. Continuity of the evolution map

Lemma 18. Suppose that G is p.k-continuous; and let [r,7’] € & be fixed.
Then, for each p € 9B, there exist p < q € P and s < p, such that

(@) <1 for geDE = (peE)(flo) <L
Proof. By continuity, there exist p < q € B and s < p, such that
(48) . (¥) <1 for ¢ eDf = (poZ)(fry) < 1.

Let now ¢ € Qﬁr'} with .q3(¢) <1, and r <7 <7’ be fixed. We define

Y := ¢|[.- as well as

o: [r,r'] = [r,7], t—r+lt—r|-c for e

Then, (T ¢ = {1 = {6 (¢ op) holds byle)| with ¢- (¢ 0 0) € @f] as well
as

Aol (0 0) = (e (¥ 0) 2 ie(@) < 1.
We thus obtain from that
(poZ)(J7¢)=oE)Jv)=(poE)(fo-vop) <1

holds, from which the claim is clear. O

We inductively obtain
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Lemma 19. Suppose that G is k-continuous; and let [r,r'] € R be fized.
Then, for each p € P and u X k, there exist p < q € P and s =X k, such that

(0) <1 for €D, — pi(Eofre) <1

Confer [3] for the case that G is C*-semiregular .

Proof. By Lemma [I§ we can assume that the claim is proven for some
0 < u < k. In particular, there exist m € 8 and o < k, such that

~y:=ZEo Evolfﬁm,]: {¢p € ’Dﬁﬂ |.m3 (¢) < 1} — CF (0], V)

pr—>Zo [t
is defined. Let thus ¢ € [ ] with .m2_(¢) < 1 be given. Then,
e We have ~(¢)™M) ( ((b) ¢), for v defined by (30); so that Corollary I
shows that 'y(¢) El 1 @i(¢) holds, with
it ( ) (v(¢ @)D ()l ¢(qi))
for certain 0 < z[i|1,..., 2[i|m,,¢; <uand m; > 1, fori=1,...,d.

e For p € P fixed, Lemmal[l] provides us with an open neighbourhood V' C V
of 0, as well as v € P, such that

(p o [01]™v) (w,v(¢) F) . y(g) F) | gla))
m(7 )m( (¢)( 2[i]m ) (¢(ql)
[0l (¥( M”“ 0l ()

holds, for each x € V and i =1,...,d.

(49) <
<

We choose V' < v € B with d - w0, p, m < v; and apply the induction hypothe-
ses in order to fix v < q € P and o < s <X k, such that

Bel@) <1 for oeDE = oi(y(6) =vi(So 1) <
In particular, then for ¢ € @ ] with .q3,(¢) < 1, we have
e im[y(¢)] CV and .q% (¢) < 1; so that gives
P(Y(9)MFY) < d- il (9) < 0 (0) < a(9).

o p2(v(9)) < v (v()) < 1.
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For § := max(s,u) and ¢ € @f“r w1 With 0>, (¢) < 1, we thus have

p(v(9)H) <.gi(e) < wa5(9) <1 and i (v(9) < 1;
thus, puF!(y(¢)) < 1. The claim thus follows inductively. O
We furthermore obtain that

Lemma 20. Suppose that G is p.k-continuous; and let [r,r'] € R be fived.
Then, for each p € P, there exist p < q € P and s <X p, such that

Ael@) <1 for oD = (poS)(f10) < [ alé(s) ds.

Proof. We choose v as in for v = p there; and let q, s be as in Lemma
for p = w there (i.e., we have p < v < g). Then, for ¢ € D*([r,r'], g) with

5. (¢) <1, we have (0o Z)( [T ¢) < 1by Lemma and obtain from
that for v := Zo p with p:= [ ¢ we have

p(¥) = p(v(7,6" (1)) < w(d) < q(0).

The claim thus follows from Lemma [6l O
4.2. Estimates in charts

In this subsection, we prove certain statements that we will need for our
differentiability discussions in Sect. |8 We start with a variation of Lemma

14

Lemma 21. Suppose that G is k-continuous; and let [r,7'] € R be fixved.
Then, for each p € P and u X k, there existp < m € P and s <X k, such that

B (Adgg g1 (9)) <amP(v) Vo eCH([rr']g), 0<p<u
holds for each ¢ & @ﬁ,’r,} with .3 (¢) < 1.
Proof. Since ‘B is filtrating, Lemma applied to
N:Vxg—g, (z,X) — Ad((inv o 271)(z), X)

provides us with some p < q € B, such that for each ¢ € ”D’[‘; - with .qi (E o
I ) <1, we have

PP (Adppe 511 (¥)) < waP(¥) Vi e CF([r,r],9), 0<p<u
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By Lemma there exist ¢ < m € P and s < k, such that .q% (E of" gb) <1
holds for each ¢ € DF . with .m$_(¢) < 1; from which the claim is clear. [0

[r,r']

Together with Lemma [19] this shows

Lemma 22. Suppose that G is k-continuous; and let [r,7'] € R be fized.
Then, for each p € B, there exist p < m € P and u = k, such that

(o Z) ([Tl ST v) < [T em((s) — o(s)) ds
holds for all ¢, € @’fm,] with «m3 (¢), mi (Y — @) < 1.
Proof. We choose p < q € B and s < k as in Lemma Then, Lemma
provides us with some g < m € B and o = k, such that for each ¢ € @ﬁ’w]
with .m&_(¢) < 1, we have
(50)  «q”(Ad[p g1 (1) < -mP(x) Vx e C*(r,r"],g), 0<p<s.
We let u := max(o,s); and recall that, cf.
(51) [ @) 5 0] = §7 Adppe g1 (& — 9) Vierr], 6,9 €Df,,
holds. For ¢, € Qﬁ',r’} with .m3 (¢), «mi (¢ — @) < 1, we thus have

oo (Adjpe g1 (¥ = 9)) < m (Y —¢) <mi (¥ —¢) <1

so that the claim is clear from Lemma , and for p = 0 there. 0O

We conclude that

Proposition 1. Suppose that G is k-continuous; and let [r,r'] € R be fived.
Then, for each p € B, there exist p < m € B and s X k, such that

PE(ST0) —E(S79)) < [T m(d(s) — ¢(s)) ds
holds for all ¢, € @ﬁ’r,] with ;i (@), mS (¥), mi (¢ —¢) < 1.

Proof. We let p <u € P and V be as in Lemma [§ for C = {e} there, i..,
we have B, ; CE(V). By Lemma there exist u < q € ¥ and o < k, such
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that

g% (x) <1 for XG@’“, - uoZ)(frx) <
= PxeV

Then, for ¢,v with .q2 (¢) <1, .q% () <1, Lemma |8 applied to ¢ =
o, d =10, h=1"¢pecV,and g = e gives

PE(ST9) —=(S7 )) (E

We choose u <m €P and u <k as in Lemma for p = u there, define
s := max(o, u) and can additionally assume that p < g < m holds. Then,
for ¢,¢ € ”D[M} with .S (@) <1, .m (v), mi (¢ — @) < 1, we have

P(E(ST ) —E(S79) < o S)([J7 0] I7¢]) < [T em(i(s) — é(s)) ds
by Lemma O
We finally observe that

Lemma 23. Suppose that G is k-continuous; and let ¢ € Dy, be fived.
Then, for each open neighbourhood V.C G of e, there existm € P and s < k,
such that

mi(b—¢) <1 for weDE, — Pyefto V.

Proof. We fix V < p € B; and choose q € B, s < k as in Lemma Then,
Lemma provides us with some m € ‘B3, such that

o (Adpe -1 (x)) < am3(x) Vx €D,

holds. Then, for each ¢ € Q[r ] with «mS_(¢ — ¢) < 1, we obtain from
and Lemma |E| that

(o) ([J1 0] [N10]) = (poD)(Jr Adje g (b —9)) <1 Ve [rr]

holds; thus, [{*¢]7'[{*¢] € V, implying (T € (*¢ V. O
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4.3. Piecewise integrable curves

For k € NU {lip,00} and [r,7'] € &, we let DP*([r,7'],g) denote the set
of all ¢: [r,7’] — g, such that there exist r =1ty < ... <t, =1 and ¢[p] €
oF with

[tpvtp+1]
(52) ¢’(tp,tp+1) = ¢[pH(tp,tp+1) vp = 07 A 7n - 1'

In this situation, we define {7 ¢ := e, as well as

(33)  fro:=1{1 ol i dlp—1]-...- §3 [0] Vit € (tp tpia]-

A standard refinement argument in combination with then shows that
this is well defined; i.e., independent of any choices we have made. It is
furthermore not hard to see that (cf. Appendix for ¢, € DP*([r,7'], g),
we have Adgs 51 (¢ — ¢) € DPF([r,7'],g) with

(54) Uiﬁﬁ]_l[ﬁﬂ :Jﬂf«Aduw]fl(“J)*aﬁ) Vite[rr].

We now finally will extend Lemma for the 0.k-continuous case to the
piecewise integrable setting. For this, we fix (a bump function) p: [0,1] —
[0, 2] smooth with

ploy >0  and fol p(s)ds=1
(55) as well as

pP0)=0=p®(1) VkeN.
Then, [r,7'] € Rand r =ty < ... < t, =1’ given, we set
oo lptprt] = 102, £ plt—tl/ltpr — ) Vp=0,...n—1
and define p: [r,r'] — [0, 2] by
Plit, tyin] = Pp Vp=0,...,n—1.

Then, p is smooth with p*) (tp) =0 for each k€ N, p=0,...,n; and
shows that

o: [r,r'] — [r, '], t— 7"—|—f: p(s) ds

holds, with o(t,) =t, for p=10,...,n — 1. We are ready for
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Lemma 24. Suppose that G is 0.k-continuous for k € N U {lip, co}; and
let [r,r'] € R be fized. Then, for each p € B, there exists some p < m € B,
such that

Moo(¢) <1 fm“ ¢€©Pk([ ’] g)
= (eB(To < [m

Proof. We let p < q € be as in Lemma (s =0); and define m:=2-
q. Then, for ¢ € DPF([r,7'],g) with .mu(¢) < 1 given, we choose r = tg <

.. <tp=r1"and ¢[0],...,¢[n — 1] as in (52)), and fix u[p]: I, — G of class
C**+1 (I, C R an open interval containing [tp,,+1]) with

¢lp) = ¢lpllg, 1,0 for  ¢lp] = 6" (ulpl) Vo<p<n-L1

We construct p and g as described above; and define g[p] € C*°(I,,R) by

Q[P]’(—oo,tp)mlp = Q(tp) Q[P”[tp,t,,+1 = Q’[tp,tp+1]
Q[PH(thrl co)NI, = = o(tp+1)

for p=0,...,n—1. Tt follows that (cf. Appendix [B.2) ¢ :=p-(¢op) €
C*([r,7'], g) holds, with

(56) i, 4,0 = 0" (ulpl 0 olplli, ) €DE . Yp=0,..,n—1.
Then, Lemma |11 shows that ¢ € ’Dﬁ, - holds, with
Siv =11 p-@lloo)-§i2  p-(¢lp—1oco) ...  fip-(8[0] 0 0)

(57) '5%@ - §ir ol — 1]~ § 0[O
= ¢

for each t € (tp,tp+1] and 0 < p < mn — 1. Since
oo (1)) = 1/2 - imoo (1) < amog (@) <1

holds by construction, Lemma [20| provides us with

02 (520 ¢) D@ (poz)(Lv) < [ aa(w(s)) ds
< [Fam((s)) ds = [P m(g(s)) ds;

whereby the last step is due to and . O
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5. Local p-convexity

In this section, we show that O-continuity can be encoded in a property of
the Lie group multiplication. More specifically, we will show that

Theorem 1. G is 0-continuous iff G is locally p-convex iff G is 0.00-
continuous.

Here, G is said to be locally p-convex iff for each u € 3, there exists some
u <o €, such that

(58) o B)E X1 -...-E7HX,)) <o(X1) + ... +0(Xn)

holds for each X1,...,X,, € F with o(X;) + ...+ 0(X,) < 1. According to
Theorem (1}, this definition does not depend on the explicit choice of =.

For instance,

Example 2.

1) Let ' C E be a discrete subgroup. Then, E/T is locally p-convex, cf.
Appendiz [C1]

2) Banach-Lie groups are locally p-convex, cf. Proposition 14.6 in [3] or
Appendiz [C3,

3) The unit grou]ﬂ A* of a continuous inverse algebra A fulfilling the con-
dition (x) from [5] is locally p-convez, cf. Appendiz[C.5 We recall that
the condition (x) imposed on the algebra multiplication in [J] states that
for each v € B, there exists some v < 1o € P with

(59) o(ay ... -ap) <w(ay)-... w(ay) Vai,...,ap €A
foreachnZlH I

We break up the proof of Theorem [I| into the two directions.

9Confer [] for a proof of the fact that A* is a Lie group.
10Tn the Theorem proven in [5], (A, +) is additionally assumed to be Mackey
complete. We will discuss this condition in Example in Sect. @
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5.1. The triangle inequality

We first show that holds if G is 0.co-continuous. For this, we recall that
(60)  6"(Eoy) =w(v,Y) vy e Cl([r,r],V), [r,r] € &
holds, for w defined by ; and conclude from that

Lemma 25. For each m € B, there exists some V < o0 € P with m < o,
such that

m(6"(E7 o)) < o(¥) holds for each Y€ Upien C([r,r'], E)
with im[y] C B, 1.

Proof. Up to renaming seminorms, this is clear from and . O
We obtain that

Lemma 26. G is locally p-convex if G is 0.00-continuous.

Proof. Foru = p € P fixed, we let p < m be as in Lemmal[24for [r,r'] = [0, 2]
there; and choose m < 0 € P as in Lemmal[25 Then, for X1, ..., X, € E with
o(X1)+...+0(Xy) =:e <1 fixed, we define Y, := X,,_, for p=0,...,n —
1 as well as Y, :=0. We let ) #J C {0,...,n} denote the set of all indices
0 <p <n with o(Y,) =0; and denote its cardinality by d:=|J| > 1. We
define

o(Y,) foreach pe{0,...,n}—J;

and let tg:= 0, as well as t,, :=dp + ... +0p—1 for p=1,...,n+ 1. We fur-
thermore consider

{1/d foreach pel
Op 1=

¢p) :=6"(E  onlp])  with Al [ty tpra] it (E— 1) 0, Y
for p=0,...,n; and define ¢ € DP>([0,2],g) by @|[14c2 = 0, as well as
Olit,torn) = PPty by 00) Vp=0,...,n

Then, 00 (v[p]) < 1 holds by construction for each 0 < p < n; so that Lemma
25] shows

_ 0 for pel
'mOO (¢|[tp7tp+1)) S 617 ! ’ O(va) = {

1 for pe{0,...,n}—J.



100 Maximilian Hanusch
We thus have .my(¢) < 1, as well as

Jom(e(s)) ds =3 g0, ny—s S -m(8[p](s)) ds
= ZpE{O,...,n}—J 517 - U(Xl) St O(Xn) =&

so that Lemma 24] shows

e>(uoZ)(f¢)
= (o B) ([0 ol ... §i2 9l0])
=WoE)(E(Ya) ... - E71(YD))
= (uo E)(E_l(Xl) o ETHXG)),

from which the claim is clear. O

5.2. Continuity of the integral

Let us next show that G is 0-continuous if it is locally p-convex. For this,
we recall that

(61) Ay =uv(vy, ) holds for v:i=Eo j o,
for each ¢ € ’D[r - with {7 ¢ € U; and conclude from that

Lemma 27. For each o € P, there exists some V <t € P with o < to,
such that

(00Z)(fr o) < [70(g(s)) ds holds for each ¢ € Dpp
with J ¢ E= H_l Bm71).

Proof. We choose 0 <t € as in for v = o0 there. Then, the rest is
clear from and Lemma @ (|

In addition to that, we observe that

Lemma 28. For eachto € P and ¢ € Dy, 1, there existr =tp < ... <tp =
r’ with

0Z)(I7, Slity i) <1 Vp=0,...,n—1.
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Proof. We fix p: I — G (I CR open with [r,7'] CI) of class C! with
0" ()|, = b, choose d > 0 such small that Kq = [r —d,r’" +d] C I holds,
and define

a: Ix T3 (ts)r ut) uls)™ eaq.

Since [r,7'] is compact, and since « is continuous with «a(t,t) = e for each
t € [r,7'], to each open neighbourhood U of e, there exists some 0 < dy < d,
such that

U>a(t+s,t)= 16" (n) Vtelrr], 0<s<dy

holds; from which the claim is clear. O

We conclude from Lemma 27 and Lemma 28] that

Proposition 2. Suppose that G is locally p-convex. Then, for each p € B,
there exists some p < q € B, such that

[a(p(s))ds <1 for ¢ € DP[r,7'],9)
= (PO: (§20) < [7.a(e(s)) ds

for each [r,r'] € R.

Proof. For u = p fixed, we let u < 0 € B be as in , and choose 0 < 10 =
q €P as in Lemma Then, since ¢|z ) € @PO([E /'], g) holds for each
¢ € OP°([r,r'],g) and 8 > [/, K’] C [r,r'] € &, the claim follows if we show
that

Jw(d(s)ds<1 for ¢e U[M ewPO([m’Lg)
= (@eE)(J0) < [ (e

To verify this, we fix ¢ € DPO([r, 7], g) with [.t0(¢(s)) ds < 1; and let r =

to <...<t,=r1"as well as ¢[0],...,¢[n — 1] be as in (52). By Lemma [2§]
we can refine this decomposition in such a way that

plpl: [tpytpia] 3t = §; dlp] € 27 (Buo,1) Vp=0,...,n—1
holds; so that Lemma [27] shows

(00Z)(ulpl(tye1) < [ mo(d(s))ds  Vp=0,...,n— 1L
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We define X,,_, := (Z o p[p])(tp+1) for each 0 < p < n — 1; and obtain
o(X1) +...+0(X,) < [ao(p(s))ds < 1.

Then, provides us with

(o E)(f )

I
f =4
o
m
g
5
(1
£

which proves the claim. O
We are ready for the

Proof of Theorem[1]. Clearly, G is 0.co-continuous if G is O-continuous. More-
over, if G is 0.co-continuous, then G is locally p-convex by Lemma Fi-
nally, if G is locally p-convex, then evol([)o’l} is CC-continuous at zero by
Proposition |2} so that G is 0-continuous by Lemma O

6. Completeness and approximation

In this section, we discuss completeness properties of Lie groups; and prove
certain approximation statements for continuous-, and Lipschitz curves.
Both will be relevant for our investigation of semiregularity in Sect.

6.1. Completeness conditions

A sequence {gn}nen € G is said to be a

e Cauchy sequence iff for each p € P and ¢ > 0, there exists some p € N
with

(62) (PoZ)(gn' gn) <e Ym,n > p.

We then clearly can assume that g,.! - g, € U holds for all m,n € N in the
following.
e Mackey-Cauchy sequence iff

(63) (poE)(gT_nl-gn) < ¢p Amn Vm,n>1,, peP

holds for certain {cp }pep € R0, {lp}pep € N, and R>0 2 { A} (mn)enxn
— 0.
Clearly, each Mackey-Cauchy sequence is a Cauchy sequence.
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Remark 3. [t is straightforward from Lemma |1| and Lemma @ (applied
to coordinate changes) that these definitions are independent of the explicit

choice of 2, cf. Appendiz[D.1]
We say that G is

e sequentially complete iff each Cauchy sequence in G converges in G.
e Mackey complete iff each Mackey-Cauchy sequence in GG conver-
ges in G.

We say that a locally convex vector space F' is sequentially /Mackey complete
iff F' is sequentially/Mackey complete when considered as the Lie group
(F,+). Obviously, these definitions coincide with the standard definitions
given in the literature.

Remark 4.

1) Since each Mackey-Cauchy sequence is a Cauchy sequence, sequentially
completeness of G implies Mackey completeness of G.

2) It is straightforward from the definitions that a Cauchy/Mackey-Cauchy
sequence converges iff one of its subsequences converges.

3) If {gn}nen CG is a Cauchy/Mackey-Cauchy sequence, then {h - gn }nen C
G is a Cauchy/Mackey-Cauchy sequence for each h € G; and (evidently)
{gn}nen converges iff {h - gn}nen converges for each h € G.

4) If {gn}nen C G is a Cauchy/Mackey-Cauchy sequence, and U C G an
open neighbourhood of e, then there exists some q € N with {gq_1 g -
cUuU.

Thus, in order to show that G is sequentially/Mackey-Cauchy, by the
previous two points, it suffices to verify convergence of each Cauchy/
Mackey-Cauchy sequence that is contained in o fixed open neighbourhood

U of e. i

Example 3.

1) Let T' be a discrete subgroup of (E,+). Then, E is sequentially/Mackey
complete iff E/T is sequentially/Mackey complete, cf. Appendizx .

2) Banach Lie groups are sequentially complete, cf. Appendix .

3) The unit group A* of a continuous inverse algebra A fulfilling the condi-
tion (x) from [5] (i.e., condition (59)) is sequentially/Mackey complete
if (A,+) is sequentially/Mackey complete, cf. Appendiz|D.J|. i

We now are going to show that

Theorem 2. G is Mackey complete if G is C°°-semiregular.
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Remark 5.

1) The idea of the proof of Theorem|dis to construct some ¢ € C*°([0,1],g)
whose integral § ¢ is the limit of a (subsequence of a) given Mackey-
Cauchy sequence {gn}nen C G. Roughly speaking, we will use the substi-
tution formula@ i order to glue together smooth curves whose integrals
equal g% - gn_1 via suitable bump functions. Here, we will use that, pass-
ing to a subsequence if necessary, we can achieve that (p o Z)(g. " - gn_1)
decreases suitably fast; namely, (up to a factor ¢y) in the same way for
all seminorms — This ensures that the so-constructed ¢ is defined and
smooth at 1 (where all of its derivatives must necessarily be zero).

2) An analogous result cannot hold for the C°-semiregular case; i.e., we can-
not have that C°-semireqularity implies sequentially completeness. This
can be seen immediately by considering the special situation where G
equals a Hausdorff locally convex vector space (E,+) as then integrabil-
ity of all continuous curves — which is integral completeness in the sense
of [3] — is equivalent to the “metric convex compactness property” [15]
that, in general, is strictly weaker than sequentially completeness [1])],
cf. proof of Theorem C.(d) in [3].

Indeed, the strategy, sketched in (1) for the C'°°-semireqular case does
not work out in the C°-semiregular situation; i.e., given a Cauchy se-
quence {gntnen € G, we cannot apply the same procedure to construct
some ¢ € C°([0,1],g) whose integral is the limit of (a subsequence of)
{gn}tnen. The problem is that by passing to a subsequence, we can only as-
sure that limy_,1(«p 0 ¢)(t) = 0 holds for finitely many seminorms p € B,
but not for all of them. i

Now, before we can prove Theorem [2] we first need some preparation:
e Forv: [r,r]| 2t — |t —r| Y with [r,7/] - Y CV, we have
¢:=0"(E o) =w(,Y)=w[0](r,Y) € D
e For go: [r,r'] = [r,r'] smooth, p € N, and p = 9, we define
Clp, p) := maxo<m n<p(sup{|p™ ()" | t € [r,r']}) VpeN;
and obtain from @7 @ that
n+1
(p-(d00)) =30 o hp(@sm,n) - (0™)"™ - wlgl(y o0, Y:....Y)
<(p+1)*-Clp.pl-wlgl(voo,Y,....Y)

holds, for a map hy: (0,...,p)> — {0,1} that is independent of g, p, Y.
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e For v € B, we choose V < v € P with v < tv asin ; and conclude that

w(Y), w(yop)=w(lo—r|-Y)<1 implies
((p- (¢00) @) < (p+1)*- Clp,p| - w(Y)
for 0 < g < p, for each fixed p € N.

Let now p: [0,1] — [0,2] be as in Sect. cf. (55)); and suppose that we
are given {Y, }nen €V, as well as {t, }nen C [0, 1] strictly increasing with
to = 0.

Then, for each n € N,

e we let 6, := t,4+1 — t,, and define

Kt [tnstny1] Dt 6,0 - [t —t,| €10,1]
as well as Yo [tnstns1] Dt [t —t,] Y,

e we let ¢, := 5"(E71 0,), and define

Pn = PO Ky as well as
on: [ty tns1] Dt ty +ft pn(s) ds € [tn, tni1]-

e we define ¢: [0,1] = g by ¢(1) :=0, and ¢||
each n € N.

tn,tn+1 = pn : (¢TL o Qn) fOI‘

Then, the same arguments as in the proof of Lemma [24] show that ¢‘[O,tn] €
’D[Oootn} holds, with

(64) S d=2"" 61 Yn1) ... .40 - Yp) Vn > 1.

Moreover, for v < to € B as above, p € N, and n € N with w(Y,,) <1 (thus,
w(|on — tn| - Yn) < 1), we have

(65) 'U((pn : (¢n © Qn))(q)) (p + 1)3 ’ C[pmp] : m(Yn)

<
<(p+1)% 6,7 . Clp,p] - w(Yy)

forgq=0,...,p
We are ready for the

Proof of Theorem |9 Let {gn}nen C G be a Mackey-Cauchy sequence; and
U C G a symmetric open neighbourhood of e with U - U C U. By Remark
2)l we can assume that {g, }nen C U holds; and, by Remark [4l12)] it suffices
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to show that a subsequence of {g, }nen converges. Passing to a subsequence
if necessary, we thus can assume that A, ,—1 < 2= holds for each n > 1.
Then,

e We define Xg:=0, as wellas V5 X, := E(ggl -gn_l) for each n > 1.
e For each v € B, we fix some jp, € N with
(66) (X)) <t - 27" VN> .

e We define ¢y := 0, as well as t,, := 271;21 2=% for n > 1; and obtain
(67) 1/(1 —h) <22 Vh € [ty tnr1], n €N,

from 1 —h>1—tp=1-S 3127k =32 27k >0-(nt2),

o We let Y, :=2"*1. X, for each n € N; and define 6, 1, ¢n, as well as
¢:10,1] — g as described above; i.e., we have 0, = |[tp+1 — tn| = 9—(n+1)
for each n € N.

The claim now follows once we have shown that ¢ is smooth, because then
(64) provides us with

(§o-95")"" = tima ([§5* 0] -95")""
limy, (2716, - o) - 2700 - Y0) - g t)

= lim, (271(X,) ... Z2Y(X1) gp )
g

-1

Since ¢ is smooth on [0, 1), here we only have to verify that
limpg 1)51 % - 9% (k) =0 VpeN

holdsﬂ To show this, we fix p € N and v € 3, choose v as in ; and
observe that

w(V,) = 2" (X)) <o 27 <1 Vi >l
holds, for some j;, > max(2,jy) suitably large. We conclude from that

O((pn - ($n 0 0n))P) < (p+1)% - 2T EHDT . Op p] ¢ - 27 04
= (p+1)%-Clp,p| - e - 27 HHD (4D 4D)

H'We then automatically have lim{g1)5n—1 #P)(h) = 0.
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holds for each n > ji,. Then, for h € [t,,t,+1] With n > jl,, we obtain from

that
1/(1 = h) - o (6 (k)

2n+2 .

(=3

((Pn (¢ o Qn))(p)(h))
(p+1)3-Clp, p| - o - 217 T+ (41 +2)

IN A

Clp,p
= (p+ 1) Clp.p] - e - 242
holds; which clearly tends to zero for n — oo. O

6.2. Approximation

We now finally provide some approximation statements for curves that will
be important for our discussions of particular situations in the context of
Theorem Bl in Sect. [7

In analogy to Sect. we say that {¢, }nen € CPO([r,7'],9) is a

e Cauchy sequence iff for each p € ¥ and € > 0, there exists some p € N,
such that

Poo (P — dn) <€ Ym,n > p.
e Mackey-Cauchy sequence iff
(68) 'pw(¢m - ¢n> < ¢ Admn Vm,n>1,, peP

holds for certain {Cp}pE‘II - Rzo, {[p}pem CN, and RZO D) {)‘m,n}(m,n)eNxN
— 0.

We say that {¢, }nen — ¢ (converges) uniformly for ¢ € CO([r,7’], g) iff
limy, 00 Poo (¢ — Pp) =0 holds for each peP;
and obtain

Lemma 29. Let [r,7'] € R be fized.

1) For each ¢ € CO([r,7],g), there exists a Cauchy sequence {¢y}nen C
DP>([r,r'], g) with {¢n}nen — ¢ uniformly.

2) For each ¢ € C'"P([r,r'],g), there exists a Mackey-Cauchy sequence
{On}nen COP>X([r,r'],9) with {¢ntnen — ¢ uniformly.

Proof. Welet ¢ € CO([r,r'], @) be fixed; and, for the case that ¢ € C'"P([r, '], g)
holds, we denote the Lipschitz constants of ¢ by {Ly}pep € R>o.
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e We choose A > 0 such small that [0, A]-d.Z(im[¢]) C V holds; and fix
m > 1 with |/ —r|/m < A.
e We define y[t']: [0,A] > t — t - d.E(p(t')) for each ¢’ € [r,7']; and let

O(t,1) := w(t - dE(B(t)), deE(o(t))) = 6" (7" o1[t'])(t)
Y (t,t') €[0,A] x [r,r].
For each n > m, we construct ¢, € DP°([r,7’], g) as follows:

e We define A, := \r'—r\/n and let tpp:=7+p-A, forp=0,...,n
e We define @[y, 1. 1= (- —tun—1,tnn-1), as well as

¢n| [t prtn.pr1) .:‘I)('—tmp,tn,p) VpZO,...,n—2.

By construction, we have

(69) ¢n(tn7p) = @(0, tn,p) = ¢(tn,p) VTL 2 m) p = 07 ce ,TZ

Let now v € ¥ be fixed. We choose V < tv as in for p =1 there; and
let I, >m be such large that Ay, -.s(¢) <1 holds, ie., we have
Woo (Y[tnplljo,a,)) < 1 foreach n >, and p=0,...,n — 1.

Then, for each n > [,

e we obtain from and Lemma@ that

( n(t) — ¢n( np)) =.0(®(t - tn,p’tn,p) - ‘I)(O7tn,p))
qoy S o GGl (5), 4B (6, Z(0(10,))) d
< w(deE(e ( p)))? [t —tnp
< oo () - [t — Lyl

holds, for each

) e {[tw,tn,pﬂ) for 0<p<n-—2,

[thn—1,tnn] for p=n.
e we obtain from and that

0(p(t) = dn(t)) < 0(d(t) = A(tnp)) + 0(A(tnp) = Pnltnp))
(72) +20(Pn(t) — Pn(tnp))
< -U(¢(t) - ¢(tn,p)) + 'mw(¢)2 : ‘t - tn,p’

holds, for ¢t as in .
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Clearly, implies that {¢n—m }nen is a Cauchy sequence with {¢n—m }nen
— ¢ uniformly. Moreover, for the case that ¢ € C([r,7'], g) holds, we define
Co := Ly + +050(¢)?, and obtain

(72)

W(0(t) — dn(t)) < Lo |t —tnpl + oo () - |t — thyp
= Cp - [t —tnypl Vn >l
for t as in ; so that is clear from the triangle inequality. O

Obviously, we also have

Lemma 30. Let [r,7'] € R be fized. Then,

1) For each ¢ € C°([r,7'],g), there exists a Cauchy sequence {¢,}nen C
CoP([r,r'],g) with {¢dn}neny — ¢ uniformly.

2) For each ¢ € C'"P([r,r'],g), there exists a Mackey-Cauchy sequence
{bn}nen C CoP([r,r'],9) with {¢n}neny — ¢ uniformly.

This Lemma will be relevant for our discussion of the situation where G
admits an exponential map, as then clearly CoP([r,'],g) C DP>([r,'], g)
holds for each [r,7] € &.

7. The confined condition

In this section, we clarify under which circumstance a locally p-convex Lie
group is C*-semiregular for k € N U {lip, co} (partially for k = 0). We first
provide the basic definitions; and then prove the main result in Sect. In
the last part of this section, we will discuss several particular situations.

A sequence {¢n }neny € DPO([r,7'], g) is said to be tame iff for each v € B,
there exists some v < v € P with

73 W0 Adjps 4 -1 < utv VneN.
[f* ¢]

We say that ¢ € I—l[r,r’]eﬁ CO([Ta '], 9) is

e s-integrable iff there exists a tame Cauchy sequence {¢y,}nen C
DPY(dom[¢], g) with {¢y, }nen — ¢ uniformly.
The set of all such ¢ will be denoted by Gequ in the following.
e m-integrable iff there exists a tame Mackey-Cauchy sequence {¢,, }nen C
DPY(dom[¢], g) with {¢y, }nen — ¢ uniformly.
The set of all such ¢ will be denoted by Pact in the following.
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Evidently,
Lemma 31. We have ® C DMact C Sequ.

Proof. The second inclusion is evident. For the first inclusion, we fix ¢ €
Dy, for [r,1'] € &; and define {¢y }nen € DP([r, 7], 9) by ¢y, := ¢ for each
n € N. Since C := inv(im[{ ¢]) is compact, the first inclusion is clear from

(28)- O
Conversely, we have, cf. Sect.

Proposition 3. Suppose that G is locally p-convex. Then,

1) Gequ €D holds if G is sequentially complete.
2) Mact C D holds if G is Mackey complete.

We say that G is k-confined

e For k=0: iff C°([0,1],¢9) € SGequ holds.
e For k € N>y U {lip,co}: iff C¥([0,1],¢) C Mack holds.

We conclude from Lemma [31] and Proposition [3] that:

Theorem 3. Suppose that G is locally p-convex. Then,

1) G is CO-semiregular if G is sequentially complete and 0-confined.
2) G is CF-semiregular for k € N>y U {lip,00} iff G is Mackey complete
and k-confined.

Proof. If G is C*-semiregular for k € N> U {00}, then G is Mackey complete
by Theorem [2] as well as k-confined by Lemma [31] Moreover,

e If (3 is sequentially complete and 0-confined, then C°([0,1],g) C Gequ C
® holds by Proposition so that G is C°-semiregular.

e If G is Mackey complete and k-confined for k € N>j U {oco}, then
C*([0,1],g) C Mact C D holds by Proposition so that G is C*-

semiregular.

This proves the theorem. O

7.1. Semiregularity

We now provide the
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Proof of Proposition[3. We fix ¢ € Sequ/Mack, and choose a tame Cauchy/
Mackey-Cauchy sequence {¢n}nen € DP%(dom[¢],g) that converges
uniformly to ¢; i.e.,

o if ¢ € Gequ holds, then for each p € P and € > 0, there exists some p € N,
such that

Woo(Pm — Pn) < € Vm,n>p.
e if ¢ € Mact holds, then we have

for sequences {cp}pep € R>o, {lp}pep €N, and R>0 2 {Amn}(mn)enxn
— 0.

We let [r,7'] = dom[¢], define p, := §7 ¢, for each n € N; and fix an open
neighbourhood O C G of e with O C U Since

B := im[¢] U U, e im[én]

is bounded, decomposing [r,7’] if necessary, we can assume that im[u,] C
O C U holds for each n € N: This is just clear from Lemma [11] and Lemma
We now will show in three steps that p = lim,, p,, exists, is of class C1,
and fulfills 6" (1) = ¢ with ©(0) = e.

Existence of the Limit:

For p € B3, we choose q € P as in Proposition [2} and let g < to € P be as
in for v = q there. We choose p € N such large that |’ — 7| - a0 (¢, —
¢n) < 1 holds for each m,n > p, and obtain from that

Ja(Adig -1 (dn(s) = dm(s))) ds < 1" — 7| - w0oo(dm — dn) < 1
Ym,n > p.
Then, [b)|in combination with Proposition [2| gives
(p o Z) (1 (8) - pn () = (0 ) (I} Adyge 6,11 (dn — D))

(74) < [La(Adyg g, (0n(s) — dm(s))) ds
< |T/ - T’ : 'mOO(d)n - ¢m)

for each m,n > p, and each t € [r,r']. Now,

12Recall that topological groups are Ty spaces.
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e This implies that {u,(t)}nen is a Cauchy sequence for each t € [r,r'];
thus, converges to some pu(t) € O NG C U with u(r) = e, provided that G
is sequentially complete.

o If {¢n}nen is a Mackey-Cauchy sequence (i.e., we have ¢ € Mact), we
replace [, by max(l,,p) as well as ¢, by |/ —r|-max(cy, ¢n) for each
p € B. Then, {1, (t) }nen is a Mackey-Cauchy sequence for each t € [r,1'];
thus, converges to some pu(t) € O NG C U with u(r) = e, provided that G
is Mackey complete.

The rest of the proof is the same for both situations, as we will only use the
fact that {¢n, }nen is a Cauchy sequence in the following. We now first have
to show that u: [r,7'] ¢t — u(t) € G is continuous.

Continuity of the Limit:

We fix pe B, t € [r,7'], 1 > >0, and define Js5 := [[r,r'] —t] N (=6,0) for
each § > 0. We now have to show that for § > 0 suitably small, we have

(75) P(E(() —E(u(t +1)) <e Ve s
We choose p < u € P as in Lemma |§ for C = {u(t)} there; and obtain
P(E(u(t) = E(ult +7))) < u(Eu0 (1(t) = Epy (ut + 7))
= WoZ)(u (1) - ult + 7))

provided that (uoZ)(u~'(t) - u(t + 7)) <1 holds. Thus, in order to prove
, it suffices to show that there exist p € N and 0 > 0, such that

e> o) (p () - u(t+7) =(woE)((E™ o 2) (1 (t) - pp(t)) -
(76) (E71oE)
( )

holds for each 7 € Js.

For this, we let u < 0 € P be as in ; and will now show that there exist
p €N, § >0, such that

) (151 (1) - pplt + 7)),

(00 ) (1) - (1) (00
00 )y (t 1) plt+7)) < /3

(

holds for all 7 € Js: Then, is clear from .
Now,

(11 [1]
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e In order to estimate the second term,
o We choose 0 < n as in , for m = o there.
o We choose n < q € B as in Proposition [2], for p = n there.
o We choose ¢ < 1w € P as in for v = q there; and fix

1>6:=¢/3 -max(l,sup{X € B|w(X)})~ L

We then have to discuss the cases 7 > 0 and 7 < 0 separately.
> Let 7 € Js with 7 > 0. Then, for each p € N, we have

(00 Z) (i (1) - pp(t + 7)) < (0 E) (1, (8) - pp(t + 7))
:(n o) (1 (1) - [ ST 0] - p(1))
(577 A1) (9)
q(Ad, t)(sbp( 5))) ds
< JT w0 (dp(s)) ds < e/3.
In the second step, we have used and in the third step, we have

applied |f )| to ¥ = Con'ugl(t).
> Let 7 € Js with 7 < 0. Then, for each p € N, we have

(00Z) (M;l(t) - pp(t — |TD) ( o 1nv) (up (t—|r])- p(t))
< (o =) (up (= 171) - (1))
= (no E( Mt —I])- [jt 7| d’p] i (t _’TD)
= (Mo E)(Si_p A1) (D))
< J- | Cl(Ad Lo (@p(5))) ds
< ft (7| *0 (s))ds <e/3.

e In order to estimate the first-, and the third term, we let 0 < § € B be as
in for u =0 and o = | there. We choose ¢: N — N strictly increasing

with (use (74))

Sono(FOE) (K yy * Hun)) < €/3
and Z;o:o(f o E’) (ML_(rll) : /’LL(n—&—l)) < 5/3;

and observe that
Pt o) = limn (kg - 1)) - (1 L_(Tll 3 'ML(nfz))w--'(M:(}) )

:U’L_((l)) Tp = lim, ((:U’L(()) :u'L(l)) et (:U’L_(l 2) " Hy(n— 1)) (/LL_(}%_D ’ I’LL(TL)))
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holds. It is thus clear from that

(0o2) (1) mp(®) < /3 and (002 (i (1)  pu(t)) < 2/3
holds for each t € [r, '], for p := ¢(0). From this, the claim is clear.

Uniform Convergence:

We define v := = o i, as well as 7, := Z o u, for each n € N; and now show
that {7y, }nen converges uniformly to . For this, welet p € B, and 1 > e >0
be fixed; and observe that C = im|u| is compact, because p is continuous.
By Lemma [8] there thus exists some p < u € B, such that (let C = im[u],

9= g(t) == plt), a = q(t) == pt), ¢ = (1) = pm(t), h = e there)
(uoE)(u pm) <1 for meN
— POy —m) S @oE) (" ).
‘We choose u < 0 as in ; and let t: N — N be strictly increasing with (use
(74))

/2 Ym >(0)

(00Z )(um m ) <e/
OE(Ln—i—l uLn)§€/2.

and

Then, shows
i) = (Wo E) (0™ - pyo) - (M—(é) #im))

= limy, (uo E)((M—(}@) u(n-1)) (/h_(}l_n Hyn—2)) "+
(i) 1) - (10) - 1m)
<eg

(woZ)(u"

for each m > ¢(0), which proves the claim.
We are ready to show

The solution property:
Let v be as in . Then, it is straightforward from the definitions that

(77) Yo = f7 0((s), dn(s)) ds VneN

holds, cf. Appendix . Moreover, since v is continuous, since im[y] x im|[¢]
is compact, and since {7y, }nen and {¢y, }nen converge uniformly to v and ¢,
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respectively, we additionally obtain

limy, [T 0(n(s), dn(s)) ds = [Tv(y(s),d(s)) ds € E.

Together with , this shows

y = limy 7, = limy, [ 0((s), a(s)) ds = [T 0((s), é(s)) ds;

i.e., that v is of class C'! with ¥ = v(v, ¢) € E. We obtain

0" (1) = duRyr (d4E71(9))
= duRu—l (d'yE_l(U(% ¢)))
= (duRy-1 0 dyE 0 dz1(q)E 0 deRz-1(4)) (¢)
= (duRy-r 0 deRy) (¢) = 6,

which proves the claim. O

7.2. Particular cases

In this subsection, we discuss several situations in which G is automatically
k-confined for each k € NU {lip, co}. We start with

7.2.1. Reliable Lie groups. We say that G is reliable iff for each v € 33,
there exists a symmetric neighbourhood V C G of e as well as a sequence

{mn}nENgl g ('B with
(78) woAdy o...0Ad,, <., Vagi,....gn €V, n>1

For instance, G is reliable:

A) If G is abelian.
B) If for each v € 3, there exist o € B, C' >0, and V open with e € V,
such that

WwoAdg o...0Ad,, <C" .10 Ygi,...sgn €V, n> 1.

In particular, this is the case for the unit group A* of a continuous
inverse algebra A in the sense of [5], just by (59).
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C) If for each v € B, there exist v < w € P, C' > 0, and V open withe € V,
such that

#woAd, <C-.v VgeV.

In particular, this is the case if (g, [-,-]) is submultiplicative, cf. Propo-
sition @ so that Banach Lie groups are reliable (of course, this can also
be directly seen from (27)).

Then,

Lemma 32. Suppose that G is locally p-conver and reliable, let B C g be
bounded, and [r,v'] € R be fized. Then, for each v € B, there exists some
v <1t €B, such that

Do Adu‘: ¢! <.tv
holds for each ¢ € DP°([r,r'],g) with im[¢] C B.

Proof. We choose {mn}neN21 CP and V as in ; and can assume that
v <t <y <... holds, just by replacing w, — w; + ...+, for each
n > 1 if necessary. Then,

e By Proposition [2| there exists some q € B, such that {7 € V holds for
each ¢ € DPO([(, '], g), [¢, 0] € &, with [q(¢(s)) ds < 1.

e We define A :=sup{q(X) | X € B}; and choose n > 1 such large that \ -
|r" —r|/n <1 holds.

e We define t, :=r +p- |’ —r|/n for p=0,...,n; and obtain [ﬁp <Z>]_1 €
V for each t € [ty tp41], for p=0,...,n— 1.

We define tv := tv,,, and obtain
Do Ad[“"i B = Do Adu-i(l) qﬂ*l-.u'[\ﬁp o]
=.bo Ad[ji(l, #]-1 ©...0 AdU"ip ¢}71 S -mp+1 S Ry

for each t € [ty tp41], for p=0,...,n—1. O
We obtain

Lemma 33. Suppose that G is locally wp-convexr and reliable. Then, G is
k-confined for each k € NU {lip, co}.

Proof. This is just clear from Lemma [29] and Lemma ([
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We thus have

Proposition 4. Suppose that G is locally p-convexr and reliable. Then,

1) G is C°-semiregular if G is sequentially complete.
2) G is C"P-semiregular iff G is Mackey complete iff G is C™-semiregular.

Proof. By Lemma G is k-confined for each k € N U {lip, co}. Thus,

e If G is sequentially complete, then G is C%-semiregular by Theorem
e If G is Mackey complete, then G is C"P-semiregular by Theorem

The converse direction in [2)|is clear from Theorem O
For instance,
Corollary 5. Suppose that G is abelian and locally p-convex. Then,

1) G is CY-semireqular if G is sequentially complete.
2) G is C'"P-semireqular iff G is Mackey complete iff G is C*-semiregular.

In particular, we recover the well known fact thatl”]

Corollary 6. E is Mackey complete iff the Riemann integral fqﬁ(s) ds €
E exists for each ¢ € C>([0,1], E) iff the Riemann integral [ ¢(s)ds € E
exists for each ¢ € |}, ,neq Cl®([r,r'], E).

7.2.2. Constricted Lie groups. We say that G is constricted iff for
each bounded subset B C g, and each v € 3, there exist C > 0and v <tv €
B, such that

(719) woadXjo0...0ad X, <C" .0 VXi,....X,€B, n>1

holds, with ad X: g2 Y + [X,Y] € g for each X € g. We define ad X° :=
idg as well as inductively

(ad X)" := ad X o (ad X)"! Vn>1.

Clearly, G is constricted:

e If (g,[,]) is asymptotic estimate in the sense of [1].

13Clearly, Corollary proves the obvious fact that each ¢ €
[_|[m,]€ « C%[r,r'], E) is Riemann integrable if F is sequentially complete.
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e If [-,] is submultiplicative; i.e., iff for each v € 3, there exists some v <
o € P, such that

(80) S ([X,Y]) <o (X) -ao(Y) VX,Y €g.

e If [-,] is nilpotent in the sense that there exists some n > 2, such that
ad Xjo...ocad X, =0 VXi,...,X, €g.

We will now show step by step that

Proposition 5. Suppose that G is constricted, and admits an exponential
map; and that g is sequentially complete. Then, G is k-confined for each
k € NU{lip, co}.

Let us first recall that
Lemma 34. Suppose that > o7 (1" -a, € § converges for some r € Ry,

and {ayn}tneny C@. Then, a: I =G, tr > o2 (1" ay is of class C1 (smooth)
for each open interval I C [—r,r|, with

a=3"> n-t"1l.q, as well as fot afs)ds =>27, % .
Proof. This just follows as in the case where g = g = C holds. ([
We obtain

Lemma 35. Suppose that G is constricted, and that g is sequentially com-
plete. Then,

axy:Rot— > L. (ad X)"(Y) €g VX,Y€g

n=0 n!
is of class Ct with axy = [X, axy]; thus, smooth by Corollary @
Proof. It is straightforward from the definitions that
{3ko fr - (ad X)*(Y)}new C 0
is a Cauchy sequence for each t € R, and X,Y € g; thus, converges to some

XY (t) € g. By Lemma axy: R —gCgis of class C! with axy =
[X, ax,y]; which implies im[dx y] C g. O

Let now [r, 7] € R be fixed; and recall that [12]
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Lemma 36 (Omori). Let¢ € D, Y €9, and o € C([r,r"],9) be fized.
Then, we have

a=Ad,(Y) for p={"¢
= &= [¢p,a] holds with «(r)=Y.

Proof. The proof is elementary, and can be found in Appendix [E-2} O
We conclude that
Corollary 7. Suppose that G is constricted, and admits an exponential

map; and that g is sequentially complete. Then, we have Adexp(—s.x) (V)=
a_xy(t) forallt >0, and X,Y € g.

Proof. By (7)), we have a(t) := Adexp(—s.x)(Y) = Adprg (V) Le., a=
[p—x,a] = [-X,a] by Lemma The claim is thus clear from Lemma
and Lemma 0

For the rest of this section, we let erp denote the exponential function on R.
We obtain

Lemma 37. Suppose that G is constricted, and admits an exponential map;
and that g is sequentially complete. Then, for each p € B, and each bounded
subset B C g, there exists some q € B, such that .p o Adm ¢t < +q holds for
each ¢ € CoP([r,r'],g) with im[¢] C B.

Proof. We let to be as in , for v = p there; and chooser =ty < ... < t, =
' as well as Xo,...,Xn1 €9, with @[, ¢ )= Xp forallp=0,...,n— 1.
Then, for 0 <p <n—1and t € (t,,t,11], we have

Adpg g1 = Adexp(—fti—to]-Xo) © - - - © Adexp(—ft,~t, -1]:X, 1) © Adexp(—ft—1,].X,);
so that Corollary [7| together with shows

(sp o Adpg g1 ) (V) < exp(|t — 7| - O) - o (Y) VY eg, t€rr].
The claim thus holds for q := exp(|r’ — r|- C) - w. O

We are ready for the

Proof of Proposition[5. The claim is clear from Lemma [30] and Lemma
O
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7.2.3. Submultiplicative Lie algebras. We finally want to discuss the
situation where (g,[-,-]) is submultiplicative. Clearly, G is constricted in
this case; but, as we are going to show now, there exists a sharper version of
Proposition [5| neither presuming the existence of the exponential map nor
sequentially completeness of g. More specifically, we will show that

Proposition 6. If (g,[-,]) is submultiplicative, then G is k-confined for
each k € NU {lip,00}. Moreover, G is reliable as it fulfills the condition

introduced in .

For this, let [r, 7] € & be fixed; and recall that

Lemma 38 (Grénwall). Leta, 3: [r,7'] — R>q be of class Ct, and C > 0.
Then,

a<CH+ [*(a-B)(s)ds = a<C-eap( [ B(s)ds).

We obtain that
Lemma 39. Suppose that (g, [-,-]) is submultiplicative, and let b < to € B
be as in (80). Then, for each ¢ € C°([r,7'],g), Y € g, and a € C([r,7], 9)

with & = [¢,a] and a(r) =Y, we have

0(a) < mo(Y) - exp( [ ro(@(s)) ds).
Proof. We conclude from Lemma [f] that
10(a) < (V) + [*a0(a(s)) ds < (V) + [*v(als)) - o(¢(s)) ds
holds; so that the claim is clear from Lemma O

Corollary 8. Suppose that (g, [-,]) is submultiplicative, and let v < v € B

be as in . Then,
0 (Adp (V) < exp(f;7 w0((s)) ds) - (V)
holds for each Y € g and ¢ € Dy, 15 thus,
10 (Adm ¢]i(Y)) <erp(Jr' — 7] s0oo()) - ao(Y) VY €9, ¢ €Dy

Proof. The first statement is clear from Lemma and Lemma Then,
the second statement is immediate from Example ([
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We are ready for the

Proof of Proposition[f The first statement is clear from Corollary [§ and
Lemma For the second statement, we let v < tv € ¥ be as in , choose
w<oc‘Pasin Lemmafor m = v there; and define V := Z71(B, 1). We
furthermore define

Ye: [0,1] 3t t-z€V aswellas ¢, :=06"(E tony,) foreach zeV.

Then, Lemma 25| shows that e (¢z) < 000(%z) < 1 holds for each z € V;
so that Corollary [§] gives

M0 (Adz-1(4)(Y)) = w0(Ad(g-10y,)1) (V) = w10 (Ad_]‘é 6, (Y)) <ep(1) -uro(Y),

for each Y € g; which shows the claim. O

8. Differentiation under the integral

In this section, we clarify under which circumstances evolﬁ,,r,} for ke NU

{lip, 00} and [r, 7] € Ris differentiable w.r.t. the (standard) the C*-topology.
In particular, we will show that[]

Theorem 4.

0
[r,r’]

[r,r] € R iff g is integral complete iff evol?oﬂ is differentiable at zero.

2) If G is k-continuous and C*-semiregular for k € N>1 U {oo}, then evolﬁn -
is smooth for each [r,r'] € R iff g is Mackey complete iff evolfm] is dif-
ferentiable at zero.

1) If G is 0-continuous and C°-semireqular, then evol is smooth for each

Here, for k =0 in the first-, and k € N> U {oo} in the second case, we have

(dg evolfy ) (1) = deLigy ([ Adg: - (¥(s)) ds)
Yo, € CF([r,r], g), [rr'] € R

Proof. Confer Sect. O

14 A Cl-version will also be proven for the Lipschitz case, cf. Corollary
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We recall [3] that a g is said to be integral complete iff [ ¢(s) ds € g exists
for each ¢ € CO([O, 1], g)E Theoremwill be a consequence of the more gen-
eral Theorem ], being concerned with differentiation of parameter dependent
integrals. The key point of the whole discussion is that if G is k-continuous
and C*-semiregular for k € N U {lip, co}, then the directional derivative of
evolﬁm,} at zero along some ¢ € C*([r,r'],g) always exists; namely, in the
completion of g of g — as explicitly given by

(81) Sl Sh-o=[o(s)dseq.

We thus have to clarify this elementary issues first.

8.1. Differentiation at zero

We fix [r,7'] € & in the following; and let § and E denote the completions
of g and F, respectively. By Lemma [2| then d.=: g — F extends uniquely
to a continuous isomorphism d.Z: g — E. In order to prove , we now
first need to show that ¢ € C*([r,7'],g), and s < k € NI {oo} given, there
exists a sequence { ¢y, fneny C C([r, '], g) with

limy, o0 PS5, (0 — ) =0 as well as [ on(s)ds € g VneN.

Such a sequence can be obtained, e.g., by approximating o by polygo-
nal curves, smoothening them by convolution, and then integrating them
s-times. Basically, then follows from the triangle inequality and Propo-
sition [1l

Polygons and Convolution:. We let F denote the set of all finite dimen-
sional linear subspaces F' C g of g; and define

C*(D,F) := | |pep C*(D, F) VDeT, keNU{oo}.
Moreover, for each n > 1, we fix p,: (—1/n,1/n) = R>g smooth and com-

pactly supported with [ py(s) ds = 1. Then, for x € C°(I,F) with [r,7'] C I
(I CR an open interval) given, we choose m > 1 such large that [r,r] +

15Clearly, this is equivalent to require that [ ¢(s)ds € g exists for each ¢ €
C°([r,7"],9), for each [r,7’] € &.
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(—=1/m,1/m) C I holds; and define (convolution)

C®([r, 7", F) 2 x * pp: [, 7] 2t — fttjll/: pn(t—5)-x(s)ds  Vn>m.

Clearly, {x * pn}n>m — X|jrs) converges uniformly (w.r.t. the seminorms

(X * pn)® = x x pP) VpeN, n>m.

Let now Poly([r,7'],g) € C%([r,r'],F) denote the set of all maps x: [r,r] —
g, such that there exist r =ty < ... <t, =7 and Xy,...,X,_1 € g with

Xty +7)=x(tp) +7- X, Vp=0,...,n—1, 7 <tpp1 —tp.
Clearly, for each 1 € C%([r,7'],g), there exists a sequence {xy}nen C

Poly([r,7'],g) with {xn}nen — % uniformly; and, combining this with the
statements made above, we easily obtain that

Lemma 40. For each 1 € C°([r,1'],9), there exists a sequence {1y }nen C
COO([Ta T/]a F) with {¢n}n€N — ¢ um’formly.

Iterated Integration:. We define &[p]: g? x C°([r,7'],5) — CP([r,"'], )
for p > 1, inductively by

6[1]: g x CO[r,7'],8) = C' ([, 7'],8),  (X,¢) = X + [T ¢(s)ds
as well as
6[p](X1, ces ,Xp,(b) = 6[1](Xp, 6[]9 - 1](Xp_1, . ,X1,¢))

for all X1,...,X, and ¢ € C%([r,7'],9), for p > 2. Evidently,

e forall € CO([r,r'],F) and X1, ..., X, € g, we have &[p|(X1,..., Xp, }) €
CP([r,r'], F).
e for all ¢, € CO([r,7'],§) and Xi,..., X, € g, we have

6[p](X17--'7Xp7¢) - 6[p](X17-”7XP7¢) = 6[])](07 . 707¢—"¢)-
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e for all ¢ € CP([r,r'],

g), we have ¢ = G[p]( (r),...,qS(O)(r),gZ)(p)).
e for all ¢ € CO([r, '],

g), p>1,and Xy,..., X, we have

«| «|

6[p](X17 cte 7Xp7¢)(p) = ¢

as well as

Slpl(X1, ..., Xp, $)® =6p—s(X1,...,Xp s, 0) Vi<s<p-—1.

e for all € CO([r,7'],§), p > 1, and q € B, we have (apply Lemma |§| suc-
cessively)

Ao (S[p)(0, .-, 0,0)) < [r' =[P - qoo (¢)-

The previous (and the first) point thus shows that for 0 <u <s € N, we
have

56 (S[s](0, ..., 0,¢)) < max(L, 1" —7])* - oo (o)
VqeB, ¢ F).

Specific Estimates:. Let s<keNU{lip, 00}, me*B, and ¢ C*([r,7'], g)
be given.
e We choose {tn}tnen € C®([r,],F) with {t¢n}nen — ¢ uniformly
(Lemma [40)); and define
b = 6[s] (¢ I (r), ..., 00 (r), ) € C([r,'],F) VneN.

e We conclude from the third-, second-, and the last point in the previous
part that

o (6 — bn) = 05 (S[s] (0" 00 (r),0)
—B[s] (¢ (r ) ¢(°)( ),%n))
1% (S[s] (0, -, 0, ¢“> ¥n))
< max(l, |’ —7“]) - oo(gb(s) —¢n)

holds for each q € B; thus,

(82)

(83)  +a%(én) < 36 (®) + max(L, [’ —7])* oo (6 =) ¥V EN.
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e For each h € R and n € N, we define

Yhn = h- deE(fr. bn(s) ds)
=h-deZoB[s+ 1] (¢ (r), ..., 00 (r),0,4,) € C([r,7'], E);

and obtain from that

W3 (Yhn) = [h] - 003 ( [7 ¢n(s) ds)
< || - " =] w0l (dn)
1 e AR G N )

+ max(1,|r" —r[)®- .moo(qb(s) —n))

(84)

holds for each tv € 3.
e Since B :=im[¢p®)] U Unen im[¢,] is bounded, there exists some § > 0,
such that

Hhn = =1o Yh,n and
¢h,n = T(Mh,n) = W('Yh,na ;Yh,n) =h- w(’Yh,ny deE(¢n))

are defined, for each |h| < § and n € N.
e Then, for m € P fixed, Lemma applied to Q@ = w(-,de=(4)), ¥ = Vs
P = ¢p, p = m, provides us with certain seminorms q,to € 33, such that

03 (Yhn) < 1 = M3 (Phn) = [h] - w3 (QVhns dn))
< [h] - a3 (dn)-

Thus, shrinking ¢ if necessary, by and boundedness of B, we can
achieve that

'm<s>o(h : ¢) < 17 'msoo(d)h,n) < 17 'mio(h ' ¢_ ¢h,n) < 1

(85)
V|h| <6, neN.

We now have everything we need to prove

Proposition 7. Suppose that G is k-continuous for k € N U {lip, co}; and
that (—6,0) - ¢ C CDFM,] holds for some ¢ € C¥([r,'],g) and § > 0. Then, we
have

%‘h:ojh'(b:f(b(s) ds €.
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Proof. We fix p € 3, and have to show thaﬂ

Ay(h) ::% PEh-¢) —h-dE([ ¢(s)ds))

tends to zero if h tends to zero. For this, we choose p <m and s < k as in
Proposition [1} and let {¢nn}tnen € C([r, 7], 8), {Vamtnen € C([r,7’],9),
{tthn}nen € C([r,7'],G), § > 0 be as above. Then, Proposition [I|and (85)
(fourth step) show that for |h| <, we have

A¢(h) < 7 p( jh ¢ —h- deE(f Pn(s) ds)
+P(AE(f d(s) ds) = dE([ ¢n(s) ds)
< g pES R ¢ n(r’))
+ [(PodeE)(d(s) — pn(s)) ds
= g PEJ b ¢) = E(unn(r)))

+ [ (d(s) — dn(s)) ds

< qir - S om (R d(s) = dnn(s)) ds
+ [ p(e(s) — dn(s)) ds

= [ m(o(s) — wnn(s), eE(%(s)))) ds
+ [ (o(s) — dn(s)) ds

Let now € > 0 be fixed. By , there exists some n. € N, such that the
second summand is bounded by /3 for each n > n.. Moreover, since ¢ =
w(0,deE(¢)) holds, we can estimate the first summand by

. = [ m(w(0,d (
< [ (w(0,d.Z(6(5))) — ©(rmas). dE(0(5)))) ds
+ [ am(w(hn(s), deZ((5) — dn(s)))) ds
Then,

e Since im[¢] is compact, we can achieve that the second line in is
bounded by /3 for each n € N, just by shrinking § if necessary.

e In order to estimate the third line in , we choose m < tv as in for
v = m there. Then, by (84)), we can achieve that W (Yh,n) < WS (Y,0) < 1
holds for each |h| < §, for § > 0 suitably small; and obtain

16For |h| < § suitably small, this is defined by Lemma
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(32)
Moo (W('Yhm, deE(¢ - ¢n))) < 'mOO(¢ - ¢n) v ’h| < d.

It is then clear from that for n. > n. suitably large, the third line in
is bonded by £/3 for each n > n. and |h| < ¢.

We thus have Ay (h) < ¢ for each |h| < §; and conclude that limp_,g Ag(h) =
0 holds. N

We immediately obtain

Corollary 9.

1) Suppose that G is 0-continuous and C°-semireqular. Then, evol([)0 1] 18
differentiable at zero iff g is integral complete.
2) Suppose that G is k-continuous and C*-semiregular for k € N U {lip, co}.

Then, evol'{g0 1 ‘Coo([o 1.0) is differentiable at zero iff g is Mackey complete.

Proof. This is clear from Proposition [7] and Corollary [6] Il
8.2. Integrals with parameters
Given an open interval J C R as well as € J, in the following, we denote
Jz]:={h € Ry |x+he J}

We now will discuss the differentiation of parameter-dependent integrals.
For this, we let [r,7'] € R be fixed; and observe that

Corollary 10. Let G be C*-semiregular for k € NU {lip,00}. Then, for
¢7 Q/)a X € Ck([r’ T/},g), we have

J@+v+x)=a-8-y
fOT‘ Q= I(ﬁ, B = J‘Ada—l(d)), Y= J‘Ad(a,ﬁ)—l(X).

Proof. Applying |b)| twice, we obtain
BTt [fo+e+x] =87 JTAd (P +X) = §T Ad(ap)— (X);

because Ada-1 (¢ + X), Ad(a.5)-1(x) € C*([r,r'], g) holds by Lemma O
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Moreover, let § > 0, and suppose that u,v: [0,d] — G are maps with

limp, 0 pu(h) = pu(0) =e and limp,—y0 - (

op)(h)=X€FE
limp_,o v(h) = v(0) ov

)(h) =Y € E.

11 (11

e and limy,_,0 % - (

Then, we obtain from Lemma [7] that, cf. Appendix
(87) limy, o3 - E(u(h) - v(h) =X +Y €E
holds; and are ready for

Theorem 5. Suppose that G is k-continuous and C*-semireqular for some
ke NU{lip,00}; and let ®: I x [r,r'] — g (I C R open) be fixed with ®(z,-)
€ C*([r,r"],g) for each z € I. Then,

%’hzg([jq)(xa -)]_1[5'(1)($ + h, )]) = fAde,<1>(:v,~)}*1(8z(I)(x> S)) dseg

holds for x € I, provided that

a) We have (9,®)(x,-) € C*([r, T/],Q)E
b) For each p € P and s = k, there exists L, s > 0, as well as I, s C I open
with x € I, s, such that

|- oo (@ + ) = ®(2,)) < Lys V€ Lsfal

Proof. For x + h € I, we have
O(x+ h,t) = ®(z,t) +h-0.P(x,t) + h-c(z+h,t) vterr],

for some e: I x [r,7'] — g with

i) limp_ype(z + h,t) = e(z,t) =0 Ve rr],
ii) WS (e(@+h,)) < Lps + 5. ((0:P)(x,) =: Cps <00 Vhelgz]
forall peP and s=<k.

"More specifically, this means that for each t¢& [r,7/] the map I3
z+ ®(z,t) is differentiable at z =a with derivative (9,®)(x,t), such that
(0,®)(x,-) € C*([r,r’],g) holds. In particular, the latter condition ensures that
P2 ((0.®@)(z,+)) < oo holds For each p € P and s < k, cf. @
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Then, [a)]together with Corollary [10]shows that § ®(z + h,-) = a(1) - B(h, 1) -
~(h, 1) holds, with

alt) = § ®(z,)
6(h> t) = .Ltn h - Ada—l(azq)(xv ))

Y(h,t) == [V Ad(g.gn)-1 (E(@ + D, )
for each t € [r,r']; thus,
Sl B @@, 7 S @@+ hy)]) = il EB(R, 1) -2(h, 1)

provided that the right side exists. Now, since Ady-1(9,®(x,-)) is of class
C* by Lemma Proposition |7 shows that

o B(h,1) = [ Adg-i1(5)(0:®(z, 5)) ds = [ Adjps p(a,)-1 (0-®(x, 5)) ds
holds; so that the claim follows from once we have verified that
(88) limp,—y0 1/[] - (p o E)(y(h, 1)) =0 VpeP.

To show this, we fix p € B, and let
e p<geP,uxkbeasin Lemmafor s =u (and p = k) there; i.e.,

(59) ql () <1 fgr ¢ € @’f]
= (poZ)(J7¢) < [ alé(s)) ds.

e g <meP,s =k be asin Lemma 21] for p = q there; i.e., we have

(90)  «a(Adg-1(p,(¢)) < .mP()) Vi e C*([r,1"],9), 0<p<nu,
provided that .mS_(h - Ad,-1(0,®(z,-)) < 1 holds.

e m<neP beasin Lemmafor p=m, q=n,s=o:=max(s,u), and

¢ = ®(z,-) there; i.e., we have

(91) -ms(h : Adcrl(azq)(x7 ))
92) P(Adys (<(z + B, )

|l - ®(0.®(x, -))
WP(e(z + b, ).

VARVAN

for each 0 <p <o and h € I[x].
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We choose 6 > 0 such small that (—d,0) U (0, 6) Ino[ | holds, with || -
n5,(0,®(z,)) <1 for each 0 < |h| < 4. Then, (91)), (90), (92), and.show

that

.qP (h'Ad(a.B(hV.))fl (e(x+ h,-)))
= |h| - g (Adﬁ—l(hﬁ.) o Ady-1(e(z + h, )))
< |h] - mP(Ady-1(e(x + h,-)))
< |h[-. lD( (x+h,))
< || - S (e(z + R, )
< |hl- Capo

(93)

holds for each 0 < |h| < §, and each 0 < p < u. Thus, shrinking ¢ if necessary,
we obtain from , as well as for p = u there, that

/|| - (p o E)(y(h, 1)) < [Fea(Ad(a(s)s(ns))- (€@ + h, ) ds
VO < | <35

holds. Then, , for p = 0 there, gives
1/|h]- (po E)(y < [w(e(z + h,s))ds V0 < |hl <6.

Now, the integrand (on the right side) is measurable, as well as bounded by
Then, follows from the dominated convergence theorem, because

limp, son(e(z + h,-)) =0
converges pointwise by Eﬂ [l

Remark 6. In the situation of Theorem@ we obtain from Lemma@ (and

[b)) that
(94) %’h:ojq)(x +h,) =deLf o, (fAdU 21 (0:@(x, 5)) ds) €

holds, provided that

e g is integral complete.
e g is Mackey complete with 0,®(x,-) € CU([r,7'], g).

Here, the first criterion is obvious, and the second criterion is clear from

Lemma[13 1
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8.3. Duhamel’s formula

Suppose that G is co-continuous and C'*°-semiregular, and that g is Mackey
complete. We fix X: I — g of class C!, and define

®:1x[0,1] — g, (z,t) = X(z2).

Then, ® fulfills the presumptions of Theorem [5| for [r,r'] =[0,1] there,
namely, for each x € I; so that we have

Corollary 11. Suppose that G is co-continuous and C°°-semireqular, and
that g is Mackey complete. Then, for each X: I — g of class C', we have

0, exp(%(x)) = deLexp(%(x)) ( fol Adexp(_s.x(x))(az%(x)) ds) Vel

Proof. Clear. O

We want to provide a further version of this statement:
Referring to Lemma [35] we say that G is quasi constricted iff

axy: Rt > L. (adX)"(Y) €g VX,Yeg

n=0 nl

is defined and of class C' with dxy = [X,a]; thus, of class C*° by
Corollary 2l Then, by Lemma [34, we have

o) TSI = [ xy()ds
=2 oto gy - (ad —X(2))"(Y) €@ vYes

and, in analogy to Corollary [7| we obtain

Corollary 12. Suppose that G is quasi constricted, and admits an expo-
nential map. Then,

Adexp(—t.x)(Y) = a_x v (t) VteR, X,Y €g.

Proof. The proof is the same as for Corollary [ whereby the statement in
Lemma [35 now holds by definition. O

We obtain
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Proposition 8 (Duhamel’s formula). Suppose that G is co-continuous,
C*®-semireqular, and quasi constricted; and that g is Mackey complete. Then,
for each X: I — g of class C*, we have

9. exp(X(2)) = deLexp(x(@)) (idg—eﬁ;ggg;f(x” (azae(x))) Vaoel
Proof. By Corollary we have

- exp(X(x)) = deLexp(x(2)) ( [ Adexp(—s-2(2)) (0:X(x)) ds) Vael.

We obtain from Corollary [I2) and Lemma [34] that

J Adexp(—s () (0:X(2)) ds = [ 327, n; - (ad —=X(x))"(0:X(x)) ds
=2 o (n+1) -ad (=X())"(0:X(x))

holds for each = € I; which is necessarily in g. O

8.4. Smoothness of the integral

We now are going to prove Theorem [4] For this, we first observe that

Lemma 41. LetI': G x g — g be continuous, and k € N U {lip, oo} be fized.
Suppose furthermore that G is k-continuous and C*-semiregular. Then,

T: Ck([r, 1), 0) x C¥([r, 7", 0) = 8, (0,0) = [T(S36,1(s)) ds
is continuous for each [r,r'] € &.

Proof. This follows by standard arguments from Lemma cf. Appendix
2 a

Let now k € N U {lip, 0o} be fixed; and suppose that G is k-continuous and
C*-semiregular, i.e, locally p-convex and C'"P-semiregular for k = lip. Sup-
pose furthermore that

e g is integral complete if k¥ = 0 holds.
e g is Mackey complete if k& € N> U {lip, oo} holds.

Clearly,
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(¢, y]: (=1, 1) x [r,r] =g, (ht) = () +h-(t)

fulfills the presumptions of Theorem [5| for each ¢, € C*([r,7'], g); i.e., we
have, cf. Remark [0]

(dgevolfy ) (¥) = deLiys ([ Adjg: g-1(12(s)) ds)

96
(96) Yo, € CH([r,r'],q), [r,7] € &

This can be written as, cf.

dgevolf. (1) = d(g4.0m(0,T(¢,¢)) for I = Ad(inv(-), );

so that evol® , is of class C' by Lemma We thus have

[r,r']

Corollary 13. Let G be k-continuous and C*-semireqular for k € NU
{lip, co}. Suppose furthermore that g is

e integral complete for k = 0.
o Mackey complete for k € N>; U {lip, co}.

Then, evolﬁ,r,} is of class C' with
dgevolf. (1) = deLiy g ( [ Adgg: g1 (1(5)) ds) Vb, 9 € C¥([r, '], g)
for each [r,7'] € &.
Proof. Clear. g
We are ready for the

Proof of Theorem[]]. By Corollary |§|7 it remains to show that evolf;’r,] is
smooth for each [r,7'] € &

o if g is integral complete for k = 0.
e if g is Mackey complete for k € N> U {oo}.

Now, since Corollary [13|shows that evolfoyl] is of class C!, Theorem E in [3]
shows that JHFO 1 i smooth. Then, for [r, '] € & fixed, we define

0: [0,1] =[],  te=r4t-|r =7
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and recall that (cf. proof of Lemma evol?T,] = evolfo’l] o 1 holds, for the

k-continuous, linear map
n: C*(Ir,r'],9) = C*(0,1],9),  d = o-(¢00) = |- (¢00).
Since 7 is smooth by @ the claim follows. O

Remark 7. It is to be expected that Theorem also holds for k = lip;
i.e., that we have:

2°) If G is lip-continuous and CP-semiregular, then evol[p

is differentiable at

1 s smooth for

each [r,r'] € R iff g is Mackey complete iff evollP
zero.

[0,1]

Indeed, by Corollary@ it only remains to show that evol%ip 1 smooth; whereby

(due to the explicit formula (96])) Corollary already shows that evoll[lp 1
is of class C". Usmg similar arguments as i Lemma l it should follow
inductively from (96) that evol[lp q is of class C'*°. The details, however,
seem to be quite elabomte and technical; so that we leave this issue to a
another paper. i
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Appendix A. Appendix to Sect.
A.l.

Proof of Lemma[1]. Since ® is continuous with ®(z,0,...,0) = 0, there exist
q1 € Q1,...,qn € Q, as well as V' C X open with z € V', such that

(A1) (po®@)(y,V1,...,Y,) <1 Vyev

holds for all Y7 € thl,...,Yn € Eqml. Let now X € Fy,...,X,, € F}, be
fixed; and define

. Xk for qk(Xk) = 0,
1/qk(Xk) - X for qk(Xk) > 0,
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for k=1,...,n. Then,
e if q1(X1),...,qn(Xy) > 0 holds, we obtain

(A1)

e if qx(X%) = 0 holds for some 1 < k < n, we have qi(n-Yj) = 0 for each
n > 1; thus,

A1)
(PO‘P)(y,H,---,Yn)?l/n Vn>1
- (po®)(y,Y1,...,Y,) =0
= (po®)(y, X1,..., Xn) =0
for each y € V.
From this, the claim is clear. O
A.2.

Proof of Corollary[]l Since K is compact, by Lemma [I] there exist semi-
norms q[p|1 € Q1,...,q[p]ln € Qpforp=1,...,m,aswellas Vq,...,V,, C X
open with KC V; U...UV,, =: O, such that

(po®)(y, X1,..., Xn) < qlpli(X1) .. - q[p]n(Xn)
VyeV, p=1,...,m

holds for all X7 € F1,...,X,, € F,. Evidently, then holds for any q; €
Q1o Gn € Qp with q[1]g, ..., qm]x < qg for k=1,...,n. d

A.3.

Proof of Lemma[3 It is clear that ~k) is of class C if « is of class CFT1;
and the other direction is clear if D = I is open. Thus, suppose that D is not
open; and that « is of class C* with v(*) of class C'. We define r := inf{D}
and ' := sup{D}; and proceed as follows:

e If r ¢ D holds, we let D' := D and +' := .
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e If r € D holds, we let D' :=(r —e,r)U D for some ¢ > 0; and define
~': D" — E by

Yr—ery = (- — r)k+1/(k: +1)!- (’Y(k))(l)(r) + Z’;:o(‘ —7)?/p!- ~(P) (r)

and +/|p = .
Then,

e If ¥’ ¢ D holds, we let I :== D’ and 7" := .
e If 7/ € D holds, we let I := D" U (1,1 +¢’) for some & > 0; and define
~": 1 — E by

1
Y grpery = (= V(e 1)L (f YD) 4 05— e fpl 4P (5

/

7
D’ :"}/

By construction, I is open; and we have v = ~”|p, for ¥ of class C*¥*1. O

A4,

Proof of Lemmal[j Passing to Ck-extensions of ~; for i = 1,2, we can as-
sume that D = I is open. Then, the first claim is clear from @ Moreover,
for a as in and t € I, we have

a(t) = dy(w 0 3)(1) Baw(s(1), 4,8(1))
L aw (50,400 x o x W)
s o,0(s ()V-(Z““)(t)),

s Iy,
for g = 'yi(fl) X ... X fyl.(im); as well as
8U\I/ :dq]’VX{O}“_leiuX{O}""_“ YVu= 1,...,m

smooth by Eﬂ The second claim thus follows inductively, as it clearly holds
for p = 0. O
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A.5.
Proof of Lemmal[j By Corollary [3] for 0<p<u, and each v€ C([r,7'], W1),
¥ € CU([r, '], Fa), we have Q(y,9)®) = S, ap(y, ), with
api: (7, 0) = ([3l]m[w‘}9)(%7(2[19,2']1)7 o 7,Y(Z[pﬁi}m[p‘ﬂ)’1/,(4[13,2']))

for certain z[p, i1, ..., 2[P, i|m[p,i), 2P, 7] < p and m[p,i] > 1. Then,

1) For p € P fixed, Lemma [I| provides us with q; € Q, q2 € Qo, and an
open neighbourhood V' C Fy of 0, such that

P(0pa(1:1)) < (1)) - gy (5ot gy (D)
Vi=1,...,d,, p=0,...,u

holds, provided that we have im[y] C V. The claim thus holds for q:=
max(dp, . ..,dp) - q2, and each V < m € Q; with q; <m.

2) Forp € B, v € CY([r, 1], W1) fixed, Corollary[I] provides us with q; € Qy,
q2 € 9, such that

p(apﬂ(r%w)) S q1 (,y(Z[Pﬂh)) L ql(fy(z[pvi]m[pyi])) (2 (w(Q[pﬂD)
Vi=1,...,dp, p=0,...,u

Since we have q15(y) < oo, the claim holds for q = C - qq, for C >0
suitably large.

This proves the claim. O

A.6.

Proof of Lemma[7. Recall that dy(y)f is defined, linear, and continuous by
Lemma [2, We choose § > 0 such small that for each h € M := (D —t) N
((—0,0) U (0,6)), we have

We obtain from that

(A2) 4 - (f(y(t+h) = F(v (1))
= (Ao f(An) + Jy (1= 8) - a2y n, F(An, Ap) ds)
= Ay f (AR + Jo (1 —=8) -2 on, FG - An, D) ds
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holds for each h € M. Since d, ) f is continuous, we have

limp, o dye f (- An) = dy F(X).

The claim thus follows once we have shown that the second summand in
tends to zero if h tends to zero. For this, we fix p € 3; and choose
qi,q2 € Q as well as V C U open with y(t) € V as in Lemma [l for & =
d?f: U x F x F — E and 2 = ~(t) there. Since limj,_,o A, = 0 holds by con-
tinuity of v at t € D, we obtain

limp o p(fy (1= 8) - a2 o, £ - An, Ap) ds)

.
< limy g p(d'zy(t)jLs.Ahf(% ’ Aha Ah))
< im0 913 - An) - q2(An)

= Lm0y (7 - An) - 42(Ap)
0;

which shows the claim. O

A.7.

Proof of Lemma 11 By Lemma [10]2)] and it suffices to show that there
exists some pu € C1(I,G), for I C R an open interval containing [r,7'], such
that 6" () = ¢ holds:

By assumption, for p =0,...,n — 1, we have

(A3)  Bli, 0 = O (Pt t000)) for some wulp) € CHI(IP, G)

with I, C R an open interval containing [t,, t,+1]; and, due to the first iden-
tity in (38]), we can assume that

up](tp+1) = plp + 1(tp+1) Vp=0,...,n—2

holds. We write Iy = (¢,¢'), I,—1 = (¢,./), let I = (¢,), and define
o € (CI,9) by

w’(b,r) = 57"(/1,[0”(,‘7”), (0 [ryr] *= MU (r'p) = 6T(M[0] (T’,L’))'
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e 1 €C%I,G) by

fl e = w0l
1ty ] : M[P]\t,),t,)H] Vp=0,...,n—1,
ler oy o= il — Ul
We obtain from (|A.3)) that
(A.4) limps 5 - E(u(t +h) - p(t) ™) = dE(¥(t)) Viel

holds; and now will conclude from Lemma [7| that u is of class C1.

For this, we let 7 € I be fixed; and choose a chart Z': G D W — V' C E with
p(r) € W. Moreover, we choose V C 'V open with 0 € V, as well as J C I
open with 7 € J, such that Z~1(V) - u(J) € W holds. Then, shrinking J if
necessary, we can assume that (Zom)(u(J), (invo u)(J)) € V holds. For
each s € J, we define v5: J 2t — (Eom)(u(t), (invo u)(s)) € V, as well as

fs: VoV, e (2 om)(E 7 (2), u(s)).
Then, Lemma [7] (second step) shows that
limy, 0 - ((E" 0 uls)(s +h) — (E o uls)(s))
= limpso g (fs(rs(s +h)) = fs(1s(s)))
dy, () fs(impyo 3 - (vs(s + h) — 7s(s)))
= (A= 0 deRyye) ($(5))

holds, which shows that p is of class C!. O

A.8.

Proof of the Lipschitz Case in Lemma[I3 We have to show that Ad,(¢) €
C"P([r,7'], g) holds for each y € C'([r,r'],g), and each ¢ € C'P([r,r'], g) with
Lipschitz constants { Ly }yeqy € R>g. For this, we fix p € P; and observe that
P (Ad, ) (6() — Adyy (0(t)))
< p(Adyn (8(1) = (1)) +p((Adugry — Adyu)) (6(1)))

holds. Then,
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e Welet C :=im[u|, choose p < m € P asin for n = p there; and obtain

P (A, (o) — o(t)) < m(B(t) — ¢(')) < L - [t — 1]
forr<t<t <y

e Since a: [r,7'] x im[¢] 3 (s, X) — 0sAd,,(5)(X) is defined and continuous,
Lemma [] shows that

'p((Ad,u(t) - Ady(t’))(é(t,))) < ﬁtl P (asAd;L(s) (¢(t,)) dS) <C- |t, - t‘
holds, for C := sup{.p(a(s, X)) | (s,X) € [r,r] x im[¢]} < occ.
From this, the claim is clear. U

A.9.

Proof of the statement made in Remark @ We obtain from ,
that

(A.5) exp(r- X)-exp(s-X) =exp((r+s)-X)
=exp(s- X) -exp(r-X) Vs, t>0

holds. Then, shows Adexp(t.x)(X) = X for each ¢ > 0; thus,

exp(t- )71 = [ ox) 7 2§ —6x = exp(—t - X) V> 0.

It follows that (A.5)) even holds for all s,r € R; i.e., that §: R > ¢ +— exp(t -
X) € G is a group homomorphisms. Then, smoothness of 3 is clear from

(38, (@7, and Lemma O
A.10.

Proof of the statement made in Remark[3[3)] We define ¢ € CO([r — 2,7" +
2],9) by

w|[r72,r) = ¢(T), ¢|[r,r’} =9, w|(r’,r’+2] = ¢(T/)a
as well as 8 € CY((r — 1,7 +1),g) by

B:(r—1,7"+1) 3t+—>f:71¢)(5) ds.
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Fort € (r— 1,7 +1) fixed, and 0 < h < 1, we let

ft+h ds, X = f:_l P(s) ds, X, = ftHh P (s) ds;

and obtain

(expoB)(t+h) = IQ¢Y—JO¢X+¢Xh.§0¢Xh fobx
=exp (J, fh Y(s) ds) - exp (fr—l Y(s) ds).

Since exp is of class C'!, we obtain from andthat 0" (exp of)|rr = ¢
holds; which shows the claim. Il

Appendix B. Appendix to Sect.
B.1.

Proof of Equation (54 . Applying a standard refinement argument, we ob-
tain r =tg < ... < t, =1’ as well as ¢[p], ¥[p] € DF forp=0,...,n—

. [tpstpr1]
1 with

¢| tp,tp+1 ¢[p]|(tp,tp+1 ¢| tp,tp+1 ¢[p]|(tp,tp+1) vp = 07 M 7n - ]'

We let a:= [0 o] [[*9], p:= [°¢, v:i= §*1; and define

(B6)  api=aly. 2 ult) [ S3 6] ST vll] - vity)
(B.7) Hp = M|[t,,,t,,+1] € Ck+1([tpa tpr1),9)

for p=20,...,n — 1. We obtain from |[b)| that
(B.8) 5T(ap)|(tp,tp+1) = Ad'u,;l (¥[p] — ¢[p])|(tp,tp+1) Vp=0,...,n—1

holds; so that Lemma and (B.7) show Ad,-: (¢ — ¢) € DP*([r,r'], g).
Then, for t € (t,,tp4+1] with 0 < p <n — 1, we have

FEAd, (- ) [ap(t) - ap(ty) 1] - [eps (ty) - ps (p1) 1]
- [ (t1) - ao(to) "]

which proves the claim. O
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B.2.

Proof of Eq. and the C*-statement made in the proof of Lemma |24 Tt
is straightforward from the triangle inequality, the properties of p, and
smoothness of ¢ that ¢ € C'"([r,7'],g) holds for k = lip. Thus, in order
to prove that 9 is of class C*, and to verify Equation , we can assume
that £ € NU {oo} holds in the following.

Now, to prove the C*-statement, we have to show that 1) = ¢/|[m’] holds
for some ' € C*(I, g) with I C R open containing [r,7/]. For this, we define
o € C°(R,R) by

Q,‘(—oo,r) = Q(’I") Ql|[r,r’] =0 Q/’(r’,oo) = Q(’I"/);
and let ¢/ := ¢/ - (po¢): R — g. Then,

e we have W(m)mf[r,r'} =0 for 0 <m < k, as well as

W0, ™ = ((@10] - (L] © 2lp])l 2, 1,.)) ™

(B.9)
VOo<m<k, 0<p<n-—1.

e we obtain from @ and Eﬂ that

(B.10)  (&lp] - (Slp] o olp]) ™ (1) = 0 = (élp] - (lp] o elp]) ™ (tp+1)

holds, for 0 < m < kand p=0,...,n— 1.

Now, since 1)’ is of class C, we can assume that it is of class C? for some
0<qg<k—1.Then, (for m = ¢ there) shows that

B.11) D,y = @) Gl o o)yt YP=0,0imn— 1
holds; with 1/)’(‘1)|R_[(t07t1) UeU (tn_s,tn)) = 0 by the first-, and by the second

point (for m = ¢ there). Together with (B.10]) (for m = ¢ there), this implies
that ¢'(9 is differentiable with

w/(q—‘rl) ’R_[(to,tl) U...uU (tn—lytn)] = 0’

so that and (B.10) (for m = g+ 1 there) show that ¢/(¢*1) is continu-
ous. It thus follows inductively that ¢’ is of class C*.
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In particular, (56| is now clear from

Dl =l =2 (6lp] - (B19) 0 o)l
= 6" (ulp] o olpllit, t,111)

forp=0,...,n—1. O
Appendix C. Appendix to Sect.
C.1.
Proof of the statement made in Example @ We let n: E— G=E/I,
X — [X] denote the canonical projection, define e := [0], and fix an open
neighbourhood O C E of 0, such that O N[0 + [I' — {e}]] =0 holdsm Then,
a chart of G that is centered at e = [0] € G, is given by

Z:U=7(0) = V=0, [X] =7 HX)NnO CE.

Then, for V< p € P and X1,...,X,, € E with p(X1) +... +p(X,) <1, we
have

p(Xi+...+X,) <1 implying (X1 +...+ X, €W
and obtain
(poE)ETH(X1) ... ETHXR)) = (0o E)([X1] - ... [Xal)

=(poE)([X1+...+ X,))
=p(X1+...+X,)
< p(X1) + -+ p(Xn),

which shows that G is locally u-convex. O

C.2.
Proof of the statement made in Ezample [3]2)} We let u= ||| denote the

Banach norm on F; and can assume that V < u holds, just by rescaling u if

18Confer, e.g., Theorem 1.10 in [L3] for the existence of such O.
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necessary. We fix 0 < v <1 with, cf. Remark
(C.12) |dgz-1(2) = (dz-1(x) gLy © dz1(m)Rg 0 wETH) | ) S v7°

for all g, €U and x € V with (1o Z)(g), (uo=)(q),u(x) < t; and define
0 :=t~2.u. Then, since we have v < 1, it suffices to show that

(C.13) (uoB)E Xy -... -2 HX,)) <t-e

holds for all X1,...,X,, € E with o(X1)+...+0(X,,) = e < 1.
Now, (C.13) is clear for n =1, as

0(X)<e for XeF
= WoE)EHX)) =t? o(X)<t-e.

We thus can assume that ((C.13)) holds for all 1 < g < n for some n > 1, fix
X1,..., Xn+1 € E with o(X;) 4+ ...+ 0(X,41) = ¢ <1, and define

p:[0,1] 2t = EEHt-X1) ... BTNt Xni)).

Then, applying the induction hypotheses, Lemma |§| together with and

[C12) gives

u(p(1)) < supyepou(p(t) < et (W(X1) 4.+ u(Xps1))
=t-(0(X1)+...+0(Xpq1)) <t-e.

Equation (C.13) thus follows inductively for each n > 1. O

C.3.
Proof of the statement made in Example @ Let us first observe that
(C.14) QI+er) ..-(I4en)—1<2->0 e
holds, for e1,...,e, >0 with )"}, ex < 1/2. This is clear for n = 1; and

follows inductively for each m > 1. In fact, suppose that (C.14)) holds for
n>1, and let €1,...,e,41 > 0 with ZZI% e < 1/2. Then, we obtain from
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(C-13) that

(I+epr1) - A4er) .- (14e,) —1
< (Q’ZZ:1 519) + (5n+1 : (1+2'ZZ:1 ) < 2222% 5k)-

Let now u € 8 be fixed. We choose u < tv € 3 as in for v = u there, let
0 := 2 -1v; and consider the chart

ZU=AC V=A% -1, a—a—1
for 1 = e; and obtain from that

(uoB)(EHXy)-...-271X,))
(C.15) —u((1+X)-...-(1+X,)—1)
<(IT+wX) ...-(1+w(X,)) -1

holds for all X1,..., X, € V with n > 1. Then,
o(X1)+...+0(X,) =<1 == Yoo w(Xy) <1/2;
and we conclude from and that
o2)(EHXy) ... BTN (X)) £2- 0 w(Xy) = Y p0(Xy) =€
holds, which shows the claim. O
Appendix D. Appendix to Sect. [6]
D.1.
Proof of the statement made in Remark[3 Let Z: GO W — V' C E be a
further chart of G with e € U and Z'(e) = 0. Then, shrinking V if neces-
sary, we can assume that
d=d(E1oE): VX E-E

is defined. Let now p € P be fixed. We choose q=q1 € Pand V CV as in
Lemma additionally convex; and define 7,: [0,1] 2t +— (710 E)(t-z) €
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V for each z € V. Then, Lemma [6] shows

p(ET o E)(@) = p(12(1) —12(0)) < [p(Fa(s)) ds
= [(po®)(1a(s),42(s)) ds < [a(x) ds = q(x)

for each x € V, from which the claim is clear. [l

D.2.

Proof of the statement made in Example @ Welet Z: US [X] > X €V
be defined as in Appendix and fix V C V symmetric open with V C V
and V 4+ V C V. Then, for X,Y € V (or, alternatively, [X],[Y] € Z2~1(V)),
we have

P-X+Y) = (poS)([-X +Y]) = (po=)([X]7" - [Y]) VpeP.
The claim now follows easily from Remark [4l4)l when applied to U =V as
well as U = 27 1(V) there. O

D.3.

Proof of the statement made in Ezample[3[2) Let || - || denote the Banach
norm on E. Then, Lemma [§ applied to C = {e} and p = || - ||, provides us
with an open neighbourhood V of e as well as some C > 0, such that

(D.16) 12(q) —E(¢)| < C-||1En(q) — En(d)|l Vag,d,heV

holds. We fix an open neighbourhood U C G of e with U C V N U; and recall
that in order to show that G is sequentially complete — by Remark -
it suffices to show that each Cauchy sequence {g,}neny € U C G converges

in G. Now, (D.16]) applied to h = g,, gives
I=(gm) = E(gn)ll < C - IE(gm" - 90l Vm,n €N,

which shows that {Z(gn)}nen € E(U) CV is a Cauchy sequence in E. By
assumption, lim, E(g,) =z € E(U) C 'V exists; so that {g,}nen converges

to =7 1(x) € G. O
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D.4.

Proof of the statement made in Example @ Recall that A* is locally pu-
convex by Example [2I3); and let Z: U2 A* 2a—~a—-1€V=A" -1 be
as in Appendix Let furthermore {a,}nen € A* be a fixed sequence.

e We fix v € P, choose v <m € P as in for v = m there, and obtain

(D.17) o(an —ap-1) = U(an,l . (a;il cap — 1))
<m(ap—1) - (mo E)(a;&l “ap) Vn>1.

e We choose m < u € P as in (59) for v = m and to = u there, and let u <
0 € ‘B be as in ([58]). Then, passing to a subsequence if necessary, we can
achieve that

(D.18) > >2 0(X,) <1 holds for X, :=Z(a,'; -a,) Vn>1.

n=1

We obtain
mlan) = mlag-S (X)) ... (X))
159)
< u(ao) - u(E (X)) 21(Xn))
< u(ag) - (u@)+ o E)EHX1) ... - ETH(X,)))
(3).(018)
< u(ag) - (u(1) + 1),

implying sup{m(a,) | n € N} < cc.
It is thus clear from (D.17) that:

o If A is sequentially complete, and {a, }neny € A a Cauchy sequence, then
lim,, a,, = a € A exists.

o If A is Mackey complete, and {ay, }neny € A* a Mackey-Cauchy sequence,
then lim,, a,, = a € A exists.

Now, since A* is open with 1 € A*, there exists an open neighbourhood V
of 1 with V C A%, as well as some p > 0 with {a];1 -G tn>p € V. Then,

a;l-a:limn(aljl-an) €V C A%,

implies a € A*; which proves the claim. O
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Appendix E. Appendix to Sect. [7]
E.1.

Proof of Equation . We fix ¢ € N; and choose r =ty < ...<t, =1, as

well as ¢gq[p] for p =0, .. — 1, as in (52)) for ¢ = ¢4 and ¢[p ] ¢q|p] there.
Then, it is clear from (53] that [q is of class Clon J:= Lp=o (tp, tpe1) with

¢g = dpu,R,-1 (f1q) thereon; so that we have

(Vg B)|s = (dy,E 0 deRy, ) (9g)]s

(E.19) _ . .
= (dy,EodeRy, o dy,Ry-1)(fg)|s = Vgl
We define oy, := v(vglt, t,..]> Pq[p]) for p=0,...,n —1; and conclude from
and - ) that
(E.20) Y(T') = 74(7) = f: V(74(8), Pg(s)) ds = f: ap(s) ds
holds, for each & 5 [7,7'] C (tp, tp41). Since 74, @, . . ., @p—1 are continuous,
we obtain
V(7)) = 7q(T) = limpoe (Y(7" = 1/k) — 7q(7 + 1/k))
E29 | limy_y 00 TTJFI/l]ék ap(s) ds = f:/ ap(s)ds
= [T 0(14(5), dgpl(s)) ds

for each t, <7 <7/ <tpy1,for p=0,...,n — 1. The claim is thus clear from
and y4(r) = 0. O

E.2.
Proof of Lemma[36,. Let -4 a5 h o denote the right derivative; and define p :=
{7 ¢. For the implication “:>”

e we observe that o := Ad,(Y) is of class C! with a(r) =Y.
e we choose an extension ¢ € D, /14 of ¢, for some ¢ > 0; and define

B :=Ad,(Y) for v:= (.
e we obtain from |d)| that

alt) = B(t) = d%};:o Adﬁ+h¢(Adu(t)(Y)) = [o(t), a(t)] Ve rr].

For the implication “«<=",
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e we suppose that & = [¢, a] holds for o € C*([r, 7], g).

e we choose an extension ¢ € D,.,.;5) of ¢, and an extension 3 € CH([r,r" +
d], g) of a, for some ¢ > 0; and define ~ := Adpye w1 (8)

e we recall that, cf.

[fi+h ¢]—1 = (ith —Adpe g1 (9) YO<h<$§, telrr);
and conclude from @7 Eﬂ that

w@):éﬂimAdmﬂwrdﬁu+h»
= d% ‘Z:o Ady-1 (AdUi“‘ Y-t (Bt + h»)
= Ady-1 () ([=0(1), a(t)] + &(t)) =0
holds for each t € [r,7’].

e We thus conclude from that Ad[fs4-1(a) = a(r) =Y holds; thus,
a=Ad,(Y).

This proves the claim. O
Appendix F. Appendix to Sect.

F.1.

Proof of Equation . We choose an open neighbourhood V' C E of 0, such
that

J1V XV 3 (@,y) = (Bom)(E 7 (2), 271 (y)
is defined. Then, shrinking § if necessary, we can assume that
v:10,0] 3t ((Eop)(t),(Eov)(t) eV xV

holds; and conclude from Lemma [7| (for F = E x E and U =V x V there)
that

limy, 0 3 - E(u(h) - v(h)) = lim,0 3 - (F(v(R)) — F(¥(0)))
(F.21) =dy f(X,Y)
=X+Y
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holds. For the last step, observe that d(eye)m(v,w) = v+ w holds for all
v,w € g by ; thus,

dy0) f(Z,Z") = (deE o dem)(do=71(2),do=71(Z"))
=7Z+7 V27,7 € E.

The last step in ('.21)) is thus clear from continuity of d.q)f. O

F.2. Appendix

Proof of Lemma[{d. By (22), it suffices to show that

I': Ck([r,r'],9) x C¥([r,7"],g) = C°([r,7'], 9),
(6, 9) = [t = T(f6,9(1))]

is continuous. For this, we let p €, £ >0, and (¢,7) € C¥([r,7'], ) x
C*([r,r'],g) be fixed; and have to show that there exist q € P and s < k,
such that

(¢ — @), (¥ =) <1

(F-22) (B ) —T(6,0) < ¢

for ¢/, 4" € C*([r,1'],g). We let p1 := [* ¢, and consider the continuous map
a:GxgxGxg—g,  ((9,X),(9, X)) = pT(g,X) - T(g", X))

Then, for ¢ € [r,'] fixed, there exists an open neighbourhood W|[t] C G of
e, as well as U[t] C g open with 0 € U[t], such that

a((g, X), (4, X)) <
B2y (6%, X7) € [u(t) - W]  [66) + U]

holds. We choose

e V[t] C G open with e € V[t] and V[t] - V[t] C Wt].
e O[t] C g open with 0 € O[t] and OJt] + O[t] C U[t].
e J[t] C R open with ¢ € J, such that for D[t] := J[t] N [r,7’], we have
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Since [r, '] is compact, there exist tg, ..., t, € [r,7'], such that [r,7'] C Dy U
..U D, holds.

o We define V := Vtg] N ... N V[ty].
Then, Lemma [23| provides us with some m and s < k, such that

f*¢' € f*¢-V  holds for each ¢ € C*([r,r'],g)
with me (¢ — ) < 1.

(F.25)

e We define O := Oltg] N...NO[t,]; and fix some O < q € P with m < q.

Let now ¢, ¢ € C*([r,7'],g) be given with .q5_(¢' — ¢), 3, (¢ — 1) < 1.
Then, for 7 € D, wit 0 < p <n, we obtain from (F.25), O < ¢, and (F.24)
for t = t,, there that

i ,Utp de)/_ ( )71/‘(7))([54:(15]71["‘7&]) GV'VQW[tp]-
o (1) —(tp) = (W'(1) = ¥(7)) + (U(7) = ¥(tp)) € O+ O CU[ty).

The claim is thus clear from (F.23|) and (F.24)). O

References

[1] H. Boseck, G. Czichowski, K.-P. Rudolph: Analysis on topological
groups-general Lie theory, B.G. Teubner Verlagsgesellschaft, Leipzig,
1981.

[2] H. Glockner: Infinite-dimensional Lie groups without completeness re-
strictions, pp. 43-59 in: Strasburger, A. et al. (Eds.), “Geometry and
Analysis of Finite- and Infinite-Dimensional Lie Groups”, Banach Cen-
ter Publications, Vol. 55, Warsaw, 2002.

[3] H. Glockner: Regularity properties of infinite-dimensional Lie groups,
and semireqularity preprint, arXiv:1208.0751v5 [math.FA], 2012.

[4] H. Glockner, K.-H. Neeb: Algebras whose groups of units are Lie groups,
Studia Math. 153 (2002), 147-177.

[5] H. Glockner, K.-H. Neeb: When unit groups of continuous inverse al-
gebras are reqular Lie groups, Studia Math. 211 (2012), 95-109.

[6] R. Hamilton: The inverse function theorem of Nash and Moser, Bull.
Amer. Math. Soc. 7 (1982), 65-222.

[7] A. Kriegl, P.W. Michor: The Convenient Setting of Global Analysis,
AMS, Providence, 1997.



152 Maximilian Hanusch

[8] J. Milnor: Remarks on infinite dimensional Lie groups, pp. 1007-1057
in: B.S. DeWitt and R. Stora (eds.) “Relativité, groupes et topologie
I1”, North-Holland, 1984.

[9] K.-H. Neeb: Representations of infinite dimensional groups, in “Infinite
Dimensional Kéhler Manifolds”, Eds. A. Huckleberry, T. Wurzbacher,
DMV-Seminar 31, Birkhauser Verlag, 2001; 131-178.

[10] K.-H. Neeb: Infinite-Dimensional Lie Groups. 3rd cycle. Monastir
(Tunisie), 2005, pp.76. cel-00391789

[11] K.-H. Neeb: Towards a Lie theory of locally convex groups, Jpn. J. Math.
1 (2006); 291-468.

[12] H. Omori: Infinite-Dimensional Lie Groups, Translations of Math.
Monographs 158, Amer. Math. Soc., 1997.

[13] W. Rudin: Functional Analysis, McGraw-Hill, 1991.

[14] J. Voigt: On the convexr compactness property of the strong operator
topology, Note di Mathematica Vol. XII, (1992) 259-269.

[15] H. von Weizsicker: In which spaces is every curve Lebesque-Pettis-
integrable?, preprint, arXiv:1207.6034 [math.FA], 2012.

INSTITUT FUR MATHEMATIK, LEHRSTUHL FUR MATHEMATIK X
UNIVERSITAT WURZBURG, CAMPUS HUBLAND NORD
EMIL-FISCHER-STRASSE 31, 97074 WURZBURG, GERMANY
Research done in part at

PHYSICS DEPARTMENT, FLORIDA ATLANTIC UNIVERSITY

777 GLADES RoAD, Boca RaToN, FL 33431, USA

E-mail address: mhanusch@math.upb.de

RECEIVED SEPTEMBER 24, 2018
AccepTED JuLy 10, 2019



	Introduction
	Precise synopsis of the results
	Preliminaries
	Auxiliary results
	Local -convexity
	Completeness and approximation
	The confined condition
	Differentiation under the integral
	Appendix Appendix to Sect. 3
	Appendix Appendix to Sect. 4
	Appendix Appendix to Sect. 5
	Appendix Appendix to Sect. 6
	Appendix Appendix to Sect. 7
	Appendix Appendix to Sect. 8
	References

