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Gradient steady Kähler Ricci solitons

with non-negative Ricci curvature and

integrable scalar curvature

Pak-Yeung Chan

We study the non Ricci flat gradient steady Kähler Ricci soliton
with non-negative Ricci curvature and weak integrability condi-
tion of the scalar curvature S, namely lim

r→∞
r−1

∫
Br
S = 0, and

show that it is a quotient of Σ× C
n−1−k ×Nk, where Σ and N de-

note the Hamilton’s cigar soliton and some compact Kähler Ricci
flat manifold respectively. As an application, we prove that any
non Ricci flat gradient steady Kähler Ricci soliton with Ric ≥ 0,
together with subquadratic volume growth or lim supr→∞

rS < 1
must have universal covering space isometric to Σ× C

n−1−k ×Nk.

1. Introduction

Let (Mm, g) be a real m dimensional Riemannian manifold and X be a
smooth vector field on M , the triple (M, g,X) is said to be a Ricci soliton
if there is a constant λ such that the following equation is satisfied

(1) Ric +
1

2
LXg = λg,

where Ric and LX denote the Ricci curvature and Lie derivative with respect
to X respectively. A Ricci soliton is called shrinking (steady, expanding) if
λ > 0 (= 0, < 0). It is said to be gradient if X can be chosen such that
X = ∇f for some smooth function f on M . The soliton is called complete
if (M, g) is complete as a Riemannian manifold.

Ricci soliton is a self similar solution of the Ricci flow and often arises
as a blow up limit of the Ricci flow near its singularities. It is closely related
to the singularities models of the Ricci flow introduced by Hamilton [22].
The classification of Ricci soliton would give us a better understanding on
the singularities formation of the Ricci flow.
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Ricci solitons can also be viewed as an extension of the Einstein metric
Ric = λg. Bakry and Emery first introduced the Bakry Emery Ricci cur-
vature Ricf := Ric+∇2f in [1]. The Bakry Emery Ricci curvature is one
of the most important geometric quantities in the theory of smooth metric
measure spaces and appears in other branches of mathematics like probabil-
ity (see [29]). Together with the fact that L∇fg = 2∇2f , the gradient Ricci
solitons equation (1) can be rewritten as

(2) Ricf = Ric+∇2f = λg,

which is a natural generalization of the Einstein metric.
In [18], Deruelle proved that any complete non-flat gradient steady Ricci

soliton with non-negative sectional curvature and scalar curvature S ∈
L1(M, g) is isometric to a quotient of Σ× Rm−2, where Σ denotes the Hamil-
ton’s cigar soliton. Later Catino-Mastrolia-Monticelli [10] weakened the in-
tegrability condition of S to

(3) lim inf
r→∞

1

r

∫

Br(p0)
S = 0,

for some p0 ∈M (see also [30] by Munteanu-Sung-Wang for a different
proof). Since S ≥ 0 (see Section 2), It is clear that the above condition
is true independent on the base point p0, i.e. (3) holds for some p0 in M if
and only if it holds for all p0 in M .

Theorem 1. [18], [10], [30] Let (M, g, f) be a real m dimensional non-flat
complete gradient steady Ricci soliton with non-negative sectional curvature.
Suppose in addition that the scalar curvature S satisfies (3), then the univer-
sal cover of (M, g) is isometric to Σ× Rm−2, where Σ denotes the Hamilton’s
cigar soliton.

Remark 1. It is not difficult to see from the proof of Theorem 1 that Any
non-flat gradient steady Kähler Ricci soliton with non-negative bisectional
curvature and S satisfying (3) is a quotient of Σ× Cn−1.

It was shown by Hamilton [22], Ivey [24] and Chen [13] that any real 3
dimensional complete gradient shrinking or steady Ricci soliton must have
non-negative sectional curvature. However, this significant feature doesn’t
hold true for higher dimensions, Feldman, Ilmanen and Knopf [19] con-
structed some shrinkers with Ricci curvature being negative in some direc-
tions (see also [5] by Cao who constructed a steadier on anticanonical line
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bundle on CP
n which doesn’t have non-negative bisectional curvature). It

is natural to ask whether we can classify steady Ricci soliton under weaker
curvature condition. Deng and Zhu [15] showed that any complete Ricci
non-negative gradient steady Kähler Ricci soliton with average of scalar
curvature over large ball decaying faster than linear rate must be Ricci flat.
It would be interesting to know more about the Kähler steadier with non-
negative Ricci curvature. In [18], Deruelle proved the following local splitting
theorem:

Theorem 2. [18] Let (M, g, f) be a real m dimensional complete gradient
steady Ricci soliton with Ric ≥ 0 and S > 0. Suppose the following conditions
are satisfied:

1) S is integrable, i.e. S ∈ L1(M, g);

2) |Rm| → 0 as r → ∞;

3) |∇f |2S ≥ 2Ric(∇f,∇f),

then M \A is locally isometric to Σ× Rm−2, where A := {∇f = 0} and
Σ is the Hamilton’s cigar soliton.

Remark 2. Condition 3 in the above theorem is automatic if (M, g, f) is
a gradient Kähler Ricci soliton with Ric ≥ 0.

We shall generalize Theorem 1 and Theorem 2 under the Kähler condi-
tion. Here is the main result of this paper:

Theorem 3. Let (M, g, f) be a complex n dimensional complete non Ricci
flat gradient steady Kähler Ricci soliton with Ric ≥ 0 and n ≥ 2. Suppose
the scalar curvature S satisfies (3), i.e.

lim inf
r→∞

1

r

∫

Br

S = 0,

then it is isometric to a quotient of Σ× Cn−1−k ×Nk, where Σ and N de-
note the Hamilton’s cigar soliton and some simply connected compact Kähler
Ricci flat manifold of complex dimension k respectively.

The result is no longer true if one allows lim infr→∞
1
r

∫
Br
S > 0. In-

deed, let Σ2 be the positively curved U(2) invariant soliton on C2 con-
structed by Cao [5] and Tn−2 be any flat Tori of complex dimension n− 2.
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lim infr→∞
1
r

∫
Br
S > 0 for Σ2 × Tn−2 but its universal cover is not isometric

to Σ× Cn−1−k ×Nk.
One difficulty we encounter is that in real dimension m ≥ 4, the strong

maximum principle for the Ricci tensor of Hamilton [20], Cao [6] and the
splitting theorem of soliton by Guan, Lu and Xu [23] are not available in the
absence of non-negative sectional or bisectional curvature condition. More-
over, the classical Cheeger Gromoll splitting theorem ([12] and [28]) cannot
be applied directly as the soliton under consideration has no line. Thanks
to the observation by Deruelle in [18], in order to split the manifold, one
suffices to show that ∇f is an eigenvector of the Ricci tensor. Motivated by
the arguments in [10] and [30], we will prove this by an integration by part
argument.

In view of Theorem 1, one may ask when Cn−1−k ×Nk is flat, i.e. k = 0.
Under the assumptions of the previous theorem, we give a necessary and
sufficient condition for the flatness of Cn−1−k ×Nk.

Corollary 1. Let (Mn, g, f) be a complex n dimensional complete non Ricci
flat gradient steady Kähler Ricci soliton with Ric ≥ 0 and n ≥ 2. Suppose
that

lim inf
r→∞

1

r

∫

Br

S = 0.

For n=2, it is isometric to a quotient of Σ× C. For n ≥ 3, M is isometric
to a quotient of Σ× Cn−1 if and only if |Rm| → 0 as r → ∞.

The integrability condition (3) is closely related to the volume growth of
the manifold. Indeed, it was shown in [18] (see also [10]) that for a complete
gradient steady Ricci soliton with Ric ≥ 0 and scaling convention (7), the
scalar curvature S must satisfy

(4)
1

V (Br(p))

∫

Br(p)
S ≤ m

r
,

for all r > 0 and p ∈Mm. With the above inequality, Catino, Mastrolia and
Monticelli [10] showed that any non-flat complete gradient steady Ricci soli-
ton with non-negative sectional curvature and subquadratic volume growth
is a quotient of Σ× Rm−2. Motivated by their result, we prove an analog in
the Kähler case with Ric ≥ 0 using Theorem 3.

Corollary 2. Let (Mn, g, f) be a complex n dimensional complete non Ricci
flat gradient steady Kähler Ricci soliton with Ric ≥ 0. Suppose the volume of
geodesic ball is of subquadratic growth, i.e. V (Br) = o(r2), then the universal
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covering space of M is isometric to Σ× Cn−1−k ×Nk, where N is a simply
connected compact Kähler Ricci flat manifold of complex dimension k.

Recently, there have been lots of researches about the classification of
Ricci solitons according to the decay rate of the scalar curvature. For ex-
ample, Brendle [3] showed that any real 3 dimensional complete non-flat
and non-collapsed gradient steady Ricci soliton is the Bryant soliton (see
also [4]). Deng and Zhu [16],[17] later generalized Brendle’s result and clas-
sified real 3 dimensional complete gradient Ricci steadier under S ≤ Cr−1.
Munteanu, Sung and Wang [30] proved that any real m dimensional non-
flat gradient steadier with non-negative sectional curvature and decay rate
of the scalar curvature faster than linear rate is isometric to a quotient of
Σ× Rm−2. Lately, Deng and Zhu [17] generalized the result in [30]:

Theorem 4. [17] Let (M, g, f) be a real m dimensional complete non-flat
gradient steady Ricci soliton with non-negative sectional curvature and the
scaling convention (7). There exists a constant ε = ε(m) > 0 depending only
on m such that if S satisfies

rS ≤ ε

near infinity, then the universal covering space of M is isometric to Σ×
Rm−2.

Using a result by Catino, Mastrolia and Monticelli [10] and Corollary 2,
we can have a sharp dimension free bound for the ε in Theorem 4.

Theorem 5. Let (M, g, f) be a real m dimensional complete non-flat gradi-
ent steady Ricci soliton with non-negative sectional curvature and the scaling
convention (7). In addition, we assume that

lim sup
r→∞

rS < 1.

Then M is isometric to a quotient of Σ× Rm−2 and lim sup
r→∞

rS = 0.

Theorem 6. Let (M, g, f) be a complex n dimensional complete non-Ricci
flat gradient steady Kähler Ricci soliton with non-negative Ricci curvature
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and the scaling convention (7). In addition, we assume that

lim sup
r→∞

rS < 1.

Then M is isometric to a quotient of Σ× Cn−1−k ×Nk and lim sup
r→∞

rS = 0,

where N is a simply connected compact Kähler Ricci flat manifold.

If one allows lim supr→∞ rS ≤ 1, then both Theorems 5 and 6 will not
be true. The counter example for the real case is the 3 dimensional Bryant
soliton and for the Kähler case is the positively curved U(2) invariant exam-
ple constructed by Cao on C2 [5], both satisfy limr→∞ rS = 1 but they are
not the quotient of Σ× R or Σ× C. Higher dimensional counter examples
can be obtained by taking product with flat torus of suitable dimensions.

The paper is organized as follows. In Section 2, we introduce the ba-
sic preliminaries needed in the subsequent sections. In Section 3, we prove
Theorem 3 assuming a proposition in Section 4. In Section 4, we study the
geometry of Σ×N (N is complete Ricci flat) with quotient satisfying (3)
and prove a proposition needed in the previous section. Lastly, we show
Theorems 5 and 6 in Section 5.

Acknowledgement: The author would like to express deep gratitude to his
advisor Prof. Jiaping Wang for his constant support, guidance and encour-
agement. The author is also grateful to Prof. Huai-Dong Cao, Prof. Ovidiu
Munteanu and Prof. Luen-Fai Tam for their helpful comments and interests
in this work. The author is indebted to Fei He, Shaochuang Huang, Man-
Chun Lee, Man-Shun Ma, Dekai Zhang and Bo Zhu for valuable discussions
over the last several years. Part of this work was written while the author
was visiting Yau Mathematical Sciences Center of Tsinghua University. He
would like to thank the center for the hospitality. The author was partially
supported by NSF grant DMS-1606820.

2. preliminaries and notations

Let (M, g) be a connected smooth Riemannian manifold and f be a smooth
function on M . (M, g, f) is said to be a gradient steady Ricci soliton with
potential function f if

(5) Ric +∇2f = 0.

A Kähler manifold (M, g, J) is a gradient steady Kähler Ricci soliton if M
satisfies (5) for some smooth function f and complex structure J on M
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(see [14]). A steady soliton is complete if (M, g) is a complete Riemannian
manifold. We fix a point p0 ∈M and denote the distance function w.r.t. g
from p0 by r = r(x) = d(x, p0). A normalized geodesic γ : R →M is called a
line if for all real numbers a and b with a ≤ b, γ |[a,b] is distance minimizing.

Given any Riemannian manifold (Ñ , g
Ñ
), S

Ñ
refers to the scalar curvature

of Ñ w.r.t. g
Ñ
. For simplicity, we omit the subscript Ñ in S

Ñ
when Ñ =M

and g
Ñ

= g. Let β ∈ R and h be any function on M , h = o(rβ) means that
limr→∞ r−βh = 0. We also adopt the Einstein summation convention in this
paper, i.e. any repeated index is interpreted as a sum over that index.

Ricci soliton is a self similar solution to the Ricci flow. Given a complete
gradient steady Ricci soliton, let g(t) := ϕ∗

t g, where t ∈ R and ϕt is the flow
of ∇f with ϕ0 = id. Then g(t) is a solution to the Ricci flow:

∂g(t)

∂t
= −2Ric(g(t))

g(0) = g
(6)

It was shown by Chen [13] that any complete ancient solution to the
Ricci flow must have nonnegative scalar curvature. Using strong maximum
principle, we see that any complete gradient steady Ricci soliton must have
positive scalar curvature S > 0 unless it is Ricci flat (see also [32]). It is also
known that any compact steady Ricci soliton is Ricci flat [14] and hence any
non Ricci flat complete gradient steady Ricci soliton is non-compact.

Hamilton [22] showed that for a complete gradient steady Ricci soliton,
there exists a constant c such that |∇f |2 + S = c on M (c ≥ 0 since S ≥ 0).
When c > 0 (in particular if g is not Ricci flat), upon scaling the metric by
a constant, we have

(7) |∇f |2 + S = 1.

We shall adopt the above scaling convention (7) throughout this paper. The
following identities are well known for gradient Ricci steadier (see [22], [14],
[7]):

(8) ∆f + S = 0,

(9) ∆S − ⟨∇f,∇S⟩ = −2|Ric|2

and

(10) 2Ric(∇f) = ∇S.
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The earliest non-Einstein gradient Ricci soliton Σ was constructed by
Hamilton in [21]. It is called cigar soliton and is a real 2 dimensional com-
plete gradient steady soliton defined on R2. Σ is rotationally symmetric with
positive sectional curvature. In the standard coordinate of R2, its metric is
given by (see [7])

gΣ =
4(dx2 + dy2)

1 + x2 + y2
,

together with the function f(x, y) = − log(1 + x2 + y2) and the complex
structure on C, (Σ, gΣ, f) is a complete gradient steady Kähler Ricci soli-
ton. It is also the unique (up to scaling) real 2 dimensional non-flat complete
gradient steady Ricci soliton (see [14], [2] and ref. therein). See [7] and [14]
for more properties of Σ and examples of Ricci solitons.

It was shown in [8] and [9] (see also [18]) that for a complete gradient
steady Ricci soliton with Ric > 0 and S attaining maximum ( or Ric ≥ 0
with lim supr→∞ S < maxM S), then there exist a ∈ (0, 1) and D > 0 such
that

r +D ≥ −f ≥ ar −D on M.

We first prove a similar bound for f under different conditions which suffice
for the arguments in later sections. Similar estimate was also obtained in-
dependently by Deng and Zhu [17] without non Ricci flat condition, instead
Ric ≥ 0 on M and −f being equivalent to r are assumed.

Proposition 1. Let (M, g, f) be a real m dimensional complete non-Ricci
flat gradient steady Ricci soliton with Ric ≥ 0 outside some compact subset
of M . Further suppose that S → 0 as r → ∞. Then for all α ∈ (0, 1), there
exists D > 0 such that

(11) r +D ≥ −f ≥ αr −D on M,

where r is the distance function from a fixed reference point p0 ∈M . In

particular, lim
r→∞

−f
r

= 1.

Proof. The upper bound of −f follows from (7) and |∇f | ≤ 1. For the lower
bound, let δ be a small positive constant to be chosen. Since |∇f |2 + S ≡ 1
and S → 0 at infinity, there is a compact subset K of M such that p0 ∈ K
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and on M \K, Ric ≥ 0 and

(12) |∇f | ≥ 1

1 + δ
.

Let ψt be the flow of ∇f
|∇f |2 with ψ0 be the identity map. Let q ∈M \K and

for small t ≥ 0, by (12),

(13) d(ψt(q), q) ≤
∫ t

0

1

|∇f |(ψs(q))
ds ≤ (1 + δ)t.

By short time existence of O.D.E., ψt(q) exists as long as it is in M \K.
Therefore we can define T as follows

(14) T := sup{a : ψt(q) ∈M \K for all t ∈ [0, a]}.

Obviously, T = T (q) > 0 by compactness of K. For 0 ≤ t < T

(15) f(ψt(q))− f(q) =

∫ t

0
⟨∇f, ψ̇s(q)⟩ds =

∫ t

0
1ds = t.

We first show that T <∞. Suppose not, then T = ∞ and by (15), there is
a sequence of tk → ∞ such that ψtk(q) → ∞ as k → ∞. But by (10)

S(ψtk(q))− S(q) =

∫ tk

0
⟨∇S, ψ̇s(q)⟩ds

=

∫ tk

0
⟨∇S, ∇f(ψs(q))|∇f |2 ⟩ds

=

∫ tk

0

2Ric(∇f,∇f)
|∇f |2 ds

≥ 0.

Hence S(ψtk(q)) ≥ S(q) > 0 and limk→∞ S(ψtk(q)) ̸= 0, contradicting to our
assumption that S = o(1). We proved that T <∞ and ψT (q) ∈ K. By (13),
d(ψT (q), q) ≤ (1 + δ)T .

r(q) = d(p0, q) ≤ d(ψT (q), q) + d(ψT (q), p0) ≤ (1 + δ)T + diamK,
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where diamK is the diameter of the subset K. We have

−f(q) = T − f(ψT (q))

≥ T − sup
K

|f |

≥ 1

1 + δ
r(q)− diamK

1 + δ
− sup

K

|f |.

(11) follows by choosing δ > 0 small enough such that 1
1+δ ≥ α. −r−1f → 1

as r → ∞ is now a consequence of (11). □

3. Proof of theorem 3

To start with, we recall a result on the kernel of the Ricci tensor of steady
soliton satisfying (3). It was proved in [30] in the real case with non-negative
sectional curvature. However, the argument also works well in the Kähler
case with non-negative Ricci curvature. For the sake of completeness, we
include the proof of the result here.

Proposition 2. [30] Let (M, g, f) be a complex n dimensional complete
non Ricci flat gradient steady Kähler Ricci soliton with Ric ≥ 0. Suppose
that

lim inf
r→∞

1

r

∫

Br

S = 0.

Then S2 ≡ 2|Ric|2 and the null space E of the Ricci tensor is a subbundle
of the tangent bundle TM with real rank 2n− 2.

Proof. The argument is essentially due to [30]. Let λi, i = 1, 2, . . . , 2n be
the eigenvalues of the Ricci tensor. By J invariance of Ric, we may assume
λi = λn+i, i = 1, 2, . . . , n and 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn. Hence

S − 2λi = S − 2λn+i

=
( 2n∑

j ̸=i

λj
)
− λi

=
( 2n∑

j ̸=i

λj
)
− λn+i

=

2n∑

j ̸=i,n+i

λj ≥ 0.
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From this, we know that

2|Ric|2 =
2n∑

j=1

2λ2j ≤
2n∑

j=1

λjS = S2,

with equality holds at a point p iff λn = λ2n = S
2 at p iff the dimension of

the null space of Ric at p is 2n− 2. We are going to show 2|Ric|2 ≡ S2 onM .
Let ϕ be a non-negative cut off function which ≡ 1 on BR(p0), ≡ 0 outside
B2R(p0) and |∇ϕ| ≤ c

R
. We know that by the contracted second Bianchi

identity 2div(Ric) = ∇S,

0 ≤
∫

M

ϕ2(S2 − 2|Ric|2)

=

∫

M

ϕ2(−S∆f + 2Rijfij)

=

∫

M

ϕ2(⟨∇S,∇f⟩ − 2Rij,jfi)

+

∫

M

2ϕS⟨∇ϕ,∇f⟩ −
∫

M

4ϕRijfiϕj

≤ c

R

∫

B2R(p0)
S.

By condition (3), one can pick a sequence of Rk → ∞ such that R.H.S. goes
to zero as k → ∞, we show that S2 = 2|Ric|2 everywhere. It is not difficult to
see from the previous argument that Ric only has two distinct eigenvalues,
one is 0 with multiplicity 2n− 2, another one is S

2 with multiplicity 2, result
follows. □

Since we do not impose any condition on the sign of bisectional curvature,
the non-triviality of the kernel of the Ricci tensor doesn’t suffice for the
splitting. Motivated by the local splitting result in [18] (see Theorem 2), we
show that ∇f is always an eigenvector of Ric which eventually leads to the
splitting of M .

Proposition 3. Let (M, g, f) be a complex n dimensional complete gradient
steady Kähler Ricci soliton with Ric ≥ 0. Suppose that

lim inf
r→∞

1

r

∫

Br

S = 0,

then |∇f |2S = 2Ric(∇f,∇f) on M . In particular if M is not Ricci flat,
then it is isometric to a quotient of Σ×N , where Σ and N denote the
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cigar soliton and some simply connected complete Kähler Ricci flat manifold
respectively.

Proof. We are done if g is Ricci flat, so we can assume Ric is not identi-
cally zero. Since Ric ≥ 0 and the curvature tensor is J invariant, we have
|∇f |2S ≥ 2Ric(∇f,∇f). Let Q :=

√
f2 + 1 ≥ 1. Then ∇Q = Q−1f∇f . Let

φ ∈ C∞
c (M) be any smooth compactly supported function on M .

0 ≤
∫

M

φ2Q−1(|∇f |2S − 2Ric(∇f,∇f))

=

∫

M

φ2Q−1fifiS −
∫

M

2φ2Q−1Rijfifj

=: (I) + (II)

Using integration by part, we have

(I) = −
∫

M

2φφiQ
−1ffiS +

∫

M

φ2Q−3ffiffiS

−
∫

M

φ2Q−1ffiiS −
∫

M

φ2Q−1ffiSi

= −
∫

M

2φφiQ
−1ffiS +

∫

M

φ2Q−3f2fifiS

+

∫

M

φ2Q−1fS2 −
∫

M

φ2Q−1ffiSi,

where we use the fact that (8) ∆f + S = 0. Similarly, using (10) ∇S =
2Ric(∇f) and the contracted second Bianchi identity 2divRic = ∇S, we see
that

(II) =

∫

M

4φφiQ
−1ffjRij −

∫

M

2φ2Q−3ffiffjRij

+

∫

M

2φ2Q−1fRij,ifj +

∫

M

2φ2Q−1fRijfji

=

∫

M

2φφiQ
−1fSi −

∫

M

2φ2Q−3f2fifjRij

+

∫

M

φ2Q−1ffjSj −
∫

M

2φ2Q−1f |Ric|2

=

∫

M

2φφiQ
−1fSi −

∫

M

2φ2Q−3f2fifjRij

+

∫

M

φ2Q−1ffjSj −
∫

M

φ2Q−1fS2,
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we also use the identity S2 = 2|Ric|2 (see [30] and Proposition 2). Hence, we
have

∫

M

φ2Q−1(|∇f |2S − 2Ric(∇f,∇f))

= −
∫

M

2φφiQ
−1ffiS +

∫

M

2φφiQ
−1fSi

+

∫

M

φ2Q−3f2(fifiS − 2fifjRij)

= −
∫

M

2φφiQ
−1ffiS +

∫

M

2φφiQ
−1fSi

+

∫

M

φ2Q−3f2(|∇f |2S − 2Ric(∇f,∇f)).

Since Q−1 −Q−3f2 = Q−3, we know that
∫

M

φ2Q−3(|∇f |2S − 2Ric(∇f,∇f))

= −
∫

M

2φφiQ
−1ffiS +

∫

M

2φφiQ
−1fSi.

Now we take 0 ≤ φ ≤ 1 be a cut off function ≡ 1 on BR, vanishes outside
B2R and |∇φ| ≤ c

R
.

|
∫

M

2φφiQ
−1ffiS| ≤

∫

B2R\BR

2c

R
Q−1|f |S

≤ 2c

R

∫

B2R\BR

S.

Since Ric ≥ 0, |∇S| ≤ 2|Ric| ≤ cS.

|
∫

M

2φφiQ
−1fSi| ≤

∫

B2R\BR

2c

R
Q−1|f ||∇S|

≤ c1
R

∫

B2R\BR

S.

All in all, there is a positive constant c2 independent of R such that

0 ≤
∫

M∩BR

Q−3(|∇f |2S − 2Ric(∇f,∇f))

≤ c2
R

∫

B2R\BR

S.
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Using the condition lim infr→∞
1
r

∫
Br
S = 0, we may pick a sequence of Rk →

∞ such that R.H.S. goes to zero as k → ∞, we conclude that |∇f |2S =
2Ric(∇f,∇f) onM . We now proceed to prove the splitting ofM . By Ric ≥ 0
and J invariance of Ric, we have for any tangent vector v with |v|g = 1,

2Ric(v, v) = Ric(v, v) + Ric(Jv, Jv) ≤ S.

Hence whenever ∇f ̸= 0, 2Ric( ∇f
|∇f | ,

∇f
|∇f |) = S, we deduce that ∇f is an

eigenvector with eigenvalue equal to S
2 and thus ∇f is always perpendic-

ular to the nullspace of Ric. Let E be the nullspace of Ric, it is a smooth
subbundle of the tangent bundle of real rank 2n− 2 ([30] and Proposition
2). Suppose at p, ∇f ̸= 0, the tangent space at p decomposes orthogonally
as TpM = Ep ⊕⊥ span{∇f, J∇f}. Let X be a smooth section of E defined
locally near p and Y be any smooth vector field defined near p, then JX is
also a smooth section of E. At p

⟨∇YX,∇f⟩ = Y ⟨X,∇f⟩ − ⟨X,∇Y∇f⟩
= Ric(X,Y )

= 0.

Similarly, ∇Y JX ⊥ ∇f , thus ∇YX(p) is in Ep. If ∇f = 0 at p, by real
analyticity of g (see [27] and ref. therein), {∇f = 0} = {S = 1} has no in-
terior point in M (indeed if p is an interior point, then by (9) 0 = ∆S(p)−
⟨∇f,∇S⟩(p) = −2|Ric|2(p), which is absurd). We may find a sequence pk →
p with ∇f(pk) ̸= 0,

Ric(∇YX)(p) = lim
k→∞

Ric(∇YX)(pk) = 0.

From this, we conclude that E is invariant under parallel translation. By de
Rham splitting theorem (see [26]) and the classification of real 2 dimensional
complete gradient steady Ricci solitons (see [14], [2] and ref. therein), the
universal cover of M splits like Σ×N for some Kähler Ricci flat N . □

Proof of Theorem 3. By Proposition 3, the universal covering space of M
splits isometrically as Σ×N for some simply connected complete Kähler
Ricci flat N . By de Rham decomposition theorem (see [26]), N is isomet-
ric to Cn−1−k ×N1 with N1 being a product of irreducible Kähler Ricci
flat manifolds. It remains to show N1 is compact. By Proposition 4 (will
be proved in the coming section), R2n−2−2k ×N1

∼= isom Rl ×Q, for some
simply connected compact Ricci flat manifold Q. Since both N1 and Q have
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no line, we conclude that 2n− 2− 2k = l and N1 is diffeomorphic to the
compact Q. □

4. Geometry of Σ × N/ ∼

In this section, we study the geometry of the quotient manifold M = Σ×
N/ ∼ with scalar curvature S satisfying (3), where Σ and N denote the
cigar soliton and some real m− 2 dimensional simply connected complete
(not necessarily Kähler) Ricci flat manifold respectively. The main goal of
this section is to prove the following:

Proposition 4. Let Mm = Σ×N/ ∼, for some simply connected complete
Ricci flat manifold N . Suppose that on M

lim inf
r→∞

1

r

∫

Br

S = 0,

then there exist positive constants C and α ∈ (0, 1) such that

C−1e−
r

α ≤ S ≤ Ce−αr on M.

Moreover, N is isometric to Rm−2−k ×Qk, where Q is some simply con-
nected compact Ricci flat manifold.

Remark 3. It can be seen from the above proposition that M must have
bounded curvature and S is integrable. Using an estimate in [18], the level
sets of f (function constructed in Lemma 1) have uniformly bounded di-
ameter, hence α in the above proposition can indeed be chosen to be 1.
Alternatively, α = 1 also follows from the curvature estimates in [11] and
[30].

To prepare for the proof of Proposition 4, we recall some basic properties
of Σ (see [14]). Let r̃ and f̃ be the distance function of Σ from its origin
and the potential function respectively. In the geodesic polar coordinate, the
metric is given by

gΣ = dr̃2 + 4 tanh2(
r̃

2
)dθ2.

We also have f̃ = f̃(r̃) = −2 log cosh r̃
2 and the scalar curvature

(16) SΣ =
1

cosh2( r̃2)
= ef̃ > 0.
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Let ρ : Σ×N →M and π : Σ×N → Σ be the Riemannian covering and
the projection into the first factor respectively. r̃ ◦ π and f̃ ◦ π are functions
defined on Σ×N . By abuse of notation, we shall not distinguish r̃ ◦ π from
r̃, f̃ ◦ π from f̃ , namely for all (a, b) ∈ Σ×N , r̃ ◦ π(a, b) and f̃ ◦ π(a, b) will
be written as r̃(a, b) and f̃(a, b) respectively.

Lemma 1. Let M be the manifold as in Proposition 4. There is a smooth
function f on M such that f ◦ ρ = f̃ . With this f , (M, g, f) is a complete
gradient steady Ricci soliton.

Proof. Let (a, b) and (c, d) ∈ Σ×N such that ρ(a, b) = ρ(c, d). Since N is
Ricci flat,

SΣ(a) = SΣ×N (a, b) = SΣ×N (c, d) = SΣ(c).

By (16), we conclude that r̃(a, b) = r̃(a) = r̃(c) = r̃(c, d) and f̃(a, b) =
f̃(c, d). f̃ respects the quotient map ρ and thus induces a map f :M → R

such that f ◦ ρ = f̃ . (M, g, f) is a gradient steady Ricci soliton then follows
from the facts that ρ is a local isometry and f̃ is a potential function for the
steady soliton Σ×N . □

Lemma 2. Let f be the function as in Lemma 1. The level sets Σt := {f =
t} are connected compact embedded hypersurfaces in M for all t < 0.

Proof. Note that 0 = maxM f = maxΣ×N f̃ . M has Ric ≥ 0 and thus both
f and f̃ are concave functions with

{f = 0} = {∇f = 0} and {f̃ = 0} = {∇f̃ = 0}.

For t < 0, Σt := {f = t} are embedded hypersurfaces and complete w.r.t.
the induced metric from (M, g). Since ρ−1(Σt) = {f̃ = t} is diffeomorphic
to S1 ×N , Σt is connected for all t < 0. Let ψt be the flow of ∇f

|∇f |2 with ψ0

be the identity map. Using the level set flow ψt, we see that Σt = {f = t}
are diffeomorphic to each other for all t < 0. Moreover, ψt(Σ−2) = Σt−2, for
t ∈ [0, 1]. Therefore, it suffices to show that Σ−2 is compact. Assume by
contradiction that Σ−2 is not compact. On {f̃ ≤ −1} ⊆ Σ×N , by (7) and
(16)

|∇f̃ |2 = 1− ef̃ ≥ 1− e−1.

Using ρ∗∇f̃ = ∇f , there exists δ > 0 such that on {f ≤ −1}

(17) |∇f | ≥ δ.
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Let v ∈ TΣ−2, then

∂

∂t
ψ∗
t g(v, v) = ψ∗

t (L ∇f

|∇f|2
g)(v, v)

= 2∇2f(ψt∗v, ψt∗v)|∇f |−2

= −2Ric(ψt∗v, ψt∗v)|∇f |−2

≤ 0.

Since the Ricci curvature of M is bounded, there is a constant C > 0 such
that for t ∈ [0, 1]

(18) Cg0 ≤ gt ≤ g0

where gt := ψ∗
t g on Σ−2. Let B

t
R(q) be the intrinsic ball of (Σt, g) with radius

R centered at q. It is not difficult to see that for t < 0

(19) Bt
R(q) ⊆ Σt ∩BR(q), for q ∈ Σt,

where BR(q) is the geodesic ball in the ambient manifold (M, g). Fix any q0
in Σ−2. Let r0 = r(q0) := d(q0, p0), p0 ∈ M is a fixed reference point. Hence
by (17) for t ∈ [0, 1]

(20) d(ψt(q0), q0) ≤
∫ t

0

1

|∇f |(ψs(q0))
ds ≤ t

δ
.

Next we show that for large R > 0,

(21) BR− 1

δ

(ψt(q0)) ⊆ BR+r0(p0).

For all z ∈ L.H.S.

d(z, p0) ≤ d(z, ψt(q0)) + d(ψt(q0), q0) + d(q0, p0)

< R− 1

δ
+
t

δ
+ r0

≤ R+ r0,

we proved the inclusion (21). To proceed, we also need the following inclu-
sion: for t ∈ [0, 1]

(22) ψt(B
−2
R− 1

δ

(q0)) ⊆ Bt−2
R− 1

δ

(ψt(q0)),

where Bt
R(q) is defined before (19). Let z ∈ B−2

R− 1

δ

(q0) and α ⊆ Σ−2 be an

intrinsic minimizing geodesic w.r.t (Σ−2, g) joining z and q0. The length of
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ψt ◦ α is given by

lg(ψt ◦ α) =
∫

|dψt(α̇)|g

=

∫
|α̇|ψ∗

t g

≤
∫

|α̇|g,

where we use (18) in the last inequality and (22) follows. From (16), we see
that there is a positive constant C0 such that on {−2 ≤ f},

(23) S ≥ C0.

We are going to derive a contradiction using the weak integrability con-
dition (3) of S. By (23), coarea formula, (21), (19), (22),

∫

BR+r0
(p0)

S ≥
∫

BR+r0
(p0)∩{−2≤f≤−1}

S

≥ C0

∫

BR+r0
(p0)∩{−2≤f≤−1}

= C0

∫ 1

0

∫

BR+r0 (p0)∩Σt−2

1

|∇f |dσtdt

≥ C0

∫ 1

0

∫

B
R− 1

δ
(ψt(q0))∩Σt−2

dσtdt

≥ C0

∫ 1

0

∫

Bt−2

R− 1
δ

(ψt(q0))
dσtdt

≥ C0

∫ 1

0

∫

ψt(B
−2

R− 1
δ

(q0))
dσtdt

= C0

∫ 1

0

∫

B−2

R− 1
δ

(q0)
ψ∗
t dσtdt

≥ C0C1

∫ 1

0

∫

B−2

R− 1
δ

(q0)
dσ0dt

= C0C1A(B
−2
R− 1

δ

(q0)),

where we also use (18) in the last inequality, dσt and A(B
−2
R− 1

δ

(q0)) denote

the volume element of Σt−2 and the volume of the intrinsic geodesic ball
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B−2
R− 1

δ

(q0) in (Σ−2, g) respectively. One can check readily that the induced

metric on {f̃ = −2} is given by

4(1− e−2)dθ2 + gN ,

where gN is the metric on N . {f̃ = −2} is obviously Ricci flat. ρ−1(Σ−2) =
{f̃ = −2} and thus Σ−2 is covered by {f̃ = −2}. Hence Σ−2 is also Ricci flat
(in particular Ric ≥ 0). If Σ−2 is noncompact, then by Yau’s lower volume
estimate on noncompact manifolds with Ric ≥ 0 (see [31] and [28]), there
exists positive constant C2 independent on all large R such that

A(B−2
R− 1

δ

(q0)) ≥ C2(R− 1

δ
).

From this we see that for all large R

1

R+ r0

∫

BR+r0 (p0)
S ≥ C0C1

A(B−2
R− 1

δ

(q0))

R+ r0

≥ C0C1C2
R− 1

δ

R+ r0
,

contradicting to the weak integrability condition (3) of S. We proved that
Σ−2 and hence Σt are compact as long as t < 0. □

Lemma 3. Let f be the function as in Lemma 1. {f ≥ −A} is compact
subset of M for all A > 0

Proof. Suppose it is not true for some A, then by the completeness of M ,
{f ≥ −A} is unbounded and there exists a sequence xk → ∞ with f(xk) ≥
−A. Pick a sequence yk with f(yk) → −∞, let γk be a normalized minimizing
geodesic joining xk to yk, then γk ∩ Σ−A−1 ̸= φ. By Lemma 2, Σ−A−1 is
compact and it implies that after passing to a subsequence, γk converges
to a line γ∞. By Cheeger Gromoll splitting theorem (see [12] and [28]), M
splits isometrically as M1 × R for some complete manifold M1. Let (α, β) ∈
M1 × R, then SM1×R(α, β) = SM1

(α) > 0. Moreover, one have for all R > 0

BR(α, β) ⊇ BM1
R√
2

(α)×BR
R√
2

(β).
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Then

∫

BR(α,β)
S ≥

∫

B
M1
R√
2

(α)×BR

R√
2

(β)
SM1

≥
√
2R

∫

B
M1
R√
2

(α)
SM1

≥
√
2R

∫

B
M1
1√
2

(α)
SM1

,

again contradicting to the integrability condition (3) of S. □

Lemma 4. S decays exponentially.

Proof. We first show that S → 0 at infinity. Let xk ∈M → ∞ as k → ∞,
(ak, bk) ∈ Σ×N such that ρ(ak, bk) = xk. Then r̃k := r̃(ak, bk) → ∞, where
r̃(ak, bk) is understood as r̃ ◦ π(ak, bk) = r̃(ak) as in the discussion right
before Lemma 1. Otherwise, it is bounded for some subsequence kj , then

f(xkj )=f̃(akj , bkj ) = −2 log cosh(
r̃kj

2 ) is bounded, by Lemma 3, xkj has con-
vergent subsequence, which is impossible. Hence r̃k := r̃(ak, bk) → ∞. Then
by (16), S(xk) = 1/ cosh2( r̃k2 ) → 0 as k → ∞. We deduce that limr→∞ S = 0.
By Proposition 1 (see also [9]), there exist α ∈ (0, 1) and D > 0 such that,

(24) r(x) +D ≥ −f(x) ≥ αr(x)−D on M

and

(25) r̃(a) +D ≥ −f̃(a) ≥ αr̃(a)−D on Σ.

By the above two inequalities, we have for x ∈M and (a, b) ∈ Σ×N with
ρ(a, b) = x,

αr(x)− 2D ≤ r̃(a) ≤ r(x) + 2D

α

and hence for some positive constants C1 and C2

S(x) =
1

cosh2( r̃(a)2 )
≤ 4e−r̃(a)

≤ C1e
−αr(x),
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similarly for the lower bound,

S(x) ≥ e−r̃(a)

≥ C2e
− r(x)

α .

□

To finish the proof of Proposition 4, it remains to show N is isometric
to Rl ×Q, for some compact simply connected Ricci flat manifold Q.

Proof of Proposition 4. Fix any t < 0, the induced metric on {f̃ = t} ⊆ Σ×
N is equal to

4(1− et)dθ2 + gN .

We see that {f̃ = t} is isometric to S1 ×N and universally covered by R×N .
By de Rham decomposition theorem (see [25]), N is isometric to Rq × Ñ ,
where q ≥ 0 and Ñ = N1 ×N2 × · · · ×Nl is a product of irreducible sim-
ply connected Ricci flat manifolds Ni with dimRNi ≥ 2 ∀i. Ñ has no line
otherwise Ni splits for some i, contradicting to its irreducibility.

Since ρ is a Riemannian covering map, Σt is covered by {f̃ = t} and is
compact Ricci flat. We have by Cheeger Gromoll splitting theorem (see [12]
and [28]) and the uniqueness of universal Riemannian covering space that

(26) R×N ∼= isom R
q+1 × Ñ ∼= isom R

k ×Q,

for some simply connected compact Ricci flat Q. Both Ñ and Q do not have
a line, we must have q + 1 = k and Ñ is diffeomorphic to the compact Q.
We are done with the proof of the proposition. □

5. Proof of Theorems 5 and 6

In this section, we will show Theorems 5 and 6. They essentially follow from
the volume estimate on large geodesic balls:

Proposition 5. Let (M, g, f) be a real m dimensional non Ricci flat com-
plete gradient steady Ricci soliton with Ric ≥ 0. Suppose there is a finite
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positive constant l such that

(27) lim sup
r→∞

rS ≤ l.

Then for all p0 ∈M and ε > 0, there exists positive constant C such that
for all large R,

V (BR(p0)) ≤ CRl+1+ε.

In particular if l < 1, then M has subquadratic volume growth.

Proof. By Proposition 1 (see also [9]), there are α ∈ (0, 1) and D > 0 such
that

(28) r +D ≥ −f ≥ αr −D.

Hence f attains maximum, adding a constant if necessary, we may assume
maxM f = 0. Since f is concave, we have

{∇f = 0} = {f = 0}.

By (28), {−f = t} are compact embedded hypersurfaces and diffeomorphic
to each other for all t > 0. Let δ be a small positive number to be chosen
later. By S → 0 and (7), for all large r,

(29) |∇f |2 ≥ (1 + δ)−1.

Let n := − ∇f
|∇f | be the normal of {−f = t}, the second fundamental form

of {−f = t} w.r.t. n is given by Ric
|∇f | . We consider the flow of − ∇f

|∇f |2 and
denote it by φs with φ0 = id, then

φs({−f = t}) = {−f = t+ s}.
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Let A(t) be the area of the level set {−f = t}. By the first variation formula,
(29), (28) and (27) (see [18]), for all large t,

A′(t) =

∫

{−f=t}

S − Ric(n, n)

|∇f |2

≤
∫

{−f=t}

S

|∇f |2

≤ (1 + δ)

∫

{−f=t}
S

≤ (1 + δ)2l

t
A(t),

we used Ric ≥ 0 in the first inequality. The above differential inequality
implies that there is a t1 such that for t ≥ t1

(30) A(t) ≤ A(t1)

t
(1+δ)2l
1

t(1+δ)
2l.

Integrate the above inequality w.r.t t, together with (29) and (28), we see
that for all large R,

V (BR(p0)) ≤ CR(1+δ)2l+1.

Result then follows by choosing δ > 0 small enough such that (1 + δ)2l <
l + ε. □

Proof of Theorems 5 and 6. By Proposition 5, M has subquadratic volume
growth. Theorem 5 then follows from [10]. Theorem 6 is now a consequence
of Corollary 2. By (4), we know that S satisfies (3). By Proposition 4, S
decays exponentially and thus lim sup

r→∞
rS = 0. □
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