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1. Introduction

In the early 1980’s, Donnelly and Xavier introduced an integral inequality
[DX84, Theorem 2.2] which became a standard tool in the proof of coho-
mology vanishing theorems and spectral bounds on simply connected neg-
atively curved manifolds. Around the same time Price introduced an in-
equality [Pri83] which became ubiquitous in the study of singularities of
harmonic maps and Yang-Mills fields. Price’s inequality can be proved in a
manner which generalizes the proof of Donnelly and Xavier’s inequality. In
this work, we further this circle of ideas by applying Price’s generalization of
the Donnelly-Xavier inequality to study cohomology, obtaining new bounds
on the Betti numbers of Riemannian manifolds with negative Ricci curvature
and no conjugate points. In particular, we obtain asymptotic bounds on the
growth of Betti numbers in towers of regular coverings of such manifolds.
The range of Betti numbers to which these results apply depends on how
negative the Ricci curvature is assumed to be.

Our approach is quite robust and works without assuming pinched nega-
tive curvature. In particular, the hypotheses of the main technical estimate,
Theorem 39, allow some positive sectional curvature. Of course, when we im-
pose stronger pinched negative sectional curvature assumptions, we derive
a strengthened Price inequality, Theorem 87.

Lohkamp ([Loh94, Theorem A]) proved that every manifold of dimension
≥ 3 admits a metric of negative Ricci curvature. Hence there are no topo-
logical consequences of the negative Ricci curvature assumption. Lohkamp’s
theorem does not, however, provide a mechanism for producing the large
geodesic balls required for our estimates to be useful. With the no conjugate
point hypothesis, we can find large geodesic balls by passing to finite covers
with large injectivity radius.

The study of the asymptotic behavior of Betti numbers has attracted
considerable interest in the last four decades, especially in the context of
coverings of locally symmetric spaces of non-compact type. See, for example,
[DW78], [DW79], [Xue91], [SX91], [ABBGNRS17], [Mar14]. Many of the
algebraic techniques employed in these works are not obviously amenable to
generalization outside the locally symmetric context.

Given a co-compact torsion free lattice Γ acting on a symmetric space
G/K of non-compact type, we say a sequence of nested, normal, finite index
subgroups {Γi} of Γ is a cofinal filtration of Γ if

⋂

i Γi is the identity element.
Any such Γ is known to be residually finite (see [Bor63, Proposition 2.3]), so
that cofinal filtrations always exists. Denote by Mi the finite index regular
cover of Γ\G/K associated to Γi. It follows from the results of [DW78],
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[DW79], that for any cofinal filtration of Γ, for k ̸= 1
2dim(G/K),

lim
i→∞

bk(Mi)

V ol(Mi)
= 0,(1)

where bk(Mi) denotes the k-th Betti number of Mi.
Our techniques provide new methods for proving such results and quan-

tifying the sub volume order growth of certain Betti numbers. Because our
techniques do not rely on representation theory or the trace formula, it
is natural to consider these questions on manifolds which are not locally
symmetric. The Price inequalities given in Theorem 39 and Proposition 66
are tailored to address such problems. For example, we have the following
non-locally symmetric analog of the DeGeorge-Wallach result (1).

Theorem 2 (See Corollary 78). Let (Mn, g) be a closed Riemannian
manifold without conjugate points with −1 ≤ secg ≤ 1. Assume there exists
δ > 4k2 such that

−Ric ≥ δg.

Let πi : Mi → M be a sequence of Riemannian covers of M with injectivity
radii, denoted γgi(Mi), satisfying γgi(Mi) → ∞. Then there exists b(n, k, δ) >
0 so that for γgi(Mi) sufficiently large,

bk(Mi)

V ol(Mi)
≤ b(n, k, δ)e−(

√
δ−2k)γgi

(Mi).(3)

In particular,

lim
i→∞

bk(Mi)

V ol(Mi)
= 0.(4)

Observe that the range of Betti numbers covered by Theorem 2 grows as
the square root of the lower bound δ. Under our curvature normalization, δ
can at most be n− 1 with equality if and only if the underlying Riemannian
manifold is real hyperbolic with sectional curvature −1. Thus, Theorem 2
does not address the full range of Betti numbers achieved by DeGeorge and
Wallach in the locally symmetric case. On the other hand, Theorem 2 is not
only free of any homogeneity requirement on the metric, but also does not
require any direct assumption on the sectional curvature.

Given a closed manifold (M, g) without conjugate points and infinite
residually finite fundamental group, the injectivity radius goes to infinity in
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any tower of regular Riemannian covers associated to a cofinal filtration of
its fundamental group. (See [DW78, Theorem 2.1].) Hence Theorem 2 not

only implies (1) for certain k-th Betti numbers, but also implies bk(Mi)
V olg(Mi)

de-

cays exponentially in the injectivity radii γgi(Mi). Such decay results have
been obtained by numerous authors in the locally symmetric context. See for
example [Xue91], [SX91], [Mar14]. Outside the locally symmetric space con-
text, related results have also been obtained by [BLLS14] for p−adically de-

fined towers, for which they show that if limi→∞
bk(Mi)

V olg(Mi)
= 0, then bk(Mi)

V olg(Mi)

decays like V ol(Mi)
−d, for a specific dimensional constant d.

There is overlap between this paper and the results of [CW03] on Betti
number bounds. The results in [CW03] are derived under some combination
of a vanishing assumption on L2-Betti numbers, a spectral gap assumption,
and a positivity assumption for the Novikov-Shubin invariants. Our tech-
niques not only do not require these latter assumptions but can be used
both to verify the requisite L2-Betti number vanishing or spectral gap hy-
potheses of [CW03], and to give a new analytical proof of the consequences
of these assumptions. Price inequalities can also be applied to obtain infor-
mation about Novikov-Shubin invariants. We hope to explore this direction
in future work.

We can reexpress the decay results of Theorem 2 in terms of volumes,
under suitable hypotheses on the injectivity radii of Riemannian coverings
associated to a cofinal filtration. We introduce one such an assumption on the
cofinal filtration which we call “congruence type”, see Definition 81. Under
this assumption, Theorem 2 immediately yields the following corollary.

Corollary 5. Let (Mn, g) be a Riemannian manifold without conjugate
points with −1 ≤ secg ≤ 1 and residually finite fundamental group Γ. As-
sume

−Ric ≥ δg, δ > 4k2.

For any congruence type cofinal filtration {Γi} of Γ of exponent α, if we
denote by πi : Mi → M the regular Riemannian cover of M associated to
Γi, we have for γg(M) sufficiently large,

bk(Mi) ≤ d(n, k, δ,Γ)V ol(Mi)
1−2α(

√
δ

2
−k).

where d(n, k,Γ) is a positive constant.

If one assumes the sectional curvature to be negative and suitably pinched,
Corollary 5 can be considerably strengthened. See, for example, Corollary 106.
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We obtain our sharpest results for real hyperbolic space. See Theorem 116.
The pinched cases, of course, have already been well studied. See for ex-
ample [DX84] and [CW03]. We provide a self-contained treatment of this
important class of examples. In a subsequent paper, we will show how to
modify our techniques to obtain stronger estimates for Betti numbers of the
complex and quaternionic hyperbolic spaces than follow from our results in
this paper.

Finally, our techniques can also be applied to L2-cohomology problems.
For example, we have the following vanishing result for L2-Betti numbers of
closed manifolds without conjugate points.

Theorem 6 (See Theorem 122). Let (Mn, g) be a closed Riemannian
manifold without conjugate points and −1 ≤ secg ≤ 1. If there exists δ > 4k2

such that

−Ric ≥ δg,

then the k-th L2-Betti number of M vanishes.

Theorem 6 provides further evidence towards the Singer Conjecture for
aspherical manifolds. For the details of the proof and more on the Singer
Conjecture we refer to Section 8.

We conclude this introduction by noting that Theorem 6 applies to large
classes of manifolds which are not locally symmetric. These include, for
example, the exotic locally symmetric spaces constructed by Farrell-Jones
[FJ89], the Gromov-Thurston manifolds [GT87], the Mostow-Siu surfaces
[MS80], and the manifolds obtained by Anderson’s higher dimensional Dehn
filling [And06].

Acknowledgments. The authors thank the International Centre for The-
oretical Physics (ICTP) for the excellent working environment during the
early stages of this collaboration. They also thank the referees for construc-
tive comments on this work. The first author thanks the University of Florida
for support during the final stages of this work. The second author thanks
Michael Lipnowski for many helpful conversations about bounding Betti
numbers of hyperbolic manifolds.

2. Some integral equalities for harmonic forms

In this section, we fix notation and derive the Price/Donnelly-Xavier in-
equality for harmonic k-forms.
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Let (Mn, g) be a complete n-dimensional Riemannian manifold, with
injectivity radius γg(M). Given a point p ∈ M , denote by BR(p) the geodesic
ball of radius 0 < R ≤ γg(M) centered at p. In such a ball, let g = dr2 + gr
be the expression of the metric g in geodesic polar coordinates, and let ∂r
denote the unit radial vector field.

Given a 1-form ϕ, let e(ϕ) denote exterior multiplication on the left by ϕ.
Let e∗(ϕ) denote the adjoint operator. Fix a local orthonormal frame {ej}j
and coframe {ωj}j . Acting on forms of arbitrary degree, the Lie derivative
in the radial direction can be written as

L∂r
= {d, e∗(dr)} = ∇∂r

+ e(ωj)e∗(∇ejdr).(7)

Choosing the orthonormal frame so that en = ∂r, we may express ∇ejdr in
terms of the the second fundamental form h of Sr(p). Recall for X and Y
tangent to Sr,

h(X,Y ) := g(∇X∂r, Y ).

Thus, we write

∇eidr = hi1ω
1 + . . .+ hin−1ω

n−1,

and

e(ωj)e∗(∇ejdr) =
∑

j,k<n

hjke(ω
j)e∗(ωk) =: Q.(8)

The operator Q defined by (8) is the natural extension of the second funda-
mental form to an endomorphism of forms of arbitrary degree. As usual, we
set the mean curvature of the geodesic sphere Sr to be the traceH =

∑

k hkk.
Let Hk

g(M) denote the strongly harmonic k-forms on M . Given α ∈
Hk

g(M), we have

∫

BR(p)
⟨L∂r

α, α⟩dv =

∫

BR(p)
⟨d(e∗(dr)α), α⟩dv

=

∫

BR(p)
⟨e∗(dr)α, d∗α⟩dv +

∫

SR(p)
|e∗(dr)α|2dσ

=

∫

SR(p)
|e∗(dr)α|2dσ,(9)
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where dσ is the volume element on the geodesic sphere SR(p). Using (7) for
L∂r

gives the alternate expression

∫

BR(p)
⟨L∂r

α, α⟩dv =

∫

BR(p)
⟨(∇∂r

+Q)α, α⟩dv

=

∫

BR(p)

1

2
(L∂r

−Q)(|α|2dv) +
∫

BR

⟨Qα,α⟩dv

=

∫

BR(p)
⟨
(

Q− H

2

)

α, α⟩dv +
∫

SR(p)

1

2
|α|2dσ.(10)

Next, let us define the functions

µ(r) :=

∫

Sr(p)
|e∗(dr)α|2dσ

∫

Sr(p)
|α|2dσ ,(11)

and

q(r) :=

∫

Sr(p)
⟨(H2 −Q)α, α⟩dσ
∫

Sr(p)
|α|2dσ .(12)

Equating the expressions in (9) and (10) yields

∫

BR(p)
q(r)|α|2dv =

1

2

∫

SR(p)
(1− 2µ(R))|α|2dσ.(13)

Now if we multiply (13) by ϕ′(R), ϕ to be determined, and integrate from
σ to τ ≤ γg(M) we get

ϕ(τ)

∫

Bτ (p)
q(r)|α|2dv − ϕ(σ)

∫

Bσ(p)
q(r)|α|2dv

=

∫

Bτ (p)\Bσ(p)
[ϕ(r)q(r) +

1

2
ϕ′(r)(1− 2µ(r))]|α|2dv.(14)

Next, we choose

ϕ(r) := e
−

∫ r

σ

q(s)ds
1
2
−µ(s) .(15)

in order to eliminate the last line of (14). Let us summarize this discussion
into a proposition.
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Proposition 16. Let (M, g) be a Riemannian manifold. For any strongly
harmonic k-form α ∈ Hk

g(M) and for any σ < τ ≤ γg(M), we have the Price
equality

ϕ(σ)

∫

Bσ(p)
q(r)|α|2dv = ϕ(τ)

∫

Bτ (p)
q(r)|α|2dv,(17)

where µ(r), q(r), and ϕ(r) are respectively defined as in (11), (12) and (15).

We conclude this section by studying the behavior of the function µ(r)
for r close to zero.

Lemma 18. Let (M, g) be a Riemannian manifold and p ∈ M . Given a
k-form α such that α(p) ̸= 0, we have

lim
r→0

µ(r) =
k

n
.(19)

Proof. This lemma does not require α to be harmonic. Fix geodesic coordi-
nates with p at the origin. Write

|e∗(dr)α|2(x) =
∑

i,j

xixj

r2
⟨e∗(dxi)α(x), e∗(dxj)α(x)⟩

=
∑

i,j

xixj

r2
⟨e∗(dxi)α(0), e∗(dxj)α(0)⟩+ o(1).

Using

∫

Sr

xixj

r2
dσ =

δij
n
V ol(Sr),

and
∑

j

|e∗(dxj)α|2(0) = k|α|2(0),

we see

µ(r) =
k

n
+ o(1).

□

In order to extract geometric information out of Proposition 16, we need
to understand the positivity properties of q(r). This is a problem in com-
parison geometry which we address in the next section.
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3. Controlling the second fundamental form

Let λ1 ≥ · · · ≥ λn−1 denote the eigenvalues of hij . Q commutes with the
decomposition of a k−form α as α = e∗(dr)e(dr)α+ e(dr)e∗(dr)α. Hence

⟨(H
2

−Q)α, α⟩ ≥ 1

2
(−λ1 − · · · − λk + λk+1 + · · ·+ λn−1)|e(dr)α|2

+
1

2
(−λ1 − · · · − λk−1 + λk + · · ·+ λn−1)|e∗(dr)α|2.(20)

With this notation,

∫

SR(p)
q(r)|α|2dσ ≥

∫

SR(p)
((
H

2
−

k
∑

i=1

λi)|α|2 + µλk|α|2)dσ.(21)

In order to extract information from this inequality, we use the Rauch com-
parison theorem (see eg. [Pet15, p. 255]) and the Riccati Equation for the
mean curvature of a geodesic sphere (see eg. [Pet15, Chapter 5]) to con-
trol the second fundamental form terms arising in the main inequality of
Proposition 21. We first recall those results.

Let γ(K) denote the injectivity radius of the space form of constant
curvature K. Let

sK(r) :=











1√
K
sin(

√
Kr) if K > 0,

r if K = 0,
1√
−K

sinh(
√
−Kr) if K < 0.

Theorem 22 (Rauch Comparison). If (Mn, g) satisfies K1 ≤ secg ≤
K2, h(r) is the second fundamental form of the geodesic sphere of radius
r, and g = dr2 + gr denotes the metric in geodesic polar coordinates, then

s′K2
(r1)

sK2
(r1)

gr1 ≤ h(r1), and h(r2) ≤
s′K1

(r2)

sK1
(r2)

gr2 ,

for 0 < r1 ≤ min{γg(M), γ(K2)}, and 0 < r2 ≤ min{γg(M), γ(K1)}.

If we assume

−1 ≤ secg ≤ κ,(23)

Rauch’s comparison becomes:

√
κ cot(

√
κr1)gr1 ≤ h(r1), and h(r2) ≤ coth(r2)gr2 ,(24)
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for 0 < r1 ≤ min{γg(M), π
2
√
κ
}, and 0 < r2 ≤ γg(M), which then implies the

following bounds on the mean curvature H(r, σ) of any geodesic sphere Sr.

(n− 1)
√
κ cot(

√
κr1) ≤ H(r1, σ), and H(r2, σ) ≤ (n− 1) coth(r2).(25)

The Riccati equation for the mean curvature H is:

∂rH + |h|2 = −Ric(∂r, ∂r).(26)

Since H2 ≥ |h|2, we have

∂rH +H2 ≥ −Ric(∂r, ∂r).(27)

If we assume the Ricci curvature is negative and bounded away from zero,
say

−Ric ≥ δg, (n− 1) ≥ δ > 0,(28)

then (27) implies

∂rH +H2 ≥ δ.(29)

(The upper bound (n− 1) on δ follows from the normalization (23) of the
sectional curvature.) Next consider the ordinary differential equation satu-
rating the inequality given in equation (29)

u′ + u2 = δ.

One solution to this equation is given by

u(r) :=
√
δ coth(

√
δ r).(30)

We now use a Riccati type comparison argument in conjunction with Rauch’s
comparison.

Lemma 31. Let (Mn, g), n ≥ 3, be a closed Riemannian manifold with
−1 ≤ secg ≤ κ, and

−Ric ≥ δg, (n− 1) ≥ δ > 0.

For any p ∈ M and geodesic sphere Sr(p) with r ≤ γg(M), we have

H(r, σ) ≥
√
δ coth(

√
δ r), ∀σ ∈ Sr(p).
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Proof. On any common interval of definition for H and u, equations (29)
and (30) imply the following first inequality:

(

(u−H)e
∫
(u+H)

)′ ≤ 0.

Thus, if we can find r0 such that H(r0, σ) ≥ u(r0), we then have that
H(r, σ) ≥ u(r) for any r ≥ r0. Now, recall from equation (25) that

(n− 1)
√
κ cot(

√
κr) ≤ H(r, σ) ≤ (n− 1) coth(r),(32)

for r ≤ max(γg(M), π
2
√
κ
). Observe (n− 1)

√
κ cot(

√
κr) = n−1

r +O(r) and√
δ coth(

√
δr) = 1

r +O(r). Thus, for r′ sufficiently close to zero, we have

H(r′, σ) ≥
√
δ coth(

√
δr′), ∀σ ∈ Sr′ , and the result follows. □

4. An integral inequality for harmonic forms

The main result of this section is the inequality given in Theorem 39. This
inequality controls the the L2-norm of a harmonic k-form on a ball of fixed
radius, in terms of the L2-norm on the complement of the given ball. We
begin with a lemma giving pointwise and integral bounds on the geometric
quantity q(r) appearing in the Price equality given in Proposition 16. Key
to this lemma are the Riccati-Rauch arguments of Section 3.

Lemma 33. Let (Mn, g) be a Riemannian manifold with −1 ≤ secg ≤ κ
and 0 ≤ κ ≤ 1. Let α be a harmonic k−form on M . Assume further that

−Ric ≥ δg, (n− 1) ≥ δ > 4k2.

Then for 0 ≤ σ < r < γg(M),

∫ r

σ
q(s)ds ≥ (r − σ)

(

√
δ

2
− k

)

+ k ln(1− e−2σ).(34)

Define r0 :=
1√
κ
arccot(

√
δ√

κ(n−1)
) ∈ (0, π

2
√
κ
). If

√
δ

2k
≥ coth(r0) +

ϵ

k
,(35)

then

ϵ ≤ q(r) ≤ (n− 1) coth(r),(36)

for any p ∈ M and r ≤ γg(M).
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Proof. Recall equation (24) gives the upper bound on the second fundamen-
tal form h of the geodesic sphere Sr:

h ≤ coth(r)gr,

for all r ≤ γg(M). Then Proposition 21 yields

q(r) ≥ H

2
− k coth(r) + µ(r) coth(r) ≥ H

2
− k coth(r).

The lower bound on h in (24) and the monotonicity of cot(
√
κ r)

coth(r) on (0, π
2
√
κ
),

implies that given r0 <
π

2
√
κ
for any r ∈ (0, r0] we have

H(r, σ)

2
− k coth(r) ≥ (n− 1)

√
κ cot(

√
κr)

2
− k coth(r)

≥ k coth(r0)
((n− 1)

2k

√
κ cot(

√
κr0)

coth(r0)
− 1

)

≥ ϵ.(37)

On the other hand by Lemma 31 and the monotonicity of coth(r) on (0,∞),
we have for all r > r0,

H(r, σ)

2
− k coth(r) ≥

√
δ

2
coth(

√
δ r)− k coth(r)

≥ k coth(r0)
(

√
δ

2k coth(r0)
− 1

)

≥ ϵ.(38)

Expanding coth(t) = 1 +O(e−2t) as a power series in e−2t and estimating
error terms, the first line in (38) implies (34). The last line in (38) combined
with (37) implies the lower bound in (36). The upper bound is a simple
consequence of (32). Finally we remark that when κ = 0 (i.e., the sectional
curvature is non-positive), one has the freedom of choosing any sufficiently
large r0 for which (35) is satisfied. □

We are now ready to prove the main technical result of this section.

Theorem 39. Let (Mn, g) be a Riemannian manifold with −1 ≤ secg ≤ κ,
0 ≤ κ ≤ 1 and dimension n ≥ 6. Let α be a harmonic k-form. Assume

−Ric ≥ δg, δ > 4k2.
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Let again r0 =
1√
κ
arccot

(

√
δ√

κ(n−1)

)

. Let Cσ,k = coth(σ)2k. If for some ϵ > 0,

√
δ

2k
≥ coth(r0) +

ϵ

k
,(40)

then for any 0 < σ < τ ≤ γg(M) and p ∈ M ,

∫

Bσ(p)
|α|2dv ≤ (n− 1)Cσ,ke

−2(τ−σ)(
√

δ

2
−k)

ϵ(1− Cσ,ke
−2(τ−σ)(

√
δ

2
−k))

∫

Bτ (p)∖Bσ(p)
|α|2dv.(41)

Proof. By Lemma 33, q(r) ≥ ϵ > 0. Equation (13) then implies 1− 2µ(s) >
0 for s ∈ [0, γg(M)]. Then the weight function ϕ defined in (15) satisfies

ϕ(r) ≤ e−2
∫ r

σ
q(s)ds ≤ Cσ,ke

−2(r−σ)(
√

δ

2
−k),(42)

where we have used (34) for the last inequality, and we set Cσ,k = coth(σ)2k

(not sharp). Inserting this inequality into (17) yields

(1− Cσ,ke
−2(τ−σ)(

√
δ

2
−k))

∫

Bσ(p)
q(r)|α|2dv

≤ Cσ,ke
−2(τ−σ)(

√
δ

2
−k)

∫

Bτ (p)∖Bσ(p)
q(r)|α|2dv.(43)

The pointwise bounds on q(r) given in Lemma 33 now yield

(1− Cσ,ke
−2(τ−σ)(

√
δ

2
−k))ϵ

∫

Bσ(p)
|α|2dv

≤ Cσ,ke
−2(τ−σ)(

√
δ

2
−k)(n− 1) coth(σ)

∫

Bτ (p)∖Bσ(p)
|α|2dv,(44)

which then concludes the proof. Once again when κ = 0, one has the freedom
of choosing any sufficiently large r0 for which (35) is satisfied. □

5. From integral inequalities to dimension estimates

In this section, we use the integral inequalities of the previous section to
extract dimension estimates. In the following section, we will sharpen these
estimates using cohomological techniques. We include the slightly weaker
results here for the reader who may be interested in applying them to re-
lated problems - such as bounding the dimensions of eigenspaces with very
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small eigenvalue - to which these techniques, but not their cohomological
improvement, readily apply.

In order to extract dimension estimates from (41), we first need the
following standard lemma.

Lemma 45. Let (Mn, g) be a closed Riemannian manifold. There exists
α ∈ Hk

g(M), with ||α||L2 = 1, such that

max
p∈M

|α|2 ≥ k!(n− k)!bk(M)

n!V ol(M)
,

where bk(M) = dimRHk
g(M) is the k-th Betti number of M .

Proof. Let K(x, y) denote the Schwartz kernel of the L2−orthogonal pro-
jection onto Hk

g(M). Then

∫

M
trK(x, x)dv = dimHk

g(M).(46)

Hence, there exists p ∈ M such that

trK(p, p) ≥ bk(M)

V ol(M)
.(47)

Then there exists a unit eigenvector z of K(p, p) with eigenvalue

λ ≥ k!(n− k)!bk(M)

n!V ol(M)
.

Since K is the Schwartz kernel of an L2−orthogonal projection,

∥K(x, p)z∥2L2 = ⟨K(p, p)z, z⟩ = λ.(48)

Set

α(x) :=
K(x, p)z√

λ
.(49)

Then ∥α∥L2 = 1, and

|α(p)|2 = |K(p, p)z|2
λ

= λ ≥ k!(n− k)!bk(M)

n!V ol(M)
.(50)

□
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The following lemma allows us to pass from integral inequalities to point-
wise estimates.

Lemma 51. Let (Mn, g) be a closed Riemannian manifold with

−1 ≤ secg ≤ 1.

Given a harmonic k-form α ∈ Hk
g(M), for any

p ∈ M and R < min(γg(M), 1)

there exists a strictly positive constant d(n,R) := d(n)(1 + 1
R)

n such that

||α||2L∞(BR
2
(p)) ≤ d(n,R)||α||2L2(BR(p)).

Proof. This proof is a standard application of Moser iteration. See for ex-
ample [LS18, Proposition 2.2], where the theorem is proved for hyperbolic
manifolds. The extension to our context follows immediately substituting the
bounded variable curvature for constant curvature and using Lemma 2.24
of [Aubin, Chapter 2] to replace [LS18, (2.1)]. More precisely, one replaces
[LS18, (2.1)] by the statement that there exists SM > 0, such that for all

p ∈ M , R < max{ δ(M)
2 , 1}, and all compactly supported smooth functions

on the ball ξ ∈ C∞
c (BR(p)), one has

SM∥dξ∥2L2(BR(p)) ≥ ∥ξ∥2
L

2n
n−2 (BR(p))

.(52)

We refer to [Aubin, Chapter 2] for this well-known statement. □

We close this section with our main application.

Theorem 53. Let (Mn, g) be a Riemannian manifold with −1 ≤ secg ≤ κ.
Assume

−Ric ≥ δg, δ ≥ 4k2.

Let r0 =
1√
κ
arccot(

√
δ√

κ(n−1)
). If

√
δ

2k
≥ coth(r0) +

ϵ

k
,(54)

then there exists a positive constant c(n) depending on the dimension only
such that for γg(M) large

bk(M)

V olg(M)
≤ c(n)ϵ−1e−2γg(M)(

√
δ

2
−k).
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Proof. By Lemma 45, there exists α ∈ Hk
g(M) and p ∈ M , with ||α||L2(M) =

1, and

|α(p)|2 ≥ k!(n− k)!bk(M)

n!V ol(M)
.(55)

On the other hand, Lemma 51 and equation (41) yield

|α|2(p) ≤ d(n, 1/2)||α||2L2(Bp(1))

≤ c̃(n)

ϵ
e−2(γg(M)−1)(

√
δ

2
−k)||α||2L2(Bp(τ))

,(56)

where d(n, 1/2) > 0 is the constant of Lemma 51, and

c̃(n) := 2d(n, 1/2)(n− 1)C1,k+ 1

2
,

with γg(M) large enough so that

1− C1,ke
−2(γg(M)−1)(

√
δ

2
−k) ≥ 1

2
.

□

6. Excising geodesic balls

In Section 3, we estimate q(r) from below by combining Rauch’s compar-

ison with a Riccati type argument. Under the curvature constraint
√
δ
2 >

k coth(r0), with r0 :=
1√
κ
arccot

(

√
δ√

κ(n−1)

)

, these arguments suffice to provide

a positive uniform lower bound on q(r) for any r. The deleterious effects of
positive curvature in the comparison arguments diminish at large radius. In
fact, it only affects Rauch’s comparison for small values of r. On the other
hand, under our usual Ricci curvature assumption, the positive curvature
does not affect the Riccati argument for large values of r. Thus it is natural
to work in the complement of a large ball. In this section, we use cohomo-
logical arguments to remove the application of Rauch’s comparison for small
values of r. We begin with the following reformulation of Equation (13) with
two boundary components.
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Proposition 57. Let (Mn, g) be complete and satisfy −1 ≤ secg. Given a
point p ∈ M , α ∈ Hk

g(M), and σ ≤ τ ≤ γg(M), we have

∫

Sτ (p)

(1

2
− µ(τ)

)

|α|2dσ =

∫

Sσ(p)

(1

2
− µ(σ)

)

|α|2dσ

+

∫

Bτ (p)∖Bσ(p)
q(r)|α|2dv.(58)

Moreover, with ϕ as defined in (15),

ϕ(τ)

∫

Bτ (p)∖Bσ(p)
q(r)|α|2dv = (1− ϕ(τ))

∫

Sσ(p)

(1

2
− µ(σ)

)

|α|2dσ.(59)

Proof. This follows from the same arguments as (13) and (17). □

In Section 5, we showed that if ϕ decays to zero, it is possible to give
effective estimates on the size of Betti numbers normalized by the Rieman-
nian volume. In order to control the size of ϕ, it is necessary to understand
the sign not only of q(r) but also of 1

2 − µ(r), see Equation (15). In partic-
ular, we require µ(r) < 1

2 for all r sufficiently large. This inequality follows
from (58), if µ(σ) < 1

2 . Thus, it is natural to work with harmonic forms with
Neumann boundary condition.

Given a complete Riemannian manifold with boundary, Ω, let Hk
2,N (Ω)

denote the L2-harmonic k-forms on Ω satisfying Neumann boundary con-
ditions on ∂Ω. Let Hk

2,N (Ω) denote the (absolute) L2− cohomology of Ω.

This is the cohomology of the complex (C∗
2 , d), where Ck

2 denotes the clo-
sure in the L2 graph norm (∥ϕ∥2graph := ∥ϕ∥2L2 + ∥dϕ2∥L2) of the smooth L2

k− forms on Ω.
It is easy to see that, if 0 is not in the essential spectrum of ∆k, then

Hk
2,N (Ω) ≃ Hk

2,N (Ω).(60)

When Ω is compact (possibly with boundary), then elliptic regularity plus
the de-Rham isomorphism implies Hk

2,N (Ω) ≃ Hk(Ω). For more details on

L2-cohomology we refer to Section 8.
The next lemma is the natural analogue of Theorem 39 for Neumann

harmonic forms.

Lemma 61. Let (Mn, g) be a complete Riemannian manifold with −1 ≤
secg ≤ 1. Let p ∈ M , ρ < γg(M), and α ∈ Hk

2,N (M ∖Bρ(p)). Assume there
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exists δ > 4k2 and ϵ > 0 such that

−Ric ≥ δg,

and
√
δ

2
coth(

√
δρ)− k coth(ρ) ≥ ϵ.(62)

Then for any σ ∈ (ρ, γg(M)), τ ∈ (σ, γg(M)) and σ < R < τ ,

∫

BR(p)∖Bσ(p)
|α|2dv

≤ n− 1

ϵ
coth(σ)2k+1e−(

√
δ−2k)(τ−R)

∫

Bτ (p)∖Bσ(p)
|α|2dv.(63)

Proof. Recall that the Neumann boundary condition implies i∂r
α = 0 on

Sρ(p). Equivalently, µ(ρ) = 0. Hence (58) with σ = ρ implies µ(r) ≤ 1
2 , ∀r ∈

[ρ, γg(M)], as long as q(r) ≥ 0, for ∀r ∈ [ρ, γg(M)]. Taking (59) for two dif-
ferent values of τ and then taking the difference of the two equations gives

ϕ(τ)

∫

Bτ (p)∖Bσ(p)
q(r)|α|2dv = ϕ(R)

∫

BR(p)∖Bσ(p)
q(r)|α|2dv

+ (ϕ(R)− ϕ(τ))

∫

Sσ(p)

(1

2
− µ(σ)

)

|α|2dσ.(64)

The hypotheses imply ϕ is monotonically decreasing. Our curvature esti-

mates imply q(s) >
√
δ
2 − k coth(s), and the desired estimate follows from

(15). □

The Price inequality of Lemma 61 can now be applied to derive a van-
ishing for certain spaces of Neumann harmonic forms.

Corollary 65. Let (Mn, g) be a simply connected non-compact complete
Riemannian manifold without conjugate points and −1 ≤ secg ≤ 1. Assume
there exists δ > 4k2 > 0 such that

−Ric ≥ δg.

Let p ∈ M . Then for ρ sufficiently large, Hk
2,N (M ∖Bρ(p)) = 0.

Proof. Taking τ → ∞ in the preceding lemma, we see that α vanishes iden-
tically. □
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Next, we consider closed manifolds without conjugate points.

Proposition 66. Let (Mn, g) be a closed manifold without conjugate points
with −1 ≤ secg ≤ 1. Assume there exists δ > 4k2 such that

−Ric ≥ δg.

Let πi : Mi → M be a sequence of Riemannian covers of M with γg(Mi) →
∞. Let hi ∈ Hk(Mi), and pi ∈ Mi. Then there exists c(n, k, δ) > 0 so that
for γgi(Mi) sufficiently large,

∫

Bρ(pi)
|hi|2dv ≤ c(n, k, δ)e−(

√
δ−2k)γg(Mi)∥hi∥2.(67)

Proof. Choose ρ sufficiently large so that

√
δ

2
coth(

√
δρ)− k coth(ρ) ≥

√
δ − 2k

4
=: ϵ > 0.

Consider i sufficiently large so that ρ < γg(Mi). Then for k < n− 1, we have

Hk(Mi) ≃ Hk(Mi) ≃ Hk
N (Mi ∖Bρ(pi)) ≃ Hk

N (Mi ∖Bρ(pi)).

Consider the map from Hk(Mi) obtained as follows. Given h ∈ Hk(Mi), let
J1(h) denote the Hk

N (Mi ∖Bρ(pi)) harmonic representative of the restric-
tion of h to Mi ∖Bρ(pi). Let b denote a coexact primitive (with respect
to the complex (C∗

2 (Bρ+2(pi)∖Bρ(pi)), d)) for the restriction of J1(h) to
Bρ+2(pi)∖Bρ(pi). Let η be a smooth cutoff function with |dη| < 2, sup-
ported on Bρ+2(pi)∖Bρ(pi), identically zero near ∂Bρ+2(pi) and identically
one in Bρ+1(pi). Then J2(h) := J1(h)− d(ηb) defines an element in Hk(Mi).
Because every cycle in Hk(Mi) has a representative disjoint from Bρ(pi) and
the integral of J2(h) over every such cycle is equal to the integral of h over
the cycle, J2(h) is cohomologous to h. Let now J3(h) denote the Mi har-
monic projection of J2(h). Then we have shown J3(h) = h. Restriction and
harmonic projection are norm nonincreasing. In particular, we have

∥J1(h)∥2L2(Mi∖Bρ(pi))
≤ ∥h∥2L2(Mi)

−
∫

Bρ

|h|2dv.(68)
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On the other hand, we have

∥h∥2L2(Mi)
= ∥J3(h)∥2L2(Mi)

≤ ∥J2(h)∥2L2(Mi)

≤ ∥h∥2L2(Mi)
−
∫

Bρ

|h|2dv + ∥d(ηb)∥2L2(Bρ+2(pi)∖Bρ(pi))
.(69)

Hence

∫

Bρ

|h|2dv ≤ ∥d(ηb)∥2L2(Bρ+2(pi)∖Bρ(pi))

≤ 2∥ηJ1(h)∥2L2(Mi∖Bρ(pi))
+ 2∥dη ∧ b∥2L2(Bρ+2(pi)∖Bρ(pi))

(70)

≤ 2||J1(h)||2L2(Bρ+2∖Bρ)
+ 8||b||2L2(Bρ+2∖Bρ)

.(71)

In order to bound ||b||2L2(Bρ+2∖Bρ)
, it suffices to estimate the L2 norm of any

primitive for the restriction of J1(h) to the annular region, since the coexact
primitive has smallest L2 norm among all primitives. We now construct one
such primitive. Use normal coordinates to fix a diffeomorphism ζ : Bρ+2(pi) \
Bρ(pi) → Sn−1 × [0, 2]. Write H := ζ∗J1(h) = H0 + dt ∧H1, with i ∂

∂t
Hj =

0, t the coordinate on [0, 2]. Fix L ∈ [0, 2] minimizing
∫

SL
|H|2dσ. Set

βL(r) :=

∫ r

L
H1(s)ds.(72)

Then since d(ζ∗J1(h)) = 0

dβL = H −H0(L).

In the product metric g0 on Sn−1 × [0, 2], we have

∥βL∥2L2(Sn−1×[0,2],g0)
=

∫ 2

0

∫

Sn−1

(

∫ r

L
H1(s)ds

)2
dσdr

≤ 2

∫

Sn−1×[0,2]
|H1|2dv

≤ 2∥H∥2L2(Sn−1×[0,2],g0)
.(73)

(We now indicate the metric in our L2 norms when confusion may occur.)
Let ξ denote a coexact primitive for H0(L) viewed as an exact form on Sn−1.
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Then in the product metric,

∥ξ∥2L2(Sn−1×[0,2],g0)
≤ Wn∥H∥2L2(Sn−1×[0,2],g0)

,

with Wn = O(λ−1
1,k), where λ1,k denotes the first eigenvalue of the Laplace

Beltrami operator for k-forms on the sphere. (Our hypotheses imply k ̸=
0, n− 1.) By construction,

d(βL + ξ) = H.

There exists C1(ρ) > 0 so that

C−1
1 ∥ · ∥2L2(Bρ+2(p)∖Bρ(p),g)

≤ ∥ · ∥2L2(Sn−1×[0,2],g0)

≤ C1∥ · ∥2L2(Bρ+2(p)∖Bρ(p),g)
.(74)

Then we have

∥βL + ξ∥2L2(Sn−1×[0,2],g0)
≤ (Wn + 2

√
2
√

Wn + 2)∥H∥2L2(Sn−1×[0,2],g0)
.(75)

Equation (75) combined with (70) and (74) gives

∫

Bρ

|h|2dv ≤ d(Wn, C1)∥J1(h)∥2L2(Bρ+2(p)∖Bρ(p),g)
,(76)

where d(Wn, C1) is a positive constant depending on Wn and C1. Using (63),
we have

∫

Bρ

|h|2dv ≤ d(Wn, C1)
n− 1

ϵ
coth(ρ)2k+1e−(

√
δ−2k)(τ−ρ−2)(77)

×
∫

Bτ∖Bρ

|J1(h)|2dv,

and the result follows. □

We can now prove the main result of this section.

Corollary 78. Let (Mn, g) be a closed Riemannian manifold without con-
jugate points and with −1 ≤ secg ≤ 1. Assume there exists δ > 4k2 > 0 such
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that

−Ric ≥ δg.

Let πi : Mi → M be a sequence of Riemannian covers of M with γg(Mi) →
∞. Then there exists b(n, k) > 0 so that for γg(Mi) sufficiently large,

bk(Mi)

V ol(Mi)
≤ b(n, k, δ)e−(

√
δ−2k)γgi

(Mi).(79)

In particular,

lim
i→∞

bk(Mi)

V ol(Mi)
= 0.(80)

Proof. Apply Lemmas 45 and 51 to Proposition 66. □

Congruence subgroups of arithmetic groups of Q rank 0 algebraic groups
provide an important and widely studied class of examples of towers of cov-
ers. These lattices have large injectivity radii relative to their covolumes
with respect to the natural locally symmetric metric. For more details see
[SX91], [Yeu94], and [Mar14]. The following definition abstracts the injec-
tivity radius properties of such lattices.

Definition 81. Let (Mn, g) be a closed Riemannian manifold with infinite
residually finite fundamental group Γ := π1(M

n). Given a cofinal filtration
{Γi} of Γ, for any index i let us set

ri := inf{dg̃(z, γiz)/2 | z ∈ X̃, γi ∈ Γi, γi ̸= 1}

where (X̃, g̃) is the Riemannian universal cover. We say that the cofinal
filtration is of congruence type if there exist constants, 0 < α(n, {Γi}) < 1,
g(n, {Γi}) > 0 such that

eri ≥ g(n, {Γi})[Γ : Γi]
α(n,{Γi})

for any i ≥ 1, where [Γ : Γi] is the index of Γi in Γ. We call the constant α
the exponent of the cofinal filtration.

We restate our Betti number asymptotics under the additional hypoth-
esis of a congruence type cofinal filtration with exponent α.
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Corollary 82. Let (Mn, g) be a Riemannian manifold without conjugate
points with −1 ≤ secg ≤ κ and residually finite fundamental group Γ. As-
sume

−Ric ≥ δg, δ > 4k2.

Let {Γi}i be a congruence type cofinal filtration of Γ of exponent α. Denote
by πi : Mi → M the regular Riemannian cover of M associated to Γi. Then

bk(Mi) ≤ d(n, k, δ,Γ)V ol(Mi)
1−2α(

√
δ

2
−k).

where d(n, k,Γ) is a positive constant.

Proof. Since (Mn, g) has no conjugate points, for any i ≥ 1 the numerical in-
variant ri > 0 given in Definition 81 is simply the injectivity radius γgi(Mi).
Since

V ol(Mi) = V ol(M)[Γ : Γi],

by Corollary 78 we have

bk(Mi) ≤
b(n, k)

e2ri(
√

δ

2
−k)

V ol(Mi) ≤
b(n, k)V ol(M)

g(n,Γ)2(
√

δ

2
−k)

[Γ : Γi]
1−2(

√
δ

2
−k)α,

and the proof is complete. □

7. Inequalities for negatively pinched manifolds in

dimensions n ≥ 4

Let (Mn, g) be a closed Riemannian manifold of dimension n ≥ 4 such that

−b2 ≤ secg ≤ −a2,(83)

for some a, b ∈ (0,∞). Let p ∈ M , and denote by BR the ball of radius
0 < R < γg(M) centered at p. InBR we write the metric in geodesic spherical
coordinates as g = dr2 + gr. With the curvature assumptions (83), Rauch’s
comparison (see Theorem 22) gives the following two sided bound on the
second fundamental form of any geodesic sphere:

a coth(ar)gr(u) ≤ Hess(r, u) ≤ b coth(br)gr(u),(84)

for any r ≤ γg(M) and for any point u on the geodesic sphere Sr. Taking
the trace of (84) gives the corresponding mean curvature bound:

(n− 1)a coth(ar) ≤ H(r, u) ≤ (n− 1)b coth(br),(85)
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for any u ∈ Sr(p), given any p ∈ M . This implies that for any r ≤ γg(M),
we have

(n− 1)

2
a coth(ar)− kb coth(br)

≤ q(r) ≤ (n− 1)

2
b coth(br)− ka coth(ar).(86)

We now specialize our Price inequalities to harmonic forms on closed
pinched negatively curved manifolds of dimension n ≥ 4. This is the main
result of this section.

Theorem 87. Let (Mn, g) be a compact Riemannian manifold of dimen-
sion n ≥ 4. Assume the sectional curvature is ϵ-pinched :

−(1 + ϵ)2 ≤ secg ≤ −1,

with ϵ ≥ 0. Let k be a non-negative integer such that

ϵn,k := (n− 1)− 2k(1 + ϵ) > 0.

For α ∈ Hk
g(M), and 0 < σ < τ ≤ γg(M), we have

∫

Bσ(p)
|α|2dv ≤ e−(τ−σ)ϵn,k

1− e−(τ−σ)ϵn,k

(n− 1)

ϵn,k
(88)

× (1 + ϵ) coth(σ)

∫

Bτ (p)∖Bσ(p)
|α|2dv.

Proof. Recall the Price equality given in (17)

∫

Bσ(p)
q(r)|α|2dv = ϕ(τ)

∫

Bτ (p)
q(r)|α|2dv.(89)

By (86) we have

q(r) ≥ (n− 1)

2
coth(r)− k(1 + ϵ) coth((1 + ϵ)r)

>
(n− 1)

2
− k(1 + ϵ).(90)

Hence by (15), we have

ϕ(r) ≤ e−(r−σ)(n−1−2k(1+ϵ)),(91)
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which combined with (17) gives

∫

Bσ(p)
q(r)|α|2dv ≤ e−(r−σ)(n−1−2k(1+ϵ))

1− e−(r−σ)(n−1−2k(1+ϵ))

∫

Bτ (p)∖Bσ(p)
q(r)|α|2dv.(92)

The upper bound of Equation (86) implies

q(r) ≤ (n− 1)

2
(1 + ϵ) coth((1 + ϵ)r)− k coth(r),

so that for any r ≥ σ, we have

q(r) ≤ n− 1

2
(1 + ϵ) coth(r).(93)

The lower bound on q given in (86) combined with (93) then yields

∫

Bσ(p)
|α|2dv ≤ e−(τ−σ)ϵn,k

1− e−(τ−σ)ϵn,k

(n− 1)

ϵn,k
(94)

× (1 + ϵ) coth(σ)

∫

Bτ (p)∖Bσ(p)
|α|2dv,

as claimed. □

Corollary 95. Let (Mn, g) be a compact Riemannian manifold of dimen-
sion n ≥ 4. Assume

−(1 + ϵ)2 ≤ secg ≤ −1

with ϵ ≥ 0. There exists a constant c(n, k) > 0 so that for each non-negative
integer k such that

ϵn,k := (n− 1)− 2k(1 + ϵ) > 0,

bk(M)

V olg(M)
≤ c(n, k)e−ϵn,kγg(M),

for γg(M) > 1 + ln(2)
ϵn,k

.

Proof. Apply Lemmas 45 and 51 to Proposition 87. The (nonsharp) con-
straint on γg(M) serves to control denominators. □

Finally, we study the borderline case where ϵn,k = 0 and ϵ > 0.
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Theorem 96. Let (Mn, g) be a compact Riemannian manifold of dimen-
sion n ≥ 4. Assume the sectional curvature is ϵ-pinched :

−(1 + ϵ)2 ≤ secg ≤ −1,

with ϵ > 0. Let k be a positive integer such that

ϵn,k := (n− 1)− 2k(1 + ϵ) = 0.

For α ∈ Hk
g(M) and 0 < 1 ≤ τ ≤ γg(M), we have

∫

B1(p)
|α|2dv ≤ sinh2(1 + ϵ)

2k(1 + ϵ)ϵ(τ − 1)

∫

Bτ (p)∖B1(p)
|α|2dv.(97)

Proof. Given the assumption that ϵn,k = 0, we write the first inequality of
(90) as

q(r) ≥ k(1 + ϵ)(coth(r)− coth((1 + ϵ)r).

Using the mean value theorem, we may estimate the lower bound by

q(r) ≥ k(1 + ϵ)rϵ

sinh2(r + ϵr)
.(98)

The righthand side of this inequality is monotonically decreasing in r. Hence
for r ∈ [0, 1] we have

q(r) ≥ k(1 + ϵ)ϵ

sinh2(1 + ϵ)
.(99)

Recall (17) and (13): for 1 < τ ≤ γg(M),

∫

Bσ(p)
q(r)|α|2dv = ϕ(τ)

∫

Bτ (p)
q(r)|α|2dv

= ϕ(τ)

∫

Sτ (p)

(1

2
− µ(τ)

)

|α|2dσ.(100)

When ϵn,k = 0, ϕ need not decay exponentially, but by definition (15),

0 < ϕ(r) ≤ 1.(101)
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Thus, for any s ≥ 1

k(1 + ϵ)ϵ

sinh2(1 + ϵ)

∫

B1(p)
|α|2dv ≤

∫

B1(p)
q(r)|α|2dv

≤ 1 ·
∫

Bs(p)
q(r)|α|2dv

=

∫

Ss(p)

(1

2
− µ(s)

)

|α|2dσ.(102)

Integrating Equation (102) from 1 to 1 < τ ≤ γg(M), yields

k(1 + ϵ)ϵ

sinh2(1 + ϵ)
(τ − 1)

∫

B1(p)
|α|2dv ≤ 1

2

∫

Bτ (p)∖B1(p)
|α|2dv,

which concludes the proof. □

Corollary 103. Let (Mn, g) be a closed Riemannian manifold of dimension
n ≥ 4. Assume

−(1 + ϵ)2 ≤ secg ≤ −1,

with ϵ > 0 satisfying k := n−1
2(1+ϵ) is an integer. If γg(M) > 1, there exists a

positive constant c(n, k, ϵ) such that

bk(M)

V olg(M)
≤ c(n, k, ϵ)

γg(M)− 1
.

Proof. Choose a normalized α ∈ Hk
g(M) as in Lemma 45, and let p ∈ M be

a point where the norm of α achieves its maximum. Since ||α||L2 = 1, for
1 < τ ≤ γg(M), Equation (97) combined with Lemma 45 and with Lemma
51 with R = 1 then gives

bk(M)

V ol(M)
≤

(

n

k

)

|α|2p ≤
(

n

k

)

d(n, 1) sinh2(1 + ϵ)

2k(1 + ϵ)ϵ(τ − 1)
||α||2L2(B1)

≤
(

n

k

)

d(n, 1) sinh2(1 + ϵ)

2k(1 + ϵ)ϵ(τ − 1)
.

Take τ = γg(M) to complete the proof. □

We can now study the asymptotic behavior of Betti numbers with respect
to coverings of negatively pinched Riemannian manifolds.
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Corollary 104. Let (Mn, g) be a closed Riemannian manifold of dimension
n ≥ 4 with residually finite fundamental group Γ := π1(M). Assume

−(1 + ϵ)2 ≤ secg ≤ −1,

with ϵ ≥ 0. Given a cofinal filtration {Γi} of Γ, denote by πi : Mi → M the
regular Riemannian cover of M associated to Γi. For each non-negative in-
teger k such that ϵn,k = (n− 1)− 2k(1 + ϵ) > 0,

lim
i→∞

bk(Mi)

V ol(Mi)
= 0.(105)

Moreover, if ϵ > 0, the same holds true for k-forms of critical degree such
that ϵn,k = 0.

Proof. Given a cofinal filtration {Γi} of Γ,

lim
i→∞

γgi(Mi) = ∞

where Mi is equipped with the pull back metric gi := π∗
i (g). For a proof, see

Theorem 2.1 in [DW78]. The corollary is now a consequence of Corollary 95
if ϵn,k > 0. If ϵn,k = 0, we instead appeal to Corollary 103. □

We now consider cofinal filtrations of congruence type (see Definition 81).

Corollary 106. Let (Mn, g) be a closed Riemannian manifold of dimension
n ≥ 4 with residually finite fundamental group Γ := π1(M). Assume

−(1 + ϵ)2 ≤ secg ≤ −1,

with ϵ ≥ 0. Given a cofinal filtration {Γi} of Γ of congruence type with ex-
ponent α ∈ (0, 1), denote by πi : Mi → M the regular Riemannian cover of
M associated to Γi. For any non-negative integer k such that

ϵn,k := (n− 1)− 2k(1 + ϵ) > 0,

and for all i such that

γgi(Mi) > 1 +
ln(2)

ϵn,k
,

we have

bk(Mi) ≤ k(n, k, ϵ,Γ)V ol(Mi)
1−ϵn,kα,
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where k(n, k, , ϵ,Γ) is a positive constant. Moreover, if ϵ > 0, then for k-
forms of the critical degree such that ϵn,k = 0, we have

bk(Mi) ≤ l(n, k, ϵ,Γ)
V olgi(Mi)

α ln(V olgi(Mi))
,

for some positive constant l(n, k, ϵ,Γ).

Proof. Re-express the functions of injectivity radius in Theorems 95 and 96
as functions of V ol(M). □

Remark 107. We note that Corollaries 104 and 106 can alternatively be
derived by combining Theorem 3.2 in [DX84] with Theorem 0.1 in [CW03].
Finally, we point out that Corollary 104 can also be derived by combining
Lück approximation result with the Donnelly-Xavier vanishing.

When M = Hn
R
/Γ is a compact hyperbolic manifold of dimension n =

2k + 1, we can also extend the results of Corollary 103 to estimate bk(M).
In this case, in order to apply the usual Price inequality approach we need
to understand the magnitude of µ.

Corollary 108. Let M be a compact hyperbolic manifold of dimension 2k +
1 with γg(M) > 1. There exists Ck > 0 such that

bk(M) ≤ Ck
V ol(M)

γg(M)− 1
.(109)

Proof. The proof is the same as Corollary 103, except that we now have

q(r) = µ(r) coth(r),

so that we need to estimate the magnitude of µ from below. Let h be a
harmonic k form, k ̸= 0, n, not vanishing at p ∈ M . Recall that we have
µ(0) = k

2k+1 , see Lemma 18. In hyperbolic geometry, it is possible to show
there is a k dependent positive lower bound µ̃ for µ on [0, 1]. This lower
bound can be explicitly estimated using separation of variables. Relying less
on the special geometry, we may also estimate µ as follows. Let L ∈ (0, 1].
Identify BR ∖ {0} with (0, R)× Sn−1 in the usual manner, and write h =
h0 + dr ∧ h1, with i∂r

hj = 0. Use the product structure to identify the hj
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with a one parameter family of forms on Sn−1. Set

bL(r) =

∫ r

L
h1(s)ds.(110)

Then since dh = 0 we have

dbL(r) = h(r)− h0(L).

The closed form h0(L) is exact on Sn−1. Hence there exists a (k − 1)-form
β0 on Sn−1 such that

dβ0 = h0(L).

Moreover,
∫

SL

|β0|2dσ ≤ c2n,k sinh
2(L)

∫

SL

|h0|2dσ,

for some cn,k > 0. On the other hand, we have

∫

BL(p)
|h|2dv =

∫

BL(p)
⟨d(bL + β0), h⟩dv

=

∫

SL(p)
⟨β0, e∗(dr)h⟩dσ ≤

√

µ(L)cn,k sinh(L)∥h∥2SL

=
2
√

µ(L)

1− 2µ(L)
cn,k sinh(L)

∫

BL(p)
q(r)|h|2dv,(111)

where we have used (13) for the last equality. By Lemma 51

sinh(L)

∫

BL/2(p)
q(r)|h|2dv ≤ d(n)

(

1 +
2

L

)n

× sinh(L)

∫

BL(p)
|h|2dv

∫

BL/2(p)
q(r)dv

≤ d(n, L)

∫

BL(p)
|h|2dv.(112)

where

d(n, L) := d(n)
(

1 +
2

L

)n
sinh(L)V ol(Sn−1) sinh(L/2)n−1.

On the other hand

sinh(L)

∫

BL∖BL/2

q(r)|h|2dv ≤ (n− 1) sinh(L) coth(L/2)

∫

BL

|h|2dv.(113)
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By combining Equations (112) and (113)

sinh(L)

∫

BL(p)
q(r)|h|2dv ≤ C1(n, L)

∫

BL(p)
|h|2dv,

where C1(n, L) is a constant depending only on n and L. Inserting this
estimate back into (111) gives

1 ≤ 2
√

µ(L)

1− 2µ(L)
cn,kC1(n, L).(114)

Hence µ(L) is bounded below for L bounded. Given this lower bound, the
proof proceeds exactly as in Corollary 103 and Theorem 96. □

Remark 115. One of the referees brought to our attention the fact that a
slightly weaker version of Corollary 108 could be derived from the compu-
tation of the Novikov-Shubin invariant for real hyperbolic manifolds given
in [Olb14].

We summarize our Betti number estimates for real hyperbolic manifolds
with the following corollary.

Corollary 116. Let Xn = Hn
R
/Γ be a closed real hyperbolic manifold with

secg = −1 and injectivity radius γg(X) > 1. Given a cofinal filtration {Γi}
of Γ, let us denote by πi : Xi → X the regular Riemannian cover of X as-
sociated to Γi. If n = 2m, for any integer 1 ≤ k < m, there exists a positive
constant c1(n, k) such that

bk(Xi)

V olgi(Xi)
≤ c1(n, k)e

−(1+2(m−k))γgi
(Xi).

On the other hand, if n = 2m+ 1, for any integer k < m there exists a
positive constant c2(n, k) such that

bk(Xi)

V olgi(Xi)
≤ c2(n, k)e

−(2(m−k))γgi
(Xi).

In both cases, the sub volume growth of the Betti numbers along the tower
of coverings is exponential in the injectivity radius. Finally, for n = 2k + 1
we have the existence of a positive constant c3(n, k) such that

bk(Mi)

V olgi(Mi)
≤ c3(n, k)

γgi(Mi)− 1
.
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Proof. For n = 2m, notice that ϵn,k = ϵ2m,m−1 = 1. For n = 2m+ 1, we have
ϵn,k = ϵ2m+1,m = 0. The statement in this case then follows from Corol-
lary 95. For the critical case of k-forms in dimension n = 2k + 1, we use
Corollary 108. □

This result can also be obtained by trace formula techniques, but we
consider our proof to be significantly simpler. For more details see again
[Xue91], [SX91] and [Mar14].

8. L
2-cohomology and L

2-Betti numbers

Let Hk
2,N (Ω) denote the (absolute) L2− cohomology of Ω. Let ∆k denote the

Laplace Beltrami operator on k−forms. If 0 is not in the essential spectrum
of ∆k, then

Hk
2,N (Ω) ≃ Hk

2 (Ω).(117)

Lemma 118. Let (Mn, g) be a simply connected non-compact complete
Riemannian manifold without conjugate points and −1 ≤ secg ≤ 1. If there
exists δ > 4k2 such that

−Ric ≥ δg,

then zero is not in the essential spectrum of ∆k.

Proof. It is well-known that zero is not in the essential spectrum of ∆k if
and only if there is a compact set K ⊂ M and a constant γ > 0 such that

||dα||2L2 + ||d∗α||2L2 ≥ γ||α||2L2 ,

for any smooth k-form α compactly supported in M ∖K. (See for example

[Ang93].) Fix p ∈ M . Choose ρ large enough so that
(√

δ
2 − k coth(ρ)

)

=: ϵ

is strictly positive. Given α ∈ C∞
c (ΛkT ∗(M ∖Bρ(p))), choose R sufficiently

large so that the support of α is contained in BR(p). Now, in the absence of
the harmonicity assumption and with the addition of the support assump-
tion, (13) becomes

∫

BR

(i−∂r
α, d∗α)dv +

∫

BR

(i−∂r
dα, α)dv ≥

∫

BR

q(r)|α|2dv.

Since |∂r| = 1,

∫

BR

(i−∂r
α, d∗α)dv +

∫

BR

(i−∂r
dα, α)dv ≤

√
2
(

||dα||2L2 + ||d∗α||2L2

)1/2
||α||L2 .
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On the other hand, since the support of α does not intersect the closure of
the ball Brϵ(p) we have that

∫

BR(p)
q(r)|α|2dv ≥ ϵ

∫

BR(p)
|α|2dv.

Setting γ = ϵ2/2 gives the desired lower bound on the spectrum. □

Corollary 119. Let (Mn, g) be a simply connected non-compact complete
Riemannian manifold without conjugate points and −1 ≤ secg ≤ 1. If there
exists δ > 4k2 such that

−Ric ≥ δg,

then Hk
2(M) = Hk

2 (M) = 0.

Proof. By Lemma 118, zero is not in the essential spectrum of ∆k. Thus,
Hk

2(M) = Hk
2 (M). The vanishing follows by applying Lemma 61 and stan-

dard long exact sequences. □

We now collect some consequences of Corollary 119 regarding the van-
ishing of L2-Betti numbers of certain classes of manifolds without conjugate
points and with negative Ricci curvature. The L2-Betti numbers are non-
negative real valued numerical invariants associated to a closed Riemannian
manifolds. They were originally introduced by Atiyah in [Ati76] in connec-
tion with L2-index theorems. Let us briefly recall their definition.

Definition 120. [Ati76, p. 44] Let (Mn, g) be a closed aspherical manifold.
Let π : (M̃, π∗(g)) → (M, g) be the Riemannian universal cover. Thus, M =
M̃/Γ where Γ is a torsion free infinite group of isometries. The L2-Betti
numbers of M are the von Neumann dimension of the Γ-module Hk

2(M̃) :

b
(2)
k (M) := dimΓ(Hk

2(M̃)).

We do not enter here into a detailed discussion of the theory of von
Neumann dimension of Hilbert spaces with group actions. For our purposes,
it suffices to recall (see Atiyah [Ati76], see also [Lüc02, Chapter I]) that

dimΓHk
2(M̃) = 0 ⇔ Hk

2(M̃) = 0.(121)

We apply our Price inequality to prove a vanishing result for L2-Betti
numbers of manifolds without conjugate points and negative Ricci curvature.
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Theorem 122. Let (Mn, g) be a closed Riemannian manifold without con-
jugate points and −1 ≤ secg ≤ 1. If there exists δ > 4k2 such that

−Ric ≥ δg,

then b
(2)
k (M) = 0.

Proof. The claimed vanishing follows from Corollary 119 combined with
(121). □

Theorem 122 provides new evidence for the Singer Conjecture. Let us
recall its statement.

Conjecture 123 (Singer Conjecture). If Mn is a closed aspherical man-
ifold, then

b
(2)
k (M) = 0, if 2k ̸= n.

This conjecture is still open, even under the assumption that Mn admits
a metric with strictly negative sectional curvature. While Theorem 122 does
not assume the sectional curvature to be negative, it covers an insufficient
range of Betti numbers to settle the conjecture. For more on the Singer
Conjecture we refer to [Lüc02, Chapter XI].

Remark 124. It is interesting to observe that Theorem 122 when com-
bined with the Lück approximation theorem [Lüc94] can be used to give an
alternative proof of Equation (4) in Theorem 2. More precisely, we need to
apply first Theorem 122 to closed manifolds with residually finite fundamen-
tal group, and then appeal to Lück’s approximation theorem. Nevertheless,
this L2-cohomology approach to Theorem 2 has the disadvantage of not es-
timating how fast the ratio in (4) converges to zero. On the other hand,
our original Price inequality approach to Theorem 2 provides directly an
effective estimate for this convergence.

We conclude with an L2-Betti number vanishing result for ϵ-pinched
negatively curved closed manifolds. This result extends to the case ϵn,k =
0 a vanishing theorem for ϵ-pinched negatively curved manifolds given by
Donnelly-Xavier in [DX84, Proposition 4.1].
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Corollary 125. Let (Mn, g) be a complete simply connected Riemannian
manifold of dimension nR ≥ 4. Assume the sectional curvature is ϵ-pinched

−(1 + ϵ)2 ≤ secg ≤ −1,

with ϵ > 0. Let k be a positive integer such that

ϵn,k = (n− 1)− 2k(1 + ϵ) = 0.

Then, there are no L2-harmonic k-forms Hk
2(M) = 0.

Proof. This vanishing result is an immediate consequence of the Price in-
equality given in Theorem 96 combined with the fact that γg(M) = ∞. □

As before, this result implies a vanishing result for L2-Betti numbers of
certain negatively curved manifolds.

Proposition 126. Let (Mn, g) be a closed Riemannian manifold of dimen-
sion n ≥ 4. Assume the sectional curvature is ϵ-pinched

−(1 + ϵ)2 ≤ secg ≤ −1,

with ϵ > 0. Let k be a positive integer such that

ϵn,k = (n− 1)− 2k(1 + ϵ) = 0,

we have b
(2)
k (M) = 0.

This vanishing result complements the one proved by Donnelly-Xavier
in [DX84] by extending it to the critical equality case. More precisely, they
prove a vanishing for L2-Betti numbers of any degree k such that ϵn,k >
0. The vanishing in the hyperbolic case (ϵ = 0) for the critical degree k =
n−1
2 was treated earlier by Dodziuk in [Dod79]. Alternatively, if one wishes,

Corollary 108 can be used to give an alternative proof of Dodziuk’s vanishing
in the critical degree. Once again, the vanishing in Proposition 126 supports
Conjecture 123.
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Equations, Grundlehren Math. Wiss. 252, Springer-Verlag,
New York, 1982.

[BLLS14] N. Bergeron, P. Linnell, W. Lück, and R. Sauer, On the
growth of Betti numbers in p-adic analytic towers, Groups
Geom. Dyn. 8 (2014), no. 2, 311–329.

[Bor63] A. Borel, Compact Clifford-Klein forms of symmetric
spaces. Topology 2 (1963), 111–122.

[CW03] B. Clair, K. Whyte, Growth of Betti numbers. Topology 42
(2003), no. 5, 1125–1142.

[DW78] D. DeGeorge and N. Wallach, Limit formulas for multiplici-
ties in L2(G/Γ), I. Annals of Math. 107 (1978), no. 1, 133–
150.

[DW79] D. DeGeorge and N. Wallach, Limit formulas for multiplic-
ities in L2(G/Γ), II. Annals of Math. 109 (1979), no. 3,
477–495.

[Dod79] J. Dodziuk, L2 Harmonic forms on rotationally symmetric
riemannian manifolds. Proc. Amer. Math. Soc. 77 (1979),
no. 3, 395–400.

[DX84] H. Donnelly, F. Xavier, On the Differential Form Spec-
trum of Negatively Curved Riemannian Manifolds. Amer.
J. Math. 106 (1984), no. 1, 169–185.

[FJ89] F. T. Farrell, L. E. Jones, Negatively curved manifolds with
exotic smooth structures. J. Amer. Math. Soc. 2 (1989),
no. 4, 899–908.



✐

✐

“3-Stern” — 2022/11/2 — 17:24 — page 333 — #37
✐

✐

✐

✐

✐

✐

Price inequalities and Betti number growth 333

[GT87] M. Gromov, W. Thurston, Pinching constants for hyperbolic
manifolds. Invent. Math. 89 (1987), no. 1, 1–12.

[LS18] M. Lipnowski and M. Stern, Geometry of the Smallest 1-
form Laplacian Eigenvalue on Hyperbolic Manifolds, Geom.
Funct. Anal. 28 (2018), no. 6, 1717–1755.

[Loh94] J. Lohkamp, Metrics of Negative Ricci Curvature, Ann. of
Math. (2) 140 (1994), no. 3, 655–683.
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