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In this paper, we give the local and global gradient estimates for
positive Finsler p-eigenfunctions on a complete Finsler manifold
M with the weighted Ricci curvature bounded from below by a
negative constant. As applications, we obtain some Liouville and
Harnack theorems, and the global gradient estimates for positive
Finsler p-harmonic functions. As a by-product of the global esti-
mate, we obtain an upper bound of the first p-eigenvalue λ1,p for
Finsler p-Laplacian ∆p. Further, we study the geometric structure
at infinity of Finsler manifolds with λ1,p achieving its maximum
value.
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1. Introduction

Harmonic functions on Riemannian manifolds have been one of the impor-
tant research objects in geometric analysis. It is well known that Cheng-
Yau’s local gradient estimate for positive harmonic functions is a standard
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result in Riemannian geometry ([CY]), which implies that a harmonic func-
tion with sublinear growth on a manifold with nonnegative Ricci curvature
is a constant. Cheng-Yau’s local gradient estimate has been generalized in
different settings by many mathematicians. For example, Wang-Zhang ob-
tained a local gradient estimate for positive p(> 1)-harmonic functions in a
geodesic ball BR(o) on a Riemannian manifold M ([WZ]) and Munteanu-
Wang generalized the above local gradient estimate to the weighted Rieman-
nian manifold with nonnegative weighted Ricci curvature ([MW]). Recently,
this local gradient estimate has been extended to Alexandrov spaces by
Zhang-Zhu ([ZZ]) and Finsler measure spaces by C. Xia ([Xc]). On the other
hand, R. Moser recently established an interesting connection between the p-
harmonic functions and the inverse mean curvature flow in [Mo] and proved
the existence of the weak solution to the inverse mean curvature flow starting
from the boundary of any smooth compact domain in the Euclidean space.
After that, Kotschwar-Ni in [KN] had succeeded in carrying out the same
scheme on general Riemannian manifolds with sectional curvature bounded
from below. The existence of the weak solutions for these inverse mean cur-
vature flows strongly relies on a uniform gradient estimate (independent
of p) for the function v = −(p− 1) log u with u being p-harmonic. Inspired
by these, one of the objectives of this paper is to establish the local and
global gradient estimates for Finsler p(> 1)-harmonic functions and give
some applications. The further applications of the global gradient estimates
for Finsler p-harmonic functions will be studied elsewhere.

Recall that a Finsler manifold (M,F ) means a smooth manifold M
equipped with a Finsler metric (or Finsler structure) F : TM → [0,+∞)
such that Fx = F |TxM is a Minkowski norm on TxM at each point x ∈
M . Given a smooth measure m, the triple (M,F,m) is called a Finsler
measure space. A Finsler measure space is not a metric space in usual sense
because F may be nonreversible, i.e., F (x, y) ̸= F (x,−y) may happen. This
non-reversibility causes the asymmetry of the associated distance function.
We say that F satisfies uniform convexity (resp. uniform smoothness or
concavity) if there exists a positive constant κ∗ (resp. κ) such that for any
x ∈M , V ∈ TxM \ {0} and y ∈ TxM , we have

κ∗F 2(x, y) ≤ gV (y, y), (resp. gV (y, y) ≤ κF 2(x, y)),(1.1)

where gV = (gij(V )) is the Riemannian metric on M induced by F with
reference vector V . (1.1) implies that 0 < κ∗ ≤ 1 ≤ κ <∞ and F has finite
reversibility Λ (see (2.2) below). The uniform smoothness and the uniform
convexity were first introduced in Banach space theory by Ball, Carlen and
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Lieb in [BCL]. Recently S. Ohta gave their geometric explanations in Finsler
geometry ([Oh]). In fact there are many Finsler metrics satisfying (1.1). For
example,

• any regular Randers metric F = α+ β on a closed manifold M sat-

isfies (1.1) with κ =
(

1+b
1−b

)2
and κ∗ =

(

1−b
1+b

)2
, where α is a Rieman-

nian metric and β is a 1-form with b = maxx∈M ∥β∥α < 1 on M ([ZY],
Corollary 6.3).

• any regular Randers metric F = α+ β on a noncompact manifold sat-
isfies uniform smoothness and convexity with κ and κ∗ as above, where
β is a closed and conformal, in particular, parallel 1-form with respect
to α. In this case, b = ∥β∥α is a constant.

Note that F is not smooth at the zero section and F is nonlinear. This causes
that the gradient ∇u of a smooth function u on M is only continuous on
M and the Finsler Laplacian ∆m or p-Laplacian ∆p,m is not linear and not
well defined on the whole manifold. It should be understood in a weak sense.
The precise definitions of the gradient ∇ and the Finsler p(> 1)-Laplacian
∆p will be given in Section 2.

Moreover, it is well known that Ricci curvature plays a prominent role
in Riemannian geometric analysis and geometric topology. In Finsler ge-
ometry, the global (analytic or topological) properties of manifolds are af-
fected by not only Riemannian quantities, for example, flag curvature and
Ricci curvature, but also non-Riemnanian quantities, such as, S-curvature,
Douglas curvature and Landsberg curvature etc., which vanish in Rieman-
nian geometry ([BCS], [Sh]). S.Ohta introduced the weighted Ricci curvature
RicN for N ∈ [n,∞] in terms of the Ricci curvature and S-curvature, and
proved that the condition that RicN has a lower bound is equivalent to
the curvature-dimension condition, introduced by Lott-Villani and Sturm
([Oh1], [LV], [St1]-[St2]). Studies show the weighted Ricci curvature plays
an important role in global Finsler geometry. Some progress of comparison
geometry and geometric analysis on Finsler manifolds with weighted Ricci
curvature bounded below has been made in recent years ([Oh1]-[Oh2], [OS1]-
[OS2], [WX], [Xc], [Xia1]-[Xia3] and references therein). In this paper, we
continue to pursue the study on this aspect. In particular, we give the local
and global gradient estimates of eigenfunctions for the Finsler p-Laplacian
on a complete Finsler manifold (M,F ) equipped with a uniform smooth and
uniform convex Finsler metric F if the weighted Ricci curvature is bounded
from below by a negative constant. As applications, we obtain the Harnack
or Liouville properties for Finsler p-harmonic functions. Further we obtain
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a global upper bound estimate for Finsler p-harmonic functions and a upper
bound estimate of the first p-eigenvalue.

Theorem 1.1. Let (M,F,m) be an n(≥ 2)-dimensional forward complete
and noncompact Finsler measure space equipped with a uniformly convex
and uniformly smooth Finsler metric F and a smooth measure m. Assume
that RicN ≥ −K for some N ∈ [n,∞) and K ≥ 0. Let u be a positive p-
eigenfunction corresponding to the eigenvalue λp, i.e.,

∆pu = −λp|u|p−2u(1.2)

in a weak sense in a forward geodesic ball B+
2R(q) ⊂M for any q ∈M . Then

there exists a positive constant C = C(N, p, κ, κ∗) depending on N , the uni-
form constants κ and κ∗, such that

(1.3) sup
x∈B+

R(q)

{F (x,∇ log u(x)), F (x,∇(− log u(x)))} ≤ C 1 +
√
KR

R
.

In particular, F (x,∇ log u(x)) and F (x,∇ log(−u(x))) are bounded on M .

The precise definitions of the gradient ∇, the Finsler p(> 1)-Laplacian
∆p and the weighted Ricci curvature RicN etc. will be given in Section 2.
When p = 2 and λp = 0, that is, u is a harmonic function, Theorem 1.1 is
reduced to Theorem 1.1 in [Xc]. If (M,F ) is Riemnnian and λp = 0 (i.e.,
u is a p-harmonic function), then Theorem 1.1 is exactly Theorem 1.1 in
[WZ]. It is worth mentioning that Theorem 1.1 does not coincide with the
local gradient estimate for positive p-harmonic functions on weighted Rie-
mannian manifold (M, g∇u,m) since RicN and the weighted Ricci curvature
Ric∇uN of (M, g∇u,m) are different ([Oh], [Xc]). In fact, RicN depends only
on the Finsler structure F and the measure m, while Ric∇uN depends on u.
Moreover, in [CY], Cheng-Yau combined the Bochner technique and max-
imum principle to prove the local gradient estimates of eigenfunctions on
Riemannian manifolds. Cheng-Yau’s approach turned out to be very useful
to estimate the first (Riemannian) eigenvalue, heat kernel and so on ([Li]). It
also can be used to prove the local gradient estimate for harmonic functions
on a compact Finsler manifold with the weighted Ricci curvature bounded
below (Theorem 1.3, [ZX]), but does not work on a complete noncompact
Finsler manifold because of the nonlinearity of Finsler Laplacian. We will
use the method of Moser’s iteration to prove Theorem 1.1, which is inspired
from recent works by Wang-Zhang ([WZ]) in Riemannian case and C. Xia
([Xc]) in Finslerian case.
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It is worth mentioning that the local gradient estimate for eigenfunctions
has a uniform bound independent of λp. This is because the terms containing
λp in (3.7) and (3.8) in §3 are just cancelled. Theorem 1.1 is also true in
Riemannian case (see the proof of Theorem 2.2 in [SW]). In particular, when
λp = 0, the weak solution of (1.2) is a p-harmonic function (cf. §2). Thus
Theorem 1.1 also implies a local gradient estimate for p-harmonic functions
on a Finsler manifold. As applications, one obtains the Harnack and Liouville
properties by standard arguments (cf. §1.3 in [SY], [Xc], [ZZ]).

Corollary 1.1. Let (M,F,m), RicN be as in Theorem 1.1 and u be a posi-
tive p(> 1)-eigenfunction or p-harmonic function in a geodesic ball B+

2R(q) ⊂
M . Then there exists a constant C = C(N, p, κ, κ∗) such that

sup
x∈B+

R(q)

u(x) ≤ eC(1+
√
KR) inf

x∈B+
R(q)

u(x).

If K = 0, then we have a uniform constant c = c(N, p, κ, κ∗) independent of
R such that

sup
x∈B+

R(q)

u(x) ≤ c inf
x∈B+

R(q)
u(x).

Corollary 1.2. Let (M,F,m) be as in Theorem 1.1 with RicN ≥ 0. If u
is a p-eigenfunction bounded from below on M or u is a p-eigenfunction
of sublinear growth on M , then u is constant. In particular, any positive
p-harmonic function on M must be a constant.

Based on the local gradient estimate, we obtain a global gradient esti-
mate for p-eigenfunctions as follows. In Riemannian case, Λ = κ = κ∗ = 1
and RicN is the usual Ricci curvature on M . Such an estimate is due to
Sung-Wang ([SW]).

Theorem 1.2. Let (M,F,m) be an n(≥ 2)-dimensional forward complete
and noncompact Finsler measure space equipped with a uniformly convex and
uniformly smooth Finsler metric F and a smooth measure m. Assume that
RicN ≥ −K for some N ∈ [n,∞) and K > 0. Let u be a positive p(> 1)-
eigenfunction on M corresponding to the first eigenvalue λ1,p. Then

sup
x∈M
{F (x,∇ log u(x)), F (x,∇(− log u(x)))} ≤ χ,(1.4)

where χ is the largest positive root of the equation

(p− 1)χp − Λ
√

(N − 1)Kχp−1 + λ1,p = 0,(1.5)
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where Λ is the reversibility of F .

We should point out that (1.5) has two positive roots and the value
χ is the bigger one, which is well defined by Theorem 1.3 below. A direct
consequence of Theorem 1.2 gives a global gradient estimate for positive
p-harmonic functions.

Corollary 1.3. Let (M,F,m) and RicN be as in Theorem 1.2. If u is a
positive p-harmonic function, then

(1.6) sup
x∈M
{F (x,∇ log u(x)), F (x,∇(− log u(x)))} ≤ Λ

√

(N − 1)K

p− 1
.

As a by-product of the proof of Theorem 1.2, we obtain a upper bound
estimate for the first eigenvalue of p(> 1)-Laplacian on a forward complete
and noncompact Finsler manifold as follows (also see Corollary 4.1). By
the way, several (sharp) lower bound estimates for the first eigenvalue of p-
Laplacian on a compact Finsler manifold without boundary or with smooth
boundary were given by the author of the present paper, according to dif-
ferent arrange of p ([Xia1]-[Xia3]).

Theorem 1.3. Let (M,F,m) be an n-dimensional forward complete non-
compact Finsler manifold with finite reversibility Λ and λ1,p be the first
eigenvalue for the Finsler p(> 1)-Laplacian on M . Assume that RicN ≥ −K
for some N ∈ [n,+∞) and K ≥ 0. Then λ1,p ≤

(

Λ
√

(N−1)K
p

)p

.

When (M,F ) is Riemannian, Theorem 1.3 was given by S. Cheng in
[Ch] for p = 2 and Sung-Wang for general p > 1 in [SW] in different ways.
A natural question is to ask what geometric structure of Finsler manifolds
with maximal eigenvalue λ1,p is, which is another objective of this paper.
In Riemannian case, this question has been studied by P. Li and J. Wang
etc. in different settings ([LW1]-[LW2], [SW]). Inspired by these works, one
obtains the following result.

Theorem 1.4. Let (M,F,m) be an n(≥ 2)-dimensional complete and non-
compact Berwald space containing a straight line γ̃ : R→M and bγ̃ the
Busemann function associated to γ̃. Assume that F satisfies

κ∗F 2(x, y) ≤ g∇bγ̃
(y, y) ≤ F 2(x, y), y ∈ TxM(1.7)
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for some constant 0 ≤ κ∗ ≤ 1 and RicN ≥ −K for some N ∈ [n,∞) and

K > 0. If λ1,p =
(

p−1Λ
√

(N − 1)K
)p

, then either (M,F,m) has no finite

volume ends containing γ̃ or (M,F,m) has a splitting as follows.
(1) (M,m) admits a diffeomorphic measure splitting (M,m) = (R× M̆,

e−t
√

(N−1)KL1 × m̆), where L1 is the one-dimensional Lebesgue measure and
m̆ := m|M̆ is the induced measure on M̆ = b−1γ̃ (0).

(2) (M,F ) is reversible and ∆pv = −λ1,p|v|p−2v in the distribution sense,

where λ1,p =
(

p−1
√

(N − 1)K
)p

and v = e
1

p

√
(N−1)K bγ̃ . Further, let Mt :=

b−1γ̃ (t) and {φt} be the one-parameter family of C∞-transformations of M
generated from ∇bγ̃. Then φt is a homothetic transformation of (M,F )
with a homothetic factor 1

2

√

K/(N − 1). Moreover, it holds (M,F ) =
∪t∈R(Mt, Ft), the union of a family of reversible Finsler submanifolds

(Mt, Ft), where Mt = φt(M̆) with φ∗t (Ft) = et
√
K/(N−1)F̆ , (M̆, F̆ ) is a com-

pact and reversible Finsler manifold with nonnegative weighted Ricci curva-
ture and F̆ (resp.Ft) is the induced Finsler metric on M̆(resp.Mt) from F .

It is worth mentioning that there are non-Riemannian reversible Berwald
metrics (cf. [CS], Example 4.3.1). It is not known if there is a splitting as
in Theorem 1.4 for a complete Finsler space (M,F,m) equipped with a
uniformly smooth and convex Finsler metric under the same assumptions
on RicN and λ1,p as in Theorem 1.4. Moreover, it is a natural question to
study the structure of manifolds at infinity with maximal λ1,p if M admits
a straight line contained in an end with infinite volume. If F is Riemannian,
then the equalities in (1.7) hold identically, N = n and RicN is the usual
Ricci curvature in Riemannian geometry. Thus Theorem 1.4 (also Proposi-
tion 5.2) is exactly Theorem 3.1 in [SW]. It is very interesting that there
exists a splitting phenomenon on a weighted Riemannian manifold with the
weighted Ricci curvature RicN bounded from below for N < 0 ([Mai]).

2. Preliminaries

In this section, we briefly review some basic concepts in Finsler geometry,
as well as some recent progress on the global analysis on Finsler manifolds.
For more details, we refer to [BCS], [Sh], [Oh1], [OS2], [WX] and [Xia2].

2.1. Finsler metrics and geodesics

Let M be an n-dimensional smooth manifold and TM the tangent bun-
dle of M . A Finsler metric F on M means a function F : TM → [0,∞)
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with the following properties: (1) F is C∞ on TM0 := TM \ {0}; (2) for
each x ∈M , Fx := F |TxM is a Minkowski norm on TxM , i.e., F satisfies
F (x, λy) = λF (x, y) for all λ > 0 and the matrix [gij(x, y)] := [12(F

2)yiyj ] is
positive definite for any nonzero y ∈ TxM . Such a pair (M,F ) is called a
Finsler manifold and g := gij(x, y)dx

idxj is called the fundamental tensor
of F . Given a smooth measure m, the triple (M,F,m) is called a Finsler
measure space. For any Finsler metric F , its dual F ∗(x, ξ) = supFx(y)=1 ξ(y)
is a Finsler co-metric on M , where ξ ∈ T ∗x (M).

We define the reverse metric
←−
F of F by

←−
F (x, y) := F (x,−y) for all

(x, y) ∈ TM . It is easy to see that
←−
F is also a Finsler metric on M . A

Finsler metric F on M is said to be reversible if
←−
F (x, y) = F (x, y) for all

y ∈ TM . Otherwise, we say F is nonreversible. In this case, we define the
reversibility Λ = Λ(M,F ) of F by

Λ := sup
(x,y)∈TM\{0}

F (x,−y)
F (x, y)

.

Obviously, Λ ∈ [1,∞] and Λ = 1 if and only if F is reversible.
Given a non-vanishing smooth vector field V , one introduces the weighted

Riemannian metric gV on M given by

gV (y, w) = gij(x, Vx)y
iwj , for y, w ∈ TxM and x ∈M.(2.1)

Thus, we have F 2(V ) = gV (V, V ). If F satisfies the uniform smoothness or
convexity (see (1.1)), then Λ is finite with

1 ≤ Λ ≤ min{√κ,
√

1/κ∗}.(2.2)

F is Riemannian if and only if κ = 1 if and only if κ∗ = 1 ([Oh]).
For x1, x2 ∈M , the distance from x1 to x2 is defined by

dF (x1, x2) := inf
γ

∫ 1

0
F (γ̇(t))dt,

where the infimum is taken over all C1 curves γ : [0, 1]→M such that γ(0) =
x1 and γ(1) = x2. Note that dF (x1, x2) ̸= dF (x2, x1) unless F is reversible.
If Λ <∞, then dF (x1, x2) and dF (x2, x1) are comparable. Now we define
the forward and backward geodesic balls of radius R with center at x ∈M
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by

B+
R(x) := {z ∈M | dF (x, z) < R}, B−R(x) := {z ∈M | dF (z, x) < R}.

A C1 curve η : [0, ℓ]→M is called a geodesic if it has constant speed
(i.e., F (η, η̇) is constant) and if it is locally minimizing. Such a geodesic is
in fact a C∞ curve. Given x ∈M and v ∈ TxM , we define the exponential
map by expx v = η(1) if there exists a geodesic η : [0, 1]→M with η(0) = x
and η̇(0) = v. A Finsler manifold (M,F ) is said to be forward complete
(resp. backward complete) if each geodesic defined on [0, ℓ) (resp. (−ℓ, 0])
can be extended to a geodesic defined on [0,∞) (resp. (−∞, 0]). (M,F ) is

backward complete if and only if (M,
←−
F ) is forward complete. We say (M,F )

is complete if it is both forward complete and backward complete. By Hopf-
Rinow Theorem (Theorem 6.6.1, [BCS]), if (M,F ) is forward complete, then
any two points x, z ∈M can be connected by a minimal geodesic from x to

z and the forward closed balls B+
R(x) are compact. For x ∈M and a unit

vector v ∈ TxM , let t0 = sup{t ∈ (0,∞]|dF (x, expx(tv)) = t}. If t0 <∞, we
call expx(t0v) a cut point of x. The set of all cut points of x is said to be the
cut locus of x, denoted by Cut(x). Cut(x) has zero measure and dF (x, ·) is
smooth on M \ (Cut(x) ∪ {x}). Moreover, F (∇dF ) = 1 ([BCS], [Sh]).

2.2. Connection and curvatures

Let π : TM0 →M be the projective map. The pull-back π∗TM on TM0 ad-
mits a unique linear connection, which is called the Chern connection. Given
a nonzero vector field V = V i ∂

∂xi , the Chern connection D is determined by
the following equations

DV
XY −DV

Y X = [X,Y ],(2.3)

ZgV (X,Y ) = gV (D
V
ZX,Y ) + gV (X,D

V
ZY ) + CV (D

V
ZV,X, Y ),(2.4)

where X,Y, Z ∈ TM , gV is defined by (2.1) and

CV (X,Y, Z) := Cijk(x, V )XiY jZk =
1

4

∂3F 2(x, V )

∂V i∂V j∂V k
XiY jZk

is the Cartan tensor of F . DV
XY is the covariant derivative with respect to

the reference vector V . Note that CV (V,X, Y ) = 0 from the homogeneity
of F ([BCS], [Sh]). In terms of the Chern connection, a geodesic γ satisfies
Dγ̇
γ̇ γ̇ = 0. If V is a geodesic field, i.e., all integral curves of a non-vanishing
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smooth vector field V are geodesics, then we have

DV
VW = DgV

V W, DV
WV = DgV

W V(2.5)

for any differentiable vector field W , where DgW stands for the covariant
derivative with respect to the Levi-Civita connection of the Riemannian
metric gV (Lemma 6.2.1, [Sh]). A Finsler space (M,F,m) is said to be a
Berwald space if the connection coefficients Γkij of the Chern connection
are constants on TxM \ {0} for every x ∈M , which shows that the par-
allel translation along any geodesic with respect to the Chern connection
preserves the Minkowski norms on TxM for each x ∈M ([Sh]).

Given a non-vanishing vector field V on M , the Riemannian curvature
RV is defined by

RV (X,Y )Z := DV
XD

V
Y Z −DV

Y D
V
XZ −DV

[X,Y ]Z,

for any vector fields X,Y, Z on M . RV is independent of the choices of
connections. For two linearly independent vectors v, w ∈ TxM \ {0}, the flag
curvature with the pole v is defined by

K(v, w) =
gV (R

V (v, w)w, v)

gV (v, v)gV (w,w)− gV (v, w)2
,

where v ∈ TxM is extended to a geodesic field V near x, i.e., DV
V V = 0.

The flag curvature K(v, w) coincides with the sectional curvature of the
2-plane spanned by v, w with respect to the Riemannian metric gV on a
neighbourhood of x. The Ricci curvature is defined by

Ric(v) :=

n−1
∑

i=1

K(v, ei),

where e1, · · · , en−1, v
F (v) form the orthonomal basis of TxM with respect to

gV .
For any v ∈ TxM\{0}, let η(t) be a geodesic with η(0) = x, η̇(0) = v

and dm = σ(x)dx. Then the distortion of F is defined by τ(x, v) :=

log

{√
det(gij(x,v))

σ(x)

}

, and S-curvature S is defined as a rate of change of

the distortion τ along the geodesic γ(t), i.e.,

S(x, v) =
d

dt
τ(η(t), η̇(t))|t=0.
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Next we recall the definition of the weighted Ricci curvature on a Finsler
manifold, which was introduced by S.Ohta ([Oh1]).

Definition 2.1. ([Oh1]) Given a vector v ∈ TxM , let η : (−ε, ε) −→M be
the geodesic with η(0) = x and η̇(0) = v. We set dm = e−Ψ(η(t))volη̇ along
η, where volη̇ is the volume form of gη̇. Define the weighted Ricci curvature
involving a parameter N ∈ (n,∞) by

RicN (v) := Ric(v) + (Ψ ◦ η)′′(0)− (Ψ ◦ η)′(0)2
(N − n) .

Also define Ric∞(v) := Ric(v) + (Ψ ◦ η)′′(0) and Ricn(v) := lim
N→n

RicN as

limits. Finally, for any λ ≥ 0 and N ∈ [n,∞], define RicN (λv) := λ2Ric(v).

We say that RicN ≥ K for some K ∈ R if RicN (v) ≥ KF 2(v) for all
v ∈ TM . We remark that (Ψ ◦ η)′(0) = S(x, v) and (Ψ ◦ η)′′(0) is exactly
the change rate of the S-curvature along the geodesic η(t). The following
point-wise Bochner-Weitzenböck formula is very important to derive the
gradient estimates and study the structure of manifolds.

Theorem 2.1. ([OS2]) Given u ∈ C∞(M), we have

(2.6) ∆∇u
(

F 2(∇u)
2

)

= D(∆u)(∇u) + Ric∞(∇u) + ∥∇2u∥2HS(∇u)

as well as

(2.7) ∆∇u
(

F 2(∇u)
2

)

≥ D(∆u)(∇u) + RicN (∇u) +
(∆u)2

N

for N ∈ [n,∞], point-wise onMu = {x ∈M |du(x) ̸= 0}, where ∥∇2u∥2HS(∇u)
stands for the Hilbert-Schmidt norm with respect to g∇u.

In fact, we have a more refined inequality than (2.7) (Theorem 2.2,
[WX]), that is,

∆∇u
(

F 2(∇u)
2

)

≥ D(∆u)(∇u) + RicN (∇u) +
(∆u)2

N

+
N

N − 1

(

∆u

N
− D(F 2(x,∇u))(∇u)

2F 2(x,∇u)

)2

.(2.8)

All the above inequalities also hold onM in the integral sense ([OS2], [WX]).



✐

✐

“6-Xia” — 2022/11/19 — 21:21 — page 462 — #12
✐

✐

✐

✐

✐

✐

462 Qiaoling Xia

2.3. Gradient and p-Laplacian

Let J : T ∗M → TM be the Legendre transform associated with F and its
dual norm F ∗, that is, a transformation J from T ∗M to TM , defined locally
by J(x, ξ) = J i(x, ξ) ∂

∂xi , J i(x, ξ) :=
1
2 [F

∗2(x, ξ)]ξi(x, ξ), is sending ξ ∈ T ∗M
to a unique element y ∈ TxM such that F (x, y) = F ∗(x, ξ) and ξ(y) = F 2(y)
([Sh]). Let

(g∗ξ )ij := g∗ij(x, ξ) =
1

2
[F ∗2(x, ξ)]ξiξj .

One can verify that g∗ij(x, ξ) = gij(x, y), where (gij(x, y)) = (gij(x, y))
−1. If

F is uniformly smooth and convex, then, by (1.1), (gij) is uniformly elliptic
in the sense that there exist two constants κ̃ = (κ∗)−1 and κ̃∗ = κ−1 such
that for any x ∈M , ξ ∈ T ∗xM \ {0} and η ∈ T ∗xM ,

(2.9) κ̃∗F ∗2(x, η) ≤ g∗ξ (η, η) = gij(x, J(ξ))ηiηj ≤ κ̃F ∗2(x, η).

In particular, F is Riemannian if and only if κ̃∗ = 1 if and only if κ̃ = 1.
For a smooth function u :M → R, the gradient vector ∇u(x) of u is

defined by ∇u := J(du) ∈ TxM . Obviously, ∇u = 0 if du = 0. In a local
coordinate system, we can reexpress ∇u as

∇u :=

{

gij(∇u) ∂u∂xi
∂
∂xj x ∈Mu,

0 x ∈M \Mu,

where Mu = {x ∈M |du(x) ̸= 0}. In general, ∇u is only continuous on M ,
but smooth on Mu.

Given a weakly differentiable vector field V onM and a smooth measure
dm = σ(x)dx, the divergence of V is defined by

∫

M
φdiv(V )dm = −

∫

M
Dφ(V )dm,

where φ ∈ C∞0 (M). The Finsler Laplacian∆ of a function u onM is formally
defined by ∆u = div(∇u). Note that ∇u is weakly differentiable, the Finsler
Laplacian should be understood in a weak sense by

∫

M
φ∆udm = −

∫

M
Dφ(∇u)dm
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for u ∈W 1,2(M) and φ ∈ C∞0 (M) ([Sh]). If we write the measure dm =
σ(x)dx, then

∆u =
1

σ

∂

∂xi

(

σgij(∇u) ∂u
∂xj

)

(2.10)

locally on Mu. The Hessian of u is defined by

∇2u(X,Y ) = g∇u(D
∇u
X ∇u, Y )(2.11)

for any X,Y ∈ TM , where D∇u is the covariant differentiation with respect
to the Chern connection of F with the reference vector ∇u (see §2.2). It is
easy to check that ∇2u(X,Y ) is symmetric with respect to X and Y .

If the vector field V is smooth, then one can introduce the weighted gra-
dient vector and the weighted Laplacian on a weighted Riemannian manifold
(M, gV ) given by

(2.12) ∇V u :=

{

gij(x, V ) ∂u∂xj
∂
∂xi for V ∈ TxM \ {0},

0 for V = 0,

and ∆V u := div(∇V u) respectively. We remark that ∇∇uu = ∇u and
∆∇uu = ∆u. Moreover, it is easy to see that ∆u = tr∇u∇2u− S(∇u) onMu.

Likewise, the Finsler p-Laplacian is defined by

∫

M
φ∆pudm = −

∫

M
F p−2(∇u)Dφ(∇u)dm.

It follows from the variation of the energy functional. It is easy to check that

(2.13) ∆pu = div
[

F p−2(x,∇u)∇u
]

= F p−2(∇u)[∆u+ (p− 2)Hu]

on Mu, where Hu := ∇2u(∇u,∇u)
F 2(∇u) . Obviously, if p = 2, then ∆p is the Finsler

Laplacian ∆. We say that u is a p-harmonic function on M if u is a weak
solution of ∆pu = 0. In particular, when p = 2, it is exactly a harmonic
function on M ([ZX], [Xc]).

For any η ∈ C2(M), the linearization of ∆p on Mu is given by

Lu(η) = div
{

F p−2(∇u)
[

∇∇uη + (p− 2)F−2(∇u)Du(∇∇uη)∇u
]}

= div
[

F p−2(∇u)hu(∇∇uη)
]

,(2.14)

where hu = id+ (p− 2)Du⊗∇uF 2(∇u) ([Xia2]). Obviously, Lu(u) = (p− 1)∆pu. If

p = 2, then Lu is reduced to the weighted Laplacian ∆∇u.
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Let W 1,p(M)(p > 1) be the space of functions u ∈ Lp(M) with
∫

M [F (∇u)]pdm <∞ and W 1,p
0 (M)(p > 1) is the closure of C∞0 (M) under

the (absolutely homogeneous) norm

(2.15) ∥u∥1,p := ∥u∥Lp(M) +
1

2
∥F (∇u)∥Lp(M) +

1

2
∥←−F (
←−∇u)∥Lp(M),

where
←−∇u is the gradient of u with respect to the reverse metric

←−
F . In fact,←−

F (
←−∇u) = F (∇(−u)). Then W 1,p(M) is a Banach space with respect to the

norm ∥ · ∥1,p. We define the energy functional E :W 1,p(M) \ {0} → [0,+∞)
by

(2.16) E(u) :=

∫

M [F ∗(x,Du)]pdm
∫

M |u|pdm
.

Note that E is C1 on W 1,p(M) \ {0}. It is easy to check that duE = 0 if and
only if u satisfies (1.2) in a weak sense, i.e.,

(2.17)

∫

M
Dφ[F p−2(∇u)∇u]dm = λp

∫

M
φ|u|p−2udm

for any φ ∈W 1,p
0 (M), where λp = E(u) . In this case, λp is called an eigen-

value of ∆p or a p-eigenvalue, and u is called a p-eigenfunction of ∆p corre-
sponding to λp. IfM is compact and ∂M (possible ∂M = ∅) is smooth, then
there exists a p-eigenfunction u with ∥u∥Lp(M) = 1, which minimizes the en-
ergy functional E(u). In this case, we call λ1,p := inf E(u) the first eigenvalue
of ∆p or first p-eigenvalue, and a critical point u a first p-eigenfunction on
M corresponding to λ1,p. Further, u ∈ C1,α(M) ∩W 2,2

loc (M) ∩W 1,p(M) if

p ≥ 2 and u ∈ C1,α(M) ∩W 2,p
loc (M) ∩W 1,p(M) if 1 < p < 2. In particular,

u ∈ L∞(M). Moreover, u is smooth on the set Mu for p = 2 or Mu \M0

for p > 1. If x ∈Mu ∩M0, then u(x) is of C3,α when p > 2 and of C2,α

when 1 < p < 2, where M0 := {x ∈M |u(x) = 0} (see [GS], [Xia2] for more
details).

For a noncompact Finsler manifold (M,F,m) (it needs not be complete),
we define the first p-eigenvalue on M by

λ1,p := inf
Ω
λ1,p(Ω) = inf

Ω
inf

u|∂Ω=0

∫

Ω[F
∗(x,Du)]pdm
∫

Ω |u|pdm
,

where Ω runs through all the compact subdomains with C1 boundary in M ,
and the associating eigenfunctions are said to be the first p-eigenfunctions
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on M . Obviously, for an exhaustion Ω1,Ω2, · · · of M such that Ω̄i ⊂ Ωi+1

for all i ≥ 1 and M = ∪∞i=1Ωi, {λ1,p(Ωi)} is a decreasing sequence with re-
spect to {Ωi}. Consequently, λ1,p = lim

i→∞
λ1,p(Ωi), which is independent of

the choice of {Ωi}. In this case, if F satisfies the uniform convexity and
uniform smoothness, then the p-eigenfunctions have the same regularity as
the compact case from the proof of Theorem 1.1 in [Xia2].

3. Local gradient estimates for Finsler p-eigenfunctions

Let u be a positive p-eigenfunction in the forward geodesic ball B2R :=
B+

2R(x) for any x ∈M , namely, (2.17) holds on B2R. Then u ∈ C1,α(B2R) ∩
W 2,2
loc (B2R) if p ≥ 2 and u ∈ C1,α(B2R) ∩W 2,p

loc (B2R) if 1 < p ≤ 2. Moreover,
u ∈ L∞(B2R) and u is smooth on the set Mu ∩B2R (see §2.3).

Denote v = (p− 1) log u. Then Mu =Mv and ∇v = p−1
u ∇u. For any

φ ∈W 1,p
0 (B2R) ∩ L∞(B2R), we have

ϕ
up−1 ∈W 1,p

0 (B2R) ∩ L∞(B2R) from the
regularity and boundness of u. Thus it follows from (2.17) that

∫

M
Dφ

[

F p−2(∇v)∇v
]

dm =

∫

M

(p− 1)p−1

up−1
Dφ

(

F p−2(∇u)∇u
)

dm

=

∫

M
(p− 1)p−1D

( φ

up−1

)

(

F p−2(∇u)∇u
)

dm

+

∫

M
(p− 1)pφ

F p(∇u)
up

dm

=

∫

M
φ
[

F p(∇v) + (p− 1)p−1λp
]

dm.(3.1)

Let f(x) := F 2(x,∇v). Then f ∈W 1,2
loc (B2R) ∩ Cα(B2R) if p ≥ 2 and f ∈

W 1,p
loc (B2R) ∩ Cα(B2R) if 1 < p < 2. Moreover, f is smooth on Mv ∩B2R.

Since the LHS of (3.1) is equal to

∫

M
Dφ

(

fp/2−1∇v
)

dm

= −
∫

M
φ

{

1

2
(p− 2)fp/2−2Df(∇v) + fp/2−1∆v

}

dm,
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(3.1) is equivalent to

(3.2) −
∫

M
φfp/2−1∆vdm

=

∫

M
φ

[

1

2
(p− 2)fp/2−2Df(∇v) + fp/2 + (p− 1)p−1λp

]

dm.

Note that df(∇v) = g∇v(∇∇vf,∇v). It follows from Lemma 3.5 and the
proof of Theorem 3.6 in [OS2] that ∇∇vf = 0 and ∆v = 0 a.e. on f−1(0) =
M \Mv. Therefore the both sides of (3.2) are actually integrated over Mv ∩
B2R. Thus (3.2) implies that on Mv ∩B2R,

(3.3) ∆v = −1

2
(p− 2)f−1Df(∇v)− f − (p− 1)p−1λpf

−p/2+1.

Lemma 3.1. For any N ∈ [n,∞], we have

Lv(f) =
1

2
(p− 2)fp/2−2∥∇∇vf∥2HS(∇v) + 2fp/2−1∥∇2v∥2HS(∇v)

+ 2fp/2−1Ric∞(∇v)− pfp/2−1Df(∇v)(3.4)

as well as

Lv(f) ≥ −
1

2
fp/2−2∥∇∇vf∥2HS(∇v) + 2fp/2−1RicN (∇v) +

2

N
fp/2+1

− p(N − 2) + 4

N
fp/2−1Df(∇v)(3.5)

point-wise on Mv ∩B2R, where ∥∇∇vf∥2HS(∇v) = g∇v(∇∇vf,∇∇vf).

Proof. Note that f > 0 and f, v are smooth onMv ∩B2R. By (2.14) and the
definition of hv, one obtains

Lv(f) = div
[

F p−2(∇v)hv(∇∇vf)
]

= fp/2−1∆∇vf +
1

2
(p− 2)fp/2−2Df(∇∇vf)

+
1

2
(p− 2)(p− 4)fp/2−3[Df(∇v)]2

+ (p− 2)fp/2−2Dv(∇∇vf)∆v
+ (p− 2)fp/2−2D(Dv(∇∇vf))(∇v),(3.6)
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where we used Dv(∇∇vf) = Df(∇v). By Theorem 2.1 and (3.3), we have

fp/2−1∆∇vf = 2fp/2−1
(

D(∆v)(∇v) +Ric∞(∇v) + ∥∇2v∥2HS(∇v)
)

= −fp/2−1
{

D
[

(p− 2)f−1Df(∇v) + 2f

+ 2(p− 1)p−1λpf
−p/2+1

]

(∇v)
}

+ 2fp/2−1
(

Ric∞(∇v) + ∥∇2v∥2HS(∇v)
)

= (p− 2)fp/2−3(Df(∇v))2

− (p− 2)fp/2−2D(Df(∇v))(∇v)− 2fp/2−1Df(∇v)
+ (p− 2)(p− 1)p−1λpf

−1Df(∇v)
+ 2fp/2−1

(

Ric∞(∇v) + ∥∇2v∥2HS(∇v)
)

,(3.7)

and the fourth term in the RHS of (3.6) is equal to

(p− 2)fp/2−2Df(∇v)
[

−1

2
(p− 2)f−1Df(∇v)− f

− (p− 1)p−1λpf
−p/2+1

]

= −1

2
(p− 2)Df(∇v)

[

(p− 2)fp/2−3(Df(∇v))

+ 2fp/2−1 + 2(p− 1)p−1λpf
−1
]

.(3.8)

Plugging (3.7) and (3.8) into (3.6) and using ∥∇∇vf∥2HS(∇v) = Df(∇∇vf)
yield (3.4).

Next we prove the second assertion. It is clear if N =∞. For N ∈ (n,∞),
we need to estimate ∥∇2v∥2HS(∇v). Choose a local normal coordinate system

{xi} with respect to g∇v at x ∈Mv ∩B2R such that ∇v = F (∇v) ∂
∂x1 and

Γijk(∇v(x)) = 0 for all i, j, k. Thus, we have

∥∇2v∥2HS(∇v) =
∑

i,j

v2ij ≥
∑

i

v2ii ≥
1

n

(

trg∇v
∇2v

)2

=
1

n
[∆v + S(∇v)]2 .(3.9)



✐

✐

“6-Xia” — 2022/11/19 — 21:21 — page 468 — #18
✐

✐

✐

✐

✐

✐

468 Qiaoling Xia

Plugging (3.3) into the RHS of (3.9) and using the inequality (a− b)2 ≥
a2

1+δ − b2

δ with δ = (N − n)/n > 0, one obtains

∥∇2v∥2HS(∇v) ≥
1

N

[

f2 + (p− 2)Df(∇v)
]

− 1

N − nS
2(∇v).

Combining this with (3.4) yields (3.5). The remaining case of N = n is de-
rived as the limit. □

Remark 3.1. (3.4)-(3.5) can not be simply derived from the the formula of
the weighted Riemannian manifold (M, g∇v,m). This is because Ric∞(∇v)
and ∥∇2v∥2HS(∇v) are different from those for g∇v unless all integral curves
of ∇v are geodesics.

From now on, we assume that RicN ≥ −K, in particular, RicN (∇v) ≥
−Kf , where N ∈ [n,∞) and K > 0 are real numbers. For any nonnegative
smooth function φ with a compact support in B2R ∩Mv, by integrating (3.5)
by parts, one obtains

∫

B2R∩Mv

Dφ
[

fp/2−1hv(∇∇vf)
]

dm

≤ 1

2

∫

B2R∩Mv

φfp/2−2∥∇∇vf∥2HS(∇v)dm

+ 2K

∫

B2R∩Mv

φfp/2dm− 2

N

∫

B2R∩Mv

φfp/2+1dm

+ c1

∫

B2R∩Mv

φfp/2−1Df(∇v)dm.(3.10)

where c1 :=
(N−2)p+4

N is a positive constant since N ≥ n ≥ 2.
To extend the above integral inequality to B2R, we consider the function

fε = (f − ε)+ for ε > 0 and the nonnegative function η ∈ C∞0 (B2R) with 0 ≤
η ≤ 1. Note that fε = f − ε,Dfε = Df a.e. in {f > ε} and fε = 0, Dfε = 0
a.e. in {f ≤ ε}. Choose φ = f tεη

2 as the test function in (3.10), where t > 1
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is to be determined later. Then we have

∫

B2R∩{f>ε}
tη2f t−1ε Df

[

fp/2−1hv(∇∇vf)
]

dm

+ 2

∫

B2R∩{f>ε}
ηf tεDη

[

fp/2−1hv(∇∇vf)
]

dm

≤ 1

2

∫

B2R∩{f>ε}
η2f tεf

p/2−2∥∇∇vf∥2HS(∇v)dm

+ 2K

∫

B2R∩{f>ε}
η2f tεf

p/2dm

− 2

N

∫

B2R∩{f>ε}
η2f tεf

p/2+1dm

+ c1

∫

B2R∩{f>ε}
η2f tεf

p/2−1Df(∇v)dm.(3.11)

Assume that the Finsler metric F satisfies the uniform convexity and
uniform smoothness. Then, by (2.9), we have

(3.12) κ̃∗F 2(x,∇f) ≤ ∥∇∇vf∥2HS(∇v) = gij(x,∇v)fifj ≤ κ̃F 2(x,∇f).

From this and the Cauchy-Schwarz inequality, we get

(3.13) |Df(∇∇vη)| = |Dη(∇∇vf)| ≤ κ̃F (x,∇η)F (x,∇f).

Consequently,

f t−1ε Df
[

fp/2−1hv(∇∇vf)
]

= f t−1ε fp/2−1
[

gij(∇v)fifj + (p− 2)f−1(gij(∇v)fivj)2
]

≥
{

f t−1ε fp/2−1gij(∇v)fifj if p ≥ 2

(p− 1)f t−1ε fp/2−1gij(∇v)fifj if 1 < p ≤ 2

≥ c2κ̃∗f t−1ε fp/2−1F 2(∇f),(3.14)
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where c2 = min{1, p− 1}. In a similar way, we have

2ηf tεDη
(

fp/2−1hv(∇∇vf)
)

= 2ηf tεf
p/2−1[gij(∇v)fiηj

+ (p− 2)f−1(gij(∇v)fivj)(gij(∇v)viηj)
]

≥ −
{

2(p− 1)κ̃ηf tεf
p/2−1F (∇f)F (∇η) if p ≥ 2

2(3− p)κ̃ηf tεfp/2−1F (∇f)F (∇η) if 1 < p ≤ 2

= −c3κ̃ηf tεfp/2−1F (∇f)F (∇η),(3.15)

where c3 = max{2(p− 1), 2(3− p)}. Plugging (3.12)-(3.15) into (3.11) and
passing ε to 0 yield

c2κ̃
∗t
∫

B2R

η2fp/2+t−2F 2(∇f)dm

− c3κ̃
∫

B2R

ηfp/2+t−1F (∇f)F (∇η)dm

≤ κ̃

2

∫

B2R

η2fp/2+t−2F 2(∇f)dm+ 2K

∫

B2R

η2fp/2+tdm

− 2

N

∫

B2R

η2fp/2+t+1dm+ c1

∫

B2R

η2f (p−1)/2+tF (∇f)dm,(3.16)

where we used Cauchy-Schwarz’s inequality Df(∇v) ≤ f1/2F (∇f) in the
last term. Now we choose a sufficiently large t > κ̃/(c2κ̃

∗) ≥ 1, then c2κ̃
∗t−

1
2 κ̃ ≥ 1

2c2κ̃
∗t and hence (3.16) becomes

1

2
c2κ̃
∗t
∫

B2R

η2fp/2+t−2F 2(∇f)dm

≤ c3κ̃
∫

B2R

ηfp/2+t−1F (∇f)F (∇η)dm+ 2K

∫

B2R

η2fp/2+tdm

− 2

N

∫

B2R

η2fp/2+t+1dm+ c1

∫

B2R

η2f (p−1)/2+tF (∇f)dm.(3.17)

Let c4 := 2(c3κ̃)
2/c2 and c5 := 2c21/c2. Obviously c4, c5 are positive constants

depending on p, κ̃, N . Then the first term of the RHS in (3.17) is less than
or equal to

(3.18)
c2κ̃
∗t

8

∫

B2R

η2fp/2+t−2F 2(∇f)dm+
c4
κ̃∗t

∫

B2R

fp/2+tF 2(∇η)dm
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and the fourth term of the RHS in (3.17) is less than or equal to

c2κ̃
∗t

8

∫

B2R

η2fp/2+t−2F 2(∇f)dm+
c5
κ̃∗t

∫

B2R

η2fp/2+t+1dm

≤ c2κ̃
∗t

8

∫

B2R

η2fp/2+t−2F 2(∇f)dm+
1

N

∫

B2R

η2fp/2+t+1dm(3.19)

if we take t ≥ max{κ̃/(c2κ̃∗), c5N/κ̃∗} large enough. Hence, for

t > max{κ̃/(c2κ̃∗), c5N/κ̃∗} ≥ 1,

it follows from (3.17) and (3.18)-(3.19) that

1

4
c2κ̃
∗t
∫

B2R

η2fp/2+t−2F 2(∇f)dm

≤ c4
κ̃∗t

∫

B2R

fp/2+tF 2(∇η)dm

+ 2K

∫

B2R

η2fp/2+tdm− 1

N

∫

B2R

η2fp/2+t+1dm.(3.20)

Recall that F (∇f) = F ∗(Df) and F ∗(ξ + η) ≤ F ∗(ξ) + F ∗(η) (cf. Lemma
1.2.2, [Sh]). By (3.20), there exist positive constants ci = ci(p, κ̃, κ̃

∗, N) (i =
6, 7, 8) depending only on p, κ̃, κ̃∗, N such that

∫

B2R

F ∗2
(

D(ηfp/4+t/2)
)

dm

≤ 2

∫

B2R

fp/2+tF ∗2(Dη)dm

+ 2

(

p

4
+
t

2

)2 ∫

B2R

η2fp/2+t−2F ∗2(Df)dm

≤ c6
4

∫

B2R

fp/2+tF ∗2(Dη)dm+
c7
4
Kt

∫

B2R

η2fp/2+tdm

− c8
4
t

∫

B2R

η2fp/2+t+1dm(3.21)

for t > max{κ̃/(c2κ̃∗), c5N/κ̃∗} large enough.
Summing up, one obtains the following lemma.

Lemma 3.2. Let (M,F,m) be an n(≥ 2)-dimensional forward complete
Finsler measure space equipped with a uniformly convex and uniformly
smooth Finsler structure F and a smooth measure m. Assume that RicN ≥
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−K for some N ∈ [n,∞) and K ≥ 0 and u is a positive p(> 1)-eigenfunction
corresponding to the eigenvalue λp in a forward geodesic ball B2R. Let v :=
(p− 1) log u and f := F 2(∇v). Then there exist positive constants ci =
ci(p, κ̃, κ̃

∗, N)(6≤ i≤8) such that (3.21) holds for t>max{κ̃/(c2κ̃∗), c5N/κ̃∗}
large enough.

The following local Sobolev inequality, which was due to C.Xia, plays
an important role in the subsequent arguments.

Lemma 3.3. ([Xc]) Let (M,F,m) be an n-dimensional forward complete
Finsler space equipped with a uniformly convex and uniformly smooth Finsler
structure F . Assume that RicN ≥ −K for some K ≥ 0 and N ∈ [n,∞).
Then there exist constants ν > 2 and c0 = c0(κ, κ

∗, N) depending only on
κ, κ∗ and N , such that

(
∫

BR

|u| 2ν

ν−2dm

)
ν−2

ν

≤ ec0(1+
√
KR)R2m(BR)

− 2

ν

×
∫

BR

{F ∗2(x,Du) +R−2u2}dm.(3.22)

for BR ⊂M and u ∈W 1,2
loc (M).

Let τ := ν
ν−2 . Taking u = ηfp/4+t/2 in (3.22) and using (3.21), one ob-

tains

(
∫

B2R

η2τf τ(p/2+t)dm

)
1

τ

≤ 4ec0(1+2
√
KR)R2m(B2R)

− 2

ν

×
{
∫

B2R

F ∗2
(

D(ηfp/4+t/2)
)

dm+
1

4
R−2

∫

B2R

η2fp/2+tdm

}

≤ e2c0(1+
√
KR)m(B2R)

− 2

ν

×
{

c6R
2

∫

B2R

fp/2+tF ∗2(Dη)dm− c8tR2

∫

B2R

η2fp/2+t+1dm

+max{c7, 1}t(1 +
√
KR)2

∫

B2R

η2fp/2+tdm

}

.(3.23)

Note that κ̃∗, κ̃ only depend on κ∗ and κ. In the following, we always de-
note the positive constants ci as ci = ci(p, κ, κ

∗, N) depending on p, κ, κ∗, N ,
where i = 1, 2, · · · . Now we use (3.23) to prove the following lemma and The-
orem 1.1.
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Lemma 3.4. There exits a positive constant c = c(p, κ, κ∗, N) such that for
t0 = c9(1 +

√
KR) and t1 = τ(p/2 + t0), we have f ∈ Lt1(B 3

2
R) with

∥f∥Lt1 (B 3
2
R) ≤

c(1 +
√
KR)2

R2
m(B2R)

1

t1 ,(3.24)

where c9 := max{κ̃/(c2κ̃∗), c5N/κ̃∗} ≥ 1.

Proof. Taking t = t0 in (3.23), we have

(
∫

B2R

η2τf τ(p/2+t0)dm

)
1

τ

≤ ec10t0m(B2R)
− 2

ν

{

c6R
2

∫

B2R

fp/2+t0F ∗2(Dη)dm

− c8t0R2

∫

B2R

η2fp/2+t0+1dm+ c11t
3
0

∫

B2R

η2fp/2+t0dm

}

.(3.25)

Now we decompose the regionB2R into two subregions, one is {f ≥ 2c11
c8

( t0R )
2},

another is the complement of the first subregion in B2R. Thus,

c11t
3
0

∫

B2R

η2fp/2+t0dm ≤ 1

2
c8t0R

2

∫

B2R

η2fp/2+t0+1dm

+ c12t
3
0

(

t0
R

)p+2t0

m(B2R).(3.26)

For the first term of the RHS in (3.25), we let η = ψp/2+t0+1 with ψ(z) =
ψ̃(dF (x, z)) ∈ C∞0 (B2R) satisfying

0 ≤ ψ̃ ≤ 1, ψ̃ = 1 in [0, 3R/2), |ψ̃′| ≤ c13
R
.

Note that F ∗(DdF (x, ·)) = 1 a.e.in B2R. Thus ψ satisfies 0 ≤ ψ ≤ 1, ψ = 1 in
B3R/2 and F

∗(Dψ) ≤ c13Λ
R . Since F is uniformly convex and smooth, we have

1≤Λ≤min{√κ,
√

1/κ∗}. Hence, F ∗(Dψ)≤ c′13
R , where c′13=c

′
13(p, κ, κ

∗, N),

and c6R
2F ∗2(Dη) ≤ c14t20η

p+2t0
p/2+t0+1 . By Hölder’s and Young’s inequalities,
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one obtains

c6R
2

∫

B2R

fp/2+t0F ∗2(Dη)dm

≤ c14t20
∫

B2R

fp/2+t0η
p+2t0

p/2+t0+1dm

≤ c14t20
(
∫

B2R

η2fp/2+t0+1dm

)

p/2+t0
p/2+t0+1

·m(B2R)
1

p/2+t0+1

≤ 1

2
c8t0R

2

∫

B2R

η2fp/2+t0+1dm+ c
p/2+t0
15 t

p/2+t0+2
0 R−(p+2t0)m(B2R).

Plugging the above inequality and (3.26) into (3.25) yields

(
∫

BR

η2τf τ(p/2+t0)dm

)
1

τ

≤ ec10t0m(B2R)
1− 2

ν

{

c12t
3
0

(

t0
R

)p+2t0

+ c
p/2+t0
15 t

p/2+t0+2
0 R−(p+2t0)

}

≤ cp/2+t016 ec10t0t30

(

t0
R

)p+2t0

m(B2R)
1− 2

ν .

Note that t
3

t0+p/2

0 ≤ e3. Taking the 1
p/2+t0

-th power on both sides of the above
inequality, we have

∥f∥Lt1 (B 3
2
R) ≤ c17

(

t0
R

)2

m(B2R)
1

t1 ,

which implies (3.24). This finishes the proof. □

Proof of Theorem 1.1. By (3.23), we have

(
∫

B2R

η2τf τ(p/2+t)dm

)
1

τ

≤ ec10t0m(B2R)
− 2

ν

{

c6R
2

∫

B2R

fp/2+tF ∗2(Dη)dm

+ c11t
2
0t

∫

B2R

η2fp/2+tdm

}

.(3.27)
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Let t0, t1 be those given in Lemma 3.4 and tk+1 = τtk. Moreover we choose
Rk = R+ R

2k and ηk ∈ C∞0 (BRk
) satisfying

0 ≤ ηk ≤ 1, ηk = 1 in BRk+1
, F ∗(x,Dηk) ≤ c̃

2k

R
, k = 1, 2, · · · ,

where c̃ is a certain constant depending on the reversibility constant Λ on
B3R/2. Denote c18 = max{c6c̃2, c11}. Taking p/2 + t = tk, η = ηk in (3.27),
one obtains

∥f∥Ltk+1 (BRk+1
) ≤

(

c18e
c10t0

)
1

tk m(B2R)
− 2

νtk (4k + t20tk)
1

tk ∥f∥Ltk (BRk
)

=
(

c18e
c10t0

)
1

tk m(B2R)
− 2

νtk

(

4k + t20τ
k−1t1

)
1

tk ∥f∥Ltk (BRk
).

Note that
∑

k
1
tk

= ν
2t1

and
∑

k
k
tk

converges. By the standard Moser iteration
and using Lemma 3.4, we get

∥F 2(x,∇v)∥L∞(BR) = ∥f∥L∞(BR)

≤ c19
(

c18e
c10t0

)

∑
k

1

tk m(B2R)
− 2

ν

∑
k

1

tk

(

t30
)

∑
k

1

tk ∥f∥Lt1 (BR1
)

≤ C (1 +
√
KR)2

R2
.

By the same arguments as above, the above inequality also holds for
←−
F (x,

←−∇v).
Since F (x,∇(−v)) =←−F (x,

←−∇v), we get the conclusion. □

4. Global gradient estimates for Finsler p-eigenfunctions

In this section, we will focus on the global gradient estimate for p-eigen-
functions and prove Theorem 1.2 based on Theorem 1.1. For this, we need
a upper bound estimate of the first eigenvalue λ1,p.

Recall that BR := B+
R(x) is the forward geodesic ball of radius R cen-

tered at any point x ∈M and Dx =M \ ({x} ∪ Cut(x)), where Cut(x) is
the cut locus of x, which has zero Hausdorff measure in M . Then, for
any z ∈ Dx, we can choose the geodesic polar coordinates (r, θ) centered
at x such that r(z) = F (v) and θα(z) = θα( v

F (v)), where r(z) = dF (x, z) is

the distance function on M from a fixed point x ∈M and v = exp−1(z) ∈
Tx(M) \ {0}. It is well known that the distance function r starting from
x ∈M is smooth on Dx and F (∇r) = 1 ([BCS], [Sh]). By Gauss Lemma
(Lemma 6.1.1, [BCS]), the unit radial coordinate vector ∂

∂r is orthogonal to
coordinate vectors ∂

∂θα with respect to g∇r for 1 ≤ α ≤ n− 1. So, we can
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write dm|expx(rv0)
= σ(r, θ)drdθ, where v0 =

v
F (v) ∈ Ix = {v ∈ TxM |F (v) =

1}. SetDx(r) = {v0 ∈ Ix|rv0 ∈ exp−1(Dx ∩BR)} and τ(r) :=
∫

Dx(r)
σ(r, θ)dθ.

The volume of BR with respect to dm is given by

m(BR) =

∫

BR

dm =

∫

BR∩Dx

dm

=

∫ R

0
dr

∫

Dx(r)
σ(r, θ)dθ =

∫ R

0
τ(r)dr.(4.1)

For any Finsler manifold (M,F,m) with RicN ≥ −K, K ≥ 0, and any
0 < r1 < r2 < R, by Laplacian comparison Theorem, we have the following
inequality (Proposition 5.1, [Xia3])

m(Br2)

m(Br1)
≤
(

r2
r1

)N

er2
√

(N−1)K .(4.2)

In particular, for any r ≥ 1, there is a positive constant c = m(B1) such that

m(Br) ≤ crNer
√

(N−1)K .(4.3)

Proposition 4.1. Let (M,F,m) be a forward complete Finsler manifold
with finite reversibility Λ and infinite volume, i.e., m(M) = +∞. Assume
that m(Br) ≤ crkear for any r ≥ r0 > 0, where c > 0, k ≥ 0 and a ≥ 0 are
constants independent of r, and λ1,p is the first eigenvalue for the Finsler
p-Laplacian. (1) If a = 0, then λ1,p(M) = 0. (2) If a > 0, then λ1,p(M) ≤
(

aΛ
p

)p
.

To prove Proposition 4.1, we need to study the oscillatory behavior of
the following ODE on ψ = ψ(t):

(ψ′(p−1)ν)′ + λψ(p−1)ν = 0, t ≥ t0,(4.4)

where ψ(p−1)(t) = ψ(t)(p−1) := |ψ(t)|p−2ψ(t), ν := ν(t) is a positive continu-
ous function on [t0,∞) and λ is a positive constant. Recall that the equation
(4.4) is said to be oscillatory if all solutions of (4.4) have arbitrary large ze-
roes on [T,∞).

Lemma 4.1. Let
∫ +∞
t0

ν(ζ)dζ = +∞ and v(t) :=
∫ t
t0
ν(ζ)dζ ≤ ctkeat for

some nonnegative constants k, a and a positive constant c. Then (4.4) is

oscillatory provided either (i) a = 0 or (ii) λ >
(

a
p

)p
when a > 0.
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Proof. We argue this by a contradiction. Since (4.4) is invariant up to a sign,
we may assume that there exist a solution ψ of (4.4) and a sufficiently large
positive constant T > t0 such that ψ > 0 on [T,∞). Set

ψ̃ = −ψ
′(p−1)ν

ψ(p−1) , t ∈ [T,∞).

Then, by (4.4) and Young’s inequality, one obtains

ψ̃′ = λν + (p− 1)

(

1

ν
|ψ̃|p

)
1

p−1

≥ pλ1/p|ψ̃|.(4.5)

Obviously, ψ̃(t) is increasing on [T,∞).
Case I.

∫∞
T

1
ν(ζ)1/(p−1)dζ < +∞.

Note that ψ̃′ ≥ λν, which means ψ̃(t) ≥ λ(v(t)− v(T )) + ψ̃(T ). We may
assume ψ̃(t) > 0 for t ≥ T since lim

t→+∞
v(t) = +∞. Further, it follows from

(4.5) that ψ̃(t) ≥ ψ̃(T )ep(t−T ) p
√
λ. On the other hand, (4.5) implies that

ψ̃′ ≥ (p− 1)

(

1

ν
ψ̃p
)

1

p−1

.(4.6)

Solving the above inequality yields

(

1

ψ̃(t)

)
1

p−1

≤
(

1

ψ̃(t− 1)

)
1

p−1

−
∫ t

t−1

1

ν(ζ)1/(p−1)
dζ.(4.7)

Note that the assumption that
∫∞
T

1
ν(ζ)1/(p−1)dζ < +∞ ensures that the sec-

ond term on the right side of (4.7) is meaningful for any t ≥ T . By Hölder’s
inequality, one obtains

1 =

∫ t

t−1
dζ ≤

(
∫ t

t−1

1

ν1/(p−1)
dζ

)

p−1

p

·
(
∫ t

t−1
νdζ

)

1

p

,

which implies

∫ t

t−1

1

ν1/(p−1)
dζ ≥

(
∫ t

t−1
νdζ

)− 1

p−1

≥
(

1

v(t)

)
1

p−1

.



✐

✐

“6-Xia” — 2022/11/19 — 21:21 — page 478 — #28
✐

✐

✐

✐

✐

✐

478 Qiaoling Xia

Plugging the above inequality into (4.7) yields

0 <

(

1

ψ̃(t)

)
1

p−1

≤
(

1

ψ̃(t− 1)

)
1

p−1

−
(

1

v(t)

)
1

p−1

≤
(

1

ψ̃(T )ep(t−1−T )
p
√
λ

)
1

p−1

−
(

1

ctkeat

)
1

p−1

=

[

(

ctk

ψ̃(T )e[(pλ1/p−a)t−pλ1/p(1+T )]

)

1

p−1

− 1

]

(

1

ctkeat

)
1

p−1

.

Since λ > 0, the RHS of the last equality is less than or equal to zero when

t is large enough if a = 0 or λ >
(

a
p

)p
when a > 0. We have a contradiction.

Case 2.
∫∞
T

1
ν(ζ)1/(p−1)dζ = +∞. Let

s(t) =

∫ t

T

1

ν(ζ)1/(p−1)
dζ

be a non-degenerate transformation of parameters. Then we can write s =
s(t) and t = t(s), which is increasing, and

d

dt

(

ψ′(t)(p−1)ν(t)
)

=
d

ds

(

ψ′(s)(p−1)
)

·
(

1

ν(s)

)
1

p−1

,

where we used that ψ′(s) = d
ds(ψ(t(s))) = ψ′(t)ν(t)

1

p−1 . Thus, (4.4) becomes

(4.8)
d

ds

(

ψ′(s)(p−1)
)

+ λψ(s)(p−1)ν(s)
p

p−1 = 0.

Let ψ̄(s) := −ψ′(s)(p−1)

ψ(s)(p−1) . Then, by (4.8) and Young’s inequality,

ψ̄′(s) = λν(s)
p

p−1 + (p− 1)

∣

∣

∣

∣

ψ′(s)
ψ(s)

∣

∣

∣

∣

p

= λν(s)
p

p−1 + (p− 1)|ψ̄(s)|
p

p−1 ≥ pλ
1

p ν(s)
1

p−1 |ψ̄(s)|.(4.9)

Obviously, ψ̄′(s) ≥ λν(s)
p

p−1 , which means

ψ̄(s)− ψ̄(s(T )) ≥ λ
∫ s

s(T )
ν(s)

p

p−1ds = λ

∫ t

T
ν(ζ)dζ → +∞ as t→ +∞.
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So, we may assume ψ̄(s) > 0. Further, the inequality (4.9) implies that

ψ̄(s) ≥ ψ̄(s(T )) exp
(

pλ1/p
∫ s

s(T )
ν(s)

1

p−1ds

)

= ψ̄(s(T )) exp
(

pλ1/p(t− T )
)

,(4.10)

where s = s(t). Note that s(t) and t(s) are increasing and s→ +∞ if and
only if t→ +∞ by the assumption. By (4.10), we have lim

s→+∞
ψ̄(s) = +∞.

On the other hand, (4.9) implies

ψ̄′(s) ≥ (p− 1)ψ̄
p

p−1 .

By a similar argument to (4.7), we have

0 <

(

1

ψ̄(s)

)
1

p−1

≤
(

1

ψ̄(s− 1)

)
1

p−1

− 1 < 0

for a sufficient large s. Thus we get a contradiction. The proof is completed.
□

Proof of Proposition 4.1. By (4.1), we have

m(Br) =

∫ r

0
τ(t)dt.

Since m(M) = +∞, we have
∫ +∞
r0

τ(t)dt = +∞ for some r0 > 0. For each

λ > 0, by Lemma 4.1, if a = 0 or λ >
(

a
p

)p
when a > 0, there exists a

nontrivial oscillatory solution ψλ of (4.4) on [r0,+∞) in which ν(t) is re-
placed by τ(t). Consequently, there exist two numbers rλ1 , r

λ
2 ∈ [r0,+∞) with

rλ1 < rλ2 such that ψλ(r
λ
1 ) = ψλ(r

λ
2 ) = 0 and ψλ(r) ̸= 0 for any r ∈ (rλ1 , r

λ
2 ).

This means either ψλ(r) > 0 or ψλ(r) < 0 on (rλ1 , r
λ
2 ). Let r(z) := dF (x, z),

Ωλ := Brλ2 \Brλ1 ⊂M and uλ(z) := ψλ(r(z)). Then we have F ∗(Duλ) =
F ∗(ψ′λDr) ≤ Λ|ψ′λ| a.e. on Ωλ. By the principle of the variation, we have

0 ≤ λ1,p(M) ≤ λ1,p(Ωλ)

= inf
uλ

∫

Ωλ
F ∗p(Duλ)dm
∫

Ωλ
|uλ|pdm

≤
Λp
∫

Ωλ
|ψ′λ(r)|pdm

∫

Ωλ
|ψλ(r)|pdm

=
Λp
∫ rλ2
rλ1
|ψ′λ(r)|pτ(r)dr

∫ rλ2
rλ1
|ψλ(r)|pτ(r)dr

= −
Λp
∫ rλ2
rλ1

(

ψ
′(p−1)
λ τ

)′
ψλdr

∫ rλ2
rλ1
|ψλ|pτdr

= λΛp.
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In the case of a = 0, λ1,p(M) = 0 since λ is an arbitrary positive constant.

For the case when a > 0, λ1,p(M) ≤
(

aΛ
p

)p
since λ is an arbitrary positive

constant greater than
(

a
p

)p
. This finishes the proof. ✷

Corollary 4.1. Let (M,F,m) be an n-dimensional forward complete Finsler
manifold with finite reversibility Λ.

(i) If m(M) < +∞, then λ1,p = 0.
(ii) If m(M) = +∞ and RicN ≥ −K for some K ≥ 0 and N ∈ [n,+∞),

then λ1,p(M) ≤
(

Λ
√

(N−1)K
p

)p

. In particular, λ1,p = 0 when K = 0.

Proof. (i) Note that the variational principle of λ1,p(M) asserts that

λ1,p(M)

∫

M
|u|pdm ≤

∫

M
F ∗p(Du)dm(4.11)

for any u ∈W 1,p
0 (M). In particular, we choose u(z) = −ψ(z), where ψ is a

cut-off function defined by

ψ(z) =







1 on BR
2R−dF (x,z)

R on B2R \BR
0 on M \B2R.

(4.12)

Then F ∗(Du) ≤ 1
R a.e. on B2R and hence (4.11) implies that

λ1,pm(BR) ≤ R−pm(B2R),

which implies that λ1,p(M) = 0 by taking R→∞. The assertion (ii) follows
from (4.3) and Proposition 4.1. □

Proof of Theorem 1.3. It directly follows from Corollary 4.1. ✷

Remark 4.1. In Proposition 4.1, the assumption that m(Br) ≤ crkear is
actually originated from (4.3). Obviously, a = 0 corresponds to the case of
RicN ≥ 0. If F is a Riemannian metric with the Ricci curvature Ric≥ −(n−
1)K(K ≥ 0) and p = 2, then Proposition 4.1 implies that λ1 ≤ (n−1)2K

4 ,
which was first obtained by S. Cheng in a different way (see Theorem 4.2,
[Ch]).

Moreover, by the Bochner-Weitzenböck formula, we can get a more re-
fined growth estimate for the volume measure of forward geodesic ball Br
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than (4.3). In Riemannian case, the volume estimate for a geodesic ball
directly follows from the volume comparison theorem.

Proposition 4.2. Let (M,F,m) be a forward complete Finsler measure
space satisfying RicN ≥ −K for some N ∈ [n,+∞) and K > 0. Then there
exists a positive constant C = C(K,N,m(B1)) depending on N,K,m(B1)
such that

m(Br) ≤ Cer
√

(N−1)K

for all r ≥ 1.

Proof. Let γ : [0, r(z)]→M be the minimizing geodesic from x to z with
γ(0) = x and γ(r(z)) = z, where r is the distance function from x. In a
geodesic polar coordinates (r, θ), it follows from (2.10) that

∆r =
∂

∂r
log σ(x, r, θ).(4.13)

In the following, we will omit the dependence of the quantities on θ. On the
other hand, applying (2.8) to the function r(z) = r(x, z) for any z ∈M and
using F (∇r) = 1 yield

D(∆r)(∇r) +RicN (∇r) +
1

N − 1
(∆r)2 ≤ 0,

which implies that

∂2

∂r2
(log σ) +

1

N − 1

(

∂

∂r
log σ

)2

≤ K.

Integrating this inequality from 1 to r and letting u(r) := ∂ log σ
∂r give

u(r) +
1

N − 1

∫ r

1
u2(t)dt ≤ Kr + C0

for some constant C0 > 0. The Cauchy-Schwarz inequality implies that

u(r) +
1

(N − 1)r

(
∫ r

1
u(t)dt

)2

≤ Kr + C0.(4.14)

Now we estimate
∫ r
1 u(t)dt. Consider the function

(4.15) v(r) := −
∫ r

1
u(t)dt+ r

√

(N − 1)K + C0

√

(N − 1)/K.
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Obviously, v(1) > 0. Assume that R > 1 is the first number such that v(R) =
0, namely,

∫ R

1
u(t)dt = R

√

(N − 1)K + C0

√

(N − 1)/K.

Then

1

(N − 1)R

(
∫ R

1
u(t)dt

)2

=
1

(N − 1)R

[

R
√

(N − 1)K + C0

√

(N − 1)/K
]2
≥ KR+ 2C0.

Consequently, u(R)≤−C0<0 by (4.14), which implies that v′(R)=−u(R)+
√

(N − 1)K > 0. Thus, there is a number ε > 0 small enough such that
v(R− ε) < 0. This contradicts the choice of R. Hence v(r) > 0 for all r ≥ 1.
From this and (4.15), we have

log σ(r)− log σ|r=1 ≤ r
√

(N − 1)K + C0

√

(N − 1)/K.

This implies that m(Br) ≤ Cer
√

(N−1)K for some positive constant C de-
pending on N , K and m(B1). □

With these preparations, we begin to prove Theorem 1.2.
Proof of Theorem 1.2. As in Section 3, let v = (p− 1) log u and f =

F 2(x,∇v). It suffices to consider the case when f > 0. To obtain the global
estimate, we need to estimate Lv(f) in a more refined way than (3.5)

Choose a local orthonormal basis {e1, · · · , en} with respect to g∇v at
x ∈Mv such that ∇v = F (∇v)e1 as in the proof of Lemma 3.1. Then v1 =
F (∇v) = f1/2 > 0 and vi = 0(2 ≤ i ≤ n). Differentiating f = v21 yields
f−1Df(∇v) = 2v11 and f

−1/2Df(ej) = 2v1j(∀j), where vij stand for the co-
variant derivatives of v with respect to the Levi-Civita connection of g∇v.
Thus, (3.3) can be rewritten as

n
∑

i=2

vii +
1

2
(p− 1)f−1Df(∇v)− S(∇v) + f + (p− 1)p−1λpf

1−p/2 = 0.
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Hence,

∥∇2v∥2HS(∇v) =
n
∑

i,j=1

v2ij ≥
n
∑

j=1

v21j +
1

n− 1
(

n
∑

i=2

vii)
2

=
1

n− 1

(

f +
1

2
(p− 1)f−1Df(∇v) + (p− 1)p−1λpf

1−p/2 − S(∇v)
)2

+
1

4
f−1

n
∑

j=1

Df(ej)
2

≥ 1

N − 1

(

f +
1

2
(p− 1)f−1Df(∇v) + (p− 1)p−1λpf

1−p/2
)2

− 1

N − nS
2(∇v) + 1

4
f−1∥∇∇vf∥2HS(∇v),

where we used (a− b)2 ≥ a2

1+δ − b2

δ with δ = (N − n)/(n− 1) > 0 in the last
inequality. Plugging this into (3.4), and using RicN ≥ −K and (2.2) yield

Lv(f) ≥
2

N − 1
f1−p/2

(

fp/2 + Λ−1
√

(N − 1)Kf (p−1)/2 + (p− 1)p−1λp
)

·
(

fp/2 − Λ
√

(N − 1)Kf (p−1)/2 + (p− 1)p−1λp
)

+

(

2(p− 1)

N − 1
− p
)

fp/2−1Df(∇v)

+
2(p− 1)

N − 1
(p− 1)p−1λpf

−1Df(∇v).(4.16)

Note that the above inequality holds only on Mv.
Next, let w be the largest positive root of the equation

(4.17) w
p

2 − Λ
√

(N − 1)Kw
p−1

2 + (p− 1)p−1λp = 0.

In fact,
√
w exactly corresponds to (p− 1)χ, where χ is the largest positive

root of (1.5). For any δ > 0, consider the nonnegative function f̂ = (f −
(w + δ))+. We denote by Ω := {f ≥ w + δ} ⊂Mv. Then 0 < w + δ ≤ f ≤
c(N,K, κ, κ∗, p) on Ω by Theorem 1.1. Since Lv(f) = Lv(f̂) and

|Df(∇v)| ≤
√

f
√

gij(∇v)fifj ≤
√
κ̃
√

fF (∇f),
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by (4.16), there exist positive constants ci = ci(N,K, κ, κ
∗, p, δ)(i = 1, 2)

such that

Lv(f̂) ≥ c1
(

fp/2 − Λ
√

(N − 1)Kf (p−1)/2 + (p− 1)p−1λp
)

− c2F ∗(Df̂) on Ω.(4.18)

Observe that

(4.19) fp/2 − Λ
√

(N − 1)Kf (p−1)/2 + (p− 1)p−1λp ≥ c3f̂

for some positive constant c3 = c3(N,K,Λ, p, δ). In fact, (4.19) clearly holds
when f = w for any choices of c3. On the other hand, we view both sides of
(4.19) as a function of f , and the derivative of the left side is given by

1

2
f

p−3

2

[

pf1/2 − (p− 1)Λ
√

(N − 1)K
]

.

Now we take λp = λ1,p. Then λ1,p ≤
(

Λ
√

(N−1)K
p

)p

by Corollary 4.1. Hence

w ≥
(

p−1
p

)2
Λ2(N − 1)K by (4.17). From this and f > w + δ, we get pf1/2 −

(p− 1)Λ
√

(N − 1)K ≥ c(N,K,Λ, p, δ) > 0. Thus, (4.19) is true on Ω by
choosing 0 < c3 < c. Consequently,

(4.20) Lv(f̂) ≥ c4f̂ − c2F ∗(Df̂) on Ω,

where c4 = c4(N,K, κ, κ
∗, p, δ) is a positive constant. Further, we claim (4.20)

holds onM in a weak sense. In fact, we have Z(f̂) = 0 for any nonzero vector

field Z on ∂Ω, i.e., g∇f̂ (∇f̂ , Z) = 0, which means that ν̃ = ∇f̂
F (∇f̂) =

∇f
F (∇f)

is a normal vector field on ∂Ω with respect to g∇f . However, ν̃ points in-
ward. To apply the stokes theorem, we need a normal vector field point-
ing outward. Actually, ν = ∇(−f)

F (∇(−f)) is a normal vector field pointing out-

ward with respect to g∇(−f) on ∂Ω. Its dual is J−1(ν) = − Df
F (∇(−f)) . Note

that F (∇(−f)) ̸= F (∇f) in general. Hence, for any nonnegative function
φ ∈W 1,p

0 (M), one obtains from the stokes theorem (Theorem 2.4.2, [Sh])
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that

∫

M
f̂Lv(φ)dm =

∫

Ω
f̂Lv(φ)dm =

∫

Ω
φLv(f̂)dm

+

∫

∂Ω
f̂ gν(ν, f

p/2−1hv(∇∇vφ))dmν

−
∫

∂Ω
φgν(ν, f

p/2−1hv(∇∇vf̂))dmν ,(4.21)

where we used Df̂(∇∇vφ) = Dφ(∇∇vf̂) and dmν is the volume measure on
∂Ω induced from dm|Ω by ν. Note that f̂ = 0 on ∂Ω and

− gν(ν, fp/2−1hv(∇∇vf̂))
= F−1(∇(−f))fp/2−1Df(hv(∇∇vf))
= F−1(∇(−f))fp/2−1

[

Df(∇∇vf) + (p− 2)f−1(Dv(∇∇vf))2
]

≥ min{1, p− 1}F−1(∇(−f))fp/2−1∥∇∇vf∥2HS(∇v) ≥ 0.(4.22)

Consequently, combining(4.20)-(4.22) together yields

∫

M
f̂Lv(φ)dm ≥

∫

Ω
φLv(f̂)dm

≥
∫

Ω
φ
(

c4f̂ − c2F ∗(Df̂)
)

dm

=

∫

M
φ
(

c4f̂ − c2F ∗(Df̂)
)

dm.(4.23)

This proves the claim.
Finally, we prove that f̂ ≡ 0 on M based on (4.23). In other words,

f ≤ w since 0 < δ is arbitrary. Equivalently, F (∇ log u) ≤ χ.
Let φ = η2f̂ t be a cut-off function on M as in the proof of Lemma 3.2

for some constant t ≥ 1. Plugging this into (4.23) yields

−
∫

Ω
fp/2−1Df̂(hv(∇∇v(η2f̂ t)))dm

≥
∫

M
η2f̂ t

(

c4f̂ − c2F ∗(Df̂)
)

dm.(4.24)
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By similar arguments to (3.12)-(3.15) and the boundedness of f , we get

c4

∫

M
η2f̂ t+1dm ≤ c2

∫

Ω
η2f̂ tF ∗(Df̂)dm+ c5

∫

Ω
ηf̂ tF ∗(Df̂)F (∇η)dm

− c6t
∫

Ω
η2f̂ t−1F ∗2(Df̂)dm(4.25)

for some positive constants ci = ci(N,K, p, κ, κ
∗, δ)(i = 5, 6). Thus, for any

0 < ϵ < c4, we have

c4

∫

M
η2f̂ t+1dm ≤ ϵ

∫

Ω
η2f̂ t+1dm+

c22
4ϵ

∫

Ω
η2f̂ t−1F ∗2(Df̂)dm

+ ϵ

∫

Ω
f̂ t+1F 2(∇η)dm

+
c25
4ϵ

∫

Ω
η2f̂ t−1F ∗2(Df̂)dm− c6t

∫

Ω
η2f̂ t−1F ∗2(Df̂)dm.(4.26)

Choose t such that c22 + c25 = 4ϵc6t. Therefore,

(c4 − ϵ)
∫

M
η2f̂ t+1dm ≤ ϵ

∫

M
f̂ t+1F 2(∇η)dm.(4.27)

We choose the test functions ηk = −1 on Bk and 0 outside Bk+1 as in the
proof of Corollary 4.1. Then we have F (∇ηk) ≤ 1, where k is a positive
integer. Thus, we have

∫

Bk+1

f̂ t+1dm ≥
(

c4 − ϵ
ϵ

)
∫

Bk

f̂ t+1dm ≥
(

c4 − ϵ
ϵ

)k ∫

B1

f̂ t+1dm.

Consequently, either f̂ ≡ 0 or for all R ≥ 1,

∫

BR

f̂ t+1dm ≥ ceR log
c4−ϵ

ϵ

for some positive constant c independent of ϵ. However f̂ is bounded and

m(BR) ≤ CeR
√

(N−1)K for R ≥ 1 by Proposition 4.2. This leads to a contra-

diction if ϵ is sufficiently small. So, f̂ ≡ 0. Since F (x,∇(−v)) =←−F (x,
←−∇v),

by the same arguments as above for
←−
F , we have

←−
F (x,

←−∇v) ≤ χ. The proof
is finished. ✷
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5. Splitting of Finsler manifolds

Let (M,F,m) be a complete noncompact Finsler manifold. In this section,
we study geometric structure at infinity of manifoldsM with maximal eigen-
value λ1,p and prove Theorem 1.4.

Recall that a geodesic γ : R→M is called a straight line if it is globally
minimizing and has the unit speed. In particular, a straight line defined on
[0,∞) is called a ray. Since M is complete, for any two points x, z ∈M ,
there is a minimal geodesic from x to z and the forward (resp. backward)

closed balls B+
R0
(x) (resp. B−R0

(x)) are compact. An end E ofM , with respect
to a compact subset D ⊂M , means a unbounded connected component of
M \D. In general, we say that E is an end we mean that it is an end
with respect to some compact subset D. The number of ends with respect
to D is the number of unbounded connected components of M \D. For all

practical purposes, we may assume that D = B+
R0
(x) (resp. D = B−R0

(x)) for
some x ∈M and R0 > 0, and denote by E+ (resp. E−) the corresponding
end.

Definition 5.1. ([BK]) Let (M,F,m) be a Finsler measure space. For any
1 ≤ q <∞, the end E is said to be q-parabolic if, for each U ⋐M and ε > 0,
there exists a Lipschitz function ϕ with a compact support, ϕ ≥ 1 on U , such
that

∫

E g
q
φdm < ε. Otherwise E is said to be q-nonparabolic, here gφ(x) is

defined as

gφ(x) = lim inf
r→0+

sup
y∈B+

r (x)

ϕ(y)− ϕ(x)
dF (x, y)

.

Note that gu(x) = F (∇u) if ϕ = u ∈ C1(M) (see P1393, [OS1]).
Assume that (M,F ) admits a straight line γ̃ : R→M . Then γ = γ̃|[0,∞)

⊂M is a ray and the associated Busemann function bγ :M → R is defined
by

bγ(z) := lim
t→∞
{t− dF (z, γ(t))}.

It is well defined and differentiable almost everywhere on M (cf. [Oh2]).
Further, F (∇bγ) = 1, and every integral curve of ∇bγ defined on [0,∞) is a
geodesic by Lemma 3.1(ii) in [Oh2]. Similarly, for the ray γ̄(t) = γ̃(−t), t ∈
[0,∞), we also have the Busemann function

bγ̄(z) := lim
t→∞
{t− d←−

F
(z, γ̄(t))} = lim

t→∞
{t− dF (γ̄(t), z)}
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with respect to
←−
F . It follows from the triangle inequality

bγ(z) ≤ dF (γ(0), z), bγ + bγ̄ ≤ 0.(5.1)

Lemma 5.1. Assume that (M,F ) is an n-dimensional Finsler manifold
containing a ray γ and RicN ≥ −K for some N ∈ [n,∞) and K ≥ 0. Then
∆bγ ≥ −

√

(N − 1)K in the distributional sense.

Proof. The conclusion follows directly from Proposition 3.2 in [Oh2] when
K = 0. It suffices to prove this in the case of K > 0. For any x ∈M , let
r(z) = dF (x, z) be the distance function from x to z ∈M . The Laplacian
comparison theorem (Theorem 5.2 in [OS1]) gives

∆r(z) ≤
√

(N − 1)K coth
(

r
√

K/(N − 1)
)

≤ N − 1

r

(

1 + r

√

K

N − 1

)

(5.2)

pointwise on Dx and in the distributional sense on M \ {x}. Fix an arbi-
trary bounded open set Ω ⊂M and a nonnegative function φ ∈W 1,2

0 (Ω),
put ri(x) := −dF (x, γ(i)) for i ∈ N. Then ri are differentiable almost ev-
erywhere and ∇ri(x) coincides with the initial vector of the unique unit
speed minimal geodesic from x to γ(i). By Lemma 3.1 (iii) in [Oh2], we
have lim

i→∞
∇ri(x) = ∇bγ(x) for x at where bγ is differentiable. Thus, by the

dominated convergence theorem, we have

lim
i→∞

∫

Ω
Dφ(∇ri)dm =

∫

Ω
Dφ(∇bγ)dm.(5.3)

Observe that ∇ri = −
←−∇(−ri) = −

←−∇
(←−
d (γ(i), ·)

)

. By (5.3) and applying

(5.2) to the Laplacian
←−
∆ with respect to

←−
F , we get

∫

Ω
Dφ(∇bγ)dm = lim

i→∞

∫

Ω
φ
←−
∆(−ri)dm

≤ lim
i→∞

∫

Ω
φ · N − 1

−ri

(

1− ri
√

K

N − 1

)

dm

=

∫

Ω
φ ·
√

(N − 1)Kdm,

which implies that ∆bγ ≥ −
√

(N − 1)K. This finishes the proof. □
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Observe that 1 ≤ Λ ≤ 1√
κ∗

if F satisfies (1.7). Based on Lemma 5.1, we

further have

Proposition 5.1. Suppose that (M,F,m) contains a ray γ ⊂ E+ with
m(E+) <∞ and F satisfies (1.7). If RicN ≥ −K for some N ∈ [n,∞) and

K > 0 and λ1,p =
(

p−1Λ
√

(N − 1)K
)p

, then F is reversible and ∆bγ =

−
√

(N − 1)K. Moreover, ∆pv = −λ1,p|v|p−2v in the distribution sense, where

v = e
1

p

√
(N−1)K bγ .

Proof. Consider the function v(z) := ekbγ(z) for any z ∈M , where k =
1
p

√

(N − 1)K. For any nonnegative function φ ∈ C∞0 (M), it follows from
F (∇bγ) = 1 and Lemma 5.1 that

∫

M
Dφ

[

F p−2(∇v)∇v
]

dm

= kp−1
∫

M
ek(p−1)bγDφ(∇bγ)dm

= −(p− 1)kp−1
∫

M
kφek(p−1)bγdm− kp−1

∫

M
φek(p−1)bγ∆bγdm

≤ kp−1
[

√

(N − 1)K − (p− 1)k
]

∫

M
φvp−1dm

= kp
∫

M
φvp−1dm ≤ λ1,p

∫

M
φvp−1dm.(5.4)

Replacing φ with φpv in (5.4) gives

(5.5)

∫

M
D(φpv)

[

F p−2(∇v)(∇v)
]

dm ≤ λ1,p
∫

M
(φv)pdm.

On the other hand, it follows that F ∗2(x, ξ) ≤ g∗Dbγ
(ξ, ξ) ≤ κF ∗2(x, ξ) from

(1.7), where Dbγ = J−1(∇bγ) and κ = 1/κ∗. The variation principle implies
that

λ1,p

∫

M
(φv)pdm ≤

∫

M
F ∗p(D(φv))dm

≤
∫

M

[

g∗Dbγ (D(φv), D(φv))
]p/2

dm.(5.6)
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Since g∗ij(x,Dbγ) = gij(x,∇bγ) = gij(x,∇v), we have

[

g∗Dbγ
(D(φv), D(φv))

]p/2

≤
[

φ2F 2(∇v) + 2vφDφ(∇v) + κv2F ∗2(Dφ)
]p/2

≤ φpF p(∇v) + pvφp−1Dφ(∇v)F p−2(∇v) + cvpF ∗2(Dφ)

= D(φpv)
[

F p−2(∇v)∇v
]

+ cvpF ∗2(Dφ)

for some constant c = c(p,N,K, κ) depending on p,N,K and κ, where we
used F (∇v) = kv and the boundedness of F (Dφ) (as R→∞, see the choice
of φ below) in the second inequality. Substituting this in (5.6) yields

λ1,p

∫

M
(φv)pdm ≤

∫

M
D(φpv)

[

F p−2(∇v)∇v
]

dm

+ c

∫

M
vpF ∗2(Dφ)dm.(5.7)

Let BR = B+
R(x) as before, here x = γ(0). We choose a cut off function

φ ∈ C∞0 (M) as in (4.12) such that φ is 1 on BR and 0 on M \B2R, and
F (∇φ) ≤ Λ

R . Then

∫

M
vpF ∗2(Dφ)dm ≤ Λ2

R2

∫

E+∩(B2R\BR)
e
√

(N−1)K bγdm

+
Λ2

R2

∫

(M\E+)∩(B2R\BR)
e
√

(N−1)K bγdm.(5.8)

Note that the assumption on completeness implies that (M,F,m) is proper,
i.e., closed forward (backward) geodesic balls are compact, and λ1,p =
(

p−1Λ
√

(N − 1)K
)p

> 0 is equivalent to the statement that E+ supports a

(p, p, λ)-Sobolev inequality by the variation principle. For the p-nonparabolic
end, we have m(E+) =∞ from the proof of Theorem 0.1(2) in [BK]. Thus,
by the assumption that m(E+) <∞ and Theorem 0.1 in [BK] again, E+

must be p-parabolic and

m(E+ \Br) ≤ Ce−r
√

(N−1)K .
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From this and (5.1), one obtains

∫

E+∩(B2R\BR)
e
√

(N−1)K bγdm

≤
[R]+1
∑

i=1

∫

E+∩(BR+i\BR+i−1)
e
√

(N−1)K bγdm

≤ C
[R]+1
∑

i=1

e(R+i)
√

(N−1)K · e−(R+i−1)
√

(N−1)K ≤ CR,(5.9)

where [R] means the integer part of R. Thus the first term on the right side
of (5.8) goes to zero as R goes to infinity. Moreover, Lemma 4.2 in [Oh2]
implies that

bγ(z) ≤ −r(z) + C

for some constant C on M \ E+. From this and Proposition 4.2, we have

∫

(M\E+)∩(B2R\BR)
e
√

(N−1)K bγdm ≤ CR,

which means that the second term on the right side of (5.8) also goes to
zero as R→∞. Hence the equalities in (5.4) and (5.5) hold as limits of
R→∞, which imply that Λ = 1, i.e., F is reversible, ∆bγ = −

√

(N − 1)K

and ∆pv = −
(

p−1
√

(N − 1)K
)p
|v|p−2v in a distribution sense. □

In fact, Proposition 5.1 implies that ∆bγ = −
√

(N − 1)K in the point-
wise sense since F is reversible and hence bγ is C∞ (cf. Proposition 4.1,
[Oh2]). Note that ∇bγ is a geodesic field with F (∇bγ) = 1, namely, the inte-
gral curve η̃ := η̃(t) of ∇bγ is a unit speed geodesic. Therefore, RicN (∇bγ)=
Ric

g∇bγ

N (∇bγ). Let dm = e−Ψ(η̃)Vol ˙̃η along η̃. We have the isometric splitting
of the weighted Riemannian manifold (M, g∇bγ

) as follows.

Proposition 5.2. Assume that (M,F ) admits a straight line γ̃ : R→M
and F satisfies (1.7). If RicN ≥ −K for some N ∈ [n,∞) and K > 0 and

λ1,p =
(

p−1Λ
√

(N − 1)K
)p

, then either (M,F,m) has no finite volume ends

containing γ̃ or (M, g∇bγ̃
) splits isometrically as M = R× M̆ with M̆ =

b−1γ̃ (0) and g∇bγ̃
= dt2 + e2ctğ∇bγ̃

for some compact weighted Riemannian

manifold (M̆, ğ∇bγ̃
,m), where c =

√

K/(N − 1). In the latter case, Ψ(η̃(t)) =
(N − n)ct+Ψ(η̃(0)), which is a linear function of t along the integral curve
η̃ of g∇bγ

.
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Proof. First of all, we remark that F is reversible (i.e, Λ = 1) by the as-
sumption and Proposition 5.1. Thus the (forward) end E+ coincides with
the (backward) end E−. We write γ̃ = γ ∪ γ̄, where γ = γ̃|[0,∞) is a ray on
M and γ̄(t) = γ̃(−t) for t ∈ [0,∞). Note that m(M) =∞ since λ1,p > 0 by
Corollary 4.1, which implies that M must have an infinite volume end E′.
If γ̃ is contained in an end with infinite volume, then the first case occurs.
Otherwise, (M,F ) has a finite volume end E containing γ̃. Note that it will
not happen that one of {γ̃(+∞), γ̃(−∞)} is contained in an end with finite
volume and the other is contained in an end with infinite volume. In fact,
if this is the case, then these two ends are connected into an end with in-
finite volume since γ̃ is connected. Let x = γ̃(0) ∈M be a fixed point such
that the compact set D = BR0

(x) separates the ends E and E′ for some
R0 > 0, i.e., E and E′ are two disjoint connected components of M \D.
Note that the Busemann function associated to a ray is invariant after a
linear parameter transformation preserving the orientation of the ray. Thus,
we always may assume that E = E+ with m(E+) <∞ such that γ ⊂ E+

(maybe after a reparameterization preserving the orientation of γ) because
of the reversibility of F .

Applying (2.6) to bγ and using Proposition 5.1, one obtains

Ric∞(∇bγ) + ∥∇2bγ∥2HS(∇bγ)
= 0.(5.10)

Then, by Definition 2.1,

(5.11) Ric∞(∇bγ) = RicN (∇bγ) +
S2(∇bγ)
N − n ≥ −K +

S2(∇bγ)
N − n ,

where S(∇bγ) = DΨ(∇bγ) is the S-curvature in the direction ∇bγ and
S(∇bγ) = 0 if N = n. Plugging (5.11) into (5.10) yields

∥∇2bγ∥2HS(∇bγ)
≤ K − S2(∇bγ)

N − n .(5.12)

On the other hand, choose a local orthonormal frame {ei}ni=1 with respect to
g∇bγ

such that e1 = ∇bγ . Thus∇bγ = biei, where b1 = 1 and bi = 0(2 ≤ i ≤
n). Denote by bij the components of ∇2bγ with respect to the Levi-Civita
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connection of g∇bγ
. We have b11 = 0 and

∥∇2bγ∥2HS(∇bγ)
=
∑

i,j

b2ij ≥
1

n− 1

(

n
∑

i=1

bii

)2

=
1

n− 1
[∆bγ + S(∇bγ)]2

=
1

n− 1

[

−
√

(N − 1)K + S(∇bγ)
]2
≥ K − S2(∇bγ)

N − n ,(5.13)

where we used the inequality (a− b)2 ≥ a2

1+δ − b2

δ with δ = N−n
n−1 when N > n

and S(∇bγ) = 0 when N = n. Combining (5.12) and (5.13) together, one
obtains

∥∇2bγ∥2HS(∇bγ)
= K − S2(∇bγ)

N − n
and all the above inequalities become equalities, which imply

RicN (∇bγ) = −K, S(∇bγ) = (N − n)c,(5.14)

b11 = bij = 0(i ̸= j), b22 = · · · = bnn = −c,(5.15)

∥∇2bγ∥2HS(∇bγ)
= (n− 1)c2,

where we used ∆bγ = −
√

(N − 1)K and c =
√

K/(N − 1). Consequently,

DΨ( ˙̃η) = S(∇bγ) = (N − n)c,

which means that Ψ(η̃(t)) = (N − n)ct+Ψ(η̃(0)) is a linear function of t
along η̃.

Let {φt} be a local one-parameter transformation group generated by
∇bγ and

Mt := {x ∈M |bγ(x) = t}
be the level set of bγ . Obviously, M̆ =M0 and g∇bγ

(∇bγ , X) = 0 for any

X ∈ Tx̆(M̆). Since F (∇bγ) = ∥∇bγ∥HS(∇bγ) = 1, we have bγ ◦ φt = t for

any fixed t ∈ R
+, which means φt(x̆) ∈Mt for any x̆ ∈ M̆ . Similarly, for

fixed t ∈ R
−, we have φt(x̆) ∈Mt for any x̆ ∈ M̆ if we use γ(−t) instead of

γ(t). This defines a map Φ : R× M̆ →M, Φ(t, x̆) = φt(x̆). Obviously, it is
injective. For any q ∈M , letting x̆ ∈ M̆ be the nearest point to q with respect
to F and τ : [0, ℓ]→M be the unit speed minimal geodesic of F from x̆ to
q. By the first variation formula of τ , one obtains that gτ̇(0)(τ̇(0), X) = 0

for any X ∈ Tx̆M̆ . Consequently, g∇bγ
(∇bγ , X) = gτ̇(0)(τ̇(0), X) = 0 at x̆

for all X ∈ Tx̆M̆ , which implies τ̇(0) = ∇bγ(x̆) by Lemma 1.2.4 in [Sh].
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Hence τ(t) = φt(x̆) by the uniqueness of the minimal geodesic. This means
q ∈ τ ⊂ Im(Φ) and hence Φ is surjective. Thus, Mt = φt(M̆) and Φ is a
diffeomorphism.

Further, for any vector field X on M̆ ,

g∇bγ
(dΦ(∂/∂t), dΦ(X)) = g∇bγ

(∇bγ , φt∗(X)) = X(bγ ◦ φt) = 0.

This shows that ∇bγ is a normal vector field on Mt with respect to g∇bγ
.

We choose a local orthonormal frame {ei}ni=1 as above. With respect to the
induced metric from g∇bγ

, the second fundamental form II = (hαβ) of Mt

is given by hαβ = bαβ = −cδαβ (2 ≤ α, β ≤ n) by (5.15). This implies that

g∇bγ
= dt2 + e2ctğ∇bγ

, where ğ∇bγ
is a Riemannian metric on M̆ induced

by g∇bγ
. Since M has (at least) two disconnected ends E+ and E′, M̆ must

be compact. Otherwise E+ and E′ are connected, which is a contracdiction.
This finishes the proof. □

Assume that (M,F,m) admits a straight line γ̃ contained in the end E with
m(E) <∞. Then Proposition 5.2 implies that

(5.16) dm = e−(N−n)ct−Ψ(η̃(0))Vol ˙̃η = e−t
√

(N−1)Kdt · e−Ψ(η̃(0))Vol ˙̃η|M̆

along η̃ with ˙̃η = ∇bγ̃ , where Ψ(η̃(0)) = Ψ(0, x̆) for x̆ ∈ M̆ . Thus, we have
the following diffeomorphic splitting of (M,m).

Corollary 5.1. Let (M,F,m), RicN and λ1,p be as in Proposition 5.2. If
(M,F,m) admits a straight line γ̃ contained in the end E with m(E) <
∞, then (M,m) admits a diffeomorphic measure splitting (M,m) = (R×
M̆, e−t

√
(N−1)KL1 × m̆), where L1 is the one-dimensional Lebesgue measure

and m̆ := m|M̆ is the induced measure on M̆ .

Although we have an isometric splitting of (M, g∇bγ̃ ) and a diffeomorphic
splitting of (M,m), it is not known whether the splitting in Proposition 5.2
and Corollary 5.1 hold for Finsler mesure spaces (M,F,m) with the same
assumptions as in Proposition 5.2. If (M,F,m) is a Berwald space, then one
can obtain a splitting of (M,F,m) stated in Theorem 1.4. We remark that,
different from the Riemannian case, one can not simply write F 2(x, y) as a
form of warped product since F (x, y) is nonlinear in y.

Proof of Theorem 1.4. Assume that (M,F,m) has no finite volume ends
containing γ̃. Then it has a finite volume end containing γ̃ as in the proof of
Proposition 5.2. Then F is reversible by Proposition 5.1 and (M,m) admits
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a diffeomorphic measure splitting (R× M̆, e−t
√

(N−1)KL1 × m̆) by Corol-
lary 5.1. Next we further consider the geometric structure of (M,F ).

Let {φt} be the family of one-parameter transformation group generated
by∇bγ as before. Then every integral curve φt is a geodesic andMt = φt(M̆)
for any t ∈ R from the proof of Proposition 5.2, where M̆ is compact. For
any x̆ ∈ M̆ , choose a local coordinate system (R× U, x) on M with x =
(t, x̆) = (t, x2, · · · , xn) such that t = bγ(x), and a local orthonormal frame
{ ∂
∂xi }ni=1 with respect to g∇bγ

such that ∂
∂x1 = ∂

∂t = ∇bγ and { ∂
∂xα }nα=2 is

a local orthonormal frame on (M̆, ğ∇bγ
). Thus, the connection coefficients

γα1β(x) = γα1β(∇bγ(x)) = cδαβ of g∇bγ
. Given a vector X ∈ Tx̆M̆ for any x̆ ∈

M̆ , let V (t) = φt∗(X) be a vector field along φt. Note that the isometric
splitting of (M, g∇bγ

) in Proposition 5.2 shows that φt∗( ∂
∂xα |M̆ ) = ect ∂

∂xα .

Then D
g∇bγ

ϕ̇ V = cV . Since (M,F ) is Berwaldian and V (0) = X, we have by
(2.5)

d

dt
[F 2(V )] =

d

dt
[gV (V, V )] = 2gV (D

V
ϕ̇ V, V ) = 2gV (D

g∇bγ

ϕ̇ V, V ) = 2cF 2(V ),

which implies that F (V (t)) = ectF (X), equivalently, φ∗t (Ft) = ectF̆ , where
Ft = F |Mt

and F̆ = F |M̆ , which are also reversible. In fact, for any vector
X ∈ TxM , let V (t) = φt∗(X). We have F (V (t)) = ectF (X) as above, i.e.,
φ∗tF = ectF , which means that ∇bγ is a homothetic vector field of F and
φt is a homothetic transformation of M with a homothetic factor c

2 ([SX]).

Thus, (M,F ) = ∪t∈R(Mt, Ft), where Mt = φt(M̆).

To see that RicM̆N−1 ≥ 0, we first claim that Ricğ∇bγ ≥ 0. We simply
denote ĝ := g∇bγ

and ğ := ğ∇bγ
. In a local coordinate system taken as above,

we can write ĝ2(x, y) = (y1)2 + e2ctğ2(x̆, y̆), where y = (y1, y̆) = (y1, y2, · · · ,
yn) ∈ R× TxU . For the Riemannian metric ĝ, its geodesic coefficients (see
(5.2) in [Sh]) are given by

(5.17)
Ĝ1(x, y) = − c

2
e2ctğ(x̆, y̆)2,

Ĝα(x, y) = Ğα(x̆, y̆) + cy1yα (2 ≤ α ≤ n).

By (6.4) in [Sh], the Riemannian curvature tensors of ĝ are given by

R̂1
1(x, y) = −c2e2ctğ(x̆, y̆)2,

R̂αα(x, y) = R̆αα(x̆, y̆)− (n− 1)c2ĝ(x, y)2 + c2e2ctğ(x̆, y̆)2,
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where R̆αβ are Riemannian curvature tensors on (M̆, ğ). Thus, the Ricci
curvature of ĝ is

(5.18) R̂ic(x, y) = R̂1
1(x, y) + R̂αα(x, y) = R̆ic(x̆, y̆)− (n− 1)c2ĝ(x, y)2,

where R̆ic is the Ricci curvature of ğ. Note that ∇bγ is a nonzero geodesic
vector field with F 2(∇bγ) = ĝ(∇bγ ,∇bγ) = 1. Then the weighted Ricci cur-

vature of (M, ĝ,m) satisfies RicĝN (∇bγ) = RicN (∇bγ) ≥ −K. On the other
hand, along the integral curve η̃ of ∇bγ , we have

RicĝN (x,∇bγ) = R̂ic(x,∇bγ) + (Ψ ◦ η̃)′′(0)− (Ψ ◦ η̃)′(0)2
N − n = R̆ic(x̆)−K,

where we used Ψ(η̃(t)) = (N − n)ct+Ψ(η̃(0)) (see Proposition 5.2). Hence,
Ricğ∇bγ = R̆ic ≥ 0.

Next we prove that RicM̆N−1 ≥ 0. Fix a unit vector y̆ ∈ Ux̆M̆ (unit sphere

bundle), and extend it to a vector field Y̆ on a neighbourhood U ⊂ M̆
of x̆ such that all integral curves of Y̆ are geodesic. We further extend
Y̆ to Y on (−ε, ε)× U ⊂M by Y (t, x̆) = Y̆ (0, x̆) ∈ T(t,x̆)M . Then all in-

tegral curves of Y are geodesic. Thus, for any y̆ ∈ Tx̆M̆ , the Ricci curva-
ture RicM̆ (y̆) = RicM ((0, y̆)) with respect to F̆ = F |M̆ coincides with the
Ricci curvature RicgY̆ (y̆) = RicgY ((0, y̆)) with respect to gY̆ = gY |M̆ (in par-
ticular, it is independent of the choice of Y ). On the other hand, since
(M,F ) is Berwaldian, the Ricci curvature RicgY (y) with respect to gY co-
incides with the Ricci curvature Ricg∇bγ (y) with respect to g∇bγ

for any
y ∈ TxM . In particular, RicgY̆ (y̆) = RicgY ((0, y̆)) with respect to gY̆ co-
incides with Ricğ∇bγ (y̆) = Ricg∇bγ ((0, y̆)) with respect to ğ∇bγ

, which is

nonnegative by the above claim. Hence RicM̆ (y̆) ≥ 0. From Definition 2.1

and Corollary 5.1, one obtains RicM̆N−1(y̆) = RicM̆ (y̆) ≥ 0, where we used
(N − 1)− (n− 1) = N − n. This finishes the proof. □
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[Xc] C. Xia, Local gradient estimate for harmonic functions on Finsler
manifolds, Calc. Var. PDE, (51)(2014), 849–865.

[Xia1] Q. Xia, A sharp lower bound for the first eigenvalue on Finsler man-
ifolds with nonnegative weighted Ricci curvature, Nonlinear Anal.,
117(2015), 189–199.



✐

✐

“6-Xia” — 2022/11/19 — 21:21 — page 499 — #49
✐

✐

✐

✐

✐

✐

Finsler p-harmonic functions 499

[Xia2] Q. Xia, Sharp spectral gap for the Finsler p-Laplacian, Sci. China
Math., 62(8)(2019), 1615–1944.

[Xia3] Q. Xia, Geometric and functional inequalities on Finsler manifolds,
J. Geom. Anal., 30(3)(2020), 3099-3148.

[ZX] F. Zhang and Q. Xia, Some Liouville-type theorems for harmonic
functions on Finsler manifolds, J. Math. Anal. Appl., 417(2014),
979–995.

[ZY] W. Zhao and L. Yuan, Cheeger’s constant and the first eigenvalue of
a closed Finsler manifold, arXiv:1309.2115v1.

[ZZ] H. Zhang and X. Zhu, Yau’s gradient estimates on Alexandrov spaces,
J. Diff. Geom., 91(3)(2012), 445–522.

Department of Mathematics, School of Sciences

Hangzhou Dianzi University

Hangzhou, Zhejiang Province, 310018, China

E-mail address: xiaqiaoling@hdu.edu.cn

Received June 24, 2018

Accepted August 9, 2019



✐

✐

“6-Xia” — 2022/11/19 — 21:21 — page 500 — #50
✐

✐

✐

✐

✐

✐


	Introduction
	Preliminaries
	Local gradient estimates for Finsler p-eigenfunctions 
	Global gradient estimates for Finsler p-eigenfunctions
	Splitting of Finsler manifolds
	References

