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tion in the extreme Kerr geometry with the smooth initial data
compactly supported outside the event horizon. Firstly, we derive
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1. Introduction and main results

1.1. Brief introduction

Since the black hole stability problem has been intensively studied in the
past few decades, dating back to Regge and Wheeler in 1957 [24], who firstly
investigated spin-2 tensor fields on the Schwarzschild manifold, which indi-
cates the linear stability of Schwarzschild black hole. In the late 1960s and
early 1970s, Carter, Teukolsky and Chandrasekhar discovered that the equa-
tions describing scalar, Dirac, Maxwell and linearized gravitational fields in
the Kerr geometry are separable into ordinary differential equations(ODEs)
[10, 28, 29]. Large amounts of significant progress have been made concern-
ing the long-time behaviors of the solutions of these equations, through both
numerical and analytical methods. Here we briefly refer a few recent results
on mode stability and linear stability of Kerr black hole and the references
therein. Mode stability of sub-extreme Kerr black hole was established by
Whiting in [30], which was the first significant breakthrough of Kerr stability
problem. Quite recently, Andersson, Whiting and their collaborators general-
ized the mode stability to the real axis in [4] and for the special case(spin-0),
the mode stability argument was revisited by Shlapentokh-Rothman in [26].
Linear stability of sub-extreme Kerr black hole under higher spin perturba-
tions was given by Finster and Smoller very recently in [20]. We also refer
some results in [3, 12, 16, 17] for scalar waves in sub-extreme Kerr geometry.

However, in contrast to many previous papers concerning sub-extreme
Kerr black hole, there are few results for extremal ones until recently Are-
takis found the horizon instabilities of extremal black holes [6, 7]. An im-
portant question regarding the dynamical behaviors of extremal black holes
is worth studying. Aretakis proved the decay of axisymmetric solutions in
the extreme Kerr black hole geometry under scalar perturbations [5] while
Dain and Gentile de Austria extended to gravitational perturbations [13].
However, without symmetric conditions, we have to consider whether the
solutions of the wave equations under extreme Kerr black hole background
remain pointwise decay in the black hole exterior region.

Moreover, turning to near-horizon geometries of extremal black holes,
there are also several interesting issues worth discussing, for example, em-
ploying the near-horizon geometry to determine the correct boundary con-
ditions to extend black hole uniqueness problems [2, 11, 15] and show the
horizon instability of extremal Kerr black hole under gravitational pertur-
bations [23]. In addition, a major breakthrough made by Strominger and
Vafa [27] was to use the string theory to supply a microscopic derivation of
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the entropy for certain five dimensional extremal black holes. Therefore, we
are also interested in the near-horizon geometry of the extreme Kerr black
hole.

1.2. Main difficulties and results

To start with the scalar wave equation in the extreme Kerr geometry

(1.1) □gψ = gµν∇µ∇νψ =
1√−g

∂

∂xµ
(
√−ggµν ∂

∂xν
)ψ = 0

where g denotes the determinant of the Kerr metric gµν and in Boyer-
Lindquist coordinates (t, r, θ, φ) it reads

ds2 = gµνdx
µdxν

=
△
U
(dt− a sin2 θdφ)2 − U(

dr2

△ + dθ2)− sin2 θ

U

(

adt− (r2 + a2)dφ
)2

where U = r2 + a2 cos2 θ and △(r) = r2 − 2Mr + a2.
Now we restrict our attention to the extreme case(a2 =M2). As a con-

sequence, the function △(r) = r2 − 2Mr + a2 = (r −M)2 has a double root
r0 =M , so that the Cauchy horizon coincides with the event horizon. We
shall focus on the region r > r0 outside the horizon and therefore △(r) > 0.
Then the wave equation in Boyer-Lindquist coordinates becomes

(1.2)

[

− ∂

∂r
△ ∂

∂r
+

1

△
(

(r2 + a2)
∂

∂t
+ a

∂

∂φ

)2
− ∂

∂ cos θ
sin2 θ

∂

∂ cos θ

− 1

sin2 θ
(a sin2 θ

∂

∂t
+

∂

∂φ
)2
]

ψ = 0

Moreover, since the Kerr geometry is axisymmetric, we just focus on a fixed
φ-mode and thus for a given k ∈ Z, we make the ansatz

ψ(t, r, θ, φ) = e−ikφR(t, r, θ)

Furthermore, usually one can introduce the Regge-Wheeler coordinate u ∈ R

by

(1.3)
du

dr
=
r2 + a2

△
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and

(1.4)
∂

∂r
=
r2 + a2

△
∂

∂u

and introduce the new function Φ by

(1.5) Φ(t, u, θ) =
√

r2 + a2R(t, r, θ)

Then (1.2) takes the following form

(1.6) TΦ = 0

in (t, u, θ), where

T =
(r2 + a2)2

△ (
∂2

∂u2
− ∂2u

√
r2 + a2√
r2 + a2

)− 1

△
(

(r2 + a2)
∂

∂t
− iak

)2

+
1

sin2 θ
(a sin2 θ

∂

∂t
− ik)2 +

∂

∂ cos θ
sin2 θ

∂

∂ cos θ

and the variable u ranges over (−∞,∞) as r ranges over (r0,∞).
Unfortunately, the energy density is indefinite inside the ergosphere(the

ergoregion lies outside the event horizon and the vector field ∂t is spacelike),
making it impossible to introduce a positive definite conserved scalar prod-
uct. What’s worse, in the extreme case, the upper limit of the superradiant
frequencies is in some sense marginally trapped on the horizon. Thus the
standard energy estimates and the classical vector fields methods of wave
equations fail here. Also, we find the near-horizon geometry of extreme Kerr
is essentially different from the sub-extreme case.

Despite many difficulties mentioned above, following the same strategy
and basic framework of [16, 17] and the improved ODE techniques in [18, 20],
we try to establish an integral representation of the wave solution in extreme
Kerr geometry and then prove that the solution of the fixed azimuthal mode
decays pointwise. Here we also emphasize that the constructions and esti-
mates for the radial solutions in the near-horizon part are original and novel,
as well as a significant improvement over the sub-extreme case in [16, 17].
In addition, some estimates and proofs for the radial solutions can also be
simplified compared with the higher perturbations in [20].

More specifically, making the ansatz

(1.7) Ψ =

(

Φ
i∂tΦ

)
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we could rewrite the equation in a Hamiltonian form as

(1.8) i∂tΨ = HΨ

where H is the Hamiltonian(explicitly given below). Next, we decompose
the initial data into Fourier series of azimuthal modes

Ψ0(u, θ, φ) =
∑

k∈Z
e−ikφΨ

(k)
0 (u, θ)

By linearity, the solution is obtained by taking the sum of all the resulting
solutions for each azimuthal mode k. Hence we can derive an integral rep-
resentation for the solution in terms of each azimuthal mode and show that
the solution decays pointwise as follows.

Theorem 1.1. For any k ∈ Z, there is a parameter p > 0 such that for any

t < 0, the solution of the wave equation with initial data Ψ0 = e−ikφΨ
(k)
0 (u, θ)

∈ C∞
0 (R× S2,C2) has the integral representation

Ψ(t, u, θ, φ) =

− 1

2πi
e−ikφ

∞
∑

n=0

∫ ∞

−∞

e−iωt

(ω + 3ic)p
(R−

ω,nQ
ω
n(H + 3ic)pΨ

(k)
0 )(u, θ)dω

Moreover, the integrals above all exist in the Lebesgue sense. Furthermore,
for every ε > 0 and u∞ ∈ R, there is N such that for all u < u∞

(1.9)

∞
∑

n=N

∫ ∞

−∞
∥ 1

(ω + 3ic)p
(R−

ω,nQ
ω
n(H + 3ic)pΨ

(k)
0 )(u)∥L2(S2)dω < ε

Theorem 1.2. The solution of the wave equation with initial data Ψ0 =

e−ikφΨ
(k)
0 (u, θ) ∈ C∞

0 (R× S2,C2) decays pointwise. More precisely, we have

lim
t→−∞

Ψ(t, u, θ, φ) = 0

in L∞
loc(R× S2).
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2. Resolvent estimates and completeness of contour integrals

In order to study the dynamics of the scalar wave, we could solve the Cauchy
problem in the first order Hamiltonian form by the contour integrals over
the resolvent. However, we need to arrange us in the Hilbert space with
suitable inner products and ensure the existence of the resolvent as well as
the completeness of contour integrals in our infinite dimensional setting.

The Hamiltonian H reads

H =

(

0 1
A β

)

The corresponding functions and operators above read























ρ = r2 + a2 − a2 sin2 θ △
r2+a2

β = −2ak
ρ (1− △

r2+a2 )

A = r2+a2

ρ (− ∂2

∂u2 + ∂2
u

√
r2+a2

√
r2+a2

) + △
ρ(r2+a2)(− ∂

∂ cos θ sin
2 θ ∂

∂ cos θ +
k2

sin2 θ
)

− a2k2

ρ(r2+a2)

The operators A and β are symmetric in the Hilbert space L2(R× S2, dµ)2

with the measure

dµ := ρdud cos θ

It is immediately verified that the Hamiltonian is symmetric with respect to
the bilinear form

(2.1) < Ψ1,Ψ2 >=

∫

R×S2

< Ψ1,

(

A 0
0 1

)

Ψ2 >C2 dµ

In our setting, however, the energy scalar product is not definitely positive
can be understood from the fact that the operator A is not positive on
L2(R× S2, dµ)2. Hence our strategy is to modify (2.1) in such a way that it
becomes positive definite. More precisely, we introduce the following scalar
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product by

(2.2) (Ψ1,Ψ2) =

∫

R×S2

(Ψ1,

(

A+ δ 0
0 1

)

Ψ2)C2dµ

where

δ =
1

ρ
(r2 + a2 +

a2k2

r2 + a2
)

For a suitable constant c > 0, the functions ρ, β and δ obviously satisfy the
bounds as follows

(2.3)
1

c
≤ ρ

r2 + a2
≤ c, |β|, |δ| ≤ c

One could take the completion of the domain(we choose the smooth wave
functions which are compactly supported outside the horizon)

(2.4) D(H) = C∞
0 (R× S2,C4)

which gives rise to a Hilbert space (H, (., .)). The corresponding Hilbert
space norm is equivalent to the Sobolev norm on (H1,2 ⊕ L2)(R× S2,C4).

For a fixed k-mode, obviously, the Hamiltonian H is not symmetric on
(H, (., .)) in terms of the modified scalar product (2.2), which implies that
the Hamiltonian H is not a self-adjoint operator. However, we still can get
a symmetric operator by modifying the Hamiltonian H to a new one H+

which looks like

H+ =

(

0 1
A+ δ β

)

where we again choose the domain (2.4). Fortunately, the difference of H
and H+ is a bounded operator. That is to say

∥(H −H+)Ψ∥ =

∥

∥

∥

∥

(

0 0
−δ 0

)(

Ψ1

Ψ2

)∥

∥

∥

∥

= ∥ − δΨ1∥L2 ≤ sup
R×S2

|δ|∥Ψ∥

Upon the detailed analysis for H and H+, we can exactly follow the
previous work in the sub-extreme Kerr case in [16, Lemma 4.1, Corollary 4.2]
and [20, Lemma 4.1, Theorem 5.2] to obtain the resolvent estimates and the
contour integral completeness as follows.
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Lemma 2.1. There are constants c1, c2 > 0 such that for all Ψ ∈ D(H)
and ω ∈ C, we have

∥(H − ω)Ψ∥ ≥ 1

c1
(|Imω| − c2

1 + |Reω|)∥Ψ∥

Moreover, for every ω ∈ S := {ω ∈ C | |Imω| ≥ c
1+|Reω|}, the resolvent Rω =

(H − ω)−1 exists and is bounded by

(2.5) ∥Rω∥ ≤ c1
|Imω|

Theorem 2.2. Choosing the contour

(2.6) C = {ω | Imω = 2c} ∪ {ω | Imω = −2c}

with counter-clockwise orientation, then for every Ψ ∈ D(H) we have the
following integral

(2.7) Ψ = − 1

2πi

∫

C
(RωΨ+

Ψ

ω + 3ic
)dω

Moreover, the Cauchy problem for (1.8) with initial data Ψ0 ∈ D(H) has a
unique solution given by

(2.8) Ψ(t) = − 1

2πi

∫

C
e−iωt(RωΨ0 +

Ψ0

ω + 3ic
)dω

Similarly as in [20, Corollary 5.3, Corollary 5.4], the extra counter terms
which do not change the value of the contour integral in (2.7) make it pos-
sible to derive the alternative integral representations for any integer p ≥ 1.
For negative time t < 0, due to the dominated exponential decay term, the
integral representation of the solution can even be further simplified by
deforming the upper contour to the entire upper half plane. The integral
representation we will use in the remainder of this article is given below.

Corollary 2.3. For negative time t < 0, the Cauchy problem for (1.8) with
initial data Ψ|t=0 = Ψ0 ∈ D(H) has a unique solution given by

(2.9) Ψ(t) = − 1

2πi

∫

R−2ic
e−iωt(RωΨ0 +

Ψ0

ω + 3ic
)dω

Moreover, for any integer p ≥ 1,

(2.10) Ψ(t) = − 1

2πi

∫

R−2ic
e−iωt 1

(ω + 3ic)p
(Rω(H + 3ic)pΨ0)dω
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3. Separation of the wave equation and global estimates of

the Jost solutions

Roughly we have the contour integral for the wave solution above, however,
it remains to give the detailed analysis for the resolvent. Before that, we
firstly separate the wave equation into the radial and angular ODEs and
later we could derive the detailed estimates for the separated resolvent and
show the convergence over an infinite sum of angular modes. By making the
usual multiplicative ansatz

Φ(t, u, θ) = e−iωtϕ(u)Θ(θ)

the fixed k-mode equation (1.6) can be separated into a radial ODE

(3.1)
(

− ∂2

∂u2
+ V (u)

)

ϕ(u) = 0

with the potential

(3.2) V (u) = −(ω +
ak

r2 + a2
)2 +

λn△
(r2 + a2)2

+
1√

r2 + a2
∂2u

√

r2 + a2

and an angular ODE

(3.3) Aω,kΘ(θ) = λnΘ(θ)

where the angular operator is also called the spheroidal wave operator. The
separation constant λn is an eigenvalue of Aω,k and can thus be regarded as
an angular quantum number.

Since the angular operator Aω,k as well as the angular ODE here is
almost the same with those in sub-extreme Kerr case, we refer more details
concerning the spectral decomposition of the angular operator and some
estimates for the angular ODE in [18, 20, 21].

However, the radial ODE here is completely different from the one in
sub-extreme Kerr case. In particular, the potential near the horizon is quite
different because of the lack of the exponential decay. The near-horizon ge-
ometry of extreme Kerr is also totally different from that of the sub-extreme
Kerr. In addition, the integral representation involves solutions of the radial
ODE and indeed the radial ODE is the most difficult and important part if
one wants to study the wave solution. Therefore we have to understand the
radial solutions and derive the desired estimates for them.
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In the remainder of this section, firstly, we will construct the Jost so-
lutions ϕ́ and ϕ̀. Secondly, in order to control the infinite sum of angular
modes of the contour integrals uniformly in time, we will adopt some mod-
ified ODE techniques to estimate the global behaviors of the Jost solutions
for large λ.

3.1. Construction of the Jost solutions

In this subsection we fix the angular quantum numbers k, n and consider
the two fundamental solutions ϕ́ and ϕ̀ of the radial ODE (3.1) which satisfy
the following asymptotic boundary conditions on the horizon and at infinity,
respectively,

(3.4) lim
u→−∞

e−iΩuϕ́(u) = 1, lim
u→−∞

(e−iΩuϕ́(u))′ = 0

(3.5) lim
u→∞

eiωuϕ̀(u) = 1, lim
u→∞

(eiωuϕ̀(u))′ = 0

where Ω = ω − ω0 and ω0 = − ak
r20+a2 .

In what follows we will construct ϕ́ carefully in more details, which
is completely different from the sub-extreme Kerr case in [17]. Firstly, we
rewrite (3.1) as follows

(3.6) (− d2

du2
− Ω2)ϕ́(u) = −W (u)ϕ́(u)

with a potential W (u) = Ω2 + V (u) which vanishes at u = −∞. Note that,
using the relation (1.3) between u and r, now the potential has only polyno-
mial decay, which is completely different from the one in sub-extreme Kerr
case. More precisely, in the extreme case, the Regge-Wheeler coordinate u(r)
reads as

(3.7) u = r + 2Mln(r −M)− 2M2

r −M

Thus the potential

(3.8) W (u) = Ω2 + V (u)

has the asymptotic decay behavior |W (u)| ≤ c
u2 at u = −∞ (approaching

the horizon). However, it has the similar asymptotic structure as u→ ∞.
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As a consequence, we can also follow the similar method in [17, Lemma 3.3]
and modify to choose the Green’s function as

(3.9) S(u, v) =
1

2iΩ

(

e−iΩ(u−v)Θ(u− v) + eiΩ(u−v)Θ(v − u)
)

where Ω ̸= 0, and Θ denotes the Heaviside function defined by Θ(x) = 1 if
x ≥ 0 and otherwise Θ(x) = 0. Then the iteration scheme

{

ϕ(0)(u) = eiΩu

ϕ(l+1)(u) = −
∫ u
−∞ S(u, v)W (v)ϕ́(l)(v)dv

(3.10)

will be used to construct the Jost solutions as follows.

Theorem 3.1. For every angular momentum number n, the solutions ϕ́
are well-defined in E1 := {Ω ∈ C | ImΩ ≤ 0 and Ω ̸= 0}. They form a holo-
morphic family in the interior of E1.

Similarly as in [17, Lemma 3.4, Theorem 3.2], we can also analytically
extend ϕ́ across the real axis except for Ω = 0 as follows.

Theorem 3.2. For every angular momentum number n, there is an open
set E containing E1 such that the solutions ϕ́ are well-defined for every
Ω ∈ E and form a holomorphic family on E.

So far we still make no statements about the behaviors of ϕ́ at Ω = 0.
This is also the subtle difference in extreme Kerr, compared with the sub-
extreme Kerr case. However, after suitable rescaling, ϕ́ may have a well-
defined continuous limit at Ω = 0. More precisely, for any Ω in the set

(3.11) F := {Ω ∈ C | ImΩ ≤ 0 and |Ω| ≤ δ}

we rewrite the radial ODE (3.1) as

(3.12) (− d2

du2
+
ν2 − 1

4

u2
− Ω2)ϕ(u) = −W1(u)ϕ(u)

The new potential W1 is continuous in Ω and bounded by

(3.13) |W1(u)| ≤
c

|u|3
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for all Ω ∈ F . The solutions of the unperturbed equation can be explicitly
expressed with Bessel functions







h1(u) =
√

πΩu
2 Jν(Ωu)

h2(u) =
√

πΩu
2 Yν(Ωu)

They have the following asymptotics
{

h1(u) ∼ cos(Ωu), h2(u) ∼ sin(Ωu), if |Ωu| ≫ 1

h1(u) ∼
√
π

Γ(ν+1)(
Ωu
2 )ν+

1

2 , h2(u) ∼ −Γ(ν)√
π
(Ωu

2 )−ν+ 1

2 , if |Ωu| ≪ 1

where

(
Ωu

2
)ν+

1

2 = e(ν+
1

2
)[ln( |Ωu|

2
)+i arg(Ωu

2
)+2kπi]

We can choose k such that i arg(Ωu
2 ) + 2kπi ∈ (−3π

2 ,
π
2 ], then (Ωu

2 )ν+
1

2 is
analytic in the fixed branch. Hence the branch cut does not affect the limit
behavior if taking Ω ∈ R.

On the other hand, the Green’s function can be expressed in terms of
these two fundamental solutions h1 and h2 as

(3.14) S(u, v) =
1

ω(h1, h2)
[h1(u)h2(v)Θ(v − u) + h1(v)h2(u)Θ(u− v)]

where ω(h1, h2) = h′1h2 − h1h
′
2 = −Ω is the Wronskian. The perturbation

series ansatz reads

(3.15) ϕ =

∞
∑

l=0

ϕ(l)

In what follows we choose the function ϕ(0)

(3.16) ϕ(0)(u) = i(
Ω

2
)ν−

1

2 (h1 + ih2)(u)

such that its asymptotics at u = −∞ is a multiple times the plane wave eiΩu,
whereas for Ω = 0, it has the asymptotics (3.18). Also we give the integral
equation for the iteration scheme as follows

(3.17) ϕ(l+1)(u) = −
∫ u

−∞
S(u, v)W1(v)ϕ

(l)(v)dv

Therefore we can proceed similarly as in [17, Lemma 3.6, Theorem 3.5] to
obtain the continuous limit of ϕ́ at Ω = 0 as
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Theorem 3.3. For every angular momentum number n, there is a real
solution ϕ0 of the radial ODE (3.6) for Ω = 0(ω = ω0) with the asymptotics

(3.18) lim
u→−∞

(−u)ν0− 1

2ϕ0(u) =
Γ(ν0)√
π
, ν0 :=

√

λn(ω0) +
1

4

This solution can be regarded as a limit of the solutions from Theorem 3.1
and Theorem 3.2, in the sense that for all u ∈ R and Ω ∈ E1,

ϕ0(u) = lim
Ω→0

Ων− 1

2 ϕ́(u), ϕ′0(u) = lim
Ω→0

Ων− 1

2 ϕ́′(u), ν := (λn(ω) +
1

4
)

1

2

Here we just list the results for ϕ̀ because they are almost the same with
those in sub-extreme Kerr case in [17, Theorem 3.2, Theorem 3.5].

Theorem 3.4. For every angular momentum number n, there is an open
set G containing the real axis except for the origin

(3.19) G ⊃ G0 := {ω ∈ C | Imω ≤ 0 and ω ̸= 0}

such that the solutions ϕ̀ are well-defined for all ω ∈ G and form a holomor-
phic family on G.

Theorem 3.5. For every angular momentum number n, there is a real
solution ϕ1 of the radial ODE (3.1) for ω = 0 with the asymptotics

(3.20) lim
u→∞

uµ0− 1

2ϕ1(u) =
Γ(µ0)√

π
, µ0 :=

√

λn(0) +
1

4

This solution can be obtained as a limit of the solutions from Theorem 3.4,
in the sense that for all u ∈ R and ω ∈ G0,

ϕ1(u) = lim
ω→0

ωµ− 1

2 ϕ̀(u), ϕ′1(u) = lim
ω→0

ωµ− 1

2 ϕ̀′(u), µ :=

√

λn(ω)− 2akω +
1

4

3.2. Global estimates of the Jost solutions

Since we will deform the contours up to the real axis as in Lemma 4.3 later,
we just need to consider the real ω, which implies that the potentials of
the separated radial and angular ODEs above are both real. Moreover, the
angular part is almost the same with the sub-extreme case in [21], thus it
suffices to study the radial part. Compared with the methods in sub-extreme
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Kerr case in [17], we will take advantage of the modified ODE methods in
[20, 21]. Also the behaviors of the fundamental solution ϕ́ here are completely
different from those in sub-extreme Kerr case.

Moreover, one could also simplify all the ODE methods in [20] to esti-
mate the potential V and the fundamental solutions because here we work
with a real ODE with a real potential V . More specifically, compared with
the results in [20, Section 10], the invariant region estimates for ϕ́ are differ-
ent and thus we need to have some new estimates in different ranges. While
for ϕ̀, one can directly use the similar arguments in [20] and just simplify all
of them in terms of the scalar perturbation case(special case: the parameter
s = 0).

We follow the same notational conventions as in [20, Section 9] to ensure
that our estimates are uniform in the parameters ω and λ for fixed k. All
constants are independent of ω and λ(but they may depend on k). The
constants with small letters c1, c2, · · · are determined at the beginning and
are fixed throughout, while the symbol ≲ for ≤ c with a constant c which is
independent of the capital constants Cl. Also, we adopt the convention that
the constant Cl may depend on all previous constants C1, C2, · · · , Cl−1, but
is independent of the subsequent constants Cl+1, · · · . In particular, we may
choose the capital constants such that C1 << C2 << · · · .

Firstly, we also restrict in the large λ and ω range:

(3.21) ω2 ≥ C6 and λ ≥ C7

Here our potential V in (3.2) can be expanded with respect to parameters
λ and ω as

(3.22) V = −ω2 +
λ△

(r2 + a2)2
− 2ωak

r2 + a2
(1− 2△

r2 + a2
) +O(ω0) +O(λ0)

Compared with the potential in sub-extreme Kerr case in [20, Section 9.1],
similarly as in [20, Lemma 9.1], if the ω2 term is large enough to dominate
all the other terms, we can also directly use the WKB approximations to
estimate both ϕ́ and ϕ̀. Hence, it also suffices to estimate the solutions in
the subrange

(3.23) λ ≥ C5|ω|
3

2

where choosing C5 sufficiently large such that the large λ term dominates
all the other lower order terms(except ω2). Then one could work with the
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much simpler expansion as

(3.24) V = −ω2 +
λ△

(r2 + a2)2
+O(ω) +O(λ0)

Although we find it has the same form with that in [20, Equation (9.7)],
keep in mind that the relation (1.4) will lead to the different asymptoti-
cal behaviors for the potential when approaching the horizon and only has
polynomial decay instead of exponential decay. Therefore we also need to
calculate the first and second u-derivatives of V carefully by making use of
the relation (1.4)(here ω2 acts as a constant and thus dominated by large λ),
which shows that V also has a unique maximum but at a point umax with
r(umax) = (1 +

√
2)M and V is also concave near umax. V is also mono-

tone increasing on (−∞, umax) while monotone decreasing on (umax,∞)
and the maximal value is also bounded by λ. On [umax − 1

2 , umax + 1
2 ],

there is a constant c such that

(3.25)
λ

c
≤ −V ′′(u) ≤ cλ

Moreover, if V (umax) > 0, we can also denote the unique zeros of V by uL0
and uR0 , where u

L
0 < umax < uR0 . Otherwise, we denote u

L/R
0 = umax.

After the detailed analysis of the potential, we find that we can proceed
similarly as in [20, Section 9, Section 10] to choose the WKB method and
T -method to estimate the fundamental solutions since the different values
of V (umax) and the zeros of V will arrange us in different cases and regions.
The major difference is that we need to treat the potential V in the near-
horizon region in a different way. The remaining estimates are almost the
same with those in [20]. More precisely, we also set

(3.26)























V (umax) < −C4
√
λ WKB case

−C4
√
λ ≤ V (umax) < C4

√
λ Parabolic Cylinder (PC) case

V (umax) ≥ C4
√
λ Airy case
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Furthermore, we introduce

uL− =



























uL0 in the WKB case

uL0 − C3C
− 1

6

1 |ω|− 1

2 in the PC case

uL0 − uAiry in the Airy case

(3.27)

and

uR− =



























uR0 in the WKB case

uR0 + C3C
− 1

6

1 |ω|− 1

2 in the PC case

uR0 + uAiry in the Airy case

(3.28)

where

uAiry := C3λ
1

6 |ω|− 1

3max
(

|ω|− 2

3 , (C1V (umax))
− 1

6 |ω|− 1

3

)

In addition, in the Airy case we set

(3.29) uL+ = uL0 + uAiry

and

(3.30) uR+ = uR0 − uAiry

Hence we have the following regions:

(3.31)























WKB regions (−∞, uL−), (u
R
−,∞) in all cases

PC region (uL−, u
R
−) in the PC case

Airy regions (uL−, u
L
+), (u

R
+, u

R
−) in the Airy case

WKB region with V > 0 (uL+, u
R
+) in the Airy case

We remark that the setting for uL− and uL+ in the Airy case is completely
different from that in [20], which implies the major difference in the following
procedure for the global estimates of ϕ́ we mentioned above.

3.2.1. WKB estimates. Firstly, considering the potential in (3.22), we
can proceed exactly as in [20, Lemma 9.1] to derive the WKB estimates for
both ϕ́ and ϕ̀ in ω-dominated range as follows.
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Proposition 3.6. Given C5, assume that λ < C5|ω|
3

2 , then for any ε > 0,
by choosing the constants C6 and C7 sufficiently large we can show that

(3.32)







|V ′(u)|
|V (u)| 32

≤ ε

|V ′′(u)|
|V (u)|2 ≤ ε

for all u ∈ R, uniformly in ω and λ. Hence, we can have the WKB approx-
imations up to an arbitrarily small error as

(3.33) ϕ́ ≈ 1
4
√
−V

exp(±i
∫ u√

−V ), lim
u→−∞

±
√
−V = Ω

and

(3.34) ϕ̀ ≈ 1
4
√
−V

exp(±i
∫ u√

−V ), lim
u→∞

±
√
−V = −ω

In the following two propositions, we will show that ϕ́ can be estimated
by WKB approximations in the WKB regions and the WKB region with
V > 0, respectively.

Proposition 3.7. In the WKB regions, for any ε > 0, by choosing the
constants C0, · · · , C7 sufficiently large we find that (3.32) still holds for all
ω and λ in the range (3.23) and u ∈ (−∞, uL−). Hence, we can still use the

WKB approximation to estimate ϕ́ on (−∞, uL−).

Proof. Firstly, we can proceed exactly as in [20, Proposition 9.4] to verify
the WKB conditions in the WKB case and PC case. However, in the Airy
case, there are two subcases in terms of different values of V (umax) and

u
L/R
0 as quantified below:

(A) ω2 > C1V (umax)

(B) ω2 ≤ C1V (umax)

In subcase (A), omitting the imaginary part of V , it can be proved exactly
as in [20, Proposition 9.4]. Now we go on to the subcase (B), which is
something different from ϕ́ in sub-extreme Kerr case, but similar to ϕ̀ there.
Similarly as in [20, Proposition 9.5], we can proceed with a minor change
with index L and R, as well as the sign. Therefore the WKB conditions
(3.32) hold in the WKB regions for all the cases and we also have the WKB
approximation (3.33). □
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Proposition 3.8. In the WKB region with V > 0, there are constants C10
and c = c(λ, ω) such that ϕ́ can be estimated by

|ϕ́(u)|
C10

≤ c(λ, ω)

(V (u))
1

4

e

∫
u

uL
+

√
V ≤ C10|ϕ́(u)|

on [uL+, umax].

Proof. Since we are in the Airy case, for subcase (A), the proof can be done
exactly as in [20, Proposition 9.4]. However, in subcase (B), the proof is
completely different. More precisely, the equation (3.29) is reduced to

(3.35) uL+ = uL0 + C3λ
1

6 |ω|−1

Also we know that V has no zeros in a 1√
C1

-neighborhood of umax and

V (umax) ≳
λ
C1

is large enough to derive the desired estimates. Therefore we
will separate into two subregions as follows

(a) (uL+, umax − 1√
C1

)

(b) |u− umax| ≤ 1√
C1

In the subregion (a), we can proceed similar as in the proof of Proposition 3.7
in subcase (B). In the remaining subregion (b), we can proceed exactly as
in [20, Proposition 9.9] to verify the WKB conditions (3.32). Therefore, we
can proceed exactly as in [20, Lemma 10.3] to conclude the proof. □

Next, for ϕ̀, omitting the imaginary part of V , we can proceed exactly
as in [20, Proposition 9.5, Proposition 9.9, Lemma 10.6] to derive the WKB
estimates as follows.

Proposition 3.9. In the WKB regions, for any ε > 0, by choosing the
constants C0, · · · , C7 sufficiently large we find that (3.32) still holds for all
ω and λ in the range (3.23) and u ∈ (uR−,∞). Hence, we can use the WKB

approximation to estimate ϕ̀ on (uR−,∞).

Proposition 3.10. In the WKB region with V > 0, there are constants C10
and c = c(λ, ω) such that ϕ̀ can be estimated by

|ϕ̀(u)|
C10

≤ c(λ, ω)

(V (u))
1

4

e
−

∫
u

uR
+

√
V ≤ C10|ϕ̀(u)|

on [umax, u
R
+].
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3.2.2. Invariant region estimates. In the PC region and the Airy re-
gion, we will adopt the invariant region estimates(T -method) as introduced
in [19] to estimate the fundamental solutions and their associated Riccati
equation solutions. Here we denote the corresponding solutions of the Riccati
equation by

ý(u) :=
ϕ́′(u)

ϕ́(u)
, ỳ(u) :=

ϕ̀′(u)

ϕ̀(u)

Also we want to point out that the potential in our case is always real
and thus we can perfectly simplify all the invariant region estimates in [20,
Lemma 10.1, Lemma 10.2]. More precisely, the error terms {Ei, i = 2, 3, 4}
vanish, which implies E = |E1| and we can always choose the suitable func-
tion g ≡ 0. Now we could start with the specific estimates for ϕ́ in both PC
and Airy regions as follows.

Proposition 3.11. In the PC region, there is a constant C9 such that the
solutions ý and ϕ́ are bounded in terms of their values at uL− by

(3.36) |ý(u)| ≤ C9|ý(uL−)|

(3.37) Im ý(u) ≥ Im ý(uL−)

C9

(3.38)
|ϕ́(uL−)|

C9
≤ |ϕ́(u)| ≤ C9|ϕ́(uL−)|

on [uL−, umax].

Proof. Set γ = sup[uL

−,umax] |V | and note that V is real, compared with [20,
Lemma 10.1], our error terms are bounded by

(3.39) E = |E1| ≲
√
γ +

|V ′|
γ

Thus the integral of E can be estimated by

∫ umax

uL

−

E ≲
√
γ(umax − uL−)(1 + sup

[uL

−,umax]

|V ′|
γ

3

2

)

On the other hand, we can proceed exactly as in [20, Lemma 9.12] to show
the bound of

√
γ(umax − uL−). Omitting the imaginary part of V , we can
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simplify the argument in [20, Lemma 10.1] to verify the hypothesis of [19,
Theorem 3.3] and conclude the proof. □

Proposition 3.12. In the Airy region, there is a constant C9 such that the
solutions ý and ϕ́ are bounded in terms of their values at uL− by

|ý(u)| ≤ C9|ý(uL−)|

Im ý(u) ≥ Im ý(uL−)

C9
ϕ́(uL−)|
C9

≤ |ϕ́(u)| ≤ C9|ϕ́(uL−)|

on [uL−, u
L
+].

Proof. Here we also set γ = sup[uL

−,uL

+] |V | and thus the integral of E can also
be estimated by

(3.40)

∫ uL

+

uL

−

E ≲
√
γ(uL+ − uL−)(1 + sup

[uL

−,uL

+]

|V ′|
γ

3

2

)

Since now we are in the Airy case, for subcase (A), we can proceed ex-
actly as in [20, Lemma 9.10] to derive the bound of

√
γ(uL+ − uL−). In the

remaining subcase (B), we can proceed similarly as in [20, Lemma 9.11] to
derive the bound of

√
γ(uL+ − uL−). Therefore we can proceed exactly as in

Proposition 3.11 to conclude the proof. □

Since the behaviors of the potential are similar between both sides,
we can proceed the T -method exactly as in Proposition 3.11 and Propo-
sition 3.12 by omitting the index to derive the estimates for ϕ̀ as follows.

Proposition 3.13. In the PC region, there is a constant C9 such that the
solutions ỳ and ϕ̀ are bounded in terms of their values at uR− by

|ỳ(u)| ≤ C9|ỳ(uR−)|

Im ỳ(u) ≥ Im ỳ(uR−)

C9
|ϕ̀(uR−)
C9

≤ |ϕ̀(u)| ≤ C9|ϕ̀(uR−)|

on [umax, u
R
−].
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Proposition 3.14. In the Airy region, there is a constant C9 such that the
solutions ỳ and ϕ̀ are bounded in terms of their values at uR− by

|ỳ(u)| ≤ C9|ỳ(uR−)|

Im ỳ(u) ≥ Im ỳ(uR−)

C9
|ϕ̀(uR−)|

C9
≤ |ϕ̀(u)| ≤ C9|ϕ̀(uR−)|

on [uR+, u
R
−].

3.2.3. Estimates for bounded ω. In the above subsections, the esti-
mates of fundamental solutions in the range (3.21) have been studied. Now
we need to consider that ω ranges in a bounded set, but still for large λ.
Moreover, we exclude the cases ω = 0 and ω = ω0(Ω = 0), which have been
considered in Theorem 3.3 and 3.5. Thus we focus on the case as follows

(3.41) 0 ̸= ω2 < C6, Ω ̸= 0 and λ ≥ C7

The potential is negative both at u = ±∞ with the similar asymptotics

(3.42) V (u) = −Ω2 +
λ

u2
+O(u−3) if u→ −∞

and

(3.43) V (u) = −ω2 +
λ̃

u2
+O(u−3) if u→ ∞

where λ̃ := λ+ 2akω. It is obvious that V has a unique maximum umax and
V ≥ 0 on the interval (uL0 , u

R
0 ). Fortunately, the potential looks qualitatively

as in subcase (B) of the Airy case by the scaling argument. Therefore we can
deal with both ϕ́ and ϕ̀ in the similar way as that for ϕ̀ in [20, Section 10.3]
and we summarize the estimates as follows.

The results of Proposition 3.7 remain true for all ω and λ in (3.41) so that
the fundamental solution ϕ́ satisfies the WKB approximation on (−∞, uL−)
again with an arbitrarily small error. Additionally, on (uL−, u

L
+), it can be

estimated as in Proposition 3.12. Finally, one can estimate the solution on
(uL+, umax) exactly as in Proposition 3.8.

The results of Proposition 3.9 still hold for all ω and λ in (3.41). Conse-
quently, on (uR−,∞) the fundamental solution ϕ̀ satisfies the WKB approxi-
mation again with an arbitrarily small error. Moreover, on (uR+, u

R
−) it can be
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estimated as in Proposition 3.14. Finally, on (umax, u
R
+), one can estimate

the solution exactly as in Proposition 3.10.

4. Construction of the separated resolvent and contour

deformations

Suppose that ω /∈ σ(H) and k ≥ 0(because otherwise we could reverse the
sign of ω). If the solutions ϕ́ and ϕ̀ are linearly dependent, they would give
rise to a vector in the kernel of H − ω, in contradiction to our assumption
ω /∈ σ(H). Thus the Wronskian

(4.1) w(ϕ́, ϕ̀) := ϕ́′ϕ̀− ϕ́ϕ̀′

is nonzero. Then we could construct the Green’s function with respect to
the radial ODE (3.1) for ω in the lower half plane as

s(u, u′) :=
1

w(ϕ́, ϕ̀)
×











ϕ́(u)ϕ̀(u′), if u ≤ u′

ϕ̀(u)ϕ́(u′), if u > u′
(4.2)

satisfies the distributional equation

(

− ∂2

∂u2
+ V (u)

)

s(u, u′) = δ(u− u′)

In order to simplify the notations, we also regard s(u, u′) as the integral
kernel of a corresponding operator s. That is to say

(sϕ)(u) :=

∫

s(u, u′)ϕ(u′)du′

Once we have the constructions of the Jost solutions of the radial ODE as
well as the spectral decomposition and eigenvalues estimates of the angular
ODE, we could proceed exactly as in [16, Lemma 5.3, Proposition 5.4] and
[20, Theorem 7.1] to construct the separated resolvent as follows.

Theorem 4.1. For ω /∈ σ(H), we let Qω
n be a spectral projector of the an-

gular operator Aω. Then the resolvent of H has the representation

Qω
nRω,n = Qω

nT (ω, λ)
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where T is the operator with the integral kernel

T (u, θ;u′, θ′) = δ(cos θ − cos θ′)δ(u− u′)

(

0 0
1 0

)

+ (r2 + a2)−
1

2 δ(cos θ − cos θ′)g(u, u′)

(

τ(u′, θ′) σ(u′, θ′)
ωτ(u′, θ′) ωσ(u′, θ′)

)

and the operator g is given in

(4.3) g =

∞
∑

l=0

(−N )lsl+1

where N is the nilpotent matrix in the Jordan decomposition

AωQ
ω
n = (λI+N )Qω

n

and τ , σ are the functions

{

σ = (r2 + a2)−
3

2 [(r2 + a2)2 −△a2 sin θ]
τ = 2ak(r2 + a2)−

3

2 [(r2 + a2)−△] + ωσ

Then we could also decompose the resolvent into infinite angular modes
in the explicit forms as follows.

Corollary 4.2. For any ω on the contour C, the resolvent Rω = (H − ω)−1

has the representation

Rω =

∞
∑

n=0

Rω,nQ
ω
n

where the operators Rω,n can be written as integral operators

(4.4) Rω,nΨ(u, θ) =

∫ ∞

−∞

ρ(v, θ)

r(v)2 + a2
Rω,n(u, v)Ψ(v, θ)dv

with integral kernels given by
(4.5)

Rω,n(u, v) =
r2 + a2

ρ
δ(u− v)

(

0 0
1 0

)

+ g(u, v)

(

ω − β(v) 1
ω(ω − β(v)) ω

)
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Therefore now we can also rewrite the contour integral in Corollary 2.3
over an infinite sum of angular modes. Lack of the convergence of the sum-
mand, we firstly analyze the partial sums defined by

(4.6) ΨN (t) = − 1

2πi

N
∑

n=0

∫

R−2ic
e−iωt(Rω,nQ

ω
nΨ0 +Qω

n

Ψ0

ω + 3ic
)dω

and

(4.7) ΨN,p(t) = − 1

2πi

N
∑

n=0

∫

R−2ic

e−iωt

(ω + 3ic)p
(Rω,nQ

ω
n(H + 3ic)pΨ0)dω

where again p ≥ 1 and t ≤ 0. Upon getting the global estimates of funda-
mental solutions in terms of large angular modes in the following section,
we will be able to show that the limit(N → ∞) of the partial sums exists,
both with the summation inside and outside the integral.

In next step we now can use the mode stability result of extreme Kerr
black hole away from the real axis in [9, 22, 25] to move the contour for the
partial sums up to the real axis in the same manner with [20, Lemma 8.1].

Lemma 4.3. For any Ψ0 ∈ D(H) and any integer p ≥ 1, the partial sums
(4.6) and (4.7) can be written for any t ≤ 0 as

(4.8) ΨN (t) = − 1

2πi

N
∑

n=0

lim
ϵ→0

∫

R−iϵ
e−iωt(Rω,nQ

ω
nΨ0 +Qω

n

Ψ0

ω + 3ic
)dω

and

(4.9) ΨN,p(t) = − 1

2πi

N
∑

n=0

lim
ϵ→0

∫

R−iϵ

e−iωt

(ω + 3ic)p
(Rω,nQ

ω
n(H + 3ic)pΨ0)dω

5. Estimates for the large angular modes

Based on the global estimates of the Jost solutions above, we will have a-
priori estimate for the Green’s function as follows.

Lemma 5.1. For any u∞ > 0, there is a constant CL > 0 and n ∈ N such
that the kernels of the Green’s function s and of the operator g in (4.2)
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and (4.3) satisfy the following bound

|s(u, u′)|, |g(u, u′)| ≤ CL

for all ω ∈ R and λ > C7 uniformly for all u < u∞ and −u∞ < u′ < u∞.

Proof. To start with |ω| in (3.21), if λ < C5|ω|
3

2 , the fundamental solutions
ý and ỳ lie in different half planes and the WKB approximations in (3.33)
and (3.34) imply that

(5.1) |s(u, u′)|, |g(u, u′)| ≲ 1

|ω|

Otherwise, for |ω| in (3.23), we consider the following three different cases
in (3.26). In the WKB case, the WKB approximations give the same bound
(5.1). In the PC case, the estimates of Proposition 3.11 and Proposition 3.13
show that (5.1) again holds. In the Airy case, from the estimates of Propo-
sition 3.8, Proposition 3.12, Proposition 3.10 and Proposition 3.14, one sees
that ϕ́ is increasing exponentially in the WKB region with V > 0, whereas
ϕ̀ is exponentially decaying. Therefore |s(u, u′)| and |g(u, u′| decay for large
λ uniformly in ω.

If ω is in a bounded set in (3.41), the estimates show that ϕ́ and ϕ̀ behave
similar as in the Airy case. As shown in Theorem 3.3 and 3.5, the funda-
mental solutions ϕ́ and ϕ̀ are continuous at ω = 0, ω0, and the Wronskian
is nonzero in the limit(see Lemma 6.1).

This concludes the proof for all ω ∈ R and λ > C7. □

It follows from Lemma 5.1 that we can proceed similarly as in [20, Propo-
sition 10.13, Corollary 10.14] to give the uniform control of the separated
resolvent in terms of the large angular modes as follows.

Lemma 5.2. For sufficiently large p and all u < u∞, the following estimate
holds

1

|ω + 3ic|p ∥(Rω,nQ
ω
n(H + 3ic)pΨ0)(u)∥L2(S2) ≤

c(u∞,Ψ0)

(n+ 1)2(1 + |ω|)2

Therefore we have the convergence of the integral representation which
involves the separated resolvent into large angular modes as follows.

Corollary 5.3. For sufficiently large p, the solution of the Cauchy problem
for the wave equation with initial data Ψ|t=0 = Ψ0 ∈ D(H) can be written
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for any t < 0 as

(5.2) Ψ(t) = − 1

2πi

∞
∑

n=0

lim
ϵ→0

∫

R−iϵ

e−iωt

(ω + 3ic)p
(Rω,nQ

ω
n(H + 3ic)pΨ0)dω

Here the series absolutely converge in the sense that for any ϵ > 0, there is
N such that for all t < 0 and u < u∞,

(5.3)

∞
∑

n=N

∥ lim
ϵ→0

(

∫

R−iϵ

e−iωt

(ω + 3ic)p
(Rω,nQ

ω
n(H + 3ic)pΨ0)dω)(u)∥L2(S2) < ϵ

Proof. To start with the integral representation (2.10) in Corollary 2.3, then
separating the resolvent in Corollary 4.2, applying the estimates of the large
angular modes in Lemma 5.2 and deforming the contours(see Lemma 4.3),
this gives the result. □

6. Ruling out the poles on the real axis

We know that all integrands of the integral representation in Corollary 5.3
are holomorphic for ω in the lower half plane, making it possible to move the
contour arbitrarily close to the real axis. However, the remaining problem
is that these integrands might have poles on the real axis. These so-called
radiant modes are ruled out in two steps as follows.

Lemma 6.1. For every angular mode, the kernels of the Green’s function
s and of the operator g in (4.2) and (4.3) are uniformly bounded in a neigh-
borhood of ω = 0 and Ω = 0 (here again Im ω ≤ 0).

Proof. In view of the continuity results of Theorem 3.2, 3.3, 3.4 and 3.5, it
remains to show that choosing ω = 0, the Wronskian is nonzero. In the case
of ω0 ̸= 0, we consider it in two separate subcases.

Firstly, choosing ω = 0 and thus Ω = ω − ω0 ̸= 0, the Wronskian W =
W (ϕ́, ϕ1). Since ϕ́ is complex and ϕ1 is real, obviously the Wronskian is
nonzero.

Secondly, choosing Ω = 0 and thus ω = Ω+ ω0 ̸= 0, the WronskianW =
W (ϕ0, ϕ̀). Since ϕ0 is real and ϕ̀ is complex, again the Wronskian is nonzero.

Otherwise, in the case of ω0 = 0(i.e. ω = Ω), choosing ω = Ω = 0, the
Wronskian W =W (ϕ0, ϕ1). Noting that in this case the potential V in (3.2)
is everywhere positive, hence solutions of the radial equation (3.1) are con-
vex. Also, the asymptotics in (3.18) and (3.20) implies that the solutions ϕ0
and ϕ1 do not coincide, and thus their Wronskian is non-zero. □
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In what follows we prove that the separated resolvent has no poles on
the real axis of ω. The causality method is the same as in [20, Section 11.2],
which is an improvement of the method first developed in [17, Section 7],
but here we need to exclude two kinds of small neighborhoods of ω = 0 and
ω = ω0.

Lemma 6.2. For any n ∈ N0, the separated resolvent Rω,n in (4.4) is holo-
morphic in the lower half plane {Im ω < 0}. Moreover, it is continuous up
to the real axis. That is to say that the limit of the resolvent reads

(6.1) R−
ω,nΨ := lim

ϵ→0
(Rω−iϵ,nΨ)

for all ω ∈ R.

Proof. We want to show that Rω,n is continuous at ω1 ∈ R. In the case
ω1 = 0 and ω1 = ω0, the result follows immediately from Lemma 6.1. In the
remaining case, we can exactly proceed the proof as in [20, Proposition 11.2].

□

7. Integral representation and decay of wave solutions

Now we can give the proofs for our main theorems as follows.

Proof of Theorem 1.1:

Proof. In Corollary 5.3, we have (5.2) and (5.3). Then, we apply Lemma 6.2
to move the contour up to the real axis. This concludes the proof. □

Proof of Theorem 1.2:

Proof. Given ε > 0, we can choose N such that (1.9) holds, which con-
trols the sums of the integral representation in terms of the large angu-
lar modes. For the remaining finite angular modes n = 0, · · · , N − 1, the
Riemann-Lebesgue lemma gives the pointwise decay locally uniformly in
the spatial variables as t→ −∞. Therefore we conclude that Ψ(t) decays in
L2
loc(R× S2,C2). Differentiating the equation with respect to t, we conclude

that all time derivatives ∂mt Ψ(t) decays in L2
loc(R× S2,C2). Using the equa-

tion (1.8) and applying the Sobolev embedding theorem, we obtain that the
solution decays pointwise in L∞

loc(R× S2). □
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Remark 7.1. For clarity, we point out that, applying Theorem 1.2 with
the reversed time direction, one can also get the decay of the solution for
t→ +∞.

8. Conclusions

Firstly, we derive the integral representation which involves the fundamental
solutions of the ODEs arising in the separation of variables, which is a
starting point for a detailed analysis of the dynamics of the extreme Kerr
black hole. Based on the integral representation, we also prove that the
solution of each azimuthal mode pointwise decays in time in L∞

loc.
The results above cannot address the regularity and exact decay rate

for the wave solutions. In fact, we hope that we can derive the quantitative
decay estimates for the radial solutions in terms of parameters k in the
future. Then we can derive the convergence of infinite azimuthal modes as
well as the decay and regularity in some weighted Sobolev norm sense.

Moreover, Aretakis, Lucietti and Reall’s works [5–7, 23] found the hori-
zon instabilities of extremal black holes and showed that extremal Kerr black
holes are linearly unstable. From our constructions of the radial solutions,
we can see that the purely real zero-mode solution of ϕ́ and the polynomial
decay rate of the potential W approaching the horizon are related to the
horizon instabilities, which is in contrast to the sub-extreme Kerr case. In-
deed, ϕ́ cannot have a holomorphic extension in a neighborhood of Ω = 0
and we just get a continuous limit ϕ0 which has a branch cut. Quite re-
cently, Zimmerman and his co-authors [9] exactly associated the enhanced
growth rate of the transverse derivatives of such mode solution(has a singular
branch point in the Green’s function at the superradiant bound frequency)
on the horizon with Aretakis’s results and even extended the results under
higher spin perturbations [22], which also agree with our results of radial
Jost solutions.
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