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We study the existence of weighted extremal Kähler metrics in the
sense of [4, 32] on the total space of an admissible projective bundle
over a Hodge Kähler manifold of constant scalar curvature. Admis-
sible projective bundles have been defined in [5], and they include
the projective line bundles [29] and their blow-downs [31], thus
providing a most general setting for extending the existence theory
for extremal Kähler metrics pioneered by a seminal construction
of Calabi [12]. We obtain a general existence result for weighted
extremal metrics on admissible manifolds, which yields many new
examples of conformally Kähler, Einstein–Maxwell metrics of com-
plex dimension m > 2, thus extending the recent constructions of
[30, 38] to higher dimensions. For each admissible Kähler class
on an admissible projective bundle, we associate an explicit func-
tion of one variable and show that if it is positive on the interval
(−1, 1), then there exists a weighted extremal Kähler metric in the
given class, whereas if it is strictly negative somewhere in (−1, 1),
there is no Kähler metrics of constant weighted scalar curvature in
that class. We also relate the positivity of the function to a notion
of weighted K-stability, thus establishing a Yau–Tian–Donaldson
type correspondence for the existence of Kähler metrics of constant
weighted scalar curvature in the rational admissible Kähler classes
on an admissible projective bundle. Weighted extremal orthotoric
metrics are examined in an appendix.
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1. Introduction

1.1. Motivation and Background

There has been a great deal of interest recently in studying the relation
between the existence of extremal Kähler metrics, especially constant scalar
curvature Kähler metrics (CSCK), on a compact complex m-dimensional
manifold and various notions of algebro-geometric stability: this is the so-
called Yau–Tian–Donaldson (YTD) conjecture.

The YTD conjecture takes its origins in a formal GIT picture in which
the formal (infinite dimensional) Kähler manifold is the Fréchet space
K(M,ω) of all complex structures J on M , compatible with a given sym-
plectic form ω, whereas the formal complex structure J and Kähler form Ω
on K(M,ω) are defined by

(1) JJ(J̇) = JJ̇, ΩJ(J̇1, J̇2) =

∫

M
tr
(
JJ̇1J̇2

)ωm

m!
,

where J̇ , J̇1, J̇2 ∈ Γ(End(TM)) are tangent vectors at J ∈ K(M,ω), viewed
as smooth fields of endomorphisms of TM which anti-commute with J . The
main observation due to Fujiki [23] and Donaldson [18] is that the infinite
dimensional Lie group Ham(M,ω) of hamiltonian transformations of (M,ω)
acts on K(M,ω) in a hamiltonian way, with moment map

(2) µ(J) = ˚Scal(gJ) = Scal(gJ)− S(ω),

where Scal(gJ) is the scalar curvature of the Kähler metric gJ(·, ·) := ω(·, J ·),
S(ω) is its average, and the momentum map µ(J) at J is viewed as an ele-
ment of the Lie algebra Lie(Ham(M,ω)) ∼= (C∞(M))0 of smooth functions
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with zero mean with respect to the measure ωm/m!, via the Ad-invariant
inner product

(3) ⟨φ1, φ2⟩ =
∫

M
φ1φ2

ωm

m!
.

Thus, finding CSCK metrics in K(M,ω) corresponds to finding zeroes of
the momentum map µ whereas finding extremal Kähler metrics in K(M,ω)
corresponds to finding critical points of the Calabi functional Cal(J) =
||µ(J)||2 =

∫
M (Scal(gJ)− S)2ωm/m!.

It is natural to expect that for other geometric problems in Kähler ge-
ometry, for which we have a similar formal GIT interpretation, a suitable
YTD type correspondence holds true. This is the case for a class of prob-
lems, motivated in [7] and further developed in [34], which can be fit into the
above GIT picture by fixing a torus T ⊂ Ham(M,ω) with momentum map
z :M → t∗, and image a compact polytope P ⊂ t∗ (here t denotes the Lie
algebra of T and t∗ its dual) and two positive smooth functions u, v : P → R.
Then, the space KT(M,ω) of T-invariant ω-compatible complex structures
on M carries a formal Kähler structure (J,Ωu) with

(4) Ωu
J(J̇1, J̇2) =

∫

M
tr
(
JJ̇1J̇2

)
(u ◦ z)ω

m

m!
,

which is invariant under the action of the group HamT(M,ω) of hamiltonian
transformation commuting with T. Furthermore, the action of HamT(M,ω)
is hamiltonian. By considering the Ad-invariant inner product

(5) ⟨φ1, φ2⟩v =

∫

M
φ1φ2(v ◦ z)

ωm

m!
,

on the Lie algebra Lie
(
Ham(M,ω)T

) ∼=
(
C∞(M)

)T
0,v

of T-invariant smooth

functions of zero mean with respect to the measure (v ◦ z)ωm/m!, one iden-
tifies linear functionals on Lie

(
Ham(M,ω)T

)
with T-invariant smooth func-

tions, and denote by

(6) ˚Scalu,v,T(gJ) := µu,v,T(J)

the corresponding moment map. One thus expects that the problem of
finding T-invariant Kähler metrics in a given Kähler class, for which
˚Scalu,v,T(gJ) = 0 or, more generally, for which gradgJ (

˚Scalu,v,T(gJ)) is a
holomorphic vector field, shares many common features with the well-
established theory of CSCK and extremal Kähler metrics. We shall refer
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to such special Kähler metrics as (u, v)-CSCK and (u, v)-extremal Kähler
metrics, respectively.

There are a number of geometric situations which reduce to the above
formal GIT setting for particular choices of the functions u and v. These
include the problem of the existence of admissible CSCK metrics on rigid
semi-simple toric bundles [6], and on manifolds with free multiplicity [20].

In this paper, we shall focus on the geometric problem introduced in
[7] and [4], which fits into the above context by choosing ξ ∈ t and a > 0
such that πξ(P ) + a > 0 (where πξ : t

∗ → t∗ξ = R is the projection dual to the

inclusion R · ξ ⊂ t), and letting u := (πξ + a)−(p+1) and v := (πξ + a)1−p for
p ∈ R. As observed in [4, 33], the corresponding momentum map (6) then
becomes (up to an additive constant depending only on the deRham class
[ω])

(7) Scalf,p(g) = f2Scal(g)− 2(p− 1)f∆gf − p(p− 1)|df |2g,

where f := ⟨z, ξ⟩+ a is a positive Killing potential of the Kähler metric
g. The smooth function Scalf,p(g) is referred to as the (f, p)-scalar cur-
vature of g, and we are interested in finding Kähler metrics of constant
(f, p)-scalar curvature, which we call (f, p)-CSCK metrics or, more gener-
ally, Kähler metrics for which Scalf,p(g) is a Killing potential, which we
refer to as (f, p)-extremal Kähler metrics. The case p = 2m has been stud-
ied in [3, 7, 21, 22, 30, 32, 33, 37, 38], having the geometric meaning that
Scalf,2m(g) computes the scalar curvature of the Hermitian metric h = f−2g.
Thus, a Kähler metric g for which Scalf,2m(g) is constant corresponds to a
Hermitian metric h = f−2g which is conformally Kähler, Einstein–Maxwell,
see [3, 7, 36]. Another geometrically interesting case is when p = m+ 2,
which is related to the study of Levi–Kähler quotients [4] and extremal
Sasaki metrics [1].

1.2. Main Results

The main results of this paper concern the existence and obstruction the-
ory of (f, p)-extremal Kähler metrics and (f, p)-CSCK metrics on certain
holomorphic projective bundles of the form M = P (E0 ⊕ E∞) → S, where
E0 and E∞ are projectively flat bundles (of arbitrary rank) over a com-
pact CSCK manifold S. Such complex manifolds, introduced and studied
in [5] are called admissible. Any admissible manifold M is endowed with a
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natural S1-action, induced by the natural S1-action by fibre-wise multipli-
cations on the bundle E0. Following [5], M admits a family of S1-invariant
symplectic structures ω (called admissible) with associated momentum im-
age z(M) = [−1, 1] ⊂ R. With this normalization, for any real constants
a > 1 and p, we consider the problem of finding an ω-compatible (z + a, p)-
CSCK metric or, more generally, an ω-compatible Kähler metric for which
Scal(z+a),p is a Killing potential (called a (z + a, p)-extremal Kähler metric).
The construction of (z + a, p)-extremal Kähler metrics on admissible com-
plex manifolds naturally extends the well-known constructions, going back
to Calabi [12], of explicit extremal Kähler metrics on CP 1-bundles over a
CSCK base and their blow-downs (see [5] and the references therein) and
involves a smooth function of a single variable, defined on the momentum
image [−1, 1] ⊂ R. More precisely, we show (see Proposition 2.2) that for
any admissible Kähler class Ω = [ω] on the admissible manifold M , there
exists an explicitly defined smooth function FΩ,a,p(z) which gives rise to an
explicit (z + a, p)-extremal Kähler metric in Ω (given by the Calabi ansatz),
provided that FΩ,a,p(z) is strictly positive on (−1, 1). This gives a sufficient
condition for Ω to admit a (z + a, p)-extremal Kähler metric, and leads to
many new examples. A sample is provided by the following

Theorem 1. (see Theorem 3.1 below) Let M = P (E0 ⊕ E∞) → S be an
admissible manifold over a compact CSCK manifold S. Then, for any a > 1
and p ∈ R, M admits (admissible) (z + a, p)-extremal Kähler metrics in
some admissible Kähler classes. If, moreover, the Kähler manifold S is a
local product of nonnegative CSCK metrics, then for any a > 1 and p ∈ R,
every admissible Kähler class contains an (admissible) (z + a, p)-extremal
Kähler metric.

Similarly to the extremal case studied [5], the smooth function FΩ,a,p(z)
also allows one to compute the vanishing of the (z + a, p)-Futaki invari-
ant associated to the admissible Kähler class Ω, which in turn is the ob-
struction found in [7, 32] for a (z + a, p)-extremal Kähler metric in Ω to
be actually (z + a, p)-CSCK (see Proposition 2.5). Specializing to the case
p = 2m, this leads to many new explicit examples of conformally Kähler,
Einstein–Maxwell metrics (see Propositions 4.3 and 4.4), thus extending the
constructions in [21, 30, 37, 38] to higher dimensions.

Another aspect of the theory in [5], which we partially extend in this
paper to the (z + a, p)-extremal case, consists of showing that the positivity
of the function FΩ,a,p(z) on the interval (−1, 1) is also a necessary condi-
tion for the existence of a (z + a, p)-extremal Kähler metric in Ω. This was
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achieved in [5] by using the following two deep results concerning extremal
Kähler manifolds: (a) the boundedness of the relative Mabuchi energy, and,
(b) the uniqueness of the extremal Kähler metrics modulo the action of the
automorphism group of M . In their greatest generality, these results have
been established in [10], after the contribution of many other mathemati-
cians. Neither of these results is yet available in the general (f, p)-extremal
setting, but A. Lahdili [33] has recently established the analogue of (a) in the
(f, p)-extremal case, assuming that Ω is rational and that the corresponding
(f, p)-Futaki invariant vanishes. Expressing the relative (K,a, p)-Mabuchi
energy (Definition 2.3) of an admissible manifold in terms of the function
FΩ,a,p(z) (Propositions 2.6 and 2.7), we thus obtain

Theorem 2. (see Theorem 3.2) Let M = P (E0 ⊕ E∞) → S be an admis-
sible Kähler manifold over a compact CSCK manifold S. Suppose that the
admissble Kähler class Ω is a positive multiple of an element in H2(M,Z),
and that the corresponding smooth function FΩ,a,p(z) is strictly negative
somewhere on (−1, 1). Then Ω does not admit a Kähler metric of constant
(z + a, p)-scalar curvature.

We note that in the case whenM is a geometrically ruled complex surface
over a compact curve of genus ≥ 2 and p = 4, the above result was further
strengthened in [33], where the rationality assumption on Ω was dropped
and the non-existence of a (z + a, 4)-CSCK metric was shown to also hold
if FΩ,a,4(z) vanishes somewhere on (−1, 1).

The final and perhaps most original theme of this paper concerns the link
of the above existence and obstruction results with the algebro-geometric no-
tion of (relative) (β̂, p)-K-stability, proposed in [7]: Given a polarized com-
pact smooth projective variety (M,L) and a quasi-periodic holomorphic
vector field K̂ ∈ Lie(Aut(M,L)), the considerations in [7, Sect. 7.1] lead to
the definition of a (relative) (K̂, p)-Donaldson–Futaki invariant associated
to a certain sub-class of test configurations compatible with (M,L, K̂), see
Section 2.5 below. However, one caveat of this definition is that it involves
transcendental quantities when p is not a negative integer, leading to diffi-
culties reminiscent to the ones involved in the definition of the Lp-norm of
a test configuration for positive real values of p, see the discussion at the
end of [19]. Indeed, to the best of our knowledge, no direct link is estab-
lished so far between the existence of an (f, p)-CSCK metric in c1(L) and
the sign of the (K̂, p)-Donaldson–Futaki invariant of a compatible normal
test configuration, beyond the toric context considered in [7].
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Thus motivated, on an admissible manifold M = P (E0 ⊕ E∞) → S po-
larized by an ample line bundle L whose Chern class is a multiple of an
admissible Kähler class Ω, we endow the total space L with a quasi-periodic
real holomorphic vector field β̂a, obtained by lifting the generator of the
S1-action on M with the help of its momentum map (z + a). We further
consider the 1-parameter family of (β̂a-compatible) test-configurations cor-
responding to the degeneration to the normal cone of the infinity section
P (0⊕ E∞) ⊂M , see [44], and compute the corresponding relative (β̂a, p)-
Donaldson–Futaki invariant, by adapting the arguments of [47] and [5] to
our setting. The upshot is that the relative (β̂a, p)-Donaldson–Futaki in-
variant of such test-configurations, which we call admissible, is given by
a positive multiple of the function FΩ,a,p(ζ) alluded to above, where ζ ∈
(−1, 1) ∩Q parametrizes the admissible test configurations. We thus say
that on (M,L), the relative version of (β̂a, p)-K-semistability/(β̂a, p)-K-
stability/analytically (β̂a, p)-K-stability holds on admissible test configura-
tions if FΩ,a,p(ζ) ≥ 0 on (−1, 1)/ FΩ,a,p(ζ) > 0 on (−1, 1) ∩Q/ FΩ,a,p(ζ) > 0

on (−1, 1), respectively. On the other hand, (M,L) is said to be (β̂a, p)-K-
semistable/(β̂a, p)-K-stable/analytically (β̂a, p)-K-stable on admissible test
configurations if the above holds and, additionally, the (z + a, p)-Futaki in-
variant of the admissible Kähler class Ω vanishes. Our results then can be
summarized in the following YTD type correspondence.

Theorem 3. (see Theorem 3.3) Let M = P (E0 ⊕ E∞) → S be an admissi-
ble manifold, and L an ample holomorphic line bundle on M, which defines,
up to a positive multiple, an admissible Kähler class Ω.

• If for some a > 1, (M,L) is analytically relative (β̂a, p)-K-stable (resp.
analytically (β̂a, p)-K-stable) with respect to admissible test configura-
tions, then there exists an admissible (z + a, p)-extremal Kähler metric
in Ω (resp. an admissible Kähler metric of constant (z + a, p)-scalar
curvature).

• If Ω admits a Kähler metric of constant (z + a, p)-scalar curvature,
then (M,L) is (β̂a, p)-K-semistable with respect to admissible test con-
figurations.

Conjecturally, the second claim should be improved to showing that the
existence of a Kähler metric of constant (z + a, p)-scalar curvature in Ω
implies that (M,L) is analytically (β̂a, p)-stable with respect to admissible
test configurations. Using the results in [30, 33] we are able to establish this
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in the case of a geometrically ruled complex surface over a curve of genus
≥ 2 and p = 4:

Theorem 4. (see Theorem 3.4) Let M = P (O ⊕ E) → Σ be a ruled com-
plex surface, where E is a line bundle of positive degree over a complex curve
Σ of genus ≥ 2, L a polarization of M , which, up to a positive multiple, cor-
responds to an admissible Kähler class Ω. Then the following conditions are
equivalent

(i) Ω admits a (z + a, 4)-CSCK metric, or, equivalently, a conformally
Kähler, Einstein–Maxwell metric;

(ii) (M,L) is (β̂a, 4)-K-stable on admissible test configurations;

(iii) (M,L) is analytically (β̂a, 4)-K-stable on admissible test configura-
tions.

1.3. Structure of the paper

Section 2 contains the main technical body of the paper. After a brief re-
view of the admissible setting of [5], we summarize in Proposition 2.2 the
main tools allowing us to extend the theory of [5] from extremal to weighted
extremal metrics. With this in place, we compute in Proposition 2.5 the
weighted Futaki invariant, and in Proposition 2.6 the relative weighted
Mabuchi functional, associated to admissible Kähler metrics. The upshot
is Proposition 2.7 which links the function FΩ,a,p(z) of Theorem 2 to the
boundedness from below of the weighted Mabuchi functional. In Section 2.5,
we explore the notion of weighted K-stability proposed in [7] and compute,
using the method of [47] and [5], the (relative) weighted Donaldson–Futaki
invariant of an admissible test configuration (a special case of the degen-
eration to the normal cone studied in [44]). In Section 3, we present the
proofs of the main results from the Introduction. In the final Section 4, we
specialize our existence results to the case of conformally Kähler, Einstein–
Maxwell metrics. In particular, we obtain a large family of new examples
in any real dimension ≥ 6, see Example 4.1, Propositions 4.3, 4.4, and 4.5.
In Section 4.5, we show that some of the Einstein–Maxwell metrics (which
have positive constant scalar curvature) are not Yamabe minimizers even
though they satisfy the strict Aubin–Schoen inequality. Finally, local exis-
tence and uniqueness results for orthotoric (f, p)-extremal metrics are given
in an appendix.
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2. Admissible manifolds and metrics

In this section we review a well-known construction, originally used by Cal-
abi [12] to construct extremal Kähler metrics on the Hirzebruch complex
surfaces, and generalized in many subsequent works [26, 28, 29, 31, 45, 48]
to the case of CP 1-bundles over a CSCK base and their blow-downs. We
follow closely the notation in [5] which combines in the same formalism the
momentum profile construction of [29] and the blow-down construction of
[31, 45].

2.1. Admissible manifolds

Let (S, gS , ωS) be a compact Kähler manifold covered by the product of
simply connected Kähler manifolds (Sa,±ga,±ωa), a ∈ A ⊂ Z+, where A =
{1, . . . , N} is a finite index set and (±ga,±ωa) are the Kähler structures
with the usual sign ambiguity allowing for ga and ωa to be negative definite
tensors (in which case we write (−ga,−ωa) for the Kähler structure on Sa). In
all our applications, each ±ga is assumed to have constant scalar curvature,
i.e. (gS , ωS) is a constant scalar curvature metric (CSCK) on S. The real
dimension of each component is denoted 2da, while the scalar curvature
Scal(±ga) of ±ga is written as ±2dasa, where ±sa is the normalized scalar
curvature of ±ga.

Let E0, E∞ be projectively flat hermitian holomorphic vector bundles
over S, of ranks d0 + 1 and d∞ + 1, respectively, satisfying the condition

(8) c1(E∞)/(d∞ + 1)− c1(E0)/(d0 + 1) =
∑

a∈A
[ωa/2π].

Then, following [5], the total space of the projectivization M = P (E0 ⊕
E∞)

p−→ S is called an admissible complex manifold.
A useful observation is the following diagram of holomorphic maps

(9)

M̂= P
(
Ê0 ⊕ Ê∞

) p̂
> Ŝ = P (E0)×S P (E∞)

M

b
∨
= P

(
E0 ⊕ E∞

) p
> S,

π
∨

where Ê0 = O(−1)P (E0) and Ê∞ = O(−1)P (E∞) are line bundles over Ŝ.
The latter in turn is a CSCK manifold covered by the Kähler product

CP d0 ×
(∏

a∈A Sa
)
× CP d∞ where d0 = rk(E0)− 1 and d∞ = rk(E∞)− 1.
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Note that the complex dimension of M is m =
∑

a∈Â da + 1, where Â ⊂
N ∪ {∞} is the extended index set defined as follows:

• Â = A, if d0 = d∞ = 0.

• Â = A ∪ {0}, if d0 > 0 and d∞ = 0.

• Â = A ∪ {∞}, if d0 = 0 and d∞ > 0.

• Â = A ∪ {0} ∪ {∞}, if d0 > 0 and d∞ > 0.

Correspondingly, we consider on Ŝ the CSCK metric covered by the prod-
uct of the Kähler metrics (±ga,±ωa), a ∈ Â with (g0, ω0) and (−g∞,−ω∞)
being the Fubini–Study structures with scalar curvatures 2d0(d0 + 1) and
2d∞(d∞ + 1) on the factors CP d0 and CP d∞ , respectively.

We will consider the C∗-action on M (resp. on M̂), defined by diagonal
multiplication on E0 (resp. on Ê0) and denote by M0 (resp. M̂0) the open
dense subset of regular points of the action. It is not hard to see that the
first vertical map in the diagram is a C∗-biholomorphism from M̂0 to M0,
and is referred to in [5] as the blow-down map. In the sequel, we shall tacitly
identify M0 and M̂0; in particular, M0 has the structure of a principal C∗-
bundle over the (stable) quotient under the C∗-action of M and, in our
case, using the blow down map b in (9), it corresponds to the C∗-bundle
over Ŝ, obtained from the CP 1-bundle p̂ : M̂ → Ŝ by deleting the divisors
ê∞ = P (0⊕ Ê∞) and ê0 = P (Ê0 ⊕ 0).

2.2. Admissible metrics

A particular type of Kähler metric on M , also called admissible, will now be
described as smooth tensors on M0.

Using the assumption that E0 and E∞ are projectively flat and (8), there
exist hermitian metrics h0 on E0 and h∞ on E∞ whose respective Chern
connections have curvatures Ω0 ⊗ IdE0

and Ω∞ ⊗ IdE∞
, with Ω0 and Ω∞

being 2-forms on S satisfying (when pull-backed to the universal cover of S)

Ω∞ − Ω0 =
∑

a∈A
ωa.

The hermitian metrics h0 and h∞ induce hermitian metrics ĥ0 and ĥ∞ on
the line bundles Ê0 = O(−1)P (E0) → Ŝ and Ê∞ = O(−1)P (E∞) → Ŝ, with
curvatures 2-forms −ω0 +Ω0 and ω∞ +Ω∞, respectively. We denote respec-
tively by K0 and K∞ the generators of the circle action on Ê0 and Ê∞, and
by r0 and r∞ the corresponding fibre-wise norm functions. Using the Chern
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connections of (Ê0, ĥ0) and (Ê∞, ĥ∞), we let θ̂0 and θ̂∞ be the connection
1-forms defined on the corresponding unitary bundles, i.e. satisfying

θ̂0(K0) = 1, dθ̂0 = ω0 − Ω0;

θ̂∞(K∞) = 1, dθ̂∞ = −ω∞ − Ω∞.

Thus, the fibres-wise euclidean structures (viewed as tensors on the total
spaces Ê0 and Ê∞) take the following momentum/angular form

ĝ0 =
dz0 ⊗ dz0

2z0
+ 2z0(θ̂0 ⊗ θ̂0), ĝ∞ =

dz∞ ⊗ dz∞
2z∞

+ 2z∞(θ̂∞ ⊗ θ̂∞),

where z0 := r20/2, z∞ := r2∞/2 are the fibre-wise momentum coordinates.
For each a ∈ A let |xa| < 1 be fixed real numbers such that xaga is pos-

itive definite, and x0 := 1, x∞ := −1. We then consider the smooth positive
semidefinite tensor on the total space Ê0 ⊕ Ê∞

ĝ =
∑

a∈Â

(1 + xa)z0 + (1− xa)z∞
2xa

ga + ĝ0 + ĝ∞.

Considering the “Kähler quotient” for ĝ with respect to the S1-action gener-
ated by K0 +K∞ at the level set z0 + z∞ = 2 on Ê0 ⊕ Ê∞, we denote by gc
the smooth (possibly degenerate) tensor field induced on M̂ = P (Ê0 ⊕ Ê∞)
and by ω = gcJc the corresponding smooth (1, 1)-form, where Jc is the
induced (canonical) complex structure on M̂ . Letting z := (z0 − z∞)/2 ∈
[−1, 1], the degenerate Kähler structure (gc, ω) is written on M̂0 as:

(10)

gc =
∑

a∈Â

1 + xaz

xa
ga +

dz2

Θc(z)
+ Θc(z)θ

2,

ω =
∑

a∈Â

1 + xaz

xa
ωa + dz ∧ θ,

where Θc(z) = 1− z2 and θ := θ̂0 − θ̂∞ satisfies

(11) dθ =
∑

a∈Â

ωa.

We notice that z is the momentum map with respect to ω of the induced
S1-action on M̂ corresponding to multiplication on Ê0 or, equivalently, the
S1-action induced by the push forward of K = (K0 −K∞)/2 to the quotient
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space M̂ . Thus, ê∞ = z−1(−1), ê0 = z−1(1), and M̂0 = z−1(−1, 1). It follows
that (gc, ω) defines a Kähler metric on M̂0, which degenerates over ê0 ∪ ê∞
when Â ≠ A. Nevertheless, it is shown in [5] that (gc, ω) gives rise to a
genuine, non-degenerate, smooth Kähler metric onM = P (E0 ⊕ E∞) where
we identifyM0 with M̂0 via (9). Then, z is the momentum map with respect
to ω of the S1-action on M by multiplication on E0. The formulae (10) and
(11) describe the pull-back of (gc, ω) to M̂ via the map b in (9).

It was observed in [5] (the argument actually goes back to [29]) that
if instead of Θc(z) we take in (10) any smooth function Θ(z) on [−1, 1],
satisfying

(i) Θ(z) > 0, −1 < z < 1, (ii) Θ(±1) = 0, (iii) Θ′(±1) = ∓2.(12)

then the formulea

(13) g =
∑

a∈Â

1 + xaz

xa
ga +

dz2

Θ(z)
+ Θ(z)θ2, ω =

∑

a∈Â

1 + xaz

xa
ωa + dz ∧ θ,

and (11) introduce a smooth S1-invariant Kähler metric on M , compatible
with the same symplectic form ω. The corresponding complex structure is
then given on M̂0 =M0 by the horizontal lift of the base complex structure
on Ŝ (with respect to the chosen Chern connections on Ê0 and Ê∞) along
with the requirement Jdz = Θθ on the fibres. Such Kähler metrics onM are
called admissible Kähler metrics, and we denote by Kadm(M,ω) the space
of all admissible Kähler metrics associated to a given choice of xa, a ∈ A.
Thus, Kadm(M,ω) is identified with a Fréchet space consisting of all smooth
functions Θ(z) on [−1, 1] satisfying (12). For fixed values xa ∈ (−1, 1) (and
ga), we let Ωx := [ω] be the corresponding deRham class on M , which we
refer to as an admissible Kähler class on M . Note that from Section 1.3
in [5], it follows that Ωx is a positive multiple of an element in H2(M,Z)
precisely when xa ∈ Q for all a ∈ A.

The space Kadm(M,ω) (associated to a given data (xa, ga)) can also be
equally parametrized by the fibre-wise symplectic potentials u(z), where u(z)
is defined up to an affine-linear function of z by u′′(z) = 1

Θ(z) . It is shown

in [5, p. 566] that the fibre-wise Legendre transform T maps Kadm(M,ω)
to the space K(M,Jc,Ω) = {φ ∈ C∞(M) : ω + ddcφ > 0} of Jc-compatible
Kähler metrics in the class Ωx = [ω], and has differential given by

(14) (dT )g(u̇) → −φ̇.
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Remark 1. The parametrization of the space Kadm(M,ω) of admissible
Kähler metrics in terms of (xa, ga), a ∈ Â and Θ(z) is not effective. Indeed,
any admissible Kähler metric (g, ω) ∈ Kadm(M,ω) of the form (13) can also
be obtained by changing ga to −ga for a ∈ Â, z to −z and θ to −θ. Geomet-
rically, this corresponds simply to changing the rôles of the vector bundles
E0 and E∞ or, equivalently, changing the generator K of the S1-action by
multiplications on E0 with −K. Notice that −K is the generator of the
S1-action on P (E0 ⊕ E∞) corresponding to multiplications on E∞.

In order to simplify various curvature computations, it is useful to in-
troduce the function

(15) F (z) := Θ(z)pc(z),

where pc(z) =
∏

a∈Â(1 + xaz)
da and da = dimC(Sa) with S0 := CP d0 and

S∞ = CP d∞ . The conditions (12) imply

(i) F (z) > 0, −1 < z < 1, (ii) F (±1) = 0,(16)

(iii) F ′(±1) = ∓2pc(±1).

When A = Â, (16) is equivalent to (12).

Letting sa := ±Scal(±ga)
2da

be the normalized scalar curvatures of Sa for
a ∈ A and s0 := d0 + 1, s∞ := −(d∞ + 1), we recall the following facts (see
e.g. [2]).

Lemma 2.1. For any admissible metric g, if S(z) is a smooth function of
z, then

(17) ∆gS = −[F (z)S′(z)]′/pc(z),

where ∆g is the Laplacian of g, whereas the scalar curvature of g is given by

(18) Scal(g) =
∑

a∈Â

2dasaxa
1 + xaz

− F ′′(z)
pc(z)

.

2.3. Admissible (z + a, p)-extremal Kähler metrics

We now make the assumption that g in (7) is admissible and that the positive
Killing potential f is of the form f = |z + a| for some constant a ∈ R such
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that |a| > 1. In view of Remark 1, we shall assume (without loss of general-
ity) that a > 1. It follows from (18) and Lemma 2.1 that the (z + a, p)-scalar
curvature is given by

Scalz+a,p(g) =
−(z + a)2F ′′(z) + 2(p− 1)(z + a)F ′(z)− p(p− 1)F (z)

pc(z)

(19)

+ (z + a)2
∑

a∈Â

2dasaxa
1 + xaz

.

Thus, g is (z + a, p)-extremal in the sense of [4, 7], provided that

− (z + a)2F ′′(z) + 2(p− 1)(z + a)F ′(z)− p(p− 1)F (z)(20)

= (A1z +A2)pc(z)− pc(z)(z + a)2
∑

a∈Â

2dasaxa
1 + xaz

.

Notice that A1 = 0 in (20) is equivalent to g having a constant (z + a, p)
scalar curvature.

Next we will view the equation (20) in an alternative way that will
enable us to ensure the existence of a unique solution satisfying the boundary
conditions (ii) and (iii) of (16). On closer inspection of the left hand side of
(20) we see that it equals

−(z + a)p+1 d
2

dz2

[
F (z)

(z + a)p−1

]

and hence (20) is equivalent to

(21)
d2

dz2

[
F (z)

(z + a)p−1

]
=

pc(z)

(z + a)p−1

∑

a∈Â

2dasaxa
1 + xaz

− (A1z +A2)pc(z)

(z + a)p+1

Letting

(22) G(z) :=
F (z)

(z + a)p−1
=

Θ(z)pc(z)

(z + a)p−1

and

(23) Q(z) =
pc(z)

(z + a)p−1

(∑

a∈Â

2dasaxa
1 + xaz

)
− (A1z +A2)pc(z)

(z + a)p+1
,
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we obtain the ODE

(24) G′′(z) = Q(z)

with boundary conditions

(i) G(±1) = 0, (ii) G′(±1) = ∓ 2pc(±1)

(a± 1)p−1
.(25)

It is not hard to see that (24)-(25) has a solution if and only if

4pc(−1)

(a− 1)p−1
+

∫ 1

−1
Q(t)(1− t) dt = 0,

2pc(−1)

(a− 1)p−1
+

∫ 1

−1
Q(t) dt = − 2pc(1)

(a+ 1)p−1
,

(26)

in which case the solution is

(27) G(z) =
2pc(−1)

(a− 1)p−1
(z + 1) +

∫ z

−1
Q(t)(z − t) dt.

It is now just a matter of technical detailing to see that the necessary and
sufficient conditions (26) for the existence of the solution G(x) above in fact
determine the constants A1 and A2, via the linear system

(28)

α1,−(1+p)A1 + α0,−(1+p)A2 = 2β0,(1−p)

α2,−(1+p)A1 + α1,−(1+p)A2 = 2β1,(1−p),

where

αr,q =

∫ 1

−1
(t+ a)qtrpc(t)dt

βr,q =

∫ 1

−1

(∑

a∈Â

xadasa
1 + xat

)
trpc(t)(t+ a)qdt

+
(
(−1)r(a− 1)qpc(−1) + (1 + a)qpc(1)

)
.

(29)

Since α2
1,q < α0,qα2,q, (28) has a unique solution. It follows (once M and

hence each sa is fixed) that the functions Q(z) given by (23) and Gx,a,p(z) :=
G(z) with G given by (27) are entirely determined from the data (xa, a ∈
A,a, p), and thus are invariants of the admissible Kähler class Ω = Ωx onM .
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We now note that if F (z) satisfies (21), or equivalently,G(z) = F (z)/(z +
a)p−1 satisfies (27), then G′′(z) = p′c(z)Υ(z) with Υ(−1) = 2(d0 + 1)/(a−
1)p−1, if d0 > 0, and Υ(1) = −2(d∞ + 1)/(a+ 1)p−1, if d∞ > 0. Hence, as-
suming (25), we have G′(z) = pc(z)Ψ(z) with Ψ(−1) = 2(d0 + 1)/(a− 1)p−1

and Ψ(1) = −2(d∞ + 1)/(a+ 1)p−1, and Θ(±1) = 0. Now by l’Hôpital’s rule,
Θ′(±1) = ∓2, showing that if the function Fx,a,p(z) := (z + a)p−1Gx,a,p(z)
satisfies the positivity condition (16) (i), then Θ(z) = Fx,a,p(z)/pc(z) gives
rise to an admissible (z + a, p)-extremal Kähler metric. We summarize this
construction in the following

Proposition 2.2. Let M = P (E0 ⊕ E∞) → S be an admissible manifold,
Ω = Ωx an admissible Kähler class corresponding to the admissible data
(xa, ga), a ∈ A, and a > 1 and p two real parameters. We denote by A1, A2

the unique solution of (28) and let

FΩ,a,p(z) = Fx,a,p(z) = (z + a)p−1Gx,a,p(z),

with Gx,a,p(z) given by (27) for Q(z) given by (23), be the smooth function
satisfying (21) and (16) (ii)-(iii). If FΩ,a,p(z) satisfies (i) of (16), then we
have a corresponding admissible Kähler metric g on M which is (z + a, p)-
extremal with respect to the Killing potential f(z) = z + a. Furthermore, g
is (z + a, p)-CSCK if, moreover, A1 = 0.

2.4. The (K, a, p)-Mabuchi energy and the (K, a, p)-Futaki
invariant of an admissible manifold

We start by recalling the general setting of [7, 32]. Let (M,J) be a connected,
compact 2m-dimensional Kähler manifold endowed with a Kähler class Ω.
SupposeK denotes a real holomorphic vector field with zeroes which is quasi-
periodic, i.e. whose flow generates a (real) torus. We fix a positive constant
b > 0 and, for any K-invariant Kähler metric ω ∈ Ω, let fω,K,b be the Killing
potential of K with respect to ω, normalized by

∫
M fω,K,bω

m/m! = b. It is
not hard to see that with this normalization, the image fω,K,b(M) is an
interval independent of the choice of ω in Ω. We further require that b is
chosen so that fω,K,b > 0.

Let T be a maximal torus in the reduced automorphism group Autr(M,J)
of (M,J) with K ∈ Lie(T), and KT(M,J,Ω) denote the space of T-invariant
Kähler metrics in Ω, viewed as an affine space modelled on the vector space
C∞(M,R)T/R of T-invariant smooth functions modulo constants. At each
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point ω ∈ KT(M,J,Ω), we identify the corresponding tangent space

TωKT(M,J,Ω) ∼=
{
φ̇ ∈ C∞(M,R)T

∣∣
∫

M
φ̇f

−(p+1)
ω,K,b

ωm

m!
= 0
}
.

Furthermore, we denote by PT
g (M,R) the finite dimensional space of Killing

potentials with respect to g = −Jω of the vector fields in Lie(T), and for a
smooth function φ ∈ C∞(M,R)T, we let Πg,K,b,p,T(φ) denote its orthogonal
projection to PT

g (M,R) by using the inner product

(30) ⟨φ, ψ⟩ω,K,b,p =

∫

M
φψf

−(p+1)
ω,K,b

ωm

m!

on C∞(M,R)T. We shall use the following definition from [32].

Definition 2.3. The relative (K, b, p)-Mabuchi energy is a functional

MT

(Ω,K,b,p) : KT(M,J,Ω) → R,

defined, up to an additive constant, by the property

(
dMT

(Ω,K,b,p)

)
ω
(φ̇) = −

∫

M
(Scalf,p(g))

⊥g φ̇f−(p+1)ω
m

m!
,

where f = fω,K,b is the Killing potential of K with respect to ω and
Scalf,p(g)

⊥g := Scalf,p(g)−Πg,K,b,p,T(Scalf,p(g)) is the reduced (f, p)-scalar

curvature. The Killing vector field Z = Jgradg

(
Πg,K,b,p,T(Scalf,p(g))

)
is in-

dependent of ω ∈ KT(M,J,Ω) and is called the (K, b, p)-extremal vector field
associated to (M,J,Ω,T). It vanishes if and only if the (K, b, p)-Futaki in-
variant F(Ω,K,b,p) : Lie(T) → R defined in [7] and [32, Def. 4] is zero.

Remark 2. It turns out that in the case when the (K, b, p)-extremal vec-
tor field of (M,J,Ω,T) vanishes, one can also express the differential of
MT

(Ω,K,b,p) as

(
dMT

(Ω,K,b,p)

)
ω
(φ̇) = −

∫

M

(
Scalf,p(g)− c(Ω,K,b,p)

)
φ̇f−(p+1)ω

m

m!
,

where the constant

c(Ω,K,b,p) =

∫
M Scalf,p(g)f

−(p+1) ωm

m!∫
M f−(p+1) ωm

m!
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is independent of ω ∈ KT(M,J,Ω), see [7, 32]. Thus, in this case, MT

(Ω,K,b,p)

reduces to the Mabuchi functional introduced in [32, 33].

We now specialize to the case when M is an admissible manifold with
CSCK base, and K is the generator of the natural S1-action. It is shown
in [5, Prop. 5] that an admissible Kähler metric (g, ω, J) is invariant un-
der a common maximal compact connected subgroup G ⊂ Autr(M,J) with
K ∈ Lie(G). We thus fix a maximal torus T ⊂ G with K ∈ Lie(T). Notice
that a Killing potential of K with respect to g is given by z + a for some
a ∈ R. The constant a here is essentially the real constant b in the above
general setting: indeed, a and b are linked by an affine-linear expression
which is independent of the choice of g ∈ Kadm(M,ω). For this reason, in
the admissible context, we shall use a instead of b, thus referring to the
relative (K,a, p)-Mabuchi energy and (K,a, p)-Futaki invariant for the cor-
responding quantities defined for a fixed a > 1 (and a maximal torus T as
above).

We shall first compute the reduced scalar curvature Scalz+a,p(g)
⊥g , as

defined in Definition 2.3 (similarly to [5, Prop. 6]). The formula (19) reads
as

(31) Scalz+a,p(g) = (z + a)2
(∑

a

2dasaxa
1 + xaz

)
− (z + a)p+1

pc(z)

( F (z)

(z + a)p−1

)′′

.

For A1, A2 given by (28), integration by parts of (31) shows that
Scalz+a,p(g)−A1z −A2 is L2-orthogonal to 1 and z with respect to the
measure pc(z)(z + a)−(p+1)dz. Geometrically, this means that Scalz+a,p(g)−
A1z −A2 is ⟨·, ·⟩ω,K,a,p-orthogonal to the Killing potentials z and 1, where
⟨·, ·⟩ω,K,a,p stands for the inner product (30) corresponding to the Killing po-
tential fω,K,b = z + a. By [5, Prop. 2], any other Killing potential for a vector
field in Lie(T) has the form

∑
a(1 + xaz)fa where fa is a Killing potential for

the base factor Sa, which we can assume without loss is of zero mean with
respect to (Ŝ, gŜ). Formula (31) then shows that Scalz+a,p(g)−A1z −A2

will be ⟨·, ·⟩ω,K,a,p-orthogonal to such Killing potentials. In particular, A1K
is the (Ω,K,a, p)-extremal vector field of (M,J,Ω,K,a), computed with
respect to a maximal torus T ⊂ Autr(M,J) (see [7] and [32, Def. 7]).

Using that FΩ,a,p(z) is a solution of (21), we have

Lemma 2.4. Let (M,J, g, ω) be an admissible Kähler manifold over a
CSCK base and T a maximal torus in the isometry group of (g, ω). If g is
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parameterized by the function F (z) given in (15), then the reduced (z + a, p)-
scalar curvature Scalz+a,p(g)

⊥g is given by

Scalz+a,p(g)
⊥g = −A1z −A2 + (z + a)2

(∑

a

2dasaxa
1 + xaz

)
(32)

− (z + a)p+1

pc(z)

( F (z)

(z + a)p−1

)′′

=
(z + a)p+1

pc(z)

( FΩ,a,p(z)

(z + a)p−1
− F (z)

(z + a)p−1

)′′
,

where FΩ,a,p(z) is the smooth function defined in Proposition 2.2 in terms
of (Ω,a, p). Furthermore, the (K,a, p)-extremal vector field is A1K.

A direct corollary is the following

Proposition 2.5. Let (M,J, g, ω) be an admissible Kähler manifold over a
CSCK base, and T a maximal torus in the isometry group of (g, ω). Then,
the corresponding (K,a, p)-Futaki invariant F([ω],K,a,p) restricted to Lie(T)
vanishes iff A1 = 0. The latter condition is equivalent to F[ω],K,a,p(K) = 0.

We now give an explicit form for the relative (K,a, p)-Mabuchi energy
in the admissible case, following the similar construction in [5, Prop. 7]. To
this end, we use the parametrization of Kadm(M,ω) in terms of fibre-wise

symplectic potentials u(z) (defined by u′′(z) = pc(z)
F (z) , see Sect. 2.2) and (14).

Proposition 2.6. Let (M,J, g, ω) be an admissible Kähler manifold over a
CSCK base, and T a maximal torus in the isometry group of (g, ω). Then,
the relative (K,a, p)-Mabuchi energy associated to Ω = [ω] and T, restricted
to the space of admissible Kähler metrics Kadm(M,ω) is given (up to an
additive constant) by a positive multiple of the functional

Mgc : u(z) 7−→
∫ 1

−1

FΩ,a,p(z)

(z + a)p−1

(
u′′(z)− u′′c (z)

)
dz

−
∫ 1

−1

pc(z)

(z + a)p−1
log
(u′′(z)
u′′c (z)

)
dz,

where FΩ,a,p(z) is the smooth function defined in Proposition 2.2, and uc(z)
is the fibre-wise symplectic potential for some fixed ω-compatible admissible
Kähler metric gc ∈ Kadm(M,ω).

Proof. Using Lemma 2.4, the proof is identical to the one of [5, Prop. 7]. □
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The proof of [5, Cor. 3] yields

Proposition 2.7. Let (M,J, g, ω) be an admissible Kähler manifold over
a CSCK base, and T a maximal torus in the isometry group of (g, ω). If
the function F[ω],a,p(z) is strictly negative somewhere on (−1, 1), then the
relative (K,a, p)-Mabuchi energy of (M,J, [ω],T) is unbounded from below.

2.5. The (β̂a, p)-Donaldson–Futaki invariant

In [7, Sect. 5.1], a quantized version of the (f, 2m)-Donaldson–Futaki invari-
ant was proposed, which leads to a notion of (β, 2m)-K-stability, where β̂
is a fixed C∗-subgroup in the automorphism group Aut(M,L) of a smooth
compact polarized variety (M,L). This was further developed and gener-
alized in [33] for arbitrary weights p and for quasi-periodic vector fields
K̂ ∈ Lie(Aut(M,L)). We first briefly recall the general setting of [7, 33].

Let (M,L) be a smooth compact polarized projective variety and Ω =
2πc1(L) the corresponding Kähler class. Let β̂ be a C∗-subgroup of
Aut(M,L), which covers a C∗-subgroup β of the reduced automorphisms
group Autr(M,J) ∼= Aut(M,L)/{C∗ · IdL}. We denote by K̂β (resp.Kβ) the
generator of the corresponding S1-action on L (resp. on M), and by Bk the
infinitesimal generators for the induced linear C∗-actions on H0(M,Lk), k ≥
1. We use the following normalization for Bk: for any holomorphic section
s ∈ H0(M,Lk) and x ∈M ,

(33) (Bk · s)(x) := i
d

dt |t=0

(
φ
K̂β

t

(
s(φ

Kβ

−t (x))
))
,

where φ
K̂β

t and φ
Kβ

t are the flows of K̂β and Kβ , respectively. Notice that Bk

is hermitian (and therefore semi-simple with real eignvalues) with respect
to the L2 inner product defined by any K̂β-invariant hermitian metric on L.

We further assume that the C∗-action β̂ on L is such that Bk have positive
eigenvalues for any k large enough: this is equivalent with the property that
for any K̂β-invariant hermitian product h on L, the induced momentum map
fβ for Kβ with respect to the curvature form ωh ∈ Ω is positive. Indeed, if
∇h,k is the corresponding Chern connection on Lk, it is well-known (see
e.g. [25]) that

(34) Bk = −i∇h,k
Kβ

+ kfβ .

It then follows that each eigenvalue λ of Bk/k equals fβ(x0) for a point x0
of maxima of |s|2h,k of an eigensection s corresponding to λ.
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We now consider a normal β̂-compatible test configuration (of exponent
r) (X ,L) associated to (M,L). By this, we mean that (X ,L) is a normal po-
larized variety of complex dimension (m+ 1), endowed with a C∗-equivariant
map π : X → C, such that

• (Mt = π−1(t), Lt = L|Mt
) ∼= (M,Lr) for t ̸= 0, and

• π is flat (and therefore the dimensions of H0(Mt, L
k
t ) stay unchanged

for t ∈ C and k large enough),

• π is β̂-invariant.

It follows that the central fibre (M0, L0) of such a test configuration is (in
general) a polarized projective scheme, endowed with two commuting C∗-
actions, α̂ and β̂. We denote respectively by Ak, Bk the corresponding in-
finitesimal generators for the induced linear C∗-actions on H0(M0, L

k
0). For

each q ∈ R, we expect to have expansions

k−m+1−qTr(Bq
k) = kbq,00 (β̂) + bq,01 (β̂) +O(k−1),

k−m−qTr(AkB
q
k) = kbq,10 (β̂, α̂) + bq,11 (β̂, α̂) +O(k−1).

(35)

Remark 3. To the best of our knowledge, such Hilbert expansions hold
for q ∈ N (see [19]) and, for any q, if we assume that M0 is smooth (this
follows from the considerations in [33, 34]) or that M0 is a polarized toric
variety [7]. We shall exhibit below another situation (in which (M0, L0) is a
singular normal polarized variety) where the expansions (35) hold.

Assuming that (35) do hold on (M0, L0), we define the (β̂, p)-Donaldson–
Futaki invariant of the test configuration (X ,L) as follows.

Definition 2.8. The (β̂, p)-Donaldson–Futaki invariant of a normal β̂-
compatible test configuration (X ,L) associated to (M,L) such that (35)
holds true on the central fibre (M0, L0) is defined to be
(36)

DF(β̂,p)(X ,L) :=
b
(1−p),1
1 (β̂, α̂)b

−(p+1),0
0 (β̂)− b

−(p+1),1
0 (β̂, α̂)b

(1−p),0
1 (β̂)

b
−(p+1),0
0 (β̂)

.

The polarized variety (M,L) is called (β̂, p)-K-semistable if for any normal,
β̂-compatible test configuration (X ,L) for (M,L) as above,

(37) DF(β̂,p)(X ,L) ≥ 0.
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(M,L) is (β̂, p)-K-stable if, furthermore, equality in (37) holds if and only if
X =M × C,L = L⊗OC is a product test configuration (see Remark 4 part
(2) below).

Remark 4. (1) Note that the definition of (β̂, p)-K-stability makes sense for
any positive multiple λ of β̂, i.e. taking λBk instead of Bk. This will introduce
an overall positive factor in the computation of DF(λβ̂,p). More generally,

one can define (K̂, p)-K-stability with respect to a quasi-periodic vector
field K̂ ∈ Lie(Aut(M,L)), by considering the linear operators Bk acting on
H0(M0, L0) via (34) for a K̂-invariant hermitian product h on L, see [33].

(2) In the special case of the product test configuration X =M × C,L =
L⊗OC, the expression on the rhs of (36) can be regarded as defining a nu-
merical invariant DF(β̂,p)(α̂) associated to any C∗-subgroup α̂ ⊂ Aut(M,L).

It is possible to see (this follows essentially from [33]) that the expansions
(35) hold and DF(β̂,p)(α̂) coincides, up to a positive multiplicative constant,

with the differential-geometric (fβ̂ , p)-Futaki invariant FΩ,fβ̂ ,p evaluated on

the S1-generator of α. (Recall that fβ̂ is the Killing potential of β deter-

mined from β̂, see (34).) In particular, DF(β̂,p)(α̂) does not depend on the

lift α̂ of the C∗-action α ⊂ Autr(M,J). At times we will even replace α in
this notation by the corresponding S1-generator.

Following [47], one can also define a relative version of the (β̂, p)-
Donaldson–Futaki invariant. To this end, we suppose that (M,L) is a po-
larized variety, T ⊂ Autr(M,J) a fixed maximal torus, β ⊂ Tc with a lift
β̂ ⊂ Aut(M,L) as before. Here Tc denotes the complexification of T. For
any two C∗-actions γ′, γ′′ ⊂ Tc, we suppose that there exist an expansion

(38) k−m−q−2Tr(C ′
kC

′′
kB

q
k) = cq,00 (β̂, γ̂′, γ̂′′) +O(k−1),

where C ′
k and C ′′

k are the corresponding generators on the space H0(M,Lk)
for some lifts γ̂′ and γ̂′′ of γ′ and γ′′ to Aut(M,L). We then define the
(β̂, p)-weighted product for the C∗-actions γ′, γ′′ by

(39) ⟨γ′, γ′′⟩(β̂,p) := c
−(1+p),0
0 (β̂, γ̂′, γ̂′′)− b

−(1+p),0
0 (β̂, γ̂′)b−(1+p),0

0 (β̂, γ̂′′).

The above definition does not depend on the lifts of γ′ and γ′′ to Aut(M,L):
it computes the zero order coefficient of the expansion

k−m+p−1Tr(C̊ ′
kC̊

′′
kB

−(1+p)
k ) = ⟨γ′, γ′′⟩(β̂,p) +O(k−1),
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where C̊k = Ck − ckkId for a constant ck, uniquely determined by the con-
dition (see (35))

k−m+pTr(C̊kB
−(1+p)
k ) = O(k−1).

Using the fact that the eigenvalues of Bk/k are in the interval

[(fβ)min, (fβ)max] ⊂ (0,∞),

one sees that (39) defines (by linearity) an inner product on t = Lie(T).
We now consider a normal test configuration (X ,L) associated to a

smooth polarized variety (M,L) as before, and also assume that it is com-
patible with a fixed maximal torus T ⊂ Autr(M,J) (with β ⊂ Tc as before).
Thus, T is subtorus of a maximal torus T0 ⊂ Aut(M0, L0)/{C∗ · IdL0

} of the
reduced autmorphism group of the central fibre (M0, L0), and we have an em-
bedding t ⊂ t0 of the corresponding Lie algebras. We denote by γex ∈ t ⊂ t0

the element corresponding to the K(β̂,p)-extremal vector field of (M,Ω,T),

where Ω = 2πc1(L). We also assume that the inner product ⟨·, ·⟩(β̂,p) is well-
defined on t0, i.e. the expansions (38) hold on (M0, L0). We then define (by
using Remark 4 part (2))

Definition 2.9. The relative (β̂, p)-Donaldson–Futaki invariant DFγex

(β̂,p)
(X ,L)

of a test configuration (X ,L) as above is defined by

DFγex

(β̂,p)
(X ,L) := DF(β̂,p)(X ,L)−

[
⟨α, γex⟩(β̂,p)
⟨γex, γex⟩(β̂,p)

]
DF(β̂,p)(γex).

The polarized variety (M,L) is said to be relative (β̂, p)-K-semistable if for
each T compatible normal test configuration (X ,L) as above, DFγex

(β̂,p)
(X ,L)≥

0. It is relative (β̂, p)-K-stable if, furthermore, equality in the latter inequal-
ity holds if and only if (X ,L) is a product configuration.

We now explore Definitions 2.8 and 2.9 in the case when Ω is an admis-
sible Kähler class on M = P (E0 ⊕ E∞), which is also a rational multiple of
a polarization, i.e. rΩ = 2πc1(L) for a holomorphic line bundle L over M
and a positive integer r. As the theory is homogeneous in r, we shall assume
without loss r = 1 and refer to L as an admissible polarization.

In [5, 47] (following [44]) a 1-parameter family of test configurations
associated to an admissible polarized variety (M,L) is constructed as follows:
let X be the degeneration to the normal cone of the divisor e∞ := P (0⊕
E∞) ⊂M . Thus, π : X → C is a (smooth) polarized variety obtained by
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blowing up M × C along e∞ × {0}. Notice that M0 = π−1(0) consists of
two (smooth) varieties: the exceptional divisor P in X and the blow-up M̂
of M along e∞, intersecting at the exceptional divisor E = P (νe∞) of M̂ ,
where νe∞ := TM|e∞/Te∞ → e∞ is the normal bundle of e∞.

We denote by α̂ the induced C∗-action on (M0, L0). It is shown in [44]
that the Seshadri constant of e∞ with respect to L is 2, which means that
there is a 1-parameter family of polarizations Lc = p∗(L)⊗O(−cP ), c ∈
(0, 2) ∩Q of X , where p : X →M is induced by the natural projection from
M × C to M , with (Mt, (Lc)|Mt

) ∼= (M,L), thus giving rise to the family
(X ,Lc) of test-configurations associated to (M,L). Letting ζ := c− 1 (this
is a formal substitution), we have, for k sufficiently large, the following α̂-
invariant decomposition of H0(M0, L

k
0) (see [5, 47])

H0(M0, L
k
0) =

(1−ζ)k⊕

i=0

H0(e∞, L
k
|e∞ ⊗ S2k−iν∗∞)

(1+ζ)k⊕

j=1

H0(e∞, L
k
|e∞ ⊗ S(1+ζ)k−jν∗∞)

=

2k⊕

i=0

H0(e∞, L
k
|e∞ ⊗ S2k−iν∗∞).

(40)

It is shown in [5, 47] that (40) gives rise to the eigenspace decomposition
of the generator Ak for the action of α̂ on H0(M0, L

k
0) as follows: each

summand of the first line corresponds to the eigenvalue 0 whereas (with the
normalization (33) for Ak) the summands on the second line correspond to
eigenvalues j. In the above equalities, ν∗∞ denotes the dual of the normal
bundle of e∞.

Let us now endow the admissible manifold M = P (E0 ⊕ E∞) with an
admissible Kähler metric (g, ω) in the admissible Kähler class Ω = 2πc1(L):
we can take for instance the canonical Kähler metric (10). We denote by
K the vector field on M generating the S1-action β(eiφ) · [a, b] = [eiφa, b] =
[a,−eiφb]. Recall that (g, ω) is K-invariant by construction, and z is the
momentum map of K with respect to ω whereas e∞ = z−1(−1). We denote
by h the hermitian metric on L whose curvature form is ω and use its Chern
connection to lift K to a holomorphic vector field K̂ = KH − (z + a)T on
the total space of L, where KH is the horizontal lift and T is the vector field
generating the multiplications by eiφ on each fibre of L. It is well-known
(see e.g. [25]) that for suitable values of a, K̂ generates an S1-subgroup in
Aut(M,L). Restricting K̂ to L|e∞ (where z = −1 and KH = 0), we see that
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these values are a ∈ Z. We denote by β̂a the corresponding lift of the S1-
action β to L, and byBk,a the generator for the action onH0(M0, L

k
0). Notice

that β̂a acts fibre-wise with weight (−a+ 1) on L|e∞ , and with weight 1 on
the normal bundle ν∞ of e∞: The latter follows for instance by computing
the eigenvalues of the hessian of z with respect to g (or equivalently of
dJdz = d(1− z2)θ with respect to ω) along e∞ = z−1(−1), by using the
explicit form of the metric (10) and (11). Thus, under the normalization
(33), Bk,a acts on H0(e∞, Lk

|e∞ ⊗ Suk+vν∗∞) as (k(u+ a− 1) + v)Id.

By Remark 4 part (1), in relation to questions of stability, we can con-
sider more generally the quasi-periodic vector fields K̂ = KH − (z + a)T
with a ∈]1,+∞). With a small abuse of notation, we shall continue to re-
fer to the corresponding (K̂, p)-Futaki–Donaldson invariant as DF(β̂a,p)

and

to the (K̂, p)-K-stability notion as (β̂a, p)-K-stability. We now prove the
following.

Proposition 2.10. Let M = P (E0 ⊕ E∞) → S be an admissible manifold
over a CSCK base, and L an admissible polarization of M , which defines,
up to a scale, an admissible Kähler class Ω with FΩ,K,a,p(K) = 0, see Propo-

sition 2.5. Then, the (β̂a, p)-Donaldson–Futaki invariant of the test config-
uration (X ,Lζ) with parameter ζ ∈ Q ∩ (−1, 1), corresponding to the degen-
eration of the normal cone of the infinity section e∞ = P (0⊕ E∞), is given
up to a positive scale by FΩ,a,p(ζ).

Proof. The computations are essentially identical to those in [5, pp. 589–
591 ], so we shall be brief. The dimension of H0(e∞, Lk

|e∞ ⊗ Suk+v(ν∗∞)) is

computed in [5] to be (up to a common positive constant which we shall
ignore)

(41) km−1psc(u− 1 + v/k) +O(km−3),

where psc(t) :=
∏

a∈Â(1 + xa(t+ sa/2k))
da .

In order to compute Tr(Bk,a)
q, we shall use that for any smooth function

on the interval [0, R], R ∈ Q>0, we have

(42)

Rk∑

i=ε

f
( i
k

)
= k

∫ R

0
f(t)dt+

1

2

(
f(R) + (−1)εf(0)

)
+O(k−1),

where ε = 0, 1. The above estimate is established in [44] for a polynomial (see
also [5, Lemma 9]), but it also holds for any smooth function f , see [27, 49].
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We have already shown that (Bk/k)
q acts on H0(e∞, Lk

|e∞ ⊗ S2k−i(ν∗∞))

as (1 + a− i/k)qId. We thus obtain (by using (41) and (42))

k−q−m+1Tr(Bk,a)
q =

( 2k∑

i=0

(
(1 + a)− i/k

)q
psc(1− i/k)

)
+O(k−1)

= k

∫ 2

0
(1 + a− t)qpsc(1− t)dt

+
1

2

(
(a− 1)qpsc(−1) + (1 + a)qpsc(1)

)
+O(k−1)

= k

∫ 1

−1
(t+ a)qpc(t)dt

+
1

2

∫ 1

−1

(∑

a∈Â

xadasa
1 + xat

)
pc(t)(t+ a)qdt

+
1

2

(
(a− 1)qpc(−1) + (1 + a)qpc(1)

)
+O(k−1)

= kα0,q +
1

2
β0,q +O(k−1),

(43)

where αr,q and βr,q are defined by (29).
Similarly, we have

k−q−mTr(AkB
q
k,a) =

(1+ζ)k∑

j=1

(j/k)
(
(ζ + a)− j/k

)q
psc(ζ − j/k)

)
+O(k−2)

= k

∫ 1+ζ

0
t
(
(ζ + a)− t

)q
psc(ζ − t)dt

+
1

2
(1 + ζ)(a− 1)qpc(−1) +O(k−1)

= k

∫ ζ

−1
(ζ − t)(t+ a)qpc(t)dt

+
1

2

∫ ζ

−1

(∑

a∈Â

dasaxa
1 + xat

)
(ζ − t)(t+ a)qpc(t)dt

+
1

2
(1 + ζ)(a− 1)qpc(−1) +O(k−1).

(44)

Notice that (43)-(44) show that the expansions (35) hold for our test con-
figurations (for any value of the parameter ζ ∈ (−1, 1) ∩Q). Our remaining
task is to compute the corresponding (β̂a, p)-Donaldson–Futaki invariants.
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By (43), we obtain

(45) b
−(p+1),0
0 (β̂a) = α0,−(p+1), b1−p,0

1 (β̂a) =
1

2
β0,1−p.

whereas (44) yields

b
−(p+1),1
0 (β̂a, α̂) =

∫ ζ

−1
(ζ − t)(t+ a)−(p+1)pc(t)dt

b
(1−p),1
1 (β̂a, α̂) =

1

2

∫ ζ

−1

(∑

a∈Â

dasaxa
1 + xat

)
(ζ − t)(t+ a)1−ppc(t)dt

+
1

2
(1 + ζ)(a− 1)1−ppc(−1).

Substituting in (36), and using also A1 = 0 (so that, by the first relation in
(28) 2β0,−p+1 = α0,−(1+p)A2), (23) and (27), we get

DF(β̂a,p)
(X ,Lζ) = b

(1−p),1
1 (β̂a, α̂)−

(
b1−p,0
1 (β̂a)

b
−(1+p),0
0 (β̂a)

)
b
−(p+1),1
0 (β̂a, α̂)

=
1

4

∫ ζ

−1

(∑

a∈Â

2dasaxa
1 + xat

)
(ζ − t)(t+ a)1−ppc(t)dt

+
1

2
(1 + ζ)(a− 1)1−ppc(−1)

− 1

4

∫ ζ

−1
(ζ − t)(t+ a)−(p+1)A2pc(t)dt

=
1

4
Gx,a,p(ζ) =

1

4

(
(ζ + a)1−pFΩ,a,p(ζ)

)
.

The claim follows. □

Proposition 2.11. Let M = P (E0 ⊕ E∞) → S be an admissible manifold
over a CSCK base, and L an admissible polarization ofM which corresponds,
up to a scale, to an admissible Kähler class Ω. If for some a > 1 (M,L) is
(β̂a, p)-K-stable, then FΩ,K,a,p(K) = 0 and FΩ,a,p(z) > 0 on (−1, 1) ∩Q.

Proof. We first prove that if an admissible polarized manifold (M,L) is
(β̂a, p)-K-stable, then FΩ,K,a,p(K) = 0, i.e. A1 = 0, see Proposition 2.5. To
this end, we consider the product test configuration X =M × C with π :
X → C being the projection to the C-factor, and the polarization L = L⊗
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OC. We endow X with the C∗-action given by β on M and the standard C∗-
action on C, and consider, via β0, the lifted action on L. Thus, the central
fibre of this test configuration is (M,L) with induced C∗-action α = β0. A
computation similar to (43) shows that (35) hold true with

b
−(1+p),1
0 (β̂a, α) = α1,−(1+p), b1−p,1

1 (β̂a, α) =
1

2
β1,(1−p).

and (45). It follows from the definition of DF(β̂a,p)
and (β̂a, p)-K-stability

that

DF(β̂a,p)
(X ,L) = 1

2

(
β1,(1−p) −

α1,−(1+p)

α0,−(1+p)
β0,(1−p)

)

=
(α0,−(1+p)α2,−(1+p) − α2

1,−(1+p)

4α0,−(1+p)

)
A1

= 0.

Thus, we have A1 = 0 or, equivalently, FΩ,K,a,p(K) = 0, see Proposition 2.5.
By Proposition 2.10, the corresponding function satisfies FΩ,a,p(ζ) > 0 for
ζ ∈ (−1, 1) ∩Q. □

By Lemma 2.4, the (β̂a, p)-extremal vector field of an admissible polar-
ized manifold (M,L) (endowed with a maximal torus T ⊂ Aut(M,L) cover-
ing a maximal torus of the isometry group of an admissible Kähler metric)
is A1K. As the definition of the relative (β̂a, p)-Donaldson–Futaki invari-
ant given in Definition 2.9 does not change if we replace γex by a non-zero
multiple, and the inner product (39) does not depend on the chosen lift of
the action to L, we can assume that γex corresponds the the S1-action β0.
Calculations similar to the ones in the proofs of Propositions 2.10 and 2.11
allow us to compute the relative (β̂a, p)-Donaldson–Futaki invariant of an
admissible test configuration

Proposition 2.12. Let M = P (E0 ⊕ E∞) → S be an admissible manifold
over a CSCK base, and L an admissible polarization of M corresponding,
up to a scale, to an admissible Kähler class Ω. Then, the relative (β̂a, p)-
Donaldson–Futaki invariant with respect to a maximal torus T ⊂ Aut(M,L)
covering a maximal torus of isometries of an admissible Kähler metric on
M of the test configuration (X ,Lζ) with parameter ζ ∈ Q ∩ (−1, 1) cor-
responding to the degeneration of the normal cone of the infinity section
e∞ = P (0⊕ E∞), is a positive multiple of FΩ,a,p(ζ). In particular, if (M,L)

is relative (β̂a, p)-K-stable, then FΩ,a,p(ζ) > 0 on (−1, 1) ∩Q.
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3. Proof of the main results

3.1. Existence results for admissible (z + a, p)-extremal Kähler
metrics

In this section, we use Proposition 2.2 to construct admissible (z + a, p)-
extremal Kähler manifolds.

Theorem 3.1. Suppose that M = P (E0 ⊕ E∞) → S is an admissible man-
ifold over a CSCK base S. Then, for every choice of a, p ∈ R such that a > 1,
M admits an admissible (z + a, p)-extremal Kähler metric in the admissible
Kähler class Ωx if the parameters x = (xa, a ∈ A) are sufficiently small. If,
furthermore, S is a local product of non-negative CSCK metrics, then any
admissible Kähler class on M contains an admissible (z + a, p)-extremal
metric.

Proof. It is not hard to check that the linear system in (28) does not degen-
erate as x→ 0 (meaning xa → 0 for all a ∈ A). In particular, lim

x→0
A1 and

lim
x→0

A2 both exist. Further, the limit for x→ 0 of the right hand side (23)

of (24) is a function of z that has

• at most one zero in (−1, 1) if d0 = d∞ = 0.

• at most two zeroes in (−1, 1) if either d0 or d∞ are non-zero, but not
both.

• at most three zeroes in (−1, 1) if both d0 and d∞ are non-zero.

Combined with the end point conditions (25) in each of these three cases,
lim
x→0

G(z) will not have enough inflection points to have any zeroes over −1 <

z < 1. Hence we can conclude that for |xa| sufficiently small for all a ∈ A,
Fx,a,p(z) satisfies (i) of (16) and the claim follows from Proposition 2.2.

Assuming that S is a local product of non-negative CSCK metrics, we
shall adapt the root counting argument due to Hwang [28] and Guan [26]
(see also Proposition 11 in [5]) to check that the function Fx,a,p(z) in Propo-
sition 2.2 verifies (i) of (16) for any admissible data xa, a ∈ A, thus defining
an admissible (z + a, p)-extremal metric in any admissible Kähler class.

The idea is to interpret (21) in a form similar to Equations (4) and (5)
of [5, Prop. 1]. Indeed, (21) can be rewritten as follows

(46) (z + a)p+1G′′
x,a,p(z) = (

∏

a∈Â

(1 + xaz)
da−1)P (z),
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where P (z) is a polynomial of degree ≤ #Â+ 1, satisfying for all a ∈ Â,

(47) P (−1/xa) = 2dasaxa(−1/xa + a)2
∏

b∈Â\{a}

(
1− xb

xa

)
.

Now, the positivity (i) of (16) is equivalent to positivity of Gx,a,p(z) =
Fx,a,p(z)
(z+a)p−1 over (−1, 1). Thus our task is to check that, under the assump-

tions in the theorem, Gx,a,p(z) is positive for −1 < z < 1. Note that for
−1 < z < 1, the sign of G′′

x,a,p(z) equals the sign of (z + a)p+1G′′
x,a,p(z), and

hence also the sign of P (z) defined by (46)-(47). Using the boundary con-
ditions (25) for Gx,a,p(z), the proof now essentially follows the proof of [5,
Prop. 11] with some minor modifications. □

3.2. A non-existence result for (z + a, p)-CSCK metrics

In this section we establish the following

Theorem 3.2. LetM be an admissible Kähler manifold over a CSCK base.
Suppose that Ω is an admissible Kähler class which is a positive multiple
of an element in H2(M,Z), and the function FΩ,a,p(z) defined in Proposi-
tion 2.2 has negative values on (−1, 1). Then,M does not admit a (z + a, p)-
CSCK metric in Ω.

Proof. It was observed in [7, 32] that the vanishing of the (K, b, p)-Futaki
invariant F(Ω,K,b,p) is a necessary condition for the existence of an (f, p)-
CSCK metric in Ω. In the admissible setting, by using Proposition 2.5, this
corresponds to the condition thatA1 given by (28) vanishes. In the remainder
of the argument, we can therefore assume that F(Ω,K,b,p) = 0. A. Lahdili
proved in [33, Thm. 1] that if (M,J,Ω,K,T) is a compact Kähler manifold as
in Section 2.4, such that the Kähler class 1

2πΩ ∈ H2(M,Z) and the (K, b, p)-
Futaki invariant F(Ω,K,b,p) vanishes on Lie(T), then the boundedness from
below of the relative (K, b, p)-Mabuchi functional MT

(Ω,K,b,p) is a necessary

condition for the existence of an (f, p)-CSCK metric in Ω. As all of the
conditions are invariant under a positive scale of Ω, combining Lahdili’s
result with Proposition 2.7 concludes the proof. □

Notice that in the admissible setting, the assumption that a positive multiple
of Ωx belongs to H2(M,Z) corresponds to admissible data x = (xa, a ∈ A)
such that xa ∈ Q, a ∈ A.
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3.3. A Yau–Tian–Donaldson type correspondence

Because of Propositions 2.5, 2.11 and 2.12, we give the following

Definition 3.1. LetM = P (E0 ⊕ E∞) → S be an admissible manifold over
a CSCK base, L an admissible polarization ofM , which defines, up to a scale,
an admissible Kähler class Ω.

(a) We say that (M,L) is (β̂a, p)-K-semistable/(β̂a, p)-K-stable/analytically
(β̂a, p)-K-stable on admissible test configurations if A1 given by (28)
vanishes and, respectively, FΩ,a,p(z) ≥ 0 on (−1, 1)/FΩ,a,p(z) > 0 on
(−1, 1) ∩Q/FΩ,a,p(z) > 0 on (−1, 1).

(b) Similarly, (M,L) is said to be relative (β̂a, p)-K-semistable/relative
(β̂a, p)-K-stable/analytically relative (β̂a, p)−K-stable on admissible
test configurations if FΩ,a,p ≥ 0 on (−1, 1)/FΩ,a,p(z) > 0 on (−1, 1) ∩
Q/FΩ,a,p > 0 on (−1, 1).

Our discussion from the previous sections can be summarized in the
following

Theorem 3.3. Let M = P (E0 ⊕ E∞) → S be an admissible manifold, and
L an admissible polarization ofM which defines, up to a scale, an admissible
Kähler class Ω.

• If (M,L) is analytically relative (β̂a, p)-K-stable (resp. analytically
(β̂a, p)-K-stable) with respect to admissible test configurations, then there
exists an admissible (z + a, p)-extremal Kähler metric in Ω (resp. an ad-
missible Kähler metric of constant (z + a, p)-scalar curvature).

• If Ω admits a Kähler metric of constant (z + a, p)-scalar curvature,
then (M,L) is (β̂a, p)-K-semistable with respect to admissible test configu-
rations.

Proof. The first statement follows from Proposition 2.2. The second state-
ment follows from [7, Cor. 2], Proposition 2.5 and Theorem 3.2. □

Remark 5. In the previous theorem analytic stability implied the existence
of a distinguished metric. We do not expect that the same is implied just
by (β̂a, p)-K-stability, see [5] for an example with a = +∞. Below, we prove
no such counterexample exists if p = 2m = 4 and A1 = 0.

Theorem 3.4. Let (M,J) = P (O ⊕ E) → Σ be a ruled complex surface
over a compact complex curve, where E is a line bundle of positive degree
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over Σ, L a polarization of (M,J), which, up to a positive scale, corresponds
to an admissible Kähler class Ωx with x ∈ (0, 1), and a > 1 a real number.
Then the following conditions are equivalent

(i) Ωx admits an admissible Kähler metric which is conformally Einstein–
Maxwell with conformal factor (z + a)−2;

(ii) Ωx admits a Kähler metric which is conformally Einstein–Maxwell
with conformal factor (z + a)−2;

(iii) (M,L) is (β̂a, 4)-K-stable on admissible test configurations;

(iv) (M,L) is analytically (β̂a, 4)-K-stable on admissible test configura-
tions.

Proof. We first notice that in this case, FΩx,a,4(z) = Fx,a,4(z) is a polynomial
of degree ≤ 4. (This follows from Proposition 2.2 and (27), see also [30].)
As shown in [33, Cor. 2], the construction of [30] combined with Proposi-
tion 2.7 above and the stability under deformation result in [32], yield the
equivalences

(i) ⇐⇒ (ii) ⇐⇒ (iv).

Noting that clearly (iv) =⇒ (iii), we thus need to establish the implication
(iii) =⇒ (iv), i.e. that

Fx,a,4(z) > 0 on (−1, 1) ∩Q =⇒ Fx,a,4(z) > 0 on (−1, 1)

under the assumption FΩx,a,4(K) = 0 = A1 (with A1 computed by (28)).
Suppose for contradiction that Fx,a,4(z) ≥ 0 on (−1, 1) and has double

irrational root. By Theorem 3.1 this implies that the genus of Σ is at least
two. By the results in [30], the condition A1 = 0 implies that a = a(x) is a
root of

(48) x = 2a/(1 + a2)

which is determined uniquely by the requirement |a| > 1. On the other hand,
the condition that Fx,a,4(z) has a double root on (−1, 1), together with
(16)(ii), implies the vanishing of the discriminant of the second order poly-
nomial Fx,a,4(z)/(1− z2). It then follows (see [30, Sect. 3.1]) that x must
coincide with the a root in (0, 1) of

Ds(x) = 12 + 12sx− 19x2 − 12sx3 + (7 + s2)x4(49)

+ 6(2 + 2sx− 2x2 − sx3)
√

1− x2 = 0,
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with s = 2(1− g)/d (here g stands for the genus of Σ and d for the degree
of L). We denote the above two roots by (x0,a0).

Now, we can take x = x0 to be rational, as the polarization assumption
implies that Ωx has rational coefficients. Our first goal is to show a0 must
also be rational. A careful look at (49) reveals that either

√
1− x20 is ratio-

nal, and then so must a0 = (1 +
√

1− x20)/x0 be, or else f1(x0) = f2(x0) =
0, where f1 = 12 + 12sx− 19x2 − 12sx3 + (7 + s2)x4 and f2 = 6(2 + 2sx−
2x2 − sx3). However, the latter cannot hold since f2 = 0 implies s = 2(1−x2)

x(−2+x2)

and substituting this into f1 − f2 = 0 gives (1−x2)x4(−12+7x2)
(−2+x2)2 = 0 which can-

not be zero for 0 < x < 1. Thus a0 is rational.
As both a0 and x0 are rational, it follows from the explicit computations

in [30] that Fx0,a0,4(z) has rational coefficients. As ±1 are roots of Fx0,a0,4(z)
by (16)(ii)-(iii), any double root of Fx0,a0,4(z) must then be rational too, a
contradiction. □

4. Conformally Kähler, Einstein–Maxwell metrics

While Proposition 2.2 gives an existence result for the boundary value prob-
lem consisting of (20) together with (ii) and (iii) of (16), if we are aiming
for (|z + a|, p)-CSCK solutions, we need to set A1 = 0, which in turn yields
an equation for a in terms of the admissible data that may or may not
have a solution with |a| > 1. Of course, if we are successful in finding such
a solution, we still need to ensure that (i) of (16) holds. We can often be
more specific about the form of the solution when A1 = 0, if we consider
particular values of p.

Indeed, supposing p ̸= 0, 1, ...,m,m+ 1 then it is easy to see that any
solution to (20) is of the form

(50) F (z) = cp(z + a)p + cp−1(z + a)p−1 +

m∑

k=0

ck(z + a)k,

where c0, ..., cm depend on A1, A2 and the admissible data. Thus, Fx,a,p(z)
must be given by (50) for a unique choice of the coefficients A1, A2, cp,
and cp−1 (whose existence is guaranteed by Proposition 2.2 so that F (z)
satisfies (ii) and (iii) of (16)). In particular, if p > m+ 1 is an integer, then
F (z) = Fx,a,p(z) is a polynomial.
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In this section, we will explore further the case p = 2m (m > 1). Then
(20) becomes

(51) − (z + a)2F ′′(z) + 2(2m− 1)(z + a)F ′(z)− 2m(2m− 1)F (z)

= (A1z +A2)pc(z)− pc(z)(z + a)2
∑

a∈Â

2dasaxa
1 + xaz

.

Imposing A1 = 0 and (i) of (16) in (51) will thus produce an Einstein–
Maxwell metric h = 1

(z+a)2 g where g is given by (13) with Θ(z) = F (z)/pc(z),

see [7].

4.1. Conformally Kähler, Einstein–Maxwell metrics over the
product of two Riemann surfaces

Let Σa (a = 1, 2) be compact Riemann surfaces with CSCK metrics
(±ga,±ωa) and let M be P (O ⊕ E) → Σ1 × Σ2 where E = E1 ⊗ E2 for Ea

being pullbacks of line bundles on Σa with c1(Ea) = [ωa/2π]. Let ±2sa be the
scalar curvature of ±ga. Note that if degEa = na, then sa = 2(1− ga)/na,
where ga denotes the genus of Σa. In this case, with slight abuse of notation,
we will also write M = P (O ⊕O(n1, n2)) → Σ1 × Σ2.

Equation (51) now takes the form

− (z + a)2F ′′(z) + 10(z + a)F ′(z)− 30F (z)(52)

= (A1z +A2)(1 + x1z)(1 + x2z)

+ (z + a)2 (2s1x1(1 + x2z) + 2s2x2(1 + x1z)) ,

and we know that its solution Fx,a,6(z) is of the form

Fx,a,6(z) = c6(z + a)6 + c5(z + a)5 + c3(z + a)3

+ c2(z + a)2 + c1(z + a) + c0.

Plugging Fx,a,6(z) into (52) tells us that

c0 =
a(ax1 − 1)(ax2 − 1)A1 − (ax1 − 1)(ax2 − 1)A2

30

c1 =
(−1 + 2ax1 + 2ax2 − 3a2x1x2)A1 + (−x1 − x2 + 2ax1x2)A2

20
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c2 =
(−x1 − x2 + 3ax1x2)A1 − x1x2A2 + 2(s1x1(1− ax2) + s2x2(1− ax1))

12

c3 =
−x1x2A1 + 2x1x2(s1 + s2)

6

On the other hand, (ii) of (16) is equivalent to

c5 =
−(2a(3+a

2)(1+3a2)c0+(a2−1)(1+10a2+5a4)c1+4a(a2−1)2(a2+1)c2+(a2−1)3(1+3a2)c3)
(1−a2)5

c6 =
(1+10a2+5a4)c0+4a(a4−1)c1+(a2−1)2(1+3a2)c2+2a(a2−1)3c3

(1−a2)5 ,

so c5 and c6 are determined by c0, c1, c2, c3 (and a). With this established,
(iii) of (16) is equivalent to the following two equations
(53)
(3 + 12a+ 30a2 + 20a3 + 15a4)c0 + 2(a2 − 1)(1 + 5a+ 5a2 + 5a3)c1

+ 2(a2 − 1)2(1 + 2a+ 3a2)c2 + (a2 − 1)3(1 + 3a)c3

= (a− 1)(a+ 1)5(x1 − 1)(x2 − 1)

(3− 12a+ 30a2 − 20a3 + 15a4)c0 + 2(a2 − 1)(−1 + 5a− 5a2 + 5a3)c1

+ 2(a2 − 1)2(1− 2a+ 3a2)c2 + (a2 − 1)3(−1 + 3a)c3

= (a− 1)5(a+ 1)(1 + x1)(1 + x2).

Using the formulas for c0, ..., c3 above this yields a linear system of two equa-
tions with the two unknowns A1 and A2. The linear system has coefficients
that depend on the admissible data (s1, s2, x1, x2) as well as a in a rather
unwieldy way.

One may check, aided by Mathematica, that if x1, x2 > 0 then there
exists a > 1 such that A1 = 0. In general, it appears very to be quite difficult
to write this a > 1 solution explicitly, so it is non-trivial to test the final
condition (i) of (16). But we were able to describe an explicit example below.
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Example 4.1. Let x1 = 1/2, x2 = 1/3, a = 5. This gives

A1 =
20(9840− 4502s1 + 1203s2)

24073

A2 =
20(7836 + 4442s1 + 2883s2)

3439

c0 = −12(314 + 2978s1 + 787s2)

24073

c1 =
2(−135 + 1294s1 + 279s2)

1267

c2 =
7640− 14198s1 − 2697s2

15204

c3 =
−98400 + 69093s1 + 12043s2

433314

c5 =
415− 83s1 − 13s2

30408

c6 =
−21912 + 2862s1 + 433s2

13866048
.

When we solve for A1 = 0 we get s2 =
2(2251s1−4920)

1203 and then compute
Scal(h) = 240

401(148s1 − 153) and

Fx,a,6(z) =
(1− z2)

86616

(
3(26078 + 22965z + 7553z2 + 1095z3 + 53z4)

+ s1(1− z2)(1181 + 465z + 28z2)
)
.

Notice that Fx,a,6(z) satisfies (i) of (16) when s1 > 0, so we get a family of
conformally Kähler, Einstein–Maxwell metrics on

M = P (O ⊕O(n1, n2)) → CP1 × Σ2,

where n1 ∈ Z+ is arbitrary and g2, n2 ∈ Z+ are such that

(4502− 4920n1)

1203n1
=

(1− g2)

n2
.

We can take for instance n2 = 1203n1 and g2 = 4920n1 − 4501 in order to
satisfy the above relation. With this choice, Scal(h) > 0 for n1 = 1, but for
n1 > 1 Scal(h) < 0.
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Since Fx,a,6(z) satisfies (i) of (16) when s1 = 0, we also have confor-
mally Kähler, Einstein–Maxwell metrics on M = P (O ⊕O(n1, n2)) → T 2 ×
Σ2, where n1 ∈ Z+ is arbitrary and g2, n2 ∈ Z+ are such that

(−1640)

401
=

(1− g2)

n2
.

A specific solution is n2 = 401,g2 = 1641.
Finally, if s1 < 0 is sufficiently close to zero, (i) of (16) still holds and

we will have some conformally Kähler, Einstein–Maxwell metrics on M =
P (O ⊕O(n1, n2)) → Σ1 × Σ2, where the genus of Σ1 and Σ2 are both at
least two. (On the other hand, (16)-(i) fails as s1 → −∞.)

By [5, Thm. 8], none of the manifolds above admits a CSCK metric.

The next example is inspired by the construction of Kähler–Einstein
admissible metrics by Koiso and Sakane [31, 45].

Example 4.2. We consider M = P (O ⊕O(1,−1)) → CP1 × CP1. Thus,
we assume that s1 = 2 and s2 = −2, 0 < x1 < 1 and −1 < x2 < 0. The pair
(x1, x2) ∈ (0, 1)× (−1, 0) determines the admissible Kähler class and, up to
rescaling, this exhausts the entire Kähler cone. Notice that when x1 = 1/2 =
−x2, the corresponding Kähler class admits a Kähler–Einstein admissible
metric which was first discovered by Koiso–Sakane. Moreover, for x2 = −x1
or x2 = −1 + x1, the corresponding Kähler class admits a CSCK admissible
metric (see e.g. [5, Thm. 9]).

As in Section 4.2, this is a case that is included by Theorem 3.1. For
a given pair (x1, x2) ∈ (0, 1)× (−1, 0), by Proposition 2.2, we have an ad-
missible metric associated to a conformally Kähler Einstein-Maxwell metric
whenever there is a solution |a| > 1 of A1 = 0. Here we calculate that A1 = 0
if and only if

q(x1, x2,a) := −3(x1 + x2)(x1 − x2 + x1x2)

+ 3
(
2x1 + 3x21 − 2x2 + 8x1x2 + 2x21x2 + 3x22 − 2x1x

2
2 + 2x21x

2
2

)
a

− 3(x1 + x2)(15− 2x1 + 2x2 + 17x1x2)a
2

+ (60− 10x1 + 45x21 + 10x2 + 240x1x2 − 18x21x2

+ 45x22 + 18x1x
2
2 + 90x21x

2
2)a

3

− 5(x1 + x2)(33 + 4x1 − 4x2 + 45x1x2)a
4

+ (72 + 34x1 + 123x21 − 34x2 + 408x1x2 + 50x21x2

+ 123x22 − 50x1x
2
2 + 90x21x

2
2)a

5
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− (x1 + x2)(159− 2x1 + 2x2 + 105x1x2)a
6

+ (60− 30x1 + 15x21 + 30x2 + 96x1x2 − 38x21x2

+ 15x22 + 38x1x
2
2 + 6x21x

2
2)a

7

+ 15(−1 + x1 − x2)(x1 + x2)a
8 = 0.

Now, q(x1, x2, 1) = 192(−1 + x1)
2(−1 + x2)

2 > 0 and q(x1, x2,−1) =
−192(1 + x1)

2(1 + x2)
2 < 0. If the leading coefficient of q(x1, x2,a), i.e.

15(x1 + x2)(−1 + x1 − x2), is nonzero, it follows that there is an |a| > 1
such that q(x1, x2,a) = 0. On the other hand, when x2 = −x1, we have

q(x1, x2,a)/a = 96(1− x21)
2

+ 16(1− x21)(12− 2x1 + 9x21)(a
2 − 1)

+ 2
(
(1− x1)(59 + 31x1 − 59x21 − 27x31) + 4

)
(a2 − 1)2

+
(
(1− x1)

2(28 + 26x1 − 9x21 − 6x31) + 2 + 6x51
)
(a2 − 1)3,

and so in this case q(x1, x2,a) = 0 has no solutions for |a| > 1. In a similar,
but slightly more tedious fashion one can verify that when x2 = −1 + x1,
there are no solutions |a| > 1 to q(x1, x2,a) = 0. However, in those cases
there are admissible CSCK metrics (see [5]), which are of course conformally
Kähler, Einstein–Maxwell metrics with constant conformal factor (in the
setting of this paper, they can be thought as ((z + a), 2m)-CSCK metrics
with a = ∞), so we can formulate the following general existence result.

Proposition 4.3. Every Kähler class on M = P (O ⊕O(1,−1)) → CP1 ×
CP1 has an admissible Kähler metric, conformal to an Einstein–Maxwell
metric.

4.2. Conformally Kähler, Einstein–Maxwell metrics on
admissible projective bundles over a CSCK 4-manifold

We now assume that the base S is a Hodge Kähler manifold of real dimen-
sion 4 with non-negative constant scalar curvature 4s (we drop the index a
when |A| = 1). Note that 0 ≤ s ≤ 3 (the latter inequality follows from the
Fujita inequality for Hodge manifolds, see [24]). By [5, Thm 7], there are no
admissible CSCK metrics in this case.

Given 0 < x < 1 (again, without loss of generality we may assume x is
positive as long as we also do not assume upfront that a > 1), Theorem 3.1
and Proposition 2.2 tells us that an admissible metric associated to a (|z +
a|, p)-CSCK solution is equivalent to a solution |a| > 1 of A1 = 0.
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From the linear system (28) and a simple calculation, A1 is given by

A1 =
8
(
−xa2 + 2a− x

)

45(a− 1)10(1 + a)10
q(a, x),

where

q(a, x) = 96(1− x)3

+ 32(1− x)2(12− 9x− sx)(a− 1)

+ 8(1− x)(87− 120x− 16sx+ 39x2 + 10sx2)(a− 1)2

+ 8(1− x)(93− 81x− 29sx+ 18x2 + 3sx2)(a− 1)3

+ 2(243− 315x− 104sx+ 99x2 + 70sx2 − 15x3 + 22sx3)(a− 1)4

+ 2(90− 63x− 45sx+ 14sx2 − 3x3 + 15sx3)(a− 1)5

+ 5(6− 2s+ s(2 + x)(1− x)2)(a− 1)6

We always get at least one solution of A1 = 0 with |a| > 1 from the factor

−xa2 + 2a− x = 0,

namely

(54) a0(x) :=
1 +

√
1− x2

x
.

Notice that a0(x) > 1 and a0(x) is a decreasing function of 0 < x < 1 with
lim
x→0

a0(x) = +∞ and lim
x→1

a0(x) = 1. Any additional solutions of A1 = 0

would come from solutions of the equation q(a, x) = 0 satisfying |a| > 1, x ∈
(0, 1).

Proposition 4.4. Let (S, gS , ωS) be a compact CSCK Hodge 4-manifold
with non-negative scalar curvature, and E be a holomorphic line bundle such
that c1(E) = [ωS/2π]. Then, in each admissible Kähler class onM = P (O ⊕
E) → S there exists at least one admissible Kähler metric conformal to an
Einstein–Maxwell metric.

Remark 6. Over the interval 1 < s ≤ 3, the expression 2s/(1 + s2) is a de-
creasing function surjecting onto [3/5, 1). If x = 2s/(1 + s2), then we observe
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that

q(a, x) =
2(a− s)2

(1 + s2)3
(
15− 2s2 + 3s4 − 32s

(
3 + s2

)
a+ 2

(
9 + 130s2 + 5s4

)
a2

− 32s
(
3 + 5s2

)
a3 + 5

(
3 + 6s2 + 7s4

)
a4
)
= 0

has a double root at a = s and, moreover, a0(x) = s. Thus A1 = 0 has a
triple root at a0 = s.

If, on the other hand, 2s/(1 + s2) < x < 1, then a0(x) < s so that

q(a0(x), x) =
6a0(a

2
0 − 1)4

(
5a2

0 − 1
)
(a0 − s)

(
a2
0 + 1

)3

(with a0 =
1+

√
1−x2

x ) is negative whereas q(1, x) and lim
a→+∞

q(a, x) are pos-

itive. We conclude that in this case, for each x ∈ (0, 1) q(a, x) = 0 has (at
least) two additional solutions, a±(x) with 1 < a−(x) < a0(x) < a+(x).

Remark 7. Assuming more generally that (S,±gS ,±ωS) is a Hodge Kähler
manifold of complex dimension d with non-negative constant scalar curva-
ture, it seems from experimental data (letting d take various values ≥ 3)
that we always have the solution a0(x) of A1 = 0 defined in (54) but a
direct proof of this seems out of reach at the moment.

Conjecture 1. Let (S, gS , ωS) be a compact CSCK Hodge 2(m− 1)-
manifold with non-negative scalar curvature and E be a holomorphic line
bundle such that c1(E) = [ωS/2π]. Then, in each admissible Kähler class
on M = P (O ⊕ E) → S there exists at least one admissible Kähler metric
which is conformal to an Einstein–Maxwell metric.

4.3. Conformally Kähler, Einstein metrics

We recall here the constructions going back to Page [43] and Bérard-Bergery
[11] of admissible Kähler manifolds which are conformally Einstein. These of
course are special cases of the conformally Kähler, Einstein–Maxwell metrics
discussed in this paper. By the results of [14, 15], any compact Kähler man-
ifold (M,J, g, ω) of real dimension 2m ≥ 6, which is conformally Einstein is
isometric to one of these examples. We use the computations of [2, Sect. 5.6]
in order to recast the construction of [11, 14] in the admissible setting of
this paper. Indeed, according to [2, Sect. 1.4 & 5.6], for an admissible Kähler
metric g of the form (13) to be conformally Einstein with a conformal factor
(z + a), we must have that
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• |A| = 1;

• M = P (O ⊕ E) → S, where (S, gS , ωS) is a compact Kähler–Einstein
manifold of positive scalar curvature Scal(gS) = 2(m− 1)s, and E
is a holomorphic line bundle over S with c1(E) = [ωS/2π]; here s =
c1(S)·c1(E)m−2

c1(E)m−1 is the normalized scalar curvature of gS ;

• there exists an admissible parameter x = xe ∈ (0, 1) and a real con-
stant ae > 1, such that F (z) = Fxe,ae,2m(z) is given by

Fxe,ae,2m(z)

xm−1
e

=

m∑

j=1

j

m

(
2m

m+ j

)[
λ+

(
ae −

1

xe

)m−j(
z +

1

xe

)m+j

− λ−
(
ae −

1

xe

)j−1(
z +

1

xe

)m−j
+

s

m

(
z +

1

xe

)m]
,

(55)

where λ+, λ− are real constants.

The point is that F (z) = Fxe,ae,2m(z) automatically verifies (20) and A1 = 0
(because the metric (z + ae)

−2g is Einstein and therefore g has constant
(z + ae, 2m)-scalar curvature), so we are left with the 4 boundary condi-
tions (16)-(ii) &(iii). These in turn place 4 algebraic relations for the real
constants (λ+, λ−, xe,ae). The upshot of the constructions in [11, 15] is that
if s > 1, then these relations determine the 4 constants, up to a two-fold
ambiguity, i.e. there exists a unique xe ∈ (0, 1) and a pair ae = a± > 1 for
which Fxe,a+,2m(z) = Fxe,a−,2m(z) satisfies (55) (see [2, 15] for the geometric
meaning of this). Notice that the positivity condition (16)(i) is then auto-
matically satisfied by Theorem 3.1.

It is clear from the setting above that we can weaken the Kähler–Einstein
assumption for (S, gS , ωS) and assume instead that (S, gS , ωS) is a CSCK
Hodge manifold with normalized scalar curvature s > 1. Then the solutions
(xe,ae = a±) will correspond to two Einstein–Maxwell metrics h± = (z +
a±)−2g in the conformal class of the admissible metric corresponding to
F (z) = Fxe,a±,2m(z). We thus have the following existence result (related to
Conjecture 1).

Proposition 4.5. Let (S, gS , ωS) be a compact Hodge Kähler 2(m− 1)-
manifold of constant scalar curvature Scal(gS) > 2(m− 1), and E a holo-
morphic line bundle such that c1(E) = [ωS/2π]. Then, M = P (O ⊕ E) → S
admits an admissible Kähler metric conformal to an Einstein–Maxwell met-
ric.
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Notice that the constraint Scal(gS) > 2(m− 1) in the above proposition
is equivalent to

c1(S) · c1(E)m−2 > c1(E)m−1,

which in turn limits the choice for the line bundles E on a given S. By
the Fujita inequality [24], the number of such line bundles cannot exceed
(m− 1).

4.4. Conformally Kähler, Einstein–Maxwell metrics and the
Yamabe functional

On a compact manifold M of real dimension 2m, the normalized Einstein–
Hilbert functional on the set of Riemannian metrics is defined by

S(g) :=

∫
M Scal(g) dvg

(
∫
M dvg)

m−1

m

,

where dvg denotes the volume form of g. The restriction of S to a conformal
class [g] of Riemannian metrics on M is known as the Yamabe functional.
It is a deep result that the Yamabe functional attains a minimum Y[g] on
[g] (see e.g. [9, 39, 46]). Any metric h ∈ [g] for which S(h) = Y[g] is called
a Yamabe minimizer of [g]. It is well-known that any Yamabe minimizer
h has constant scalar curvature and, if Y[g] ≤ 0, any metric in [g] which
has constant scalar curvature must be homothetic to the (unique up to
scaling) Yamabe minimizer in [g]. For Y[g] > 0, the Yamabe minimizers are
not necessarily homothetic and, furthermore, a constant scalar curvature
metric in [g] is not necessarily a Yamabe minimizer. Thus, one can ask

Question 4.6. Given a constant scalar curvature metric h ∈ [g] such that
S(h) > 0, is h a Yamabe minimizer?

It is known (see e.g. [9]) that if a constant scalar curvature representative
h of [g] is a Yamabe minimizer, it must satisfy the inequality

(56) S(h) ≤ 2m(2m− 1)V ol(S2m)1/m,

where S2m denote the unit sphere in R2m+1. Furthermore, by [46], the in-
equality (56) is strict if (M, [g]) is not conformal to S2m. Notice that for e.g.
m = 2, the right hand side of this inequality is equal to 8

√
6π.
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In what follows, we shall investigate Question 4.6 for some of the
Einstein–Maxwell metrics (which are of constant scalar curvature by def-
inition, see [7]) that we found in the conformal classes of admissible Kähler
metrics.

As we have already mentioned, some of the Einstein–Maxwell metrics we
found have negative scalar curvature (see Example 4.1), so they are Yamabe
minimizers by the above general remarks. Other such examples are the Ein-
stein metrics discussed in Section 4.3, which have positive constant scalar
curvature and are Yamabe minimizers by virtue of the Obata theorem [41].

We shall now give examples for which the Einstein–Maxwell metrics are
not Yamabe minimizers. To this end, we use the following general remarks.
Suppose we have an admissible metric g as defined in (13). Then for any t >
1 we consider the conformal metric ht := (z + t)−2g with scalar curvature
equal to

(57)

Scal(ht) = −(z+t)2F ′′(z)+2(2m−1)(z+t)F ′(z)−2m(2m−1)F (z)
pc(z)

+ (z + t)2
∑

a∈Â
2dasaxa

1+xaz
,

and volume form (z + t)−2mωm/m!. It follows from [21] (this can be checked
directly in the admissible setting) that the function f(t) = S(ht) does not
depend on the choice of F (z), i.e. on the particular choice of admissible
representative in the given admissible Kähler class. Moreover, as follows
from Theorem 2.3 (b) in [21], (or can be checked directly in the admissible
setting) the critical values of f(t) correspond exactly to the values t = a

where A1 from (20) (or equivalently the Futaki invariant F([ω],K,a,2m), see
Proposition 2.5) vanishes. Thus, from Proposition 2.2 it follows that any
critical value t = a of f(t) corresponds to a conformally Kähler, Einstein–
Maxwell metric ha = (z + a)−2g provided that F[ω],a,2m(z) satisfies (i) of
(16). Notice that the latter condition is automatic on the manifolds described
in Theorem 3.1. Further, for such an ha to be a Yamabe minimizer, it is
necessary (albeit not sufficient) that f(t) has a minimum at t = a.

4.5. Einstein–Maxwell metrics on the first Hirzebruch surface
which are not Yamabe minimizers

We now restrict ourselves to the case M = P (O ⊕O(1)) → CP 1 which has
been studied in [30, 38]. We let g be an admissible Kähler metric given by
(13). In accordance with [30], we simplify the notation from Section 2 by
dropping the index a and noting that the normalized scalar curvature of
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S = CP 1 is 1. Thus, (57) becomes

Scal(ht) =
−(z + t)2F ′′(z) + 6(z + t)F ′(z)− 12F (z) + 4x(z + t)2

(1 + xz)

whereas the volume form of ht = (z + t)−2g is

dvht
= (z + t)−4(1/x+ z)ωCP 1 ∧ dz ∧ θ.

Using that f(t) is independent of the choice of F (z) = Θ(z)pc(z), we can
take Fc(z) = (1− z2)(1 + xz) (see (10)), and compute

f(t) =

∫
M Scal(ht)vht√∫

M dvht

= 4π
√
6

(
1− 2x− 2xt+ (1 + 2x)t2

)
√
x (1− 4xt+ 3t2) (t2 − 1)

and

f ′(t) = 16π
√
6
x(xt2 − 2t+ x)((1− x)t2 − xt+ x)

(x(t2 − 1)(3t2 − 4xt+ 1))3/2
.

It is not hard to check that if x ≤ 4/5, t = a0(x) with a0(x) defined by (54)
is the only critical point of f(t) for |t| > 1, and it is a minimum. If, on the
other hand, 4/5 < x < 1, then we find three critical points for f(t): a0(x) =
1+

√
1−x2

x , a+(x) =
x+

√
x(5x−4)

2(1−x) , and a−(x) =
x−

√
x(5x−4)

2(1−x) (all greater than

1 with a−(x) < a0(x) < a+(x)). As noticed in [38], the values a±(x) give
rise to the same admissible Kähler metric, i.e. Fx,a+(x),4(z) = Fx,a−(x),4(z).
We denote by g0 the admissible Kähler metric corresponding to (x,a0(x)),
by g the admissible Kähler metric corresponding to (x,a±(x)), and by h0 =

1
(z+a0(x))2

g0, h± = 1
(z+a±(x))2 g the corresponding Einstein–Maxwell metrics.

Even though the function f(t) is the same for all of these cases, we are
dealing with two different conformal structures, [g0] and [g].

Now, as the only critical points of f(t) for t > 1 are a0(x),a±(x), they
cannot all occur as minima. Indeed, it is not hard to see that f(t) has a rel-
ative maximum at t = a0(x) (and relative minima at t = a±(x)). Thus, the
conformally Kähler, Einstein–Maxwell metric h0 is not a Yamabe minimizer
of [g0], and this despite the fact that for 4/5 < x < 1 we have

f(a0(x)) = 4π
√
6
(1 + 2x)

√
1− x2 + (1 + 2x− x2)√

x(6− 5x2 + (6− 2x2)
√
1− x2)

< 8π
√
6,

i.e. h0 does not violate the estimate (56).
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Remark 8. Otoba [42] produced a different family of conformally Kähler,
constant scalar curvature metrics on all Hirzebruch surfaces, and in particu-
lar proved that (on each Hirzebruch surface) some of these are not Yamabe
minimizers.

Remark 9. If we return to the explicit example in Remark 6, where S =
CP2, s = 3, and x = 4/5, one may also observe that S(ht) has a local
maximum at t = a0(x) and local minima at t = a±(x). Further, S(h0) <

30π
(
16
15

) 1

3 , so, similarly to the first Hirzebruch surface, we have a constant
scalar curvature Einstein–Maxwell metric which is not a Yamabe minimizer
but satisfies (56).

Appendix A. Orthotoric (f, p)-extremal metrics

The bundle geometry examined so far in this paper is related to the theory
of hamiltonian 2-forms of order ℓ = 1, see [2]. In this appendix, we will de-
scribe local examples of (f, p)-extremal metrics which admit a hamiltonian
2-form of order ℓ = m, that is, orthotoric Kähler metrics. Presumably, sim-
ilar explicit constructions hold for Kähler metrics admitting a hamiltonian
2-form of any order 1 ≤ ℓ ≤ m, but these will not be investigated in this
paper.

Recall from [2] that a Kähler 2m-manifold (M, g, J, ω) is orthotoric if it
is equipped with m Poisson-commuting Killing potentials σ1, . . . , σm such
that on a dense open set, the roots ξj of

∑m
r=0(−1)rσrt

m−r, with σ0 = 1,
are smooth, with linearly independent, orthogonal gradients. The functions
(ξ1, . . . , ξm) together with the angular coordinates (t1, . . . , tm) for the mo-
menta (σ1, . . . , σm) form a coordinate system on that open dense subset,
and are called orthotoric coordinates. It is shown in [2] that with respect to
the orthotoric coordinates the metric is given by

g =

m∑

j=1

∆j

Θj(ξj)
dξ2j +

m∑

j=1

Θj(ξj)

∆j

[
m∑

r=1

σr−1(ξ̂j)dtr

]2
,

ω =

m∑

j=1

dξj ∧
( m∑

r=1

σr−1(ξ̂j)dtr

)
,

(A.1)

where ∆j =
∏

j ̸=k(ξj − ξk), each Θj(z) is a function of one variable, and

σr−1(ξ̂j) is the r − 1-th elementary symmetric function of the remaining
ξk’s after ξj is removed.
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It is easily deduced from (A.1) that the following formulas hold

(A.2)

g(∇σk,∇σl) =
∑m

j=1σk−1(ξ̂j)σl−1(ξ̂j)Θj(ξj)/∆j ,

∆gσk = −
∑m

j=1 σk−1(ξ̂j)Θ
′
j(ξj)/∆j ,

Scal(g) = −
∑m

j=1Θ
′′
j (ξj)/∆j ,

where ∇σk, ∆gσk are the gradient and Laplacian of σk, respectively, Scal(g)
is the scalar curvature of g, and the primes denote differentiation with re-
spect to ξj . Indeed, the last two formulas are obtained from (78),(79) in [2],

after noting that ∂σk/∂ξj = σk−1(ξ̂j). The first follows from (54) in [2], by
noting that

(A.3) |∇ξj |2g = Θj(ξj)/∆j .

We now recall equation (7) in the form

Scalf,p(g) = f2Scal(g)− 2(p− 1)f∆gf − p(p− 1)|∇f |2g.

We notice that σk is a Killing potential for the Killing vector field ∂/∂tk of
(A.1), and any Killing potential f of a Killing vector field commuting with
∂/∂tj , j = 1, . . . ,m is necessarily an affine function in the σk’s. Thus, for
such an f , the above formulas show that g is (f, p)-extremal if and only if
there exist constants ak, bk, k = 0, . . . ,m such that

(A.4) −
( m∑

k=0

akσk

)2 m∑

j=1

Θ′′
j (ξj)/∆j

+ 2(p− 1)
( m∑

k=0

akσk

) m∑

k,j=1

akσk−1(ξ̂j)Θ
′
j(ξj)/∆j

− p(p− 1)

m∑

k,l,j=1

(
akalσk−1(ξ̂j)σl−1(ξ̂j)Θj(ξj)/∆j

)
=

m∑

k=0

bmσk.

We now consider some special cases.

A.1. Bochner-flat orthotric metrics are (f,m + 2)-extremal

It has been observed in [7] for m = 2 and in [1] for m ≥ 2 that a Bochner–
flat metric is (f,m+ 2)-extremal for any positive Killing potential f . The
metric (A.1) is Bochner-flat iff Θj(z) = P (z) are all equal to a j-independent
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polynomial of degree ≤ m+ 2, see [2, Prop. 17] and the references therein.
Thus, in this case, we get a solution of (A.4) with p = m+ 2 for any choice
of a0, . . . , am.

A.2. Flat orthotoric metrics which are (f, p)-extremal

Recall from [2, Prop. 17] that (A.1) is flat iff Θj(z) = P (z) for a (j-
independent) polynomial P of degree ≤ m. In this case, we show

Proposition A.1. Let (g, ω) be a flat orthotoric metric in the form (A.1)
with Θj(z) = P (z) for a polynomial P (z) of degree ≤ m, and f =

∑m
r=0 arσr

be a positive Killing potential. Then, (g, ω) is (f, p)-extremal for any p.

Proof. Using the Vandermonde identitity (see [2, App. A])

(A.5)

m∑

j=1

ξm−s
j σr−1(ξ̂j)

∆j
= (−1)s−1δrs, r, s = 1, . . . ,m,

with r = 1 yields that the first term in the LHS of (A.4) is identically zero
when Θj(z) = P (z) for a polynomial P of degree ≤ m. Similarly, (A.5) shows
that the second term is an affine-linear function in σ1, . . . , σm. We thus
conclude that the metric (g, ω) is (f, p)-extremal if p = 0, 1, and for p ̸= 0, 1
it is (f, p)-extremal iff

m∑

k,l,j=1

(
akalσk−1(ξ̂j)σl−1(ξ̂j)

P (ξj)

∆j

)

is an affine-linear function in (σ1, . . . , σm). Notice that the latter condition
does not depend on p, and it does hold for p = m+ 2 by the discussion
in Sect. A.1. Thus, we conclude that (g, ω) is (f, p)-extremal for any value
of p. □

In some special cases of Proposition A.1, we can find explicitly the relation-
ship between the coefficients a0, . . . , am of f , those of P (z) and b0, . . . , bm in
the LHS. For example, let us take f = a0 + a1σ1 with a1 ̸= 0 and Θj(z) =
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P (z) =
∑m

k=0 ckz
m−k. By the Vandermonde identities (see [2, App. B])

m∑

j=1

ξm−s
j

∆j
= δs1, s = 1, . . . ,m;

m∑

j=1

ξmj
∆j

= σ1.

(A.6)

the LHS of (A.4) now reduces to

− (a0 + a1σ1)
2∑m

j=1
P ′′(ξj)
∆j

+ (p− 1)
[
2(a0 + a1σ1)a1

∑m
j=1

P ′(ξj)
∆j

− pa21
∑m

j=1
P (ξj)
∆j

]

= (p− 1)
[
2m(a0 + a1σ1)a1c0 − pa21c0σ1 − pa21c1

]

= b0 + b1σ1

with

b1 = a21c0(p− 1)(2m− p), b0 = (p− 1)(2ma0a1c0 − pa21c1).

We conclude in this case that (A.1) is a flat Kähler metric which has con-
stant (a0 + a1σ1, p)-scalar curvature iff c0 = 0 or p = 1, 2m. In particular,
we get an (m+ 2)-dimensional family (parametrized by a0, c0, . . . , cm) of
conformally-Kähler, Einstein–Maxwell metrics for which the Kähler metric
is flat. We also notice that, more generally, if p ̸= 0, 1 the coefficients b0
and b1 uniquely determine the coefficients c0 and c1 of P , but not its other
coefficients.

A.3. Orthotoric metrics which are (σm, p)-extremal

We now consider case f = σm =
∏m

i=1 ξi. In this case we will exhibit solu-
tions extending some of the ambitoric examples discussed in [1, 7] to higher
dimensions.

Proposition A.2. Let (g, ω) be an orthotoric metric of the form (A.1).
Then g is (σm, p)-extremal metric with m ≥ 2 and p ̸= 1, . . . ,m+ 1 iff each
function Θj(z) is a sum of a polynomial P (z) of degree ≤ m, whose coeffi-
cients are independent of j, and an expression of the form b1jz

p−1 + b2jz
p,

for arbitrary constants bij, i = 1, 2, j = 1, . . . ,m. Furthermore, in this case
Scalσm,p(g) is a linear combination of σm−1 and σm, i.e. the coefficients
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bi = 0 for i < m− 1. In particular, Scalσm,p(g) is constant iff it vanishes,
which happens iff P (0) = P ′(0) = 0.

For p ∈ {1, . . . ,m+ 1}, we can find solutions Θj(ξj) of a similar form
but the first summand will contain logarithmic terms. Note also that if at
least one of the bij ’s is nonzero, g is not flat.

Proof. For f = σm, Equation (A.4) becomes

(A.7) − σ2m

m∑

j=1

Θ′′
j (ξj)/∆j + (p− 1)

[
2σm

∑m
j=1(Θ

′
j(ξj)/∆j)σm−1(ξ̂j)

− p
∑m

j=1(Θj(ξj)/∆j)σ
2
m−1(ξ̂j)

]
=
∑m

k=0 bkσk,

with σm−1(ξ̂j) = σm/ξj .
We first check that Θj(x) = P (z) + b1jz

p−1 + b2jz
p as in the proposition

give a solution. To this end, we re-write (A.7) as
(A.8)

σ2m

m∑

j=1

(−ξ2jΘ′′
j (ξj) + 2(p− 1)ξjΘ

′
j(ξj)− p(p− 1)Θj(ξj)

ξ2j∆j

)
=

m∑

k=0

bkσk.

We notice that for each j, the term b1jz
p−1 + b2jz

p is the solution of the
homogeneous ODE at the LHS of (A.8), so it is enough to compute it with
Θj(z) = P (z) being a j-independent polynomial of degree ≤ m. To this end,
we use the Vandermonde identities (A.6) and

m∑

j=1

ξs−2
j

∆j
= (−1)m−1 δs1

σm
, s = 1, . . . ,m;

m∑

j=1

ξ−2
j

∆j
= (−1)m−1σm−1

σ2m
,

(A.9)

which follow from (A.6) written for (1/ξi)’s instead of the ξi’s. The claim
in the proposition follows easily from (A.6) and (A.9). This computation
also shows that Scalσm,p(g) is a linear combination of σm−1 and σm, i.e.
b0 = · · · = bm−2 = 0, as well as the condition for the vanishing of Scalσm,p(g).
As mentioned above, by the classification in [2], the orthotoric metric g is
not flat provided that at least one of the constants bij is nonzero.

We now turn to the necessity of the conditions. Denote by ∆ =
(−1)m(m−1)/2

∏
i<j(ξi − ξj) the Vandermont determinant of ξ1, . . . , ξm and
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by ∆(ξ̂j) the Vandermonde determinant of ξk with k ̸= j. Notice that ∆(ξ̂j)
is, up to sign, ∆/∆j .

We can now rewrite (A.7) in the form

∑m
j=1

[
±σ2m−1(ξ̂j)∆(ξ̂j)[−ξ2jΘ′′

j + 2(p− 1)ξjΘ
′
j − p(p− 1)Θj ]

]

= ∆

m∑

k=0

bkσk,

obtained by multiplying both sides of (A.8) by ∆ and rearranging the result,
with the signs ± left unspecified, as they will not matter for the rest of the
argument. This equation has the form

(A.10)

m∑

j=1

Fj(ξ̂j)Hj(ξj) = G,

where Hj is the expression in the inner square brackets, Fj(ξ̂j) the rest of
the j-th summand on the LHS (which does not depend on ξj), and G a
polynomial function of all the ξj ’s.

We now count degrees. For G, we notice that the combination of σk’s has
all terms of degree at most one in ξj , whereas ∆ has degree m− 1 in each ξj ,

so G has degree at mostm in each ξj . Also, Fj(ξ̂j) has degree 2 +m− 2 = m
in each ξk, k ̸= j. Differentiating equation (A.10) m times with respect to,
say, ξ1, yields

F1(ξ̂1)H
(m)
1 (ξ1) +

m∑

j=2

F
(m)
j (ξ̂1, ξ̂j)Hj(ξj) = k,

Where ‘(m)’ denotes this m-th partial derivative, F
(m)
j (ξ̂1, ξ̂j) does not de-

pend on ξ1 or ξj and k is a constant. Separation of variables yields that

H
(m)
1 (ξ1) is constant, so that, H1, and similarly each Hj(ξj), j = 1, . . . ,m,

is a polynomial of degree at most m in ξj . Now for p ̸= 1, . . . ,m+ 1, the
solutions of

H(ξj) = −ξ2jΘ′′
j (ξj) + 2(p− 1)ξjΘ

′
j(ξj)− p(p− 1)Θj(ξj)(A.11)

=
∑m

k=0ckξ
k
j

have the form Θj(ξj) = Pj(ξj) + b1jξ
p−1
j + b2jξ

p
j , where Pj(z) is a polyno-

mial of degree at most m.
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To show the independence from j of the coefficients of Pj(ξj), we consider
another form for equation (A.7), obtained by multiplying it by ∆k for some
fixed k.

− σ2m

(
Θ′′

k +
∑

j ̸=k(∆k/∆j)Θ
′′
j

)

+ 2(p− 1)σm

(
σm−1(ξ̂k)Θ

′
k +

∑m

j ̸=k((∆k/∆j)σm−1(ξ̂j)Θ
′
j

)

− p(p− 1)
(
σ2m−1(ξ̂k)Θk +

∑
j ̸=k(∆k/∆j)σ

2
m−1(ξ̂j)Θj

)

= (

m∑

l=1

bmσl)∆k,

Setting ξk = ξj0 for some fixed j = j0 ̸= k in this equation, we note that in
a non-empty open set ∆k/∆j

∣∣
ξk=ξj0

= −δjj0 , so that we obtain

− σ2m
∣∣
ξk=ξj0

(
Θ′′

k(ξj0)−Θ′′
j0(ξj0)

)

+ 2(p− 1)σm
∣∣
ξk=ξj0

(
σm−1(ξ̂k)Θ

′
k(ξj0)− σm−1(ξ̂j0)

∣∣
ξk=ξj0

Θ′
jo(ξj0)

)

− p(p− 1)
(
σ2m−1(ξ̂k)Θk(ξj0)− σ2m−1(ξ̂j0)

∣∣
ξk=ξj0

Θj0(ξj0)
)
= 0.

After dividing by the common factor σ2m−1(ξ̂k) this simplifies to

− ξ2j0

(
Θ′′

k(ξj0)−Θ′′
j0(ξj0)

)
+ 2(p− 1)ξj0

(
Θ′

k(ξj0)−Θ′
jo(ξj0)

)

− p(p− 1)
(
Θk(ξj0)−Θj0(ξj0)

)
= 0.

Denoting the coefficients of Pj(z) by ajℓ, it follows from the known form of
Θj and the last equation that

(akℓ − aj0ℓ)[−p(p− 1) + 2(p− 1)ℓ− ℓ(ℓ− 1)] = 0, ℓ = 2 . . .m,

Since the factor in the square brackets vanishes only when ℓ = p or ℓ = p− 1,
and p ̸= 2, . . . ,m+ 1, it follows that akℓ = aj0ℓ, ℓ = 2, . . . ,m. □

We notice that, similarly to the example discussed after Proposition A.1,
the arguments in first part of the proof of Proposition A.2 show that bm−1

and bm depend only on the affine part of P (z) whereas its other coeffi-
cients, as well as the real constants b1j and b2j , are arbitrary. This gives rise
to a (3m− 1)-dimensional family of orthotoric Kähler metrics of constant
(σm, p)-scalar curvature.
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