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We study the eigenvalues λk(HA,q) of the magnetic Schrödinger
operator HA,q associated with a magnetic potential A and a scalar
potential q, on a compact Riemannian manifold M , with Neu-
mann boundary conditions if ∂M ̸= ∅. We obtain various bounds
on λ1(HA,q), λ2(HA,q) and, more generally on λk(HA,q). Some of
them are sharp. Besides the dimension and the volume of the man-
ifold, the geometric quantities which plays an important role in
these estimates are: the first eigenvalue λ′′

1,1(M) of the Hodge-de
Rham Laplacian acting on co-exact 1-forms, the mean value of the
scalar potential q, the L2-norm of the magnetic field B = dA, and
the distance, taken in L2, between the harmonic component of A
and the subspace of all closed 1-forms whose cohomology class is in-
tegral (that is, having integral flux around any loop). In particular,
this distance is zero when the first cohomology group H1(M,R)
is trivial. Many other important estimates are obtained in terms
of the conformal volume, the mean curvature and the genus (in
dimension 2). Finally, we also obtain estimates for sum of eigen-
values (in the spirit of Kröger estimates) and for the trace of the
heat kernel.
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1. Introduction

Let (M, g) be a compact Riemannian manifold with smooth boundary ∂M ,
if non empty. Consider the trivial complex line bundle M ×C over M ; its
space of sections can be identified with C∞(M,C), the space of smooth
complex valued functions on M . Given a smooth real 1-form A on M we
define a connection ∇A on C∞(M,C) as follows:

(1) ∇A
Xu = ∇Xu− iA(X)u

for all vector fields X on M and for all u ∈ C∞(M,C) (here ∇ denotes the
Levi-Civita connection of (M, g)). The operator

(2) ∆A = (∇A)⋆∇A

is called the magnetic Laplacian associated to the magnetic potential A, and
the smooth two form

B = dA

is the associated magnetic field. In this paper, we are interested in magnetic
Schrödinger operators of the form

HA,q = ∆A + q

where q is a real valued continuous function on M . If A = 0, ∆A is simply
the usual Laplacian ∆ on M . Note that we have

(3) ∆Au = ∆u+ 2i⟨A, du⟩+
(

|A|2 + iδA
)

u

where δA = d⋆A is the co-differential of A.

If the boundary of M is non empty, we will consider Neumann magnetic
conditions, that is:

(4) ∇A
Nu = 0 on ∂M,

where N denotes the inner unit normal. Then, it is well-known that HA,q is
self-adjoint, and admits a discrete spectrum

λ1(HA,q) ≤ λ2(HA,q) ≤ ...→ ∞.

Estimates of eigenvalues of such operators have received a great attention
in the last decades, especially in the case where the underlying manifold is
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a bounded Euclidean domain with Dirichlet boundary conditions (see for
instance [1, 4, 20, 22, 35, 39]) or with Neumann boundary conditions (see
[3, 7–10, 13, 21, 25, 34, 36, 44]). Let us review some known results.

Among the important results in the Dirichlet case, we point out those
concerning Euclidean domains with constant magnetic field: a Faber Krahn
inequality [20] , a Berezin-Li-Yau inequality [22, 35] and finally the Polya
conjecture in this case [26] , where the authors show that this conjecture is
not true in presence of magnetic field, even for tiling domains.

Another interesting application of the magnetic Laplacian to mathemat-
ics has been done in the study of spectral minimal partitions (see [4] for a
survey).

In the case of Euclidean planar domains Ω with Neumann boundary
condition and constant magnetic field, there is no Szegö-Weinberger type
inequality (that is, there is no upper bound for the first eigenvalue of ∆A on Ω
by the first eigenvalue of ∆A on the ball B of the same area as Ω). A counter-
example is given in [25], Remark 2.4. Even for simply connected domains,
the question is open. In [14], the authors obtain a lower bound depending,
in particular, on the first non-zero eigenvalue of the usual Laplacian with
Neumann boundary condition (Theorem 5.1).

In the case of a general Riemannian manifold, a Cheeger inequality for
the magnetic Laplacian was established in [36] (Theorem 7.4) and even a
higher order Cheeger inequality (Theorem 7.7). In [13], in the case where the
potential is closed, the authors show a converse, that is, a Buser inequality
(Theorem 1.2 and 1.3). We remark also that a large attention has been
devoted to the asymptotic behaviour of the first eigenvalue of a magnetic
Laplacian for large values of the magnetic field (see for instance, Simon
[45, 46], Fournais and Helffer ([23]), Raymond ([40]).

In this paper, we first give upper bounds for the spectrum of HA,q in
terms of the harmonic part of the potential A, the magnetic field B, the
integral

∫

M q and the geometry of M : see Theorems 3, 4, 5, 6, 7. These
estimates are compatible with the Weyl law, and many of them are deduced
from the fact that we have the relation (see (16) for a proof)

(5) λk(HA,q) ≤ λk(H0,|A|2+q) = λk(∆ + |A|2 + q)

where |A| denote the pointwise norm of A. We will also focus on the two first
eigenvalues λ1(HA,q) and λ2(HA,q), where we can get more precise results.

In Theorems 3, 6 and 7, we observe that the geometry of the underling
manifold (M, g) appears through the first nonzero eigenvalue λ′′1,1 of the
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Hodge-de Rham Laplacian ∆HR acting on coexact 1-forms (with absolute
condition when ∂Ω is not empty). This lead us to collect in section 2.5 many
known results where we have an explicit control of λ′′1,1(M, g).

An important case of our study is when A is closed (i.e. the magnetic field
is zero) and not exact. In this discussion, we assume for simplicity that q is
zero. Then, it could still happen that λ1(∆A) is positive: this occurs precisely
when there is at least a closed curve c with the property that the flux of A
around c is not an integer (this fact is due to Shigekawa [44], see Proposition
1 below). The positivity of the ground state for closed potentials is related to
the so-called Aharonov-Bohm effect, an important phenomenon in physics.
In this regard, interesting results have been obtained in the paper [34] for
non-simply connected plane domains, and sharp lower bounds of λ1(∆A)
have recently been published in [8, 9].

The harmonic 1-forms which have integral flux around each closed curve
form a lattice, which we denote by LZ; therefore, λ1(∆A) = 0 if and only
if A ∈ LZ. We quantify the Aharonov-Bohm effect by giving a sharp upper
bound for the first eigenvalue λ1(HA,q) in term of the distance of A to LZ

(the distance is taken with respect to the L2-norm of one-forms). We refer to
Theorem 4 for further details. In some cases we can also discuss the equality
case (see Theorems 4 and 5) .

In Sections 3 and 4 we will obtain many other important estimates.
For the second eigenvalue, we mention, among other things, generalizations
to the magnetic Laplacian of the known results concerning the Laplacian,
like those in terms of conformal volume, the Reilly inequality, the Hersch
inequality and, for surfaces, the estimates in terms of the genus. We also
obtain estimates for higher eigenvalues, for the sum of eigenvalues (which
generalize Kröger inequality) and for the trace of the heat Kernel (which
generalizes Kac inequality) In the rest of the introduction we will recall
some known facts and discuss the main results.

1.1. Preliminary facts and notation

First, we recall the absolute boundary conditions for a differential p-form
A. A form A is said to be tangential if iNA = 0 on ∂M , where N denote
the exterior normal vector to the boundary; then, ω satisfies the absolute
boundary conditions if ω and dω are both tangential. We denote λ1,p the
first eigenvalue of the Hodge Laplacian on p-forms (with absolute boundary
conditions if ∂M non empty). As the Hodge Laplacian commutes with both
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d and δ, each positive eigenspace splits as the direct sum of exact and co-
exact eigenforms. We denote by λ′′1,p (resp. λ′1,p) the first eigenvalue when
the Hodge Laplacian is restricted to co-exact (resp. exact) p-forms. It follows
that

λ1,p ≤ min{λ′1,p, λ
′′
1,p}

and as λ′′1,p = λ′1,p+1 (which is true by differentiating eigenfunctions) we see

λ′′1,p ≥ max{λ1,p, λ1,p+1}.

In particular,

λ′′1,1 ≥ max{λ1,1, λ1,2}.

We recall now the variational definition of the spectrum. LetM be a com-
pact manifold. If the boundary is non empty, we assume for u ∈ C∞(M,C)
the magnetic Neumann conditions, as in (4). Then one verifies that

∫

M
(HA,qu)ūvg =

∫

M
(|∇Au|2 + q|u|2)vg,

and the associated quadratic form is then

QA,q(u) =

∫

M
(|∇Au|2 + q|u|2)vg.

We also introduce the Rayleigh quotient of a smooth function u ̸= 0,
defined by

(6) RA,q(u) =
QA,q(u)

∥u∥2

The spectrum of HA,q admits the usual variational characterization:

(7) λ1(HA,q) = min
{

RA,q(u) u ∈ C1(M,C)/{0}
}

and

(8) λk(HA,q) = min
Ek

max
{

RA,q(u) : u ∈ Ek/{0}
}

where Ek runs through the set of all k-dimensional vector subspaces of
C1(M,C).
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The following proposition recalls some well-known facts. If c is a closed
curve (a loop), the quantity

(9) ΦA
c =

1

2π

∮

c
A

is called the flux of A across c. We will not specify the orientation of the
loop, so that the flux will only be defined up to sign. This will not affect any
of the statements, definitions or results which we will prove in this paper.

Proposition 1. 1) The spectrum of HA,q is equal to the spectrum of
HA+dϕ,q for all smooth real valued functions ϕ; in particular, when A is
exact, the spectrum of HA,q reduces to that of the classical Schrödinger
operator with potential q acting on functions (with Neumann boundary
conditions if ∂M is not empty).

2) Let A be 1−form on M . Then, there exists a smooth real valued func-
tion ϕ on M such that the 1-form Ã = A+ dϕ is co-closed and tan-
gential, that is:

(10) δÃ = 0, iN Ã = 0.

3) Set:

Har1(M) =
{

h ∈ Λ1(M) : dh = δh = 0 on M, iNh = 0 on ∂M
}

.

Assume that the 1-form A is co-closed and tangential. Then A can be
decomposed

(11) A = δψ + h,

where ψ is a smooth tangential 2-form and h ∈ Har1(M). Note that
the vector space Har1(M) is isomorphic to the first de Rham absolute
cohomology space H1(M,R).

4) We have λ1(HA,0)
.
= λ1(∆A) = 0 if and only A is closed (i.e. B = 0)

and the cohomology class of A is an integer (that is ΦA
c ∈ Z for any

loop c in M).

Assertion (1) expresses the well-known Gauge invariance of the spec-
trum. Thanks to Assertion (2), in the study of the spectrum of the magnetic
Laplacian, we can always assume that the potential A is co-closed and tan-
gential.
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Proof. 1) This comes from the fact that

(12) ∆Ae
−iϕ = e−iϕ∆A+dϕ

hence ∆A and ∆A+dϕ are unitarily equivalent.

2) Observe that the problem:







∆ϕ = −δA on M,

∂ϕ

∂N
= −A(N) on ∂M

has a unique solution (modulo an additive constant). It is immediate
to verify that Ã = A+ dϕ is indeed co-closed and tangential.

3) We apply the Hodge decomposition to the 1-form A (see [43], Thm.
2.4.2), and get:

(13) A = df + δψ + h,

where f is a function which is zero on the boundary, ψ is a tangential
2-form and h is a 1-form satisfying dh = δh = 0 (in particular, h is
harmonic). Now, as δA = 0 we obtain δdf = 0 hence f is a harmonic
function; since f is zero on the boundary, we get f = 0 also on M and
we can write

(14) A = δψ + h.

Now, since both A and δψ are tangential, also h will be tangential.

4) This result was proved by Shigekawa [44] for closed manifolds; for
Neumann boundary condition see also [34] (for Dirichlet boundary
condition one can see [33]).

□

• In the sequel, when we write the decomposition A = δψ + h, it will be
implicitly supposed that ψ is a tangential 2-form and h is a 1-form satisfying
dh = δh = 0 and iNh = 0.

From definition (1) we see

(15) |∇Au|2 = |du|2 + |A|2|u|2 + 2Im⟨A, ūdu⟩.
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Since A is real, it is clear that if u ∈ C∞(M,R) is a real valued function,
then Im⟨A, ūdu⟩ = 0 and, then,

RA,q(u) =

∫

M

(

|du|2 + (|A|2 + q)|u|2
)

vg
∫

M |u|2vg
.

Since C1(M,R) is a subspace of C1(M,C), it follows that the eigenvalues of
HA,q are dominated by those of the scalar Schrödinger operator H0,|A|2+q =
∆+ |A|2 + q, that is

(16) λk(HA,q) ≤ λk(H0,|A|2+q) = λk(∆ + |A|2 + q).

For the first eigenvalue of HA,q, one also has a lower estimate by the first
eigenvalue of the scalar Schrödinger operator H0,q = ∆+ q; in other words:

(17) λ1(HA,q) ≥ λ1(H0,q).

This property can be seen as an immediate consequence of the so-called
diamagnetic inequality (see for instance Theorem 2.1.1 in [24]) :

|(∇+ q)|u|| ≤ |(∇− iA)u+ qu|

for a.e. x ∈M .
The diamagnetic inequality expresses the fact that matter under an ap-

plied external magnetic field gains energy. Now, in quantum mechanics, the
momentum operator is i∇ and the corresponding hamitonian is (i∇)2; un-
der a magnetic field with magnetic potential A the hamiltonian becomes
(i∇+A)2 and the diamagnetic inequality simply says that energy, in fact,
increases. Mathematically, it is a consequence of Kato-type inequalities.

In the Appendix we provide an alternative proof of the inequality (17),
based on Lavine-O’Carroll identity which allows to characterize the equality
case. This proof is an immediate extension to the context of Riemannian
manifolds of arguments used by Helffer in the case of bounded domains of
Rn under Dirichlet boundary conditions (see Proposition 1.1 in [33]). Its
extension to the context of compact Riemannian manifolds does not require
new ideas. Here is the result. Our proof is self-contained and elementary,
compared to the proof which uses the diamagnetic inequality.

Proposition 2. Let HA,q be a magnetic Schrödinger operator on a compact
Riemannian manifold (M, g) possibly with nonempty boundary. We have,
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under Dirichlet or Neumann boundary conditions if ∂M ̸= ∅,

(18) λ1(HA,q) ≥ λ1(H0,q).

Moreover, equality holds if and only if the magnetic field B = dA vanishes
and the cohomology class of the magnetic potential A is an integral multiple
of 2π (that is, if and only if A ∈ LZ).

Proof. See Appendix. □

1.2. Statement of results

Before stating the results, let us define a distance associated to the 1-form
A which will play an important role in our estimates (see (19) below). Let
LZ be the lattice in Har1(M) ∼ H1(M,R) formed by the integral harmonic
1-forms (those having integral flux around any loop). Given A ∈ Har1(M),
we define its distance to the lattice LZ by the formula:

(19) d(A,LZ)
2 = min

{

∥ω −A∥2, ω ∈ LZ

}

,

where ∥·∥ denotes the L2-norm of forms inM . Of course, when H1(M,R) =
0 any harmonic 1-forms is zero and by convention we set d(A,LZ) = 0.

Theorem 3. Let HA,q be a magnetic Schrödinger operator on a compact
Riemannian manifold (M, g) of dimension n, where A = δψ + h is a poten-
tial as in (11). One has, under Neumann boundary conditions if ∂M ̸= ∅:

1)

(20) λ1(HA,q) ≤ Γ(M,A, q) :=
1

|M |

(

d(h,LZ)
2 +

∥B∥2

λ′′1,1(M)
+

∫

M
qvg

)

where |M | denotes the volume of M and λ′′1,1(M) is the first eigenvalue
of the Hodge-de Rham Laplacian ∆HR acting on co-exact 1-forms (with
absolute boundary condition if ∂M ̸= ∅).

2) If the first absolute de Rham cohomology group vanishes : H1(M,R) =
0, then

(21) λ1(HA,q) ≤
1

|M |

(

∥B∥2

λ′′1,1(M)
+

∫

M
qvg

)
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with equality if and only if ∆HR(δψ) = λ′′1,1(δψ) and |δψ|2 + q is con-
stant, equal to λ1(HA,q).

The case when the potential A is closed (that is B = 0) is of special
interest. We have

Theorem 4. Let HA,q be a magnetic Schrödinger operator on a compact
Riemannian manifold (M, g) of dimension n, where the potential A is closed,
so that we can write A = h as in (11). One has under Neumann boundary
conditions if ∂M ̸= ∅:

(22) λ1(HA,q) ≤
d(h,LZ)

2 +
∫

M qvg

|M |
.

In case of equality in (22), there exists an integer harmonic form ω ∈
LZ such that |A− ω|2 + q is constant. In particular, if the potential q is
constant, (M, g) carries a harmonic 1-form of constant length.

We now discuss sharpness. First, we remark that the spectrum of a flat
torus, endowed with a potential harmonic one-form, is computable (see Sec-
tion 2.3). In that situation, we have equality in (22) for any constant poten-
tial function q. In dimension 2 we can also characterize flat tori among genus
one surfaces attaining equality in (22) for constant potentials q. Precisely:

Theorem 5. 1) When (M, g) is a flat torus, we have equality in (22) if
and only if the potential q is constant.

2) When M is a two-dimensional torus (that is, a genus one surface) and
q is constant we have equality in (22) if and only if (M, g) is a flat
torus.

Besides flat tori we don’t know of other significant situations where
equality is attained in (22). Explicit examples are hard to find also because
the invariant d(A,LZ) is difficult to compute.

In section 2 we will give applications of Theorem 3 for manifolds for
which we have a good control of λ′′1,1(M, g). First of all, using the Bochner
formula, we show such control for closed manifolds with Ricci curvature
bounded below by a positive constant; when the boundary is not empty, we
have to impose that it is convex. Then, we extend such lower bound also
when the inner curvature is not everywhere positive; for example, for convex
domains in Rn, and for hypersurfaces of manifolds with curvature operator
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with arbitrary sign, provided that the extrinsic curvatures are large enough.
The general principle is that one still has a positive lower bound for λ′′1,1
if the positivity of the principal curvatures of the boundary compensate, in
some sense, for the negativity of the inner curvature.

Let us now discuss the estimates involving the conformal volume, which
is defined as follows. If ϕ : (M, g) → (Sn, can) is a conformal immersion, we
first define the conformal volume of ϕ:

Vc(n, ϕ)
.
= sup{vol(M, (γ ◦ ϕ)⋆can), ϕ is a conformal diffeomorphism of Sn}

(this was first introduced by Gromov in [29] and called visual volume). Then,
we take the infimum of Vc(n, ϕ) over all such conformal immersions ϕ to
obtain the n-dimensional conformal volume of M , denoted Vc(n,M): this
invariant is non-increasing in n, hence we can finally define the conformal
volume of M , defined by Li and Yau in [37] :

Vc(M)
.
= lim

n→∞
Vc(n,M).

Among other things, Li and Yau showed how the conformal volume is re-
lated to the Willmore conjecture. Then, El Soufi and Ilias in [16] showed the
importance of the conformal volume in the study of minimal spherical sub-
manifolds, and used it to obtain a generalization to higher dimensions of the
Hersch inequality concerning the first eigenvalue of the Laplacian on simply
connected surfaces. In [17] they also obtained an upper bound of the second
eigenvalue of a Schrödinger operator in terms of the conformal volume. This
inequality, in fact, extends to the magnetic Laplacian, as follows.

Theorem 6. Let HA,q be a magnetic Schrödinger operator on a compact
Riemannian manifold (M, g) of dimension n, where A = δψ + h is a poten-
tial as in (11). One has (under Neumann boundary conditions if ∂M ̸= ∅):

(23) λ2(HA,q) ≤ n
Vc(M)

|M |
+ Γ(M,A, q)

with Γ(M,A, q) as in (20).

In section 3, we will give applications of Theorem 6 in specific situations.

We then state an upper bound valid for all the eigenvalues.

Theorem 7. Let HA,q be a magnetic Schrödinger operator on a closed Rie-
mannian manifold (M, g) of dimension n, where A = δψ + h is a potential
as in (11).
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1) There exists a constant c([g]) depending only on the conformal class
of g such that

(24) λk(HA,q) ≤ Γ(M,A, q) + c([g])

(

k

|M |

)2/n

.

2) If (Mn, g) has a Ricci curvature bound Ric(M, g) ≥ −a2(n− 1) and
if |A|2 + q ≥ 0 (in particular, if q ≥ 0), there exist positive constants
c1, c2, c3 depending only on the dimension n of M such that

(25) λk(HA,q)) ≤ c1Γ(M,A, q) + c2a
2 + c3

(

k

|M |

)2/n

,

with Γ(M,A, q) as in (20).

These result will be deduced from inequality (16) and from estimates for
the Schrödinger Laplacian derived in [32] and [28]. Note that if A = 0, we
recover the result of [6] for the usual Laplacian.

In the specific situation of an Euclidean domain, we get other estimates
in Theorem 19 using Riesz means, as a corollary of Inequality (16) and of
[15].

2. Upper bounds for the first eigenvalue of HA,q

2.1. Proof of Theorem 3.

We recall that A = δψ + h denotes the potential, ψ is a smooth tangential
2-form, h ∈ Har1(Ω), λ

′′
1,1(Ω) denotes the first eigenvalue of the Laplacian

acting on co-exact 1-forms, B = dA is the curvature of the potential A, and
LZ denotes the integral lattice of H1(M) formed by the integer harmonic
1-forms Har1(M).

Let ω ∈ LZ. Fix a base point x0 and define, for x ∈ Ω:

(26) ϕ(x)
.
=

∫ x

x0

ω,

where on the right we mean integration of ω along any path joining x0
with x. As ω is closed, ϕ(x) does not depend on the choice of two homotopic
paths and since the flux of A across each cj is an integer, ϕ(x) is multivalued
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and defined up to 2πZ. This implies that the function u(x) = eiϕ(x) is well
defined. As dϕ = ω we see that du = iuω and therefore

∇Au = du− iuh− iuδψ = iu(ω − h− δψ).

Since |u| = 1, we obtain:

|∇Au|2 = |ω − h− δψ|2.

We use u(x) as test-function for the first eigenvalue of ∆A. Then, for each
ω ∈ LZ, we have the relation

(27) λ1(HA,q) ≤

∫

M |∇Au|2vg +
∫

M |u|2qvg
∫

M |u|2vg
=

∥ω − h− δψ∥2

|M |
+

∫

M qvg

|M |

As ω − h is harmonic, it is L2-orthogonal to δψ and we get

(28) λ1(HA,q) ≤
∥ω − h∥2 + ∥δψ∥2 +

∫

M qvg

|M |

Now observe that, since δψ is coexact and tangential, one has by the varia-
tional characterization of the eigenvalue λ′′1,1(M, g):

∫

M |dδψ|2vg
∫

M |δψ|2vg
≥ λ′′1,1(M, g)

As dδψ = B, we have

(29)

∫

M
|δψ|2vg ≤

1

λ′′1,1(M, g)
∥B∥2.

Taking the infimum on the right-hand side of (28) over all ω ∈ LZ we obtain,
taking into account (29):

λ1(HA,q) ≤
d(h,LZ)

2

|M |
+

∥B∥2

λ′′1,1(M)|M |
+

1

|M |

∫

M
qvg

as asserted.
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When H1(M,R) = 0, we have immediately the relation

λ1(HA,q) ≤
1

|M |

(

∥B∥2

λ′′1,1(M, g)
+

∫

M
qvg

)

.

In case of equality, we must have equality in all the step of the proof: in
particular, we must have

∫

M |dδψ|2vg
∫

M |δψ|2vg
= λ′′1,1(M, g)

which means that λ′′1,1 is an eigenvalue for the eigenfunction δψ. For u = 1,
Equation (3) becomes

∆Au = |δψ|2

and the equation HA,qu = λ1(HA,q)u becomes

|δψ|2 + q = λ1(HA,q).

as asserted.

2.2. Proof of Theorem 4

1) Inequality (22) is an immediate consequence of Inequality (20).

2) In order to investigate the equality case, we will derive the inequal-
ity using a different approach. Let ω ∈ LZ and u = eiϕ the associated
function on M as defined in (26). Recall that |·| denotes the pointwise
norm, thus defining a smooth function on M .

First we observe that

(30) ∆Au = |A− ω|2u.

In fact recall that, as δA = 0:

∆Au = ∆u+ |A|2u+ 2i⟨du,A⟩.

As du = iuω one gets:

∆u = δdu = δ(iuω) = i(−⟨du, ω⟩+ uδω) = −i⟨du, ω⟩ = |ω|2u
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and (30) follows after an easy computation. In turn, one has:

HA,qu = |A− ω|2u+ qu.

Using u as a test-function, and recalling that|u|2 = 1, we have

(31) λ1(HA,q)

∫

M
|u|2vg ≤

∫

M
⟨HA,qu, u⟩vg = ∥ω −A∥2 +

∫

M
qvg.

In particular, if we choose ω so that d(ω,A)2 = d(A,LZ)
2 we recover

inequality (22). But now, if equality holds, we see that u must be an
eigenfunction for λ1(HA,q), that is

λ1(HA,q)u = HA,qu = ∆Au+ qu = (|A− ω|2 + q)u.

So, we deduce that |A− ω|2 + q = λ1(HA,q) as asserted. In particu-
lar, if q is constant, |A− ω| is constant, and (M, g) carries a harmonic
1-form of constant length.

2.3. Spectrum of flat tori

In order to prove Theorem 5, we investigate the spectrum of flat tori. Let
M be a flat n-dimensional torus, quotient of Rn by a lattice Γ. Recall that
the dual lattice Γ⋆ is defined by

Γ⋆ = {v : ⟨v, w⟩ ∈ Z for all w ∈ Γ}

On a flat torus any harmonic 1-form ξ is parallel, and then it has constant
pointwise norm |ξ|. In particular

∥ξ∥ = |M ||ξ|.

The lattice LZ is an additive subgroup of the vector space of harmonic (hence
parallel) 1-forms. If ω is one such consider the associated dual parallel vector
field, ω♯. We remark that this induces an isomorphism of groups:

(32) LZ
∼= 2πΓ⋆.

To prove that, associate to each X ∈ Γ the curve cX : [0, 1] →M given by
cX(t) = tX. Note that cX is a loop because M is Γ−invariant. The flux of
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ω across cX is easily seen to be

Φω
cX =

1

2π
ω(X) =

1

2π
⟨ω♯, X⟩.

Hence any such flux is an integer if and only if ⟨ω♯, X⟩ ∈ 2πZ. This is true
for all X ∈ Γ iff ω♯ ∈ 2πΓ⋆, which proves (32).

Now if ω ∈ LZ, it is readily seen that the associated function u as in (26)
is given by:

u(x) = ei⟨ω
♯, x⟩

which is well-defined on (M, g) = Rn/Γ. Hence, for each ω ∈ LZ, thanks to
(30), we have:

∆Au = |A− ω|2u

and the constant |A− ω|2 is thus an eigenvalue of ∆A associated to the
eigenfunction u. Because of (32) the set

{u(x) = ei⟨ω
♯, x⟩, ω ∈ LZ}

gives rise to a complete orthonormal basis of L2(M), hence we have found
all the eigenvalues of ∆A. In conclusion, we have the following fact.

Proposition 8. Let Σ be a flat torus, quotient of Rn by the lattice Γ and
let Γ⋆ denote the lattice dual to Γ. Let A be a harmonic 1-form. Then the
spectrum of the magnetic Laplacian with potential A, that is, the operator
∆A = HA,0, is given by

{|A− ω|2 : ω ∈ LZ
∼= 2πΓ⋆}

with associated eigenfunctions {u(x) = ei⟨ω
♯, x⟩}. In particular

λ1(∆A) = inf
ω∈LZ

|A− ω|2.

2.4. Proof of Theorem 5

1. Now let M be a flat torus, A = h a harmonic 1-form, and let ω0 be an
element in LZ such that

d(A,LZ)
2 = ∥A− ω0∥

2 = |M ||A− ω0|
2.
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Inequality (22) takes the form:

λ1(HA,q) ≤ |A− ω0|
2 +

1

|M |

∫

M
qvg

with equality if and only if the associated test-function u(x) = ei⟨ω
♯
0
, x⟩ (of

constant modulus one) is an eigenfunction of HA,q. As

HA,qu = ∆Au+ qu = (|A− ω0|
2 + q)u

we see indeed that we have equality in (22) if and only if

q =
1

|M |

∫

M
qvg

that is, iff q is constant.

2. Now assume that (M, g) is a genus one surface and q is constant. It
remains to show that, if equality holds, M has to be flat.

Since q is constant, there exists a harmonic one form ξ with constant
length by the second assertion of Theorem 4. We will apply Bochner formula
to ξ. Let ∆HR the Laplacian on 1-forms and ∇ the covariant derivative.
Bochner’s identity gives, for any 1-form α:

(33) ⟨∆HRα, α⟩ = |∇α|2 +
1

2
∆|α|2 +Ric(α, α).

In dimension 2 one has Ric = Kg, where K is the Gaussian curvature.
As ξ is harmonic and of constant pointwise norm, we get

0 =

∫

M
|∇ξ|2vg + |ξ|2

∫

M
Kvg.

As M has genus one we see
∫

M Kvg = 0; this means that ξ must actually
be parallel. But then ⋆ξ must also be parallel ; by normalization, we have
a global orthonormal basis (ξ, ⋆ξ) of parallel one forms, which forces (M, g)
to be flat.

2.5. A few consequences

We can now describe a few consequences of Theorem 3 in some specific
situations where we are able to control the eigenvalue λ′′1,1 of the manifold
M . Note that there are very few lower bounds of λ′′1,1 for general Riemannian
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manifolds. For example there is no Cheeger inequality available in this case.
In [5, 38], there is a lower bound depending on the sectional curvature,
but this bound depends also on the injectivity radius. Most of the known
estimates depend on some positivity of the curvature (in particular, the Ricci
curvature) or on some convexity of the boundary. The reason is that they
are obtained through an application of formulae of Bochner type, as in (33).

2.5.1. Positive Ricci curvature. When the Ricci curvature ofM is pos-
itive (and ∂M is convex if nonempty), then H1(M,R) = {0}. This implies
that the harmonic part h in the decomposition (14) of the potential 1-form A
vanishes, so that A = δψ for a tangential two-form ψ. Moreover, the constant
λ′′1,1(M) can be controlled in terms of a lower bound of the Ricci curvature
of M . Indeed, we have the

Lemma 9. Let (M, g) be a compact Riemannian manifold whose Ricci cur-
vature satisfies

Ric ≥ c g

for some positive c. When ∂M ̸= ∅, assume furthermore that ∂M is convex
(i.e. its shape operator S is nonnegative). One has

λ′′1,1(M) ≥ 2c

Moreover, the equality holds if and only if every co-exact eigenform α asso-
ciated with λ′′1,1(M) is such that α♯ is a Killing vector field which satisfies

Ric(α♯) = cα♯ and, when ∂M ̸= ∅, S(α♯) = 0.

Here S : T∂M → T∂M is the shape operator of ∂M , defined as follows:
if N is the inner unit normal vector to the boundary, and X ∈ T∂M , then
S(X) = −∇XN .

Proof. We use again the Bochner identity (33):

⟨∆HRα, α⟩ = |∇α|2 +
1

2
∆|α|2 +Ric(α, α).

On the other hand, we have the following general inequality (see [27], Lemma
6.8 p. 270)

(34) |∇α|2 ≥
1

2
|dα|2 +

1

n
|δα|2 ≥

1

2
|dα|2

in which the equality holds if and only if ∇α is anti-symmetric, that is α♯

is a Killing vectorfield (see [2] Theorem 1.81, p. 40). When α is a co-exact
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eigenform associated to λ′′1,1(M), we have

(35) λ′′1,1(M)|α|2 = ⟨∆HRα, α⟩ ≥
1

2
|dα|2 +

1

2
∆|α|2 + c|α|2

When M is closed, one has

∫

M
∆|α|2vg = 0 and

∫

M
|dα|2vg = λ′′1,1(M)

∫

M
|α|2vg

and the result follows from (35) after integration, that is

λ′′1,1(M)

∫

M
|α|2vg ≥

1

2

∫

M
|dα|2vg + c

∫

M
|α|2vg(36)

=

(

λ′′1,1(M)

2
+ c

)
∫

M
|α|2vg

which implies λ′′1,1(M) ≥ 2c.
If ∂M ̸= ∅, we observe that, since iNα = 0 and iNdα = 0, the vector

field α♯ is tangent along the boundary and 0 = dα(N,α♯) = ∇Nα(α
♯)−

∇α♯α(N) = 1
2N · |α|2 − ⟨S(α♯), α♯⟩. Thus Green formula gives

∫

M
∆|α|2vg =

∫

∂M
N · |α|2vg = 2

∫

∂M
⟨S(α♯), α♯⟩vg ≥ 0

The rest of the proof is the same as above.

Let us discuss the equality case when ∂M is empty. Assume that a co-
exact eigenform α satisfies : α♯ is a Killing vector field and Ric(α♯, α♯) =
c|α|2. Under these conditions, the equality holds in the inequality (35) and,
then, in (36), which implies λ′′1,1(M) = 2c.

Conversely, if λ′′1,1(M)= 2c, then, for any co-exact eigenform α, the equal-

ity holds in (36) and, then, in (35) and (34) which implies that Ric(α♯, α♯) =
c|α|2 and that Dα is anti-symmetric, that is α♯ is a Killing vector field.

When ∂M is not empty, the discussion of the equality case follows the
same lines observing that since ∂M is convex, the equality ⟨S(α♯), α♯⟩ = 0
occurs if and only if S(α♯) = 0. □

An immediate consequence of Theorem 3 is the

Corollary 10. Under the circumstances of Theorem 3 and the assumption
that the Ricci curvature of M satisfies Ric ≥ c g for some positive c, and
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that the boundary ∂M is convex (if nonempty), one has

(37) λ1(HA,q) ≤
1

|M |

(

∥B∥2

2c
+

∫

M
qvg

)

where B = dA is the magnetic field. The equality holds in (37) if and only
if A♯ is a Killing vector field with Ric(A♯) = cA♯, |A♯|2 + q = λ1(HA,q) and,
when ∂M ̸= ∅, S(A♯) = 0.

Recall that Bochner vanishing Theorem tells us that a non Ricci-flat
manifold M with non-negative Ricci curvature and mean-convex boundary
if ∂M ̸= ∅, satisfies H1(M,R) = {0}. On the other hand, Bochner’s identity
gives for any Killing vector field A, ∆HRA = 2Ric(A).

The inequality (37) improves by a factor 2 the estimate obtained by
Cruzeiro, Malliavin and Taniguchi ([11], Theorem 1.1) for λ1(HA,0) for closed
manifolds (be careful, the magnetic Laplacian defined in [11] coincides with
1
2∆A).

An important special case we want to emphasize is the following

Corollary 11. (i) Let HA,q be a magnetic Schrödinger operator on the
standard n-dimensional sphere Sn. One has

(38) λ1(HA,q) ≤
1

σn

(

∥B∥2

2(n− 1)
+

∫

Sn

qvg

)

where σn = (n+ 1)ωn+1 is the volume of Sn and B = dA is the magnetic
field. The equality holds in (38) if and only if A♯ is a Killing vector field of
Sn and |A♯|2 + q = λ1(HA,q).

(ii) Let HA,q be a magnetic Schrödinger operator on a spherical cap
Cr(x0) of radius r ≤

π
2 centered at x0. One has

(39) λ1(HA,q) ≤
1

vn(r)

(

∥B∥2

2(n− 1)
+

∫

Cr

qvg

)

where vn(r) = σn−1

∫ r
0 (sin t)

n−1dt is the volume of Cr(x0).
If r < π

2 , then the equality holds if and only if B = 0 and q is constant.
When r = π

2 (i.e for a hemisphere), the equality holds in (39) if and only if
A♯ is a Killing vector field which vanishes at x0 and |A♯|2 + q = λ1(HA,q).

Indeed, a Killing vector field is tangent along ∂Cr(x0) if and only if it
vanishes at x0. Since ∂Cr(x0) is totally umbilical, the condition S(A♯) = 0
implies that A♯ = 0 unless S = 0 which only occurs when r = π

2 .
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In particular, for a magnetic Laplacian ∆A = HA,0 on Sn, the inequality
(38) reads

(40) λ1(HA,0) ≤
1

2(n− 1)σn
∥B∥2.

Notice that when n is even, there is no nonzero vector field of constant
length on Sn. Therefore, in the even dimensional case, the equality in (40)
holds if and only if A♯ = 0 (or, equivalently, B = 0). If n is odd, then the
equality in (40) implies that A♯ is proportional to the vector field J(x) =
(−x2, x1, · · · ,−xn+1, xn) which is the only Killing vector field of constant
length, up to a dilation (see [12]).

In dimension 2, the inequality (40) (i.e. λ1(HA,0) ≤
1
8π∥B∥2) improves

the upper bound obtained by Besson, Colbois and Courtois in [3].

2.5.2. Closed hypersurfaces. We now assume that M is a closed, im-
mersed hypersurface of a Riemannian manifold M ′. At any point x ∈M
denote the principal curvatures of M (eigenvalues of the shape operator) by
k1(x), . . . , kn(x). Let Ip denote the set of p-multi-indices

Ip = {(j1, . . . , jp) : 1 ≤ j1 ≤ · · · ≤ jp ≤ n},

and , for each α = (j1, . . . , jp) ∈ Ip, consider the corresponding p-curvature

Kα(x) = kj1(x) + · · ·+ kjp(x).

Set ⋆α = {1, . . . , p} \ {j1, . . . , jp}, and moreover











βp(x) =
1

p(n− p)
inf
α∈Ip

Kα(x)K⋆α(x)

βp(Σ) = inf
x∈Σ

βp(x)

We then have the following lower bound (see Theorem 7 in [42]):

Theorem 12. Let Mn be a closed immersed hypersurface of the Rieman-
nian manifold M ′n+1 having curvature operator bounded below by γM ′ ∈ R.
Then we have the following lower bound

λ1,p(M) ≥ p(n− p+ 1)(γM ′ + βp(M)).

Equality holds for geodesic spheres in constant curvature spaces. In particu-
lar

λ′′1,1(M) ≥ max{2(n− 1)(γM ′ + β2(M)), n(γM ′ + β1(M)}.
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We say that M is p-convex if all p-curvatures are non-negative; that is,
Kα(x) ≥ 0 for all α ∈ Ip and for all x ∈M . Clearly ifM is p-convex then it is
q-convex for all q ≥ p. Then, 1-convexity is the usual convexity assumption
and n-convex is equivalent to mean convexity.

Note that we could have a positive lower bound even when the curvature
of M ′ is negative; it is enough to assume that the p-curvatures Kα are
positive enough. For example, for a 2-convex hypersurface in hyperbolic
space Hn+1, (where γM ′ = 1) with 2-curvatures Kα(x) uniformly bounded
below by c > 2, elementary algebra shows that β2(M) ≥ c2/4 hence

λ′′1,1 ≥ 2(n− 1)(
c2

4
− 1) > 0

On the other hand, ifMn is a 2-convex hypersurface of the sphere Sn+1 then
β2(M) ≥ 0 and therefore

λ′′1,1 ≥ 2(n− 1).

We finally remark the following estimate by P. Guerini ([30]): if M is a
convex hypersurface of Rn then

λ1,p(M) ≥
p

2e3
·

1

diam(M)2
.

2.5.3. Convex domains in Euclidean space. Assume now that M is
a convex domain in Rn. Then we know from [41] that for all p = 1, . . . , n
one has λ1,p = λ′1,p; in particular :

λ′′1,1 = λ1,2.

Theorem 1.1 in [41] states that, for all p = 1, . . . , n:

an,p
D2

p

≤ λ1,p ≤
a′n,p
D2

p

for explicit constants an,p, a
′
n,p. Here Dp is the p-th largest principal axis of

the ellipsoid of maximal volume included in M , also called John ellipsoid of
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M . In particular,

λ′′1,1 ≥
4

n3D2
2

.

Accordingly we have an upper bound for the spectrum of the magnetic
Laplacian:

λ1(HA,0) ≤
1

|M |

(

∥B∥2

λ′′1,1(M)
+

∫

M
qvg

)

≤
n3∥B∥2D2

2

4|M |
+

1

|M |

∫

M
qvg

For example, assume that q = 0 and

1

|M |

∫

M
∥B∥2 ≤ c.

We then see

λ1(HA,0) ≤
cn3

4
D2

2

2.5.4. Other estimates. We refer to [31] for a lower bound of λ′′1,1 of
any compact manifold with boundary Ω, in terms of a lower bound γ ∈ R

of the eigenvalues of the curvature operator of Ω, and the 2-curvatures of
∂Ω: if the 2 curvatures are large enough, then the lower bound is positive
(see Theorem 3.3 in [31]). We also remark that in certain cases it is possible
to estimate from below the gap λ1,p − λ1,0 between the first eigenvalue for
p-forms (absolute boundary conditions) and the first eigenvalue on functions
(Neumann conditions). For example, for convex domains in Sn one has, for
p = 2, . . . , n2 :

λ1,p ≥ λ1,0 + (p− 1)(n− p)

which reduces to an equality when Ω is the hemisphere. In particular,

λ′′1,1 ≥ λ1,0 + n− 2

which often improves the bound λ′′1,1 ≥ 2(n− 1) considered in Corollary 15
above : in fact, λ1,0 is the first positive eigenvalue for the Neumann Laplacian
acting on functions, which can be very large (for example, for small geodesic
balls).
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3. Upper bounds for the second eigenvalue of HA,q

Let us first give the proof of Theorem 6: it is a consequence of the observation
(16) and of a previous result of El Soufi and Ilias [17]. By (16), we have

λ2(HA,q) ≤ λ2(H(0, |A|2 + q)

which corresponds to the usual Laplacian ∆ on (M, g) with the potential
|A|2 + q, and A = δψ + h as in (11). By [17], for any scalar potential W on
M one has

λ2(∆ +W ) ≤ n

(

Vc(M)

|M |

)
2

n

+
1

|M |

∫

M
Wvg,

where Vc(M) is the Li-Yau conformal volume of the Riemannian manifold
M . In our situation, W = |δψ + h|2 + q and we have already seen that

1

|M |

∫

M
(|δψ + h|2 + q)vg ≤ Γ(M,A, q)

:=
1

|M |

(

d(h,LZ)
2 +

∥B∥2

λ′′1,1(M)
+

∫

M
qvg

)

which allows to conclude.

As for the first eigenvalue, we have a lot of consequences of this result
in specific situations. For example, the conformal volume of the sphere Sn

endowed with the conformal class of its standard metric can is equal to
the volume σn = |Sn|can of the standard metric. Hence, any domain Ω ⊂ Sn,
endowed with a metric conformal to the standard one will satisfies Vc(Ω) ≤
σn.

Corollary 13. Let HA,q be a magnetic Schrödinger operator on a bounded
domain Ω ⊂ Rn, endowed with a Riemannian metric g conformally equiva-
lent to the Euclidean metric. One has, under Neumann boundary conditions,

(41) λ2(HA,q) ≤ n

(

σn
|Ω|g

)
2

n

+
1

|Ω|g

(

∥B∥2

λ′′1,1(Ω)
+ d(h,LZ)

2 +

∫

Ω
qvg

)

.

This corollary applies of course when Ω is a domain of the Euclidean
space, the hyperbolic space, and the sphere. Note that the equality holds
in (41) when g is the spherical metric, A = 0, q = 0 and Ω is a ball whose
Euclidean radius tends to infinity.
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For a compact orientable surface M of genus γ, one has (see [37])

(42) Vc(M) ≤ 4π

[

γ + 3

2

]

and

λ′′1,1(M) = µ(M)

where [] stands for the floor function and µ(M) is the first positive eigen-
value of the Laplacian of M acting on functions, with Neumann boundary
conditions if ∂M ̸= ∅. Thus, the inequality (23) leads to the following:

Corollary 14. Let HA,q be a magnetic Schrödinger operator on a domain
Ω of a compact orientable Riemannian surface M of genus γ. One has

(43) λ2(HA,q)|Ω| ≤ 8π

[

γ + 3

2

]

+
∥B∥2

µ(Ω)
+ d(h,LZ)

2 +

∫

Ω
qvg.

where µ(Ω) is the first positive eigenvalue of the Laplacian on functions,
with Neumann b. c. if Ω ⊊M .

The following corollary extends Hersch’s inequality

Corollary 15. Let HA,q be a magnetic Schrödinger operator on a compact
orientable Riemannian surface M of genus zero. One has

(44) λ2(HA,q)|M | ≤ 8π +
∥B∥2

µ(M)
+

∫

M
qvg.

In [16], we have proved that if a Riemannian manifold M admits an
isometric immersion in a Euclidean space whose components are first eigen-
functions of the Laplacian, then

(45)

(

Vc(M)

|M |

)
2

n

=
µ(M)

n
.

In particular, the equality (45) holds for any compact rank one sym-
metric space. Such a space is Einstein and satisfies H1(M,R) = {0}. Thus,
combining with Lemma 9, we get the following
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Corollary 16. Let HA,q be a magnetic Schrödinger operator on a domain
Ω (with convex boundary if Ω ⊊M) of a compact rank one symmetric space
M of (real) dimension n. One has

(46) λ2(HA,q) ≤ µ(M)

(

|M |

|Ω|

)
2

n

+
1

|Ω|

(

∥B∥2

2cM
+

∫

Ω
qvg

)

where cM is the Ricci curvature constant of M and B = dA is the magnetic
field.

When M is a closed immersed submanifold in a Riemannian space form
of curvature κ = −1, 0, +1 it was established ([18, 19]) the following re-
lationship between the second eigenvalue of a scalar Schrödinger operator
∆ +W and the L2-norm mean curvature hM of M :

λ2(∆ +W ) ≤
1

|M |

∫

M

(

n|hM |2 + n κ+W
)

vg

This inequality is known as Reilly inequality when κ = 0 and W = 0.

The same arguments as before enable us to obtain the following

Corollary 17. Let HA,q be a magnetic Schrödinger operator on a closed
immersed submanifold M of a space-form of curvature κ = −1, 0, +1. One
has

λ2(HA,q)|M | ≤

∫

M

(

n|hM |2 + n κ
)

vg(47)

+
1

λ′′1,1(M)
∥B∥2 + d(h,LZ)

2 +

∫

M
qvg.

4. Upper bounds for higher order eigenvalues of HA,q

In order to prove Theorem 7, we use again the relation (16)

λk(HA,q) ≤ λk(H0,|A|2+q).

In order to prove the inequality (24), we use the recent [28] Theorem 1.1:
for a scalar Schrödinger operator ∆ +W on a compact Riemannian manifold
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without boundary. From this result, we deduce that

λk(∆ +W ) ≤
1

|M |

∫

M
Wvg + c([g])

(

k

|M |

)
2

n

where c([g]) is a constant depending only on the conformal class [g] of g,
and the conclusion follows as before because W = |A|2 + q.

In order to prove Inequality (25), one can make use of the estimates ob-
tained by A. Hassannezhad [32] for a scalar Schrödinger operator ∆ +W on
a compact Riemannian manifold: If λ1(∆ +W ) ≥ 0 (which is in particular
the case if W ≥ 0 as in our situation), then

λk(∆ +W ) ≤
c1
|M |

∫

M
Wvg + c2

(

V ([g])

|M |

)
2

n

+ c3

(

k − 1

|M |

)
2

n

where c1, c2 and c3 are constants which depend only on the dimension n and
V ([g]) is the infimum of the volume of M with respect to all Riemannian
metrics g0 conformal to g and such that Ricg0 ≥ −(n− 1)g0.

In particular, if Ricg ≥ −(n− 1)a2g for some a ̸= 0, then the metric
g0 = a2g satisfies Ricg0 ≥ −(n− 1)g0 and |M |g0 = an|M |g. Thus, V ([g]) ≤
an|M |g.

So, we can conclude by observing that

∫

M
Wvg =

∫

M
(|A|2 + q)vg ≤ Γ(M,A, q).

As a corollary, on a compact orientable surface M of genus γ ≥ 2, every
Riemannian metric g is conformal to a hyperbolic metric g0 which implies
V ([g]) ≤ |M |g0 = 4π(γ − 1). The same observations as before lead to the
following

Corollary 18. Let HA,q be a magnetic Schrödinger operator on a compact
orientable surface of genus γ, then

λk(HA,q)|M | ≤ ak + bγ + cΓ(M,A, q).

where a, b and c are universal constants.

Let us now consider a magnetic Schrödinger operator HA,q on a bounded
domain of an Euclidean space (here, as precised before, we consider Neu-
mann condition on the boundary). The following estimates for the sum of
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eigenvalues (generalizing that of Kröger for H0,0), for the Riesz means and
for the trace of the magnetic heat kernel (generalizing that of Kac for H0,0)
are consequences of the considerations above and the estimates obtained
in [15]. For convenience and as before, we use the notation Γ(Ω, A, q) :=
1
|Ω|

(

d(h,LZ)
2 + ∥B∥2

λ′′
1,1(Ω) +

∫

Ω qvg

)

Theorem 19. Let HA,q be a magnetic Schrödinger operator on a bounded
domain Ω of Rn. One has
(1) For all z ∈ R,

(48)
∑

j≥1

(z − λj(HA,q))+ ≥
2 |Ω|

n+ 2
W

−n

2

n (z − Γ(Ω, A, q))
1+n

2

+ ,

where Wn = 4π2/ω
2

n
n is the Weyl constant.

(2) For all k ≥ 1,

(49)
1

k

k
∑

j=1

λj(HA,q) ≤
n

n+ 2
Wn

(

k − 1

|Ω|

)
2

n

+ Γ(Ω, A, q).

and, if
∑k

j=1 λj(∆ + q) ≥ 0,

(50) λk(HA,q) ≤ max

(

2 (n+ 2)
2

n Wn

(

k − 1

|Ω|

)
2

n

, 2Γ(Ω, A, q)

)

.

(3) For all t > 0,

(51)
∑

j≥1

e−tλj(HA,q) ≥
|Ω|

(4πt)
n

2

e−tΓ(Ω,A,q).

Proof. Taking A = δψ + h. As we have seen before,

(52) λk(HA,q) ≤ λk(∆ + |δψ + h|2 + q).

In [15], the authors obtained estimates for the eigenvalues, their Riesz means,
their sum and the heat trace of a general elliptic operator. For a scalar
Schrödinger operator ∆ +W on a bounded Euclidean domain Ω ⊂ Rn, these
estimates take the following form :
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(1) For all z ∈ R,

(53)
∑

j≥1

(z − λj(∆ +W ))+ ≥
2 |Ω|

n+ 2
W

−n

2

n

(

z −
1

|Ω|

∫

Ω
Wdx

)1+n

2

+

,

(2) For all k ≥ 1,

(54)
1

k

k
∑

j=1

λj(∆ +W ) ≤
n

n+ 2
Wn

(

k − 1

|Ω|

)
2

n

+
1

|Ω|

∫

Ω
Wdx.

and if
∑k

j=1 λj(∆ +W ) ≥ 0, then

(55) λk(∆ +W ) ≤ max

(

2 (n+ 2)
2

n Wn

(

k − 1

|Ω|

)
2

n

,
2

|Ω|

∫

Ω
Wdx

)

.

(3) For all t > 0,

(56)
∑

j≥1

e−tλj(∆+W ) ≥
|Ω|

(4πt)
n

2

e
− t

|Ω|

∫
Ω
Wdx

.

To conclude the proof, we simply apply these inequalities to the Schrö-
dinger operator ∆ +W with W = |δψ + h|2 + q and observe that, using the
same arguments as before,

1

|Ω|

∫

Ω
Wdx ≤ Γ(Ω, A, q).

□

Estimates such as (53) . . . (56) are also available in [15] for a bounded
domain Ω of a Riemannian manifold M . However, in this case the constants
which involve the geometry of Ω are less explicit than in the Euclidean
case. Therefore, we can deduce that there exist constants c1(Ω), · · · , c4(Ω),
depending only on Ω such that, for all z ∈ R, k ≥ 1 and t > 0

(57)
∑

j≥1

(z − λj(HA,q))+ ≥ c1(Ω) (z − Λ(A, q))
1+n

2

+ ,

(58)
1

k

k
∑

j=1

λj(HA,q) ≤ c2(Ω)

(

k − 1

|Ω|

)
2

n

+ Γ(Ω, A, q),
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anf if
∑k

j=1 λj(∆ + q) ≥ 0, then

(59) λk(HA,q) ≤ max

(

c3(Ω)

(

k − 1

|Ω|

)
2

n

, 2Γ(Ω, A, q)

)

,

(60)
∑

j≥1

e−tλj(HA,q) ≥
c4(Ω)

t
n

2

e−tΓ(Ω,A,q).

5. Appendix

Proposition 20. Let HA,q be a magnetic Schrödinger operator on a com-
pact Riemannian manifold (M, g) possibly with nonempty boundary. We
have, under Dirichlet or Neumann boundary conditions if ∂M ̸= ∅,

(61) λ1(HA,q) ≥ λ1(H0,q).

Moreover, equality holds if and only if the magnetic field B = dA vanishes
and the cohomology class of the magnetic potential A is an integral multiple
of 2π (that is, if and only if A ∈ LZ).

Proof. If q is a constant potential, then the inequality is immediate since
λ1(HA,q) = λ1(∆A) + q ≥ q and λ1(H0,q) = λ1(∆) + q = q. Assume there-
fore that q is not constant and let u0 be a positive first eigenfunction
of H0,q = ∆+ q. Consider the vector field X = ∇(lnu0) =

∇u0

u0

. The proof
of (61) relies on the following Lavine-O’Carroll type identity : For every
u ∈ C∞(M,C) (resp. u ∈ C∞

0 (M,C) for Dirichlet b.c.),
(62)
∫

M
(|∇Au|2 + q|u|2)vg − λ1(H0,q)

∫

M
|u|2vg =

∫

M
|∇Au− uX|2vg ≥ 0.

Indeed, this identity implies that RA,q(u) ≥ λ1(H0,q) for any u ∈ C∞(M,C)
and, then, λ1(HA,q) ≥ λ1(H0,q). Now, to prove (62), we first observe that

|∇Au− uX|2 = |∇Au|2 + |u|2|X|2 − 2Re⟨∇Au, uX⟩.

Since

⟨∇Au, uX⟩ = ⟨ū∇u,X⟩ − i |u|2A(X),

we have

Re⟨∇Au, uX⟩ = Re⟨ū∇u,X⟩ =
1

2
⟨∇|u|2, X⟩
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and
∫

M
|∇Au− uX|2vg =

∫

M

(

|∇Au|2 + |u|2|X|2 − ⟨∇|u|2, X⟩
)

vg

=

∫

M

(

|∇Au|2 + (|X|2 − δX) |u|2
)

vg

where, if ∂M ̸= ∅, the integration by parts is justified by the fact that u
vanishes on the boundary for Dirichlet b. c., and X = ∇u0

u0

is tangent to the
boundary when Neumann boundary conditions are assumed. Now

δX = ∆(lnu0) =
∆u0
u0

+
|∇u0|

2

u20
= |X|2 + λ1(H0,q)− q.

Substituting in the above equation we get (62).

Now, if B = 0 and the cohomology class of A is an integer multiple of
2π and, using the gauge invariance property (12), one has Spec(HA,q) =
Spec(H0,q) which clearly implies the equality in (61). Conversely, assume
that λ1(HA,q) = λ1(H0,q) and let v0 be a first eigenfunction of HA,q. Apply-
ing (62) to v0, we get ∇Av0 − v0X = 0 which means that

∇v0 = i v0A
♭ + v0X.

Setting w = v0/u0, one gets (with ∇u0 = u0X)

∇w =
1

u20
(u0∇v0 − v0∇u0) = · · · = i wA♭

and (as Ā = A)

∇|w|2 = w∇w̄ + w̄∇w = −i |w|2A+ i |w|2A = 0.

Therefore, |w|2 is constant. In conclusion, one has A = i dw
w which is clearly

closed (i.e. B = dA = 0) and satisfies
∫

ΓA ∈ 2πZ for any closed curve Γ. □
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