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A two-point function approach to
connectedness of drops in
convex potentials

Guipo DE PHILIPPIS AND MICHAEL GOLDMAN

We establish connectedness of volume constrained minimisers of
energies involving surface tensions and convex potentials. By a pre-
vious result of McCann, this implies that minimisers are convex in
dimension two. This positively answers an old question of Almgren.
We also prove convexity of minimisers when the volume constraint
is dropped. Our proof is based on the introduction of a new “two-
point function” which measures the lack of convexity and which
gives rise to a negative second variation of the energy.

1. Introduction
1.1. Overview

Crystals and drops subject to the action of an external potential are usually
described by the following free energy (see [20])

(1.1) Fo) = [ ewee+ [ o

where the first integral is taken with respect to the (d — 1)—dimensional
Hausdorff measure and the second one with respect to the Lebesgue measure.
Here E C R% is a set of finite perimeter representing the volume occupied by
the drop, 0*E denotes its reduced boundary and vy- g its outer normal (see
[24] for more details). The potential g : R? — R accounts for the external
forces and ® : R — R is a one-homogeneous and convexr function which
describes the (typically anisotropic) surface tension. Note that when the
surface tension is isotropic, i.e. ®(v) = |v|, the surface term reduces to the
classical De Giorgi perimeter, P(FE).

It is commonly assumed that minimisers of under a volume con-
straint give a good description of the equilibrium shapes of drops. We thus

815



816 G. De Philippis and M. Goldman

consider the following variational problem:

(Pv) |g‘ﬂznv F(E)

and its unconstrained counterpart:

(P) mbin F(E).

Let us also note that the above variational problems naturally appear
in various other contexts such as:

- In the limiting case in which g takes only the values 0 and +o0, (Py))
reduces to the isoperimetric problem in the domain Q = {g < +o0}

(see [I);

- The minimisation problem appears as one step of the Almgren,
Taylor and Wang approximation of the mean curvature flow (cf. [2]).
There, g = sdist(x, Fx_1) is the signed distance to the (k — 1)-th step
of the scheme, see also [23].

A natural question is to understand how properties of the surface tension
® and of the potential g influence the shape of . In this paper we investigate
the following question which is attributed to Almgren (see [25]):

Question: Let E be a minimiser of (Py|) and let us assume that g is
convez. Is it true that E is convex?

Note that, if the answer to this question is positive, it can only result
from a delicate interaction between the surface and the volume terms in
. Indeed, it is known that the answer is positive both for very small
and very large volumes but for totally different reasons. On the one hand,
in the regime V < 1 and assuming that ® and g are sufficiently smooth,
Figalli and Maggi showed in [I7] that E is a smooth perturbation of the
Waulff shape associated to ® (the ball if ®(r) = |v|) and is thus convex. On
the other hand, in the regime V > 1, the set F should resemble the level
set of g having volume V" and therefore must be convex as well, see [10] and
Remark [1.6] below.

In the regime of intermediate mass V' ~ 1, no term in the functional
is predominant and very little is known about the minimisers. To the best
of our knowledge, the only available result in this general setting is due
to McCann (see [25]). Building on an unpublished paper of Okikiolu, he
proved that when d = 2, every connected component of £ must be convex.
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Moreover, using ideas from optimal transport theory he proved that every
such connected component is uniquely minimising (Py]) for its own volume
in the class of convex sets.

1.2. Main results

The main result of this paper asserts that minimisers of (Py|) are always
connected. More precisely we have the following result which is new even in
the case of isotropic surface tensions, ®(v) = |v|.

Theorem 1.1. Let E be a minimiser of (Py)) and assume that g € CH*(RY)
is a convex and coercive function and that ® € C3*(R?\ {0}) is uniformly
elliptic, i.e.

(1.2) (D20(W)E,&) > ¢ — mOvf? ¥ | = v = 1.

Assume moreover then g is strictly convez, then, OF is connected, in par-
ticular E is indecomposablfﬂ (and thus connected). In case d = 2, the strict
convezity assumption is not needed.

From the result of McCann (see [25]) this immediately positively answers
Almgren’s question in dimension 2.

Corollary 1.2. Assume d =2 and let E C R? be a minimiser of (Py))
with g € CH*(R?) a convex and coercive function and ® € C3*(R?\ {0})
uniformly elliptic. Then E is conver and unique.

Remark 1.3. By approximation of g and @, this implies that if d = 2, for
every convex and coercive g and every convex anisotropy ®, for every volume
V there exists a minimizer of which is convex. However, we can not
rule out the existence of other, possibly disconnected, minimizers.

For the unconstrained problem we are actually able to show convex-
ity of minimisers.

Theorem 1.4. Let E be a minimiser of and assume that g € CH%(R%)
is a convex and coercive function and that ® € C>*(R?\ {0}) satisfies (1.2)),

then E is convez.

'Recall that a set of finite perimeter E is said to be indecomposable if for every
partition E = E; U Ey with |E1 N Ey| = 0 and P(E) = P(E1) + P(E2) then either
|E1| =0or |E2| =0.
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Remark 1.5. In Theorem we must require strict convexity of ¢ in the
case d > 2 since in that case we are not able to guarantee the existence of a
stable connected component of OF intersectingﬂ Jdco(E).

However, we believe that our results actually hold true for more general
surface tensions ® (for instance crystalline ones) and possibly non-smooth
convex potentials g.

Remark 1.6. As mentioned above, convexity of solutions of is known
for large volumes. Indeed, even though the precise statement is not written
explicitly anywhere, it follows from [I0, Theorem 3| arguing exactly as in
[10, Lemma 5.1] (see also [11, Theorem 5.6] and [4, Theorem 11]). The proof
is based on a calibration technique to show that for large volumes, solutions
of are given by sublevel-sets of the (unique) local minimizer u of

/]DuH—;/(u—g)z.

This is coupled with the Alvarez-Lasry-Lions convexity result [5] (see also
[22]) for solutions of elliptic PDEs to obtain the convexity of u. One of the
outcomes of the proof is the existence of V' > 0 such that, for all V >V
there exists Ay, € R for which

E minimises (Py) <<= FEc¢€ argmin{ /

o*F

(vo-r) + /F(g - Av)}-

Taking this equivalence for granted, convexity of solutions of (Py]) for V>V
could also be obtained by applying Theorem [1.4] with g replaced by g — Ay .

1.3. Idea of proof and structure of the paper

The proofs of our main results are based on the two-point function tech-
nique. This technique, quite standard in the context of viscosity solutions
[12] (where it goes by the name of doubling of variables trick), has been
introduced in the realm of geometric problems by Andrews in [6] to show
preservation of an interior ball condition along the mean curvature flow.
Brendle in [9] improved these ideas to the “elliptic” setting to prove Law-
son’s conjecture about minimal torii in S. Several applications of these ideas
can be find in the nice survey paper of Andrews, [7].

2Here and in the sequel co(F) denotes the closed convex envelope of a set F.
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In the examples mentioned above, the two-point function which is used
is a “non-infinitesimal” version of the norm of the second fundamental form
of OF, namely

Assuming for simplicity that ®(v) = |v| and g = 0, this can be shown to be
a subsolution of Simons equatio

|VIsg|?

(A+ o) op > cld) =
oF

— Hoplig

or of its parabolic variant. Then, suitable applications of the maximum prin-
ciple allow to conclude.

Here we use a different function which measures the “non-convexity” of
OF:

(1.3) Sor(x) = sup (vag(x),y — ).
yeOE

See also [3I] where a similar function is used in a different context. This
turns out to be a positive subsolution of the Jacobi equation:

(A + [Asp]*)Sor > 0

and thus induces a negative second variation of the energy. In the case
of the unconstrained minimisation problem this is enough to conclude
since every minimiser must have positive second variation. In the case of
the volume constrained minimisation problem , Ssp is no longer an
admissible variation since it does not respect the volume constraint and
hence we are not able to conclude that E is convex. Nevertheless if OF is
disconnected at least one of its connected components must be stable with
respect to all possible variations i.e. non necessarily volume preserving, and
this gives the desired contradiction.

Let us remark that in contrast to Iyg, our function Spg does not have
an “infinitesimal” version. However, while Iyg is a subsolution of Simons
equation, ours is directly a subsolution of the Jacobi equation which is easier
to use in combination with the stability inequality. Let us also note that the

3We denote by Apg the second fundamental form of OE and by Hyr = tr(Asp)
its mean curvature.
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doubling of variable trick allows to get rid of a term with an unfavorable
sign, see Lemma belowf]]

We point out that it should be clear from the above sketch of the argu-
ment that our results actually apply to (sufficiently smooth) stable critical
points. Indeed, minimality is only used to overcome some regularity issues,
see Theorem (3.4 and Remark 3.5 below.

Finally we would like to underline the fact that the combination of the
two-point function technique with the assumption of positive second vari-
ation is quite natural. In fact, on a general stationary point the Jacobi
operator does not satisfy the maximum principle. It is precisely the stability
condition which guarantees its validity. We hope that this simple observation
can be useful also in other contexts.

Let us also mention the works [29] B0] where Sternberg and Zumbrun
used (in a quite different way) the stability inequality to prove connectedness
of minimizers of the relative isoperimetric problem inside (strictly) convex
sets.

The paper is structured as follows: in Section [2| we recall some well-
known properties of minimisers of (Py|) and , together with some basic

facts of differential geometry. In Section [3| we prove Theorem and
Eventually in the Appendix [A] we prove a simple approximation lemma.
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2. Notation and preliminaries

In this section we collect a few results that will be used in the sequel and
we fix some notation.

4This is related to the following simple observation: if a symmetric block matrix

is positive,
A B 0 0
>
B —-C)=\0 0)°

then not only tr(A) > tr(C) but also tr(A) > tr(C) + 2tr(B).
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2.1. Differential geometry

Most of the concepts and relations introduced here may be find in [I5] (see
in particular [I5, Chapter 2.3] and [I5] Chapter 6.2]). We let (ey,--- ,eq) be
the canonical basis of R?. Given a symmetric k-linear form B, Blvi, ..., v
denotes its action on the k-tuple of vectors vy, ..., vg. From now on we will
use the symbol D for the flat connection on R%, i.e. the classical compo-
nentwise derivative. In coordinates, this means that if X = Zgzl X;e;, then
DxY =%  X;8,Y.

For a C? regular (d — 1)-manifold M oriented by its normal vy, and a
vector field X, we will use Vx to denote the covariant derivative on M:

VxY =pp yDxY

where pp ,, is the orthogonal projection onto T M. Let us recall that for
X, Y, Z vector fields, we have

(2.1) Dx (Y, Z) = (DxY, Z) + (Y, Dx Z),

which can be easily checked using coordinates (see also [15, Corollary 3.3]).
In particular, if X and Y are tangent then (DxY,vyr) = —(Y, Vxvar). We
may thus define the second fundamental form Aj,; by its action of tangent
vector fields as

(2.2)  Au(@)[X(2),Y(2)] = —(DxY (2), v (2))
= (Vxva(2), Y (2)) = (Vyvu (z), X(2)),

where the last equality follows from the symmetry of Ays (see [15, Proposi-
tion 2.1]). Note that with our convention Ay is positive if M is the boundary
of a convex set oriented by its exterior normal.

Given two tangent vector fields X and Y we have by

(2.3) DXy:VXY—I-<DX}/,VM>l/M:VXY—AM[X,Y]VM.

For a C! function f defined in a neighborhood of M we define its tangential
gradient V f(x) € T, M as

Vf= meMDf-
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If X is a field of tangent vectors, we set Vxf = (Vf, X)=(Df, X). The
tangential Hessian V2f(x) : T,M x T,M — R is given by its action on tan-
gential vector fields X and Y defined in a neighborhood of x as

(2.4) (2)[X(2), Y (2)] = (Vx (V). Y)(x)
Qv (Vy £)(@) — (Vf (), DxY (2))
— D2f(2)[X(2), Y(2)] — Ay[X, Y](2)(Df (@), var(2))

where we have used that Vx(Vy f) = D*f[X,Y] + (Df, DxY) and that by
2.3).
<Df, D)(Y> = <Vf, DXy> - AM[X, Y] <Df, VM>

Note that the definition of V2f depends only on the values of f on M and
of X and Y at z. The Laplace-Beltrami operator of f is then given by

Ay f =trV2f =divy (V)

where for a (not necessarily tangent) vector field Y, the tangential divergence
divys Y is defined as

d—1

diva Y(x) =Y (DY (2),7i(x))

=1

for a local tangent orthonormal frame {7;} around z. Observe that this
definition does not depend on the chosen frame.

If & € C?(R?\ {0}) is one-homogeneous, the anisotropic mean curvature
HY, of an oriented (d — 1) manifold M is defined as

(2.5) HY = divy (D®(var)) = tr((D?*®(var) Ang).
When ®(v) = |v|, this reduces to the classical mean curvature. Note that this
definition is well posed since, by one-homogeneity, D?®(vys(z))var(z) = 0

and thus D2®(vy(x)): ToM — T,M. For the same reason the term
tr(D?*®(vpp)A2y) appearing in (2.7) below is well defined.

2.2. Properties of minimisers

The following theorem summarises well-known properties of minimisers of

and .
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Theorem 2.1. Let us assume that g € CH*(RY) satisfies

lim g(x) =400
|z| =400

and that ® € C3*(R?\ {0}) is uniformly elliptic (recall (1.2)). Then, for
every V € (0,+00) there exists a minimiser of (Py) (resp. (P))). Moreover
any minimiser E of (Py]) (resp. ) satisfies:

(i) E is equivalent to an open bounded set.

(ii) Let X be the singular set of OF, i.e.
Y= {CL’ € OF : OF does not have a tangent plane at CL’}

Then, X is closed, H4=3(X) = 0 and for all v € OE \ X there exists a
netghbourhood U, such that E N Uy can be locally written as the epi-
graph of a C? function. In particular, OF \ ¥ is a (relatively open) C3
manifold oriented by vg.

(iii) There exists a constant p such that
(2.6) HY:4+9=1n forallx € OE\ ¥ (resp Hyp +9=10),

and

(2.7) / (D2B(vp5) Vi, Vo) — tr(D?®(vpp) A3 )¢ + Dyg p® > 0
OE\X

for all ¢ € CLOE \ X such that / © =0 (resp. for all p € CLOE\ X)),
OF

(iv) Assume moreover that g has convez level sets, then

(2.8) /aEq)(l/aE) < /a*F O(vg-p) forall F D E.

Note that, if ®(v) = |v|, then the measure estimate in (ii) can be up-
graded to H48+¢(X) = 0 for all € > 0.

Proof. The existence of a minimiser and the boundedness of every min-
imiser is standard, see for instance [I3], [I7] and [I7, Section 4.2] for what
concerns boundedness. Moreover, one can easily show that there exist con-
stants A,y > depending only on the data such that any minimiser of
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(resp. (P)) is a (A, 7o) minimiser of the energy F +— [, ®(vor), namely

o*E o*F
for all F' such that diam(EAF) < ro,

see for instance [24, Example 21.2]. Claim (i) and (ii) follow, see [3| 8 [26]
or [I3, 14] where the theory is explained in the context of sets of finite
perimeter. Equations and come from the first variation and second
variation of F, see for instance [I7, Appendix A] or the appendix of [14].
The outer minimising property (iv) is established in [I7, Appendix B], see
also [25]. O

The following is a simple criterion for regularity, its proof is classical and
we sketch it here for the reader’s convenience.

Lemma 2.2. Let ® and g be as in Theorem[2.1] and let E be a minimizer
of (Pv) or (P). Assume that T € OF and that there exist r > 0 and a set
G with C* boundary such that

EnB(z,r) Cc GNB(z,r) z € 0ENOG.
Then T is a regular point, namely & € OF \ X.

Proof. By the classical e-regularity criteria, see for instance [I3], Section 3] or
[8], it is enough to show that there exists a sequence g | 0 and a half-space

H such that
E_ 1
E.=—-"% . H
Ok

By classical density estimates the sequence { E}} is relatively compact in the
LllOC topology and, by assumption, any of its limit points F, satisfies

0 € 0Ex Eoo CHV@G :{y : VaG(j)‘ySO}'

Moreover, using (2.9) we get that E., is a (unconstrained) minimiser of
F ' [yp ®(vor). The maximum principle, see [28] or [I3, Lemma 2.13],

then forces E, = H,,, and this concludes the proof. ]

3. Proof of Theorems [1.1] and 1.4]

In this section we will prove Theorem and The main calculation
consists in establishing for a generic set E, a differential inequality for the
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function Syg introduced in (|1.3)). Since these computations do not depend
on the nature of the problem and since they can be of independent interest,
we isolated them in the next subsection.

3.1. The key computation
Let E C R? be a bounded open set such that its boundary can be split as
OF = Ryp U XsE

where Ryg is a C® manifold oriented by vyr and Yyg is a closed singular
set with empty relative interior. Given x € Rgr and y € OF, let us define

Sop(r,y) = (vap(x),y — x)
and

(3.1) Sop(x) = ;Iégg Sop(x,y) >0,

whee the maximum is attained since OF is compact. Note that Spp(z) is
defined only for x € Rgg and it is the supremum of a family of locally
uniformly C? functions. In particular it is locally Lipschitz and locally semi-
Convexﬂ The following lemma is elementary.

Lemma 3.1. Let x € Ryg, then Spp(x) =0 if and only if © € dco(E) N
Rog.

Proof. Sgp(x) =0 if and only if the hyperplane H = {y : (vgp(z),y — z) <
0} is a supporting plane to E at x, which is equivalent to = € dco(E) N
RsE. O

We now define for ¢ € C?(Ryg), the Jacobi operator

(3.2) Loy = diVaE(DQ(I)(VaE)VgO) + tr(DQQ(VaE)A?dE)ap.

>This means that for any local chart ¢ : M — R9~1, the function Spr (¢~ (z)) +
C|z|? is convex for a suitable constant C. Note that this does not depend on the
choice of the chart.
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Notice that by integration by parts, if ¢ € C2(Ryg)

(3.3) /R (= Low)p + Dyg
- /R (D*B(vo) Vg, Vo) — tr(D?®(vp) A3)0® + Do o

By a slight abuse of notation, we will identify the left-hand side and the
right-hand side of even when ¢ € Wh2(Ryp).

The following is the key computation. Note that, thanks to Lemma in
the context of Theorem the condition § € Rgg will be always satisfied
(see Lemma [3.3| below).

Lemma 3.2. Let E be as above and let T € Rgg. Assume that
Sop(Z) = Sor(Z,9)
with ¥ € Ryg. Then, recalling the definition of Hg’E,
Lo Sor(7) 2 Hyp(z) — Hyp(y) + (VHgp(2),5 — 1)
in the viscosity sense, meaning that for all p € C*(Rag) such that
p(z) — Sop(x) = ¢() — Sor(z) =0,
then
Lop(z) > Hyp(7) — Hyp(y) + (VHp(2),5 — ).

Proof. Since the set F is fixed, for notational simplicity we drop the depen-
dence on F of the various quantities. Let ¢ be as in the statement of the
lemma and note that the function

G(x,y) = p(z) — S(z,y)

achieves its minimum at (z, 7). Moreover, by assumption, it is C? in a neigh-
borhood of (z, 7).

Step 1: Optimality conditions: In order to prove the theorem we are going to

exploit the first and second order minimality conditions for G at the point

(Z,7). To this end let us choose two local orthonormal frames {77}9=! and
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{7} }?:—11 around T and ¥ respectively such that:

(3.4) (@) =6y, (@) = 6,
(3.5) (Ver)@ =0, (Vur!)(G) =0.

Here §;; is the Kronecker delta. Letting A;j(z) = A(x)[7]", 77] we have from
(2-2)
(36)  (Don @) =Ay@)  and (D )E) = Ay ().

Combing this with (2.3) and (3.5)) we then obtain

(37)  Drerj(@) = —Ay(@)v(z)  and  Dori(y) = —Ay(@)v(9)-

To simplify our notation, for a function f : 0F x 0E C R? x RY — R we
set

Vif=(Vfr") and  V{f=(Vf 7)),

where by a slight abuse of notation, we identify 7 with (7%,0) € T,0F X
T,0F and 77 with the vector (0,7/). Similarly, we set

TNTT 72 T T = V?
Vivif=V f[Ti,Tj], V?V?f—v f[TiyaT]y]v

and ViVYf=V>f[r 7]
Note that thanks to , by we have
(3.8) Vivif(z,y) = Vi(Vif)(z,y)
and a similar expression for V%’V? f(&,y). Moreover, the trivial relations
VT;ET;»’ =0= VTJny,
also give
(3.9) VIVYf = VIVEf = VE(VLf) = VUVES).
We are now ready to compute the optimality conditions. To simplify

our formulas, from now on we we will always exploit Einstein summation
convention over repeated indices.
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Since G achieves its minimum at (Z,y) we have

(3.10) 0= VIG(z,9) = Vip(z) - VIS(Z,7).
(3.11) 0=V/!G(z,y) = -V!S(z,7).

Using that V =2 = 7 is perpendicular to v(z), we have by (3.6)
(3.12) ViS(z,y) = Aip(x)(1f,y — ) and VYS(z,y) = (v(z),1}).

)

The first equation and then give
(3.13) Vie(T) = Ai(2) (7 (7),5 — T).
Equation instead gives that

0= (v(z), 7)),

and thus v(Z) = £v(y). Actually since y — S(Z,y) attains its maximum at
i, we must have

(3.14) v(z) = v(g).

In particular Tz0F = T;0F and the frames may be chosen such that
(3.15) (ri'(2), 7] (9)) = di;-

We now compute the Hessian of G. Recalling ,

VIVIG(z,5) = VIVip(z) — VIVIS(Z,7)
(B-12)&([3.6) _ _ B
ERLED Grge o (z) — V2 Au(@) (17 (2),y — )

— Aj(Z)(Drei (), 5 — Z) + Aji(2) (7, 77 ) ()
(3.16) CIZED Grvr0(@) — VA (@) (7 @),y — o)

+ Aji(2) A (2)(v(2), § — Z) + Aij(T)
= ViVie(T) — ViAju(2){(m(2),y — %)
+ Aji(2) Api(T)0(Z) + Aij (T).
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where in the last equality we have used that ¢o(z) = S(z,9) = (v(Z),y — T).

Analogously, using and (| -

(3.17) ViViG(z,9) = —(Drv(z),7] (1))
B6) I .\ B _
= —Au(@) (7 (@), 7/ (1)) = —Ay(@)
As for the y derivatives we get, using and ,
o NV _\ 619 _
(18)  VIVIGED) = Ay@) @), @) B Ay0).

Step 2: The case of the area functional. To make the computations clearer,
we first treat the particular case in which ® = | - |. Note that in this setting

(recall (3.2))

Lop = Aop o + |AP,

and H® = A;; is the classical mean curvature. Since (Z,¥) is a minimum
point for G, we have

0 < (Vi + VI)(Vi +V)G(z,9)
= ViViG(z,9) + 2ViV]G(z,y) + Vi VIG(Z,7).

Using this, and , we get

Aop p() > Vi A (T)(1i (Z),y — )
(3.19) — A (Z) Ai(2)o(T) — Agi(T) + 244(7) — Au(y)
= Vi Air(2) (7 (2),y — x) — |APo(z) + H () — H* (7).

We now use Codazzi equations
(3.20) VI Ay = ViAy,

to obtain that
VP Ay = ViAy; = ViH?,
which, combined with (3.19) yields
ANopp(E) + |APe(z) > H® () — H®(y) + (VH®(2),7 — 2).

This proves the lemma for & = | - |
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Step 3: The general case. To deal with the general case we start by writing Lo
in non-divergence form. Let {7} be an orthonormal local frame satisfying

, , , and let us set, for i,5,k € {1,...,(d— 1)},
®5(v)(z) = D*®(v ( ))[Tiﬂ'f]
and @, (v)(2) = D*®(v(2))[7f, 77, 7i7).

Note that, since D?®(v)[v,-] = 0 (by one-homogeneity) and since for all 4
and j, Dr+7(Z) is parallel to v(Z) (by (3.7)) we have that, at z,

Dy ®(v) = Dy (D*@(v)[17,75))
—D3<I>( WDzzv, 77, 75 2] + D2®(v)[Dye 7, 77

(321) 71’] Tkzvj
: 2
+D q)( )[ 7 7DT,ij]
= O (v) A,

where we used (3.6) and that by (2.1)), (Dr+v,v) = 0. For ¢ € C*(Ryg) we
then have at

divor(D*® (1) V) = (Drs (D32 () Vi 7i0), 78)
CILED b (D200) Vi + 045()VE (V)
B2 0,4,V + 0y () VIV,
Hence, again at Z, recalling the definition of Lg, ,
Lo (%) = divap(D*®(v) V) + tr(D*B(v) A%
= 01 A Vi + @ij(V)ViVip + @5 (v) A Ay

Furthermore by (3.14) and (3.15)), ®;;(v)(Z) = ®;;(v)(y) and these are the
components of a positive matrix. Hence, by minimality,

(3.22)

0 < @45(v)ViViG(2,9) + 284 (V) ViVIG(Z,9) + @i (V) VIVIG(Z, ).

Using (3.16), (3.17) and (3.18) and recalling the definition of H®, (2.5),

(323) Hq) = q)ij(lj)Aij
this implies

D ()ViVip(T) > Oy(v) Vi A (T) (i (T), 5 — T
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and thus by ,
(3.24) Lap(z) = @i5(v)Vi Ajr(T)(73 (2),§ — T)

+ 05 (v) Au(2)Vip(x) + H* (2) — H*(p).

We now differentiate (3.23]) with respect to 7, use (3.21)), Codazzi equa-
tions (3.20) and the symmetry of ®;; to get at the point Z,

ViH® = @45(v)ViAi; + ®iji(v) A Ay
= (I)ij(l/)VfAjk + (I)ijl(V)Ajk;Ali-

Multiplying this equation by (7(Z),y — Z) and summing over k we get

(VH?(2),5 — 1) = ( )V A;k( )<T ( ) —

Plugging the above expression into (3.24]) we thus get
Lop(z) > H®(z) — H*(y) + (VH®(2),§ — 2),
which concludes the proof. ]

3.2. Proof of Theorems [1.1] and [1.4]

We now combine Lemma [3.2] with the convexity of g to show that for min-
imizers of either or , Sop gives a negative second variation. As
already pointed out, this is the key observation for the proof of both Theo-
rem [LI] and Theorem [.4

For g € C'(R%), we say that an increasing function w is a modulus of
convexity of g if

(3.25) 9(y) — g(x) — (Dg(z),y —z) >w(ly—=|)  Va,y e R™

Notice that of course, for every convex function zero is a modulus of convex-
ity and if g is strictly convex, it has a strictly positive modulus of continuity.

Lemma 3.3. Let g € CH*(RY) be coercive and convex with modulus of con-
verity w, ® € C3¥(RN{0}) be uniformly elliptic and one-homogeneous and
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let E be a minimizer of either (Pyl|) or . Let Syg be the corresponding
function defined in (3.1). Then,

(i) For every x € OE \ ¥ the point § achieving the mazimum in the defi-
nition of Sag is in OE \ X.

(ii) Sor € WH2(OE\ D).

(iii) Sog solves
(3.26) L3Sor — Dyg Sop > w(Sap) on OE\ ¥
both in the viscosity and in the distributional sense.

Proof. As above, since the set E is fixed here, we will drop the explicit
dependence on F of the various quantities. We divide the proof in few simple
steps:

Step 1: Proof of (i). Given T € OE \ ¥ we let § be a point achieving the
maximum in the definition (3.1]) of S. This means that

EcH={y: (v(@),y—z) <(v(z),y—2)} y€IENOIH.

Hence (i) follows for Lemma [2.2]

Step 2: Proof of (ii). Being the supremum of a family of (uniformly) locally
Lipschitz functions, S is locally Lipschitz on OF \ X. Hence, in order to show
that S € W12(OF \ X) it is enough to show that

/ IVS|? < +oo.
OE\S

Let z € OE\X and gy be such that S(z) = S(z,y), then S(z,y) < S(z) with
equality at Z and therefore VS(z) = V*S(z,%). By (3.12), we thus have
|VS|(Z) < diam(FE)|A|(Z) and we are left to prove that |A| € L2(0F \ ¥).
This is a simple consequence of . Indeed, in case £ minimises it is
enough to set ¢ = 1 (which is possible thanks to Lemma in the second
variation inequality to obtain

/ ]A\Q < / tr(D2<I>(V)A2) <C D,g < +0,
OE\S OE\S OE\S

where we used the inequality |A[* < tr(D?*®(v)A?) which follows from the
ellipticity of ® (recall (1.2))). In the case when E minimises (Py]), ¢ =1 is
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not admissible anymore in (2.7)). However, letting Ny CC Ny be two small
neighborhoods of the singular set ¥, one can construct two positive smooth
functions ;1 and 9 such that spt p; C No, spt s C IE \ Na, o1 =1 on Ny

and [, 01 = [, 2. Since @1 — @2 € WH(HE\X), by Lemma we can
plug it in the stability inequality (2.7)) and deduce that

/ pWs/' Sr(D2B(v)A%)
N\S OE\S

<- [ duemad+c [ (Val+VeP)
OE\S OE\D
OE\X

Since |A| is bounded on OF \ Ny, this concludes the proof.

Step 3: Proof of (iii). The fact that a viscosity subsolution is a distributional
subsolution is proved for instance in [21, Theorem 1]. Hence, it is enough
to show that S satisfies in the viscosity sense. Thanks to (i), we
know that for every z € OF \ X the point y achieving the maximum in the
definition of S is in OF \ ¥. Therefore, Lemma implies that

LgS(z) > H®(z) — H®(y) + (VH"(2),§ — %)

in the viscosity sense. Differentiating (2.6) to get VH® = —Vg and sub-
tracting to both side of the above inequality

Dyg(i)S(.f) = Dug(i“)@/(f)v@ - i‘>’

we obtain

S

> H®(2) — H®(y) — (Vg(2),y — &) — Dyg(z)(v(2),§ — T)
= 9(y) — 9(x) — (Dg(), (¥ — 7)) > w(|Z — yl)

where the last inequality follows by (3.25)). Since by deﬁnitionlﬂ S(z) < |z —
y| and since w is increasing, this concludes the proof of (3.26)). O

We are now ready to prove our main results. We start by Theorem

SIf we knew that OF is smooth, then actually S(z) < C|z — 3|2, where the con-
stant C' depends on the curvature and the diameter of OF.
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Proof of Theorem[1.]]. As before, since we work here with a fixed set E, we
will drop the explicit dependence on OF of the various quantities. Our aim
is to prove that S = 0, which by Lemma will imply the convexity of E.

By Lemma S e WL2OFE\ ¥) and thus by Lemma it can be
approximated in W12(9E \ X) by positive functions in C2(9F \ ¥). In par-
ticular by (recall (3.3)):

(3.27) / (~LsS)S + D,g S* > 0.
OE\X

Multiplying (3.26]) by —S we obtain the inequality
(=LeS)S + D,gS* < —w(S)S,

which after integration gives

(3.28) —/ w(S)SZ/ (—LsS)S + D, gS%.
AE\Y AE\Y

If g is strictly convex, this directly gives a contradiction with unless
S =0. By Lemma this implies that OF C dco(E). Now, either by the
Constancy Lemma [16, 4.1.31] or by the regularity of OF (note that that
Y = () by Lemma , OF = 0co(F) and hence, since E is bounded, E =
co(E).

If instead g is convex but not strictly convex, we obtain by and
(2.7) (using again Lemma that

Sor(—LaS)S + D,gS? =0 < min / —L + D, gp°.
/BE\E £(~Le5) PEW2(OF\X) 8E\E( *¢)¢ i

Computing the Euler-Lagrange equation we obtain that LS — D, ¢S = 0 in
WL2(9FE \ ¥) and then by classical elliptic regularity that S € C?(0FE\X).
Let M be a connected component of 9E\ X such that M N dco(E) # () (which
exists by Lemma [2.2)). Since S >0 on M and S =0 on M Ndco(E) by
Lemma the minimum principle [I8, Theorem 2.10] implies that S = 0

on M. Arguing as above we obtain that M = dco(FE), which in turn gives
that £ = co(E)\F for some set F' CC co(F) and thus

/aCO(E) ®(Voco(r)) = /aE(I)(VaE) - /aF B(vor)

This contradicts the outward minimising property (2.8)) of E unless F' = ).
Therefore, we can again conclude that F is convex.
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O

To prove Theorem [I.1] we can not plug Spr anymore in the stability
inequality since it does not satisfy the zero average constraint. Nevertheless,
if we assume by contradiction that OF has several connected components,
then at least one of them must be (unconditionally) stable and this allows
to argue as above. In dimension d > 2 since we can not a priori guarantee
that there exists a connected component which is both stable and intersects
Oco(E), we need to impose the strict convexity of g to conclude.

Proof of Theorem[1.1]. As before, we drop the dependence on OF of the
various quantities. We will actually prove a slightly stronger result with
respect to the connectedness of OF, namely that we can not partition OF
as OF = My U My with My N My € ¥ and HO (M), HO™H(M3) > 0. Let us
assume for the sake of contradiction that this is not the case. First we claim
that that there exists ¢ € {1,2} such that

/ (—=Lap)e + Dug cp2 >0 for all ¢ € Ccl(MZ \ ).
OMN\E

Indeed otherwise, by homogeneity we can find ¢, € CH(M;\ X)), o2 €
Cl(Ms \ ) such that Jor 01 = [45 @2 and satisfying

(329) / (—L.:pgoi)(pi + D,g QOZQ <0 fori=1,2.
OM\E

Since spte; Nsptps = 0, the function @ = 1 — o satisfies faE @ =0 and
thus would lead to a contradiction with . Hence either M7 or Ms
is stable with respect to all possible variations. For the sake of the argument
assume that it is M;.

Case 1: g is strictly conver: Arguing as in the proof of Theorem we get
(compare that with (3.28]))

—/ w(SE)SE Z/ (—Lq;S)S-i—DygSz.
M\X M\X

which by strict convexity of g yields Sg =0 on M; and then M; = dco(E)
with vop = Vgeo(m) on M. Hence, if HI (M) > 0,

/ (I)(V(?co(E)) < / (I)(V(?E)7
dco(E) OF

which contradicts (2.8) and thus H4~!(My) = 0.
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Case 2: d =2 : By [25] we know that F is a union of convex sets which
are smooth by Theorem If My NOco(E) # 0, then as in the proof of
Theorem the minimum principle implies that Sg = 0 on M; and thus,
by the same arguments as above, M; = Oco(F) and we are done.

Otherwise, OF N Oco(E) C M. If Ms is disconnected, by the same ar-
guments as above, at least one of the connected component must be stable.
If this intersects dco(E) we can repeat the same argument above and con-
clude. Hence we can assume that M is connected and unstable, in particular
Ms = 0K for some convex set . We claim that co(E) = K. Indeed, if this
is not the case then there exists an extremal point x of dco(E) which is not
in OK. Since x € OF, this contradicts dco(E) N OE C 0K.

Connectedness of OF now easily follows both cases: indeed assume that
OF = Mj U My with M; and Ms closed and such that M7 N My = (). Then,
we may assume for instance that H?~1 (M) = 0. Thus My C Y and 0E \ ¥ C
M;. However regular points are dense in the boundary and thus My C ¥ C
OFE \ ¥ C M, a contradiction. O

It is clear that the above proofs mostly rests on the stability inequality
and that minimality is only used to have enough regularity to make the
computations in Lemma[3.2land Lemmal[A 1] The proof can thus be extended
to smooth stable critical points (or volume preserving stable critical points)
of F. For example, we have

Theorem 3.4. Let ® and g be as in Theorem[1.]] and let E be a smooth,
bounded and stable critical point of F, then E is convez.

Proof. Arguing as in the proof of Theorem [1.4] we obtain that E = co(E)\F
for some smooth set F'. In order to reach a contradiction, we first claim that
HSy > 0 (recall the definition (2.5)) on OE. Indeed, by (2-6), a minimum z
of Hg’E corresponds to a maximum of g on OF and thus,

0> tr(D*®(vo5)V29(2) & tr(D*®(vop) D*(x)) — Hio(#) Dug(2).

From the convexity of g, we get that tr(D?®(vyr)D?g(z)) > 0. By convexity
of g again, 7 is a maximum of g on E and thus D,g(z) > 0. If the inequality
is strict, then H3p(Z) > 0 as claimed, otherwise since also Vg(z) = 0, we
actually have Dg(Z) =0 and Z is the minimizer of g on R? from which
g is constant on E and thus by , HgE is also constant on OF. By
the anisotropic version of Alexandrov Theorem [19], this implies that E is

actually the Wulff shape of & and is in particular convex. Now if € OF
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is such that HZ-(Z) > 0 (which always exists), since vgp(Z) = —vop(z), we
have Hyy(Z) = —HSp(Z) < 0, which gives the desired contradiction. O

Remark 3.5. As in the case of minimizers, it is possible to allow for a
small singular set ¥ once one knows that the supremum in the definition
Ssr is achieved by a point 4 in the regular set and that Lemma is in
force.

In the case of the isotropic area functional, Allard’s theorem can be
applied to critical points (see [27]), and thus one can extend Lemma
to this setting. Moreover, using the monotonicity formula, Lemma can
also be extended to critical points with a singular set 3 of vanishing H¢ 3
measure.

In the setting of anisotropic surface tensions, however both the analog of
Allard’s theorem and the density lower bound are missing for critical
points (see however [1).

Appendix A. An approximation Lemma

For the reader’s convenience we report here the following simple (and well-
known) lemma whose proof follows by a standard capacitary argument (see
for instance [14}, [30]).

Lemma A.1. Let E, ®, g and ¥ be as in Theorem[2.1, Then C2(OE \ )
is dense in W12(OE \ X) with respect to the strong WH2(OE \ ) topology.

Proof. Obviously ¥ = () for d = 2,3, hence we assume that d > 4. As already
observed in the proof of Theorem [2.1] E is a (A, 7)) minimiser of

F— (I)<V8*F)-
O*F

In particular it satisfies the estimate (see [24])
(A.1) HIYOE N B(x,r)) < Crtor all x € OF, r < rg

for a constant C' = C(A,d) > 0. Since H?3(¥) =0 and X is compact, for
every € > 0 we can find finitely many balls {B(zy, )}, centered in ¥ and
such that

X C U B(xg, k) Zr;ffg < egd3,

N N
k=1 k=1
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For each of this balls we consider oy, € C2(B(z, 2r1), [0, 1]) satisfying ), = 1
on B(xy,rr) and |Dyg| < 2/ry. Let

Uelw) = max_o(a)

=Ly

then 9. € Lip(R%,[0,1]), ¢ = 1 on X, 9. = 0 outside No.(X), a 2¢ neighbor-
hood of ¥. Moreover, by (A.1]),

N q/d-1
/ |D%|2§4ZH (BEQZB(x,Qrk)) <Y 8 < cetd,
oE

k=1 "k k=1
Let now u € W2(9F \ ). By approximation we may assume that u is
bounded and, by scaling that ||u||s < 1. Let v. = (1 — % )u, then

/ \u—varmw—w&\?s/ (u2+\w!2)+2/ | Dyel* = 0
OFE Noe(2) OF

as € — 0. Since sptv- N3 = ) a simple smoothing argument concludes the
proof. ([
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