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We establish connectedness of volume constrained minimisers of
energies involving surface tensions and convex potentials. By a pre-
vious result of McCann, this implies that minimisers are convex in
dimension two. This positively answers an old question of Almgren.
We also prove convexity of minimisers when the volume constraint
is dropped. Our proof is based on the introduction of a new “two-
point function” which measures the lack of convexity and which
gives rise to a negative second variation of the energy.

1. Introduction

1.1. Overview

Crystals and drops subject to the action of an external potential are usually
described by the following free energy (see [20])

(1.1) F(E) =

∫

∂∗E

Φ(ν∂∗E) +

∫

E

g,

where the first integral is taken with respect to the (d− 1)−dimensional
Hausdorff measure and the second one with respect to the Lebesgue measure.
Here E ⊂ R

d is a set of finite perimeter representing the volume occupied by
the drop, ∂∗E denotes its reduced boundary and ν∂∗E its outer normal (see
[24] for more details). The potential g : Rd → R accounts for the external
forces and Φ : Rd → R is a one-homogeneous and convex function which
describes the (typically anisotropic) surface tension. Note that when the
surface tension is isotropic, i.e. Φ(ν) = |ν|, the surface term reduces to the
classical De Giorgi perimeter, P (E).

It is commonly assumed that minimisers of (1.1) under a volume con-
straint give a good description of the equilibrium shapes of drops. We thus
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consider the following variational problem:

(PV ) min
|E|=V

F(E)

and its unconstrained counterpart:

(P ) min
E

F(E).

Let us also note that the above variational problems naturally appear
in various other contexts such as:

- In the limiting case in which g takes only the values 0 and +∞, (PV )
reduces to the isoperimetric problem in the domain Ω = {g < +∞}
(see [4]);

- The minimisation problem (P ) appears as one step of the Almgren,
Taylor and Wang approximation of the mean curvature flow (cf. [2]).
There, g = sdist(x,Ek−1) is the signed distance to the (k − 1)-th step
of the scheme, see also [23].

A natural question is to understand how properties of the surface tension
Φ and of the potential g influence the shape of E. In this paper we investigate
the following question which is attributed to Almgren (see [25]):

Question: Let E be a minimiser of (PV ) and let us assume that g is
convex. Is it true that E is convex?

Note that, if the answer to this question is positive, it can only result
from a delicate interaction between the surface and the volume terms in
(1.1). Indeed, it is known that the answer is positive both for very small
and very large volumes but for totally different reasons. On the one hand,
in the regime V ≪ 1 and assuming that Φ and g are sufficiently smooth,
Figalli and Maggi showed in [17] that E is a smooth perturbation of the
Wulff shape associated to Φ (the ball if Φ(ν) = |ν|) and is thus convex. On
the other hand, in the regime V ≫ 1, the set E should resemble the level
set of g having volume V and therefore must be convex as well, see [10] and
Remark 1.6 below.

In the regime of intermediate mass V ∼ 1, no term in the functional
is predominant and very little is known about the minimisers. To the best
of our knowledge, the only available result in this general setting is due
to McCann (see [25]). Building on an unpublished paper of Okikiolu, he
proved that when d = 2, every connected component of E must be convex.
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Moreover, using ideas from optimal transport theory he proved that every
such connected component is uniquely minimising (PV ) for its own volume
in the class of convex sets.

1.2. Main results

The main result of this paper asserts that minimisers of (PV ) are always
connected. More precisely we have the following result which is new even in
the case of isotropic surface tensions, Φ(ν) = |ν|.

Theorem 1.1. Let E be a minimiser of (PV ) and assume that g ∈ C1,α(Rd)
is a convex and coercive function and that Φ ∈ C3,α(Rd \ {0}) is uniformly
elliptic, i.e.

(1.2) ⟨D2Φ(ν)ξ, ξ⟩ ≥ |ξ − ⟨ν, ξ⟩ν|2 ∀ |ξ| = |ν| = 1.

Assume moreover then g is strictly convex, then, ∂E is connected, in par-
ticular E is indecomposable1 (and thus connected). In case d = 2, the strict
convexity assumption is not needed.

From the result of McCann (see [25]) this immediately positively answers
Almgren’s question in dimension 2.

Corollary 1.2. Assume d = 2 and let E ⊂ R
2 be a minimiser of (PV )

with g ∈ C1,α(R2) a convex and coercive function and Φ ∈ C3,α(R2 \ {0})
uniformly elliptic. Then E is convex and unique.

Remark 1.3. By approximation of g and Φ, this implies that if d = 2, for
every convex and coercive g and every convex anisotropy Φ, for every volume
V there exists a minimizer of (PV ) which is convex. However, we can not
rule out the existence of other, possibly disconnected, minimizers.

For the unconstrained problem (P ) we are actually able to show convex-
ity of minimisers.

Theorem 1.4. Let E be a minimiser of (P ) and assume that g ∈ C1,α(Rd)
is a convex and coercive function and that Φ ∈ C3,α(Rd \ {0}) satisfies (1.2),
then E is convex.

1Recall that a set of finite perimeter E is said to be indecomposable if for every
partition E = E1 ∪ E2 with |E1 ∩ E2| = 0 and P (E) = P (E1) + P (E2) then either
|E1| = 0 or |E2| = 0.
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Remark 1.5. In Theorem 1.1 we must require strict convexity of g in the
case d > 2 since in that case we are not able to guarantee the existence of a
stable connected component of ∂E intersecting2 ∂co(E).

However, we believe that our results actually hold true for more general
surface tensions Φ (for instance crystalline ones) and possibly non-smooth
convex potentials g.

Remark 1.6. As mentioned above, convexity of solutions of (PV ) is known
for large volumes. Indeed, even though the precise statement is not written
explicitly anywhere, it follows from [10, Theorem 3] arguing exactly as in
[10, Lemma 5.1] (see also [11, Theorem 5.6] and [4, Theorem 11]). The proof
is based on a calibration technique to show that for large volumes, solutions
of (PV ) are given by sublevel-sets of the (unique) local minimizer u of

∫

|Du|+
1

2

∫

(u− g)2.

This is coupled with the Alvarez-Lasry-Lions convexity result [5] (see also
[22]) for solutions of elliptic PDEs to obtain the convexity of u. One of the
outcomes of the proof is the existence of V̄ > 0 such that, for all V ≥ V̄
there exists λV ∈ R for which

E minimises (PV ) ⇐⇒ E ∈ argmin
{

∫

∂∗F

Φ(ν∂∗F ) +

∫

F

(g − λV )
}

.

Taking this equivalence for granted, convexity of solutions of (PV ) for V ≥ V̄
could also be obtained by applying Theorem 1.4 with g replaced by g − λV .

1.3. Idea of proof and structure of the paper

The proofs of our main results are based on the two-point function tech-
nique. This technique, quite standard in the context of viscosity solutions
[12] (where it goes by the name of doubling of variables trick), has been
introduced in the realm of geometric problems by Andrews in [6] to show
preservation of an interior ball condition along the mean curvature flow.
Brendle in [9] improved these ideas to the “elliptic” setting to prove Law-
son’s conjecture about minimal torii in S

3. Several applications of these ideas
can be find in the nice survey paper of Andrews, [7].

2Here and in the sequel co(F ) denotes the closed convex envelope of a set F .
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In the examples mentioned above, the two-point function which is used
is a “non-infinitesimal” version of the norm of the second fundamental form
of ∂E, namely

I∂E(x) = 2 sup
y∈∂E

⟨ν∂E(x), y − x⟩

|x− y|2
.

Assuming for simplicity that Φ(ν) = |ν| and g = 0, this can be shown to be
a subsolution of Simons equation3:

(∆ + |A∂E |
2)I∂E ≥ c(d)

|∇I∂E |
2

I∂E
−H∂EI

2
∂E

or of its parabolic variant. Then, suitable applications of the maximum prin-
ciple allow to conclude.

Here we use a different function which measures the “non-convexity” of
∂E:

(1.3) S∂E(x) = sup
y∈∂E

⟨ν∂E(x), y − x⟩.

See also [31] where a similar function is used in a different context. This
turns out to be a positive subsolution of the Jacobi equation:

(∆ + |A∂E |
2)S∂E ≥ 0

and thus induces a negative second variation of the energy. In the case
of the unconstrained minimisation problem (P ) this is enough to conclude
since every minimiser must have positive second variation. In the case of
the volume constrained minimisation problem (PV ), S∂E is no longer an
admissible variation since it does not respect the volume constraint and
hence we are not able to conclude that E is convex. Nevertheless if ∂E is
disconnected at least one of its connected components must be stable with
respect to all possible variations i.e. non necessarily volume preserving, and
this gives the desired contradiction.

Let us remark that in contrast to I∂E , our function S∂E does not have
an “infinitesimal” version. However, while I∂E is a subsolution of Simons
equation, ours is directly a subsolution of the Jacobi equation which is easier
to use in combination with the stability inequality. Let us also note that the

3We denote by A∂E the second fundamental form of ∂E and by H∂E = tr(A∂E)
its mean curvature.
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doubling of variable trick allows to get rid of a term with an unfavorable
sign, see Lemma 3.2 below4.

We point out that it should be clear from the above sketch of the argu-
ment that our results actually apply to (sufficiently smooth) stable critical
points. Indeed, minimality is only used to overcome some regularity issues,
see Theorem 3.4 and Remark 3.5 below.

Finally we would like to underline the fact that the combination of the
two-point function technique with the assumption of positive second vari-
ation is quite natural. In fact, on a general stationary point the Jacobi
operator does not satisfy the maximum principle. It is precisely the stability
condition which guarantees its validity. We hope that this simple observation
can be useful also in other contexts.

Let us also mention the works [29, 30] where Sternberg and Zumbrun
used (in a quite different way) the stability inequality to prove connectedness
of minimizers of the relative isoperimetric problem inside (strictly) convex
sets.

The paper is structured as follows: in Section 2 we recall some well-
known properties of minimisers of (PV ) and (P ), together with some basic
facts of differential geometry. In Section 3 we prove Theorem 1.1 and 1.4.
Eventually in the Appendix A we prove a simple approximation lemma.
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2. Notation and preliminaries

In this section we collect a few results that will be used in the sequel and
we fix some notation.

4This is related to the following simple observation: if a symmetric block matrix
is positive,

(

A B
B −C

)

≥

(

0 0
0 0

)

,

then not only tr(A) ≥ tr(C) but also tr(A) ≥ tr(C)± 2tr(B).
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2.1. Differential geometry

Most of the concepts and relations introduced here may be find in [15] (see
in particular [15, Chapter 2.3] and [15, Chapter 6.2]). We let (e1, · · · , ed) be
the canonical basis of Rd. Given a symmetric k-linear form B, B[v1, . . . , vk]
denotes its action on the k-tuple of vectors v1, . . . , vk. From now on we will
use the symbol D for the flat connection on R

d, i.e. the classical compo-
nentwise derivative. In coordinates, this means that if X =

∑d
i=1Xiei, then

DXY =
∑d

i=1Xi∂iY .
For a C2 regular (d− 1)-manifold M oriented by its normal νM and a

vector field X, we will use ∇X to denote the covariant derivative on M :

∇XY = pTxMDXY

where pTxM is the orthogonal projection onto TxM . Let us recall that for
X, Y , Z vector fields, we have

(2.1) DX⟨Y, Z⟩ = ⟨DXY, Z⟩+ ⟨Y,DXZ⟩,

which can be easily checked using coordinates (see also [15, Corollary 3.3]).
In particular, if X and Y are tangent then ⟨DXY, νM ⟩ = −⟨Y,∇XνM ⟩. We
may thus define the second fundamental form AM by its action of tangent
vector fields as

AM (x)[X(x), Y (x)] = −⟨DXY (x), νM (x)⟩(2.2)

= ⟨∇XνM (x), Y (x)⟩ = ⟨∇Y νM (x), X(x)⟩,

where the last equality follows from the symmetry of AM (see [15, Proposi-
tion 2.1]). Note that with our convention AM is positive ifM is the boundary
of a convex set oriented by its exterior normal.

Given two tangent vector fields X and Y we have by (2.2)

(2.3) DXY = ∇XY + ⟨DXY, νM ⟩νM = ∇XY −AM [X,Y ]νM .

For a C1 function f defined in a neighborhood of M we define its tangential
gradient ∇f(x) ∈ TxM as

∇f = pTxMDf.
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If X is a field of tangent vectors, we set ∇Xf = ⟨∇f,X⟩ = ⟨Df,X⟩. The
tangential Hessian ∇2f(x) : TxM × TxM → R is given by its action on tan-
gential vector fields X and Y defined in a neighborhood of x as

∇2f(x)[X(x), Y (x)] = ⟨∇X(∇f), Y ⟩(x)(2.4)

(2.1)
= ∇X(∇Y f)(x)− ⟨∇f(x), DXY (x)⟩

= D2f(x)[X(x), Y (x)]−AM [X,Y ](x)⟨Df(x), νM (x)⟩

where we have used that ∇X(∇Y f) = D2f [X,Y ] + ⟨Df,DXY ⟩ and that by
(2.3),

⟨Df,DXY ⟩ = ⟨∇f,DXY ⟩ −AM [X,Y ]⟨Df, νM ⟩.

Note that the definition of ∇2f depends only on the values of f on M and
of X and Y at x. The Laplace-Beltrami operator of f is then given by

∆Mf = tr∇2f = divM (∇f)

where for a (not necessarily tangent) vector field Y , the tangential divergence
divM Y is defined as

divM Y (x) =

d−1
∑

i=i

⟨DτiY (x), τi(x)⟩

for a local tangent orthonormal frame {τi} around x. Observe that this
definition does not depend on the chosen frame.

If Φ ∈ C2(Rd \ {0}) is one-homogeneous, the anisotropic mean curvature
HΦ

M of an oriented (d− 1) manifold M is defined as

(2.5) HΦ
M = divM (DΦ(νM )) = tr((D2Φ(νM )AM ).

When Φ(ν) = |ν|, this reduces to the classical mean curvature. Note that this
definition is well posed since, by one-homogeneity, D2Φ(νM (x))νM (x) = 0
and thus D2Φ(νM (x)) : TxM → TxM . For the same reason the term
tr(D2Φ(ν∂E)A

2
∂E) appearing in (2.7) below is well defined.

2.2. Properties of minimisers

The following theorem summarises well-known properties of minimisers of
(P ) and (PV ).
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Theorem 2.1. Let us assume that g ∈ C1,α(Rd) satisfies

lim
|x|→+∞

g(x) = +∞

and that Φ ∈ C3,α(Rd \ {0}) is uniformly elliptic (recall (1.2)). Then, for
every V ∈ (0,+∞) there exists a minimiser of (PV ) (resp. (P )). Moreover
any minimiser E of (PV ) (resp. (P )) satisfies:

(i) E is equivalent to an open bounded set.

(ii) Let Σ be the singular set of ∂E, i.e.

Σ =
{

x ∈ ∂E : ∂E does not have a tangent plane at x
}

.

Then, Σ is closed, Hd−3(Σ) = 0 and for all x ∈ ∂E \ Σ there exists a
neighbourhood Ux such that E ∩ Ux can be locally written as the epi-
graph of a C3 function. In particular, ∂E \ Σ is a (relatively open) C3

manifold oriented by νE.

(iii) There exists a constant µ such that

(2.6) HΦ
∂E + g = µ for all x ∈ ∂E \ Σ (resp HΦ

∂E + g = 0),

and

(2.7)

∫

∂E\Σ
⟨D2Φ(ν∂E)∇φ,∇φ⟩ − tr(D2Φ(ν∂E)A

2
∂E)φ

2 +Dνg φ
2 ≥ 0

for all φ ∈ C1
c (∂E \ Σ) such that

∫

∂E

φ = 0 (resp. for all φ ∈ C1
c (∂E \ Σ)).

(iv) Assume moreover that g has convex level sets, then

(2.8)

∫

∂E

Φ(ν∂E) ≤

∫

∂∗F

Φ(ν∂∗F ) for all F ⊃ E.

Note that, if Φ(ν) = |ν|, then the measure estimate in (ii) can be up-
graded to Hd−8+ε(Σ) = 0 for all ε > 0.

Proof. The existence of a minimiser and the boundedness of every min-
imiser is standard, see for instance [13, 17] and [17, Section 4.2] for what
concerns boundedness. Moreover, one can easily show that there exist con-
stants Λ, r0 > depending only on the data such that any minimiser of (PV )
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(resp. (P )) is a (Λ, r0) minimiser of the energy F 7→
∫

∂F
Φ(ν∂F ), namely

∫

∂∗E

Φ(ν∂∗E) ≤

∫

∂∗F

Φ(ν∂∗F ) + Λ|E∆F |(2.9)

for all F such that diam(E∆F ) ≤ r0,

see for instance [24, Example 21.2]. Claim (i) and (ii) follow, see [3, 8, 26]
or [13, 14] where the theory is explained in the context of sets of finite
perimeter. Equations (2.6) and (2.7) come from the first variation and second
variation of F , see for instance [17, Appendix A] or the appendix of [14].
The outer minimising property (iv) is established in [17, Appendix B], see
also [25]. □

The following is a simple criterion for regularity, its proof is classical and
we sketch it here for the reader’s convenience.

Lemma 2.2. Let Φ and g be as in Theorem 2.1 and let E be a minimizer
of (PV ) or (P ). Assume that x̄ ∈ ∂E and that there exist r > 0 and a set
G with C1 boundary such that

E ∩B(x̄, r) ⊂ G ∩B(x̄, r) x̄ ∈ ∂E ∩ ∂G.

Then x̄ is a regular point, namely x̄ ∈ ∂E \ Σ.

Proof. By the classical ε-regularity criteria, see for instance [13, Section 3] or
[8], it is enough to show that there exists a sequence ϱk ↓ 0 and a half-space
H such that

Ek =
E − x̄

ϱk
→ H.

By classical density estimates the sequence {Ek} is relatively compact in the
L1
loc topology and, by assumption, any of its limit points E∞ satisfies

0 ∈ ∂E∞ E∞ ⊂ Hν∂G
= {y : ν∂G(x̄) · y ≤ 0}.

Moreover, using (2.9) we get that E∞ is a (unconstrained) minimiser of
F 7→

∫

∂F
Φ(ν∂F ). The maximum principle, see [28] or [13, Lemma 2.13],

then forces E∞ = Hν∂G
and this concludes the proof. □

3. Proof of Theorems 1.1 and 1.4

In this section we will prove Theorem 1.1 and 1.4. The main calculation
consists in establishing for a generic set E, a differential inequality for the
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function S∂E introduced in (1.3). Since these computations do not depend
on the nature of the problem and since they can be of independent interest,
we isolated them in the next subsection.

3.1. The key computation

Let E ⊂ R
d be a bounded open set such that its boundary can be split as

∂E = R∂E ∪ Σ∂E

where R∂E is a C3 manifold oriented by ν∂E and Σ∂E is a closed singular
set with empty relative interior. Given x ∈ R∂E and y ∈ ∂E, let us define

S∂E(x, y) = ⟨ν∂E(x), y − x⟩

and

(3.1) S∂E(x) = max
y∈∂E

S∂E(x, y) ≥ 0,

whee the maximum is attained since ∂E is compact. Note that S∂E(x) is
defined only for x ∈ R∂E and it is the supremum of a family of locally
uniformly C2 functions. In particular it is locally Lipschitz and locally semi-
convex.5 The following lemma is elementary.

Lemma 3.1. Let x ∈ R∂E, then S∂E(x) = 0 if and only if x ∈ ∂co(E) ∩
R∂E.

Proof. S∂E(x) = 0 if and only if the hyperplane H = {y : ⟨ν∂E(x), y − x⟩ ≤
0} is a supporting plane to E at x, which is equivalent to x ∈ ∂co(E) ∩
R∂E . □

We now define for φ ∈ C2(R∂E), the Jacobi operator

LΦφ = div∂E(D
2Φ(ν∂E)∇φ) + tr(D2Φ(ν∂E)A

2
∂E)φ.(3.2)

5This means that for any local chart ϕ :M → R
d−1, the function S∂E(ϕ

−1(x)) +
C|x|2 is convex for a suitable constant C. Note that this does not depend on the
choice of the chart.
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Notice that by integration by parts, if φ ∈ C2
c (R∂E)

(3.3)

∫

R∂E

(−LΦφ)φ+Dνg φ
2

=

∫

R∂E

⟨D2Φ(ν∂E)∇φ,∇φ⟩ − tr(D2Φ(ν∂E)A
2
∂E)φ

2 +Dνg φ
2.

By a slight abuse of notation, we will identify the left-hand side and the
right-hand side of (3.3) even when φ ∈W 1,2(R∂E).
The following is the key computation. Note that, thanks to Lemma 2.2, in
the context of Theorem 1.1 the condition ȳ ∈ R∂E will be always satisfied
(see Lemma 3.3 below).

Lemma 3.2. Let E be as above and let x̄ ∈ R∂E. Assume that

S∂E(x̄) = S∂E(x̄, ȳ)

with ȳ ∈ R∂E. Then, recalling the definition (2.5) of HΦ
∂E,

LΦS∂E(x̄) ≥ HΦ
∂E(x̄)−HΦ

∂E(ȳ) + ⟨∇HΦ
∂E(x̄), ȳ − x̄⟩

in the viscosity sense, meaning that for all φ ∈ C2(R∂E) such that

φ(x)− S∂E(x) ≥ φ(x̄)− S∂E(x̄) = 0,

then

LΦφ(x̄) ≥ HΦ
∂E(x̄)−HΦ

∂E(ȳ) + ⟨∇HΦ
∂E(x̄), ȳ − x̄⟩.

Proof. Since the set E is fixed, for notational simplicity we drop the depen-
dence on E of the various quantities. Let φ be as in the statement of the
lemma and note that the function

G(x, y) = φ(x)− S(x, y)

achieves its minimum at (x̄, ȳ). Moreover, by assumption, it is C2 in a neigh-
borhood of (x̄, ȳ).

Step 1: Optimality conditions: In order to prove the theorem we are going to
exploit the first and second order minimality conditions for G at the point
(x̄, ȳ). To this end let us choose two local orthonormal frames {τxi }

d−1
i=1 and
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{τyi }
d−1
i=1 around x̄ and ȳ respectively such that:

⟨τxi , τ
x
j ⟩(x̄) = δij , ⟨τyi , τ

y
j ⟩(ȳ) = δij ,(3.4)

(∇τx
i
τxj )(x̄) = 0, (∇τy

i
τyj )(ȳ) = 0.(3.5)

Here δij is the Kronecker delta. Letting Aij(x) = A(x)[τxi , τ
x
j ] we have from

(2.2)

(3.6) ⟨Dτx
i
ν, τxj ⟩(x̄) = Aij(x̄) and ⟨Dτy

i
ν, τyj ⟩(ȳ) = Aij(ȳ).

Combing this with (2.3) and (3.5) we then obtain

(3.7) Dτx
i
τxj (x̄) = −Aij(x̄)ν(x̄) and Dτy

i
τyj (ȳ) = −Aij(ȳ)ν(ȳ).

To simplify our notation, for a function f : ∂E × ∂E ⊂ R
d × R

d → R we
set

∇x
i f = ⟨∇f, τxi ⟩ and ∇y

i f = ⟨∇f, τyi ⟩,

where by a slight abuse of notation, we identify τxi with (τxi , 0) ∈ Tx∂E ×
Tx∂E and τyi with the vector (0, τyi ). Similarly, we set

∇x
i ∇

x
j f = ∇2f [τxi , τ

x
j ], ∇y

i∇
y
jf = ∇2f [τyi , τ

y
j ],

and ∇x
i ∇

y
jf = ∇2f [τxi , τ

y
j ].

Note that thanks to (3.5), by (2.4) we have

(3.8) ∇x
i ∇

x
j f(x̄, ȳ) = ∇x

i (∇
x
j f)(x̄, ȳ)

and a similar expression for ∇y
i∇

y
jf(x̄, ȳ). Moreover, the trivial relations

∇τx
i
τyj = 0 = ∇τy

j
τxi ,

also give

(3.9) ∇x
i ∇

y
jf = ∇y

j∇
x
i f = ∇x

i (∇
y
jf) = ∇y

j (∇
x
i f).

We are now ready to compute the optimality conditions. To simplify
our formulas, from now on we we will always exploit Einstein summation
convention over repeated indices.
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Since G achieves its minimum at (x̄, ȳ) we have

0 = ∇x
iG(x̄, ȳ) = ∇x

i φ(x̄)−∇x
i S(x̄, ȳ),(3.10)

0 = ∇y
iG(x̄, ȳ) = −∇y

i S(x̄, ȳ).(3.11)

Using that ∇τx
i
x = τxi is perpendicular to ν(x), we have by (3.6)

(3.12) ∇x
i S(x, y) = Aik(x)⟨τ

x
k , y − x⟩ and ∇y

i S(x, y) = ⟨ν(x), τyi ⟩.

The first equation and (3.10) then give

(3.13) ∇x
i φ(x̄) = Aik(x̄)⟨τ

x
k (x̄), ȳ − x̄⟩.

Equation (3.11) instead gives that

0 = ⟨ν(x̄), τyi (ȳ)⟩,

and thus ν(x̄) = ±ν(ȳ). Actually since y 7→ S(x̄, y) attains its maximum at
ȳ, we must have

(3.14) ν(x̄) = ν(ȳ).

In particular Tx̄∂E = Tȳ∂E and the frames may be chosen such that

(3.15) ⟨τxi (x̄), τ
y
j (ȳ)⟩ = δij .

We now compute the Hessian of G. Recalling (3.8),

∇x
i ∇

x
jG(x̄, ȳ) = ∇x

i ∇
x
jφ(x̄)−∇x

i ∇
x
jS(x̄, ȳ)

(3.12)&(3.6)
= ∇x

i ∇
x
jφ(x̄)−∇x

iAjk(x̄)⟨τ
x
k (x̄), y − x⟩

−Ajk(x̄)⟨Dτx
i
τxk (x̄), ȳ − x̄⟩+Ajk(x̄)⟨τ

x
k , τ

x
i ⟩(x̄)

(3.7)&(3.4)
= ∇x

i ∇
x
jφ(x̄)−∇x

iAjk(x̄)⟨τ
x
k (x̄), y − x⟩

+Ajk(x̄)Aki(x̄)⟨ν(x̄), ȳ − x̄⟩+Aij(x̄)

= ∇x
i ∇

x
jφ(x̄)−∇x

iAjk(x̄)⟨τ
x
k (x̄), ȳ − x̄⟩

+Ajk(x̄)Aki(x̄)φ(x̄) +Aij(x̄).

(3.16)



✐

✐

“4-Goldman” — 2023/1/19 — 16:03 — page 829 — #15
✐

✐

✐

✐

✐

✐

A two-point function approach to connectedness of drops 829

where in the last equality we have used that φ(x̄) = S(x̄, ȳ) = ⟨ν(x̄), ȳ − x̄⟩.
Analogously, using (3.9) and (3.12)

∇x
i ∇

y
jG(x̄, ȳ) = −⟨Dτx

i
ν(x̄), τyj (ȳ)⟩(3.17)

(3.6)
= −Aik(x̄)⟨τ

x
k (x̄), τ

y
j (ȳ)⟩

(3.15)
= −Aij(x̄).

As for the y derivatives we get, using (3.12) and (3.7),

(3.18) ∇y
i∇

y
jG(x̄, ȳ) = Aij(ȳ)⟨ν(x̄), ν(ȳ)⟩

(3.14)
= Aij(ȳ).

Step 2: The case of the area functional. To make the computations clearer,
we first treat the particular case in which Φ = | · |. Note that in this setting
(recall (3.2))

LΦφ = ∆∂E φ+ |A|2φ,

and HΦ = Aii is the classical mean curvature. Since (x̄, ȳ) is a minimum
point for G, we have

0 ≤ (∇x
i +∇y

i )(∇
x
i +∇y

i )G(x̄, ȳ)

= ∇x
i ∇

x
iG(x̄, ȳ) + 2∇x

i ∇
y
iG(x̄, ȳ) +∇y

i∇
y
iG(x̄, ȳ).

Using this, (3.16), (3.17) and (3.18), we get

∆∂E φ(x̄) ≥ ∇x
iAik(x̄)⟨τ

x
k (x̄), y − x⟩

−Aik(x̄)Aki(x̄)φ(x̄)−Aii(x̄) + 2Aii(x̄)−Aii(ȳ)

= ∇x
iAik(x̄)⟨τ

x
k (x̄), y − x⟩ − |A|2φ(x̄) +HΦ(x̄)−HΦ(ȳ).

(3.19)

We now use Codazzi equations

(3.20) ∇x
iAjk = ∇x

kAij ,

to obtain that

∇x
iAik = ∇x

kAii = ∇x
kH

Φ,

which, combined with (3.19) yields

∆∂Eφ(x̄) + |A|2φ(x̄) ≥ HΦ(x̄)−HΦ(ȳ) + ⟨∇HΦ(x̄), ȳ − x̄⟩.

This proves the lemma for Φ = | · |
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Step 3: The general case. To deal with the general case we start by writing LΦ

in non-divergence form. Let {τxi } be an orthonormal local frame satisfying
(3.4), (3.5), (3.6), (3.7) and let us set, for i, j, k ∈ {1, . . . , (d− 1)},

Φij(ν)(x) = D2Φ(ν(x))[τxi , τ
x
j ]

and Φijk(ν)(x) = D3Φ(ν(x))[τxi , τ
x
j , τ

x
k ].

Note that, since D2Φ(ν)[ν, ·] = 0 (by one-homogeneity) and since for all i
and j, Dτx

j
τxi (x̄) is parallel to ν(x̄) (by (3.7)) we have that, at x̄,

Dτx
k
Φij(ν) = Dτx

k

(

D2Φ(ν)[τxi , τ
x
j ]
)

= D3Φ(ν)[Dτx
k
ν, τxi , τ

x
j ] +D2Φ(ν)[Dτx

k
τxi , τ

x
j ]

+D2Φ(ν)[τxi , Dτx
k
τxj ]

= Φijl(ν)Alk,

(3.21)

where we used (3.6) and that by (2.1), ⟨Dτx
k
ν, ν⟩ = 0. For φ ∈ C2(R∂E) we

then have at x̄

div∂E(D
2Φ(ν)∇φ) =

〈

Dτx
i

(

D2
jkΦ(ν)∇

x
jφ τ

x
k

)

, τxi
〉

(3.4)&(3.7)
= Dτx

i

(

D2
ijΦ(ν)

)

∇x
jφ+Φij(ν)∇

x
i

(

∇x
jφ

)

(3.21)
= ΦijlAli∇

x
jφ+Φij(ν)∇

x
i ∇

x
jφ.

Hence, again at x̄, recalling the definition of LΦ, (3.2),

LΦφ(x̄) = div∂E(D
2Φ(ν)∇φ) + tr(D2Φ(ν)A2)φ

= ΦijlAli∇
x
jφ+Φij(ν)∇

x
i ∇

x
jφ+Φij(ν)AikAkjφ.

(3.22)

Furthermore by (3.14) and (3.15), Φij(ν)(x̄) = Φij(ν)(ȳ) and these are the
components of a positive matrix. Hence, by minimality,

0 ≤ Φij(ν)∇
x
i ∇

x
jG(x̄, ȳ) + 2Φij(ν)∇

x
i ∇

y
jG(x̄, ȳ) + Φij(ν)∇

y
i∇

y
jG(x̄, ȳ).

Using (3.16), (3.17) and (3.18) and recalling the definition of HΦ, (2.5),

(3.23) HΦ = Φij(ν)Aij

this implies

Φij(ν)∇
x
i ∇

x
jφ(x̄) ≥ Φij(ν)∇

x
iAjk(x̄)⟨τ

x
k (x̄), ȳ − x̄⟩

− Φij(ν)Ajk(x̄)Aki(x̄)φ(x̄) +HΦ(x̄)−HΦ(ȳ),
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and thus by (3.22),

LΦφ(x̄) ≥ Φij(ν)∇
x
iAjk(x̄)⟨τ

x
k (x̄), ȳ − x̄⟩(3.24)

+ Φijl(ν)Ali(x̄)∇
x
jφ(x̄) +HΦ(x̄)−HΦ(ȳ).

We now differentiate (3.23) with respect to τxk , use (3.21), Codazzi equa-
tions (3.20) and the symmetry of Φijl to get at the point x̄,

∇x
kH

Φ = Φij(ν)∇
x
kAij +Φijl(ν)AlkAij

= Φij(ν)∇
x
iAjk +Φijl(ν)AjkAli.

Multiplying this equation by ⟨τxk (x̄), ȳ − x̄⟩ and summing over k we get

⟨∇HΦ(x̄), ȳ − x̄⟩ = Φij(ν)∇
x
iAjk(x̄)⟨τ

x
k (x̄), ȳ − x̄⟩

+Φijl(ν)Ajk(x̄)Ali(x̄)⟨τ
x
k (x̄), ȳ − x̄⟩

(3.13)
= Φij(ν)∇

x
iAjk(x̄)⟨τ

x
k (x̄), ȳ − x̄⟩

+Φijl(ν)Ali(x̄)∇
x
jφ(x̄).

Plugging the above expression into (3.24) we thus get

LΦφ(x̄) ≥ HΦ(x̄)−HΦ(ȳ) + ⟨∇HΦ(x̄), ȳ − x̄⟩,

which concludes the proof. □

3.2. Proof of Theorems 1.1 and 1.4

We now combine Lemma 3.2 with the convexity of g to show that for min-
imizers of either (PV ) or (P ), S∂E gives a negative second variation. As
already pointed out, this is the key observation for the proof of both Theo-
rem 1.1 and Theorem 1.4.

For g ∈ C1(Rd), we say that an increasing function ω is a modulus of
convexity of g if

(3.25) g(y)− g(x)− ⟨Dg(x), y − x⟩ ≥ ω(|y − x|) ∀x, y ∈ R
d.

Notice that of course, for every convex function zero is a modulus of convex-
ity and if g is strictly convex, it has a strictly positive modulus of continuity.

Lemma 3.3. Let g ∈ C1,α(Rd) be coercive and convex with modulus of con-
vexity ω, Φ ∈ C3,α(Rd\{0}) be uniformly elliptic and one-homogeneous and
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let E be a minimizer of either (PV ) or (P ). Let S∂E be the corresponding
function defined in (3.1). Then,

(i) For every x ∈ ∂E \ Σ the point ȳ achieving the maximum in the defi-
nition of S∂E is in ∂E \ Σ.

(ii) S∂E ∈W 1,2(∂E \ Σ).

(iii) S∂E solves

(3.26) LΦS∂E −Dνg S∂E ≥ ω(S∂E) on ∂E \ Σ

both in the viscosity and in the distributional sense.

Proof. As above, since the set E is fixed here, we will drop the explicit
dependence on E of the various quantities. We divide the proof in few simple
steps:

Step 1: Proof of (i). Given x̄ ∈ ∂E \ Σ we let ȳ be a point achieving the
maximum in the definition (3.1) of S. This means that

E ⊂ H =
{

y : ⟨ν(x̄), y − x̄⟩ ≤ ⟨ν(x̄), ȳ − x̄⟩
}

ȳ ∈ ∂E ∩ ∂H.

Hence (i) follows for Lemma 2.2.

Step 2: Proof of (ii). Being the supremum of a family of (uniformly) locally
Lipschitz functions, S is locally Lipschitz on ∂E \ Σ. Hence, in order to show
that S ∈W 1,2(∂E \ Σ) it is enough to show that

∫

∂E\Σ
|∇S|2 < +∞.

Let x̄ ∈ ∂E\Σ and ȳ be such that S(x̄) = S(x̄, ȳ), then S(x, ȳ) ≤ S(x) with
equality at x̄ and therefore ∇S(x̄) = ∇xS(x̄, ȳ). By (3.12), we thus have
|∇S|(x̄) ≤ diam(E)|A|(x̄) and we are left to prove that |A| ∈ L2(∂E \ Σ).
This is a simple consequence of (2.7). Indeed, in case E minimises (P ) it is
enough to set φ ≡ 1 (which is possible thanks to Lemma A.1) in the second
variation inequality (2.7) to obtain

∫

∂E\Σ
|A|2 ≤

∫

∂E\Σ
tr(D2Φ(ν)A2) ≤ C

∫

∂E\Σ
Dνg < +∞,

where we used the inequality |A|2 ≤ tr(D2Φ(ν)A2) which follows from the
ellipticity of Φ (recall (1.2)). In the case when E minimises (PV ), φ ≡ 1 is



✐

✐

“4-Goldman” — 2023/1/19 — 16:03 — page 833 — #19
✐

✐

✐

✐

✐

✐

A two-point function approach to connectedness of drops 833

not admissible anymore in (2.7). However, letting N1 ⊂⊂ N2 be two small
neighborhoods of the singular set Σ, one can construct two positive smooth
functions φ1 and φ2 such that sptφ1 ⊂ N2, sptφ2 ⊂ ∂E \N2, φ1 ≡ 1 on N1

and
∫

∂E
φ1 =

∫

∂E
φ2. Since φ1 − φ2 ∈W 1,2(∂E\Σ), by Lemma A.1 we can

plug it in the stability inequality (2.7) and deduce that

∫

N1\Σ
|A|2 ≤

∫

∂E\Σ
φ2
1tr(D

2Φ(ν)A2)

≤ −

∫

∂E\Σ
φ2
2tr(D

2Φ(ν)A2) + C

∫

∂E\Σ

(

|∇φ1|
2 + |∇φ2|

2
)

+ C

∫

∂E\Σ
|Dνg| < +∞.

Since |A| is bounded on ∂E \N1, this concludes the proof.

Step 3: Proof of (iii). The fact that a viscosity subsolution is a distributional
subsolution is proved for instance in [21, Theorem 1]. Hence, it is enough
to show that S satisfies (3.26) in the viscosity sense. Thanks to (i), we
know that for every x̄ ∈ ∂E \ Σ the point ȳ achieving the maximum in the
definition of S is in ∂E \ Σ. Therefore, Lemma 3.2 implies that

LΦS(x̄) ≥ HΦ(x̄)−HΦ(ȳ) + ⟨∇HΦ(x̄), ȳ − x̄⟩

in the viscosity sense. Differentiating (2.6) to get ∇HΦ = −∇g and sub-
tracting to both side of the above inequality

Dνg(x̄)S(x̄) = Dνg(x̄)⟨ν(x̄), ȳ − x̄⟩,

we obtain

LΦS(x̄)−Dνg(x̄)S(x̄)

≥ HΦ(x̄)−HΦ(ȳ)− ⟨∇g(x̄), ȳ − x̄⟩ −Dνg(x̄)⟨ν(x̄), ȳ − x̄⟩

(2.6)
= g(ȳ)− g(x̄)− ⟨Dg(x̄), (ȳ − x̄)⟩ ≥ ω(|x̄− ȳ|)

where the last inequality follows by (3.25). Since by definition6 S(x̄) ≤ |x̄−
ȳ| and since ω is increasing, this concludes the proof of (3.26). □

We are now ready to prove our main results. We start by Theorem 1.4.

6If we knew that ∂E is smooth, then actually S(x̄) ≤ C|x̄− ȳ|2, where the con-
stant C depends on the curvature and the diameter of ∂E.
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Proof of Theorem 1.4. As before, since we work here with a fixed set E, we
will drop the explicit dependence on ∂E of the various quantities. Our aim
is to prove that S ≡ 0, which by Lemma 3.1 will imply the convexity of E.

By Lemma 3.3, S ∈W 1,2(∂E \ Σ) and thus by Lemma A.1 it can be
approximated in W 1,2(∂E \ Σ) by positive functions in C2

c (∂E \ Σ). In par-
ticular by (2.7) (recall (3.3)):

(3.27)

∫

∂E\Σ
(−LΦS)S +Dνg S

2 ≥ 0.

Multiplying (3.26) by −S we obtain the inequality

(−LΦS)S +DνgS
2 ≤ −ω(S)S,

which after integration gives

(3.28) −

∫

∂E\Σ
ω(S)S ≥

∫

∂E\Σ
(−LΦS)S +DνgS

2.

If g is strictly convex, this directly gives a contradiction with (3.27) unless
S ≡ 0. By Lemma 3.1, this implies that ∂E ⊂ ∂co(E). Now, either by the
Constancy Lemma [16, 4.1.31] or by the regularity of ∂E (note that that
Σ = ∅ by Lemma 2.2), ∂E = ∂co(E) and hence, since E is bounded, E =
co(E).

If instead g is convex but not strictly convex, we obtain by (3.28) and
(2.7) (using again Lemma A.1) that
∫

∂E\Σ
S∂E(−LΦS)S +DνgS

2 = 0 ≤ min
ϕ∈W 1,2(∂E\Σ)

∫

∂E\Σ
(−LΦφ)φ+Dνgφ

2.

Computing the Euler-Lagrange equation we obtain that LΦS −DνgS ≡ 0 in
W 1,2(∂E \ Σ) and then by classical elliptic regularity that S ∈ C2(∂E\Σ).
LetM be a connected component of ∂E\Σ such thatM ∩ ∂co(E) ̸= ∅ (which
exists by Lemma 2.2). Since S ≥ 0 on M and S = 0 on M ∩ ∂co(E) by
Lemma 3.1, the minimum principle [18, Theorem 2.10] implies that S ≡ 0
on M . Arguing as above we obtain that M = ∂co(E), which in turn gives
that E = co(E)\F for some set F ⊂⊂ co(E) and thus

∫

∂co(E)
Φ(ν∂co(E)) =

∫

∂E

Φ(ν∂E)−

∫

∂F

Φ(ν∂F )

This contradicts the outward minimising property (2.8) of E unless F = ∅.
Therefore, we can again conclude that E is convex.
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□

To prove Theorem 1.1 we can not plug S∂E anymore in the stability
inequality since it does not satisfy the zero average constraint. Nevertheless,
if we assume by contradiction that ∂E has several connected components,
then at least one of them must be (unconditionally) stable and this allows
to argue as above. In dimension d > 2 since we can not a priori guarantee
that there exists a connected component which is both stable and intersects
∂co(E), we need to impose the strict convexity of g to conclude.

Proof of Theorem 1.1. As before, we drop the dependence on ∂E of the
various quantities. We will actually prove a slightly stronger result with
respect to the connectedness of ∂E, namely that we can not partition ∂E
as ∂E =M1 ∪M2 withM1 ∩M2 ⊂ Σ and Hd−1(M1),H

d−1(M2) > 0. Let us
assume for the sake of contradiction that this is not the case. First we claim
that that there exists i ∈ {1, 2} such that

∫

∂Mi\Σ
(−LΦφ)φ+Dνg φ

2 ≥ 0 for all φ ∈ C1
c (Mi \ Σ).

Indeed otherwise, by homogeneity we can find φ1 ∈ C1
c (M1 \ Σ), φ2 ∈

C1
c (M2 \ Σ) such that

∫

∂E
φ1 =

∫

∂E
φ2 and satisfying

(3.29)

∫

∂Mi\Σ
(−LΦφi)φi +Dνg φ

2
i < 0 for i = 1, 2.

Since sptφ1 ∩ sptφ2 = ∅, the function φ̄ = φ1 − φ2 satisfies
∫

∂E
φ̄ = 0 and

thus (3.29) would lead to a contradiction with (2.7). Hence either M1 or M2

is stable with respect to all possible variations. For the sake of the argument
assume that it is M1.

Case 1: g is strictly convex: Arguing as in the proof of Theorem 1.4, we get
(compare that with (3.28))

−

∫

M1\Σ
ω(SE)SE ≥

∫

M1\Σ
(−LΦS)S +DνgS

2.

which by strict convexity of g yields SE ≡ 0 on M1 and then M1 = ∂co(E)
with ν∂E = ν∂co(E) on M1. Hence, if H

d−1(M2) > 0,

∫

∂co(E)
Φ(ν∂co(E)) <

∫

∂E

Φ(ν∂E),

which contradicts (2.8) and thus Hd−1(M2) = 0.
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Case 2: d = 2 : By [25] we know that E is a union of convex sets which
are smooth by Theorem 2.1. If M1 ∩ ∂co(E) ̸= ∅, then as in the proof of
Theorem 1.4 the minimum principle implies that SE ≡ 0 on M1 and thus,
by the same arguments as above, M1 = ∂co(E) and we are done.

Otherwise, ∂E ∩ ∂co(E) ⊂M2. If M2 is disconnected, by the same ar-
guments as above, at least one of the connected component must be stable.
If this intersects ∂co(E) we can repeat the same argument above and con-
clude. Hence we can assume thatM2 is connected and unstable, in particular
M2 = ∂K for some convex set K. We claim that co(E) = K. Indeed, if this
is not the case then there exists an extremal point x of ∂co(E) which is not
in ∂K. Since x ∈ ∂E, this contradicts ∂co(E) ∩ ∂E ⊂ ∂K.

Connectedness of ∂E now easily follows both cases: indeed assume that
∂E =M1 ∪M2 with M1 and M2 closed and such that M1 ∩M2 = ∅. Then,
we may assume for instance thatHd−1(M2) = 0. ThusM2 ⊂ Σ and ∂E \ Σ ⊂
M1. However regular points are dense in the boundary and thus M2 ⊂ Σ ⊂
∂E \ Σ ⊂M1, a contradiction. □

It is clear that the above proofs mostly rests on the stability inequality
(2.7) and that minimality is only used to have enough regularity to make the
computations in Lemma 3.2 and Lemma A.1. The proof can thus be extended
to smooth stable critical points (or volume preserving stable critical points)
of F . For example, we have

Theorem 3.4. Let Φ and g be as in Theorem 1.4 and let E be a smooth,
bounded and stable critical point of F , then E is convex.

Proof. Arguing as in the proof of Theorem 1.4, we obtain that E = co(E)\F
for some smooth set F . In order to reach a contradiction, we first claim that
HΦ

∂E ≥ 0 (recall the definition (2.5)) on ∂E. Indeed, by (2.6), a minimum x̄
of HΦ

∂E corresponds to a maximum of g on ∂E and thus,

0 ≥ tr(D2Φ(ν∂E)∇
2g(x̄))

(2.4)
= tr(D2Φ(ν∂E)D

2g(x̄))−HΦ
∂E(x̄)Dνg(x̄).

From the convexity of g, we get that tr(D2Φ(ν∂E)D
2g(x̄)) ≥ 0. By convexity

of g again, x̄ is a maximum of g on E and thus Dνg(x̄) ≥ 0. If the inequality
is strict, then HΦ

∂E(x̄) ≥ 0 as claimed, otherwise since also ∇g(x̄) = 0, we
actually have Dg(x̄) = 0 and x̄ is the minimizer of g on R

d from which
g is constant on E and thus by (2.6), HΦ

∂E is also constant on ∂E. By
the anisotropic version of Alexandrov Theorem [19], this implies that E is
actually the Wulff shape of Φ and is in particular convex. Now if x̄ ∈ ∂F
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is such that HΦ
∂F (x̄) > 0 (which always exists), since ν∂E(x̄) = −ν∂F (x̄), we

have HΦ
∂E(x̄) = −HΦ

∂F (x̄) < 0, which gives the desired contradiction. □

Remark 3.5. As in the case of minimizers, it is possible to allow for a
small singular set Σ once one knows that the supremum in the definition
S∂E is achieved by a point ȳ in the regular set and that Lemma A.1 is in
force.

In the case of the isotropic area functional, Allard’s theorem can be
applied to critical points (see [27]), and thus one can extend Lemma 2.2
to this setting. Moreover, using the monotonicity formula, Lemma A.1 can
also be extended to critical points with a singular set Σ of vanishing Hd−3

measure.
In the setting of anisotropic surface tensions, however both the analog of

Allard’s theorem and the density lower bound (A.1) are missing for critical
points (see however [1]).

Appendix A. An approximation Lemma

For the reader’s convenience we report here the following simple (and well-
known) lemma whose proof follows by a standard capacitary argument (see
for instance [14, 30]).

Lemma A.1. Let E, Φ, g and Σ be as in Theorem 2.1. Then C2
c (∂E \ Σ)

is dense in W 1,2(∂E \ Σ) with respect to the strong W 1,2(∂E \ Σ) topology.

Proof. Obviously Σ = ∅ for d = 2, 3, hence we assume that d ≥ 4. As already
observed in the proof of Theorem 2.1, E is a (Λ, r0) minimiser of

F 7→

∫

∂∗F

Φ(ν∂∗F ).

In particular it satisfies the estimate (see [24])

(A.1) Hd−1(∂E ∩B(x, r)) ≤ Crd−1for all x ∈ ∂E, r ≤ r0

for a constant C = C(Λ, d) > 0. Since Hd−3(Σ) = 0 and Σ is compact, for
every ε > 0 we can find finitely many balls {B(xk, rk)}

N
k=1 centered in Σ and

such that

Σ ⊂
N
⋃

k=1

B(xk, rk)

N
∑

k=1

rd−3
k ≤ εd−3.
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For each of this balls we consider φk ∈ C2
c (B(xk, 2rk), [0, 1]) satisfying φk ≡ 1

on B(xk, rk) and |Dφk| ≤ 2/rk. Let

ψε(x) = max
k=1,...,N

φk(x),

then ψε ∈ Lip(Rd, [0, 1]), ψ = 1 on Σ, ψε ≡ 0 outside N2ε(Σ), a 2ε neighbor-
hood of Σ. Moreover, by (A.1),

∫

∂E

|Dψε|
2 ≤ 4

N
∑

k=1

Hd−1(∂E ∩B(x, 2rk))

r2k
≤ C

N
∑

k=1

rd−3
k ≤ Cεd−3.

Let now u ∈W 1,2(∂E \ Σ). By approximation we may assume that u is
bounded and, by scaling that ∥u∥∞ ≤ 1. Let vε = (1− ψε)u, then

∫

∂E

|u− vε|
2 + |∇u−∇vε|

2 ≤

∫

N2ε(Σ)

(

u2 + |∇u|2
)

+ 2

∫

∂E

|Dψε|
2 → 0

as ε→ 0. Since spt vε ∩ Σ = ∅ a simple smoothing argument concludes the
proof. □
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