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Scharlemann and Thompson define the width of a 3-manifold M as
a notion of complexity based on the topology of M . Their original
definition had the property that the adjacency relation on handles
gave a linear order on handles, but here we consider a more general
definition due to Saito, Scharlemann and Schultens, in which the
adjacency relation on handles may give an arbitrary graph. We
show that for closed hyperbolic 3-manifolds, this is linearly related
to a notion of metric complexity, based on the areas of level sets
of Morse functions to graphs, which we call Gromov area.

1. Introduction

Mostow rigidity implies that for hyperbolic 3-manifolds, the hyperbolic met-
ric is a topological invariant, so one might hope that the topological and
metric complexities are related. We shall show that this is indeed the case
for certain definitions of topological and metric complexity. We first describe
the notions of complexity we shall use, and then give a brief outline of the ar-
guments used to relate topological and metric complexity in the subsequent
sections. In [HM16] we considered the linear version of these invariants, while
in this paper we consider the more general case of invariants constructed
from maps to graphs. It will be convenient to work with the collection of
hyperbolic 3-manifolds which are covers of closed hyperbolic 3-manifolds,
though not necessarily of finite volume. We remark that we do not consider
finite volume manifolds with cusps, as in this case, the surfaces separat-
ing the 3-dimensional regions in the topological decomposition we construct
from the metric might have essential intersection with the cusps. In other
words, if the cusps are truncated to form a hyperbolic manifold with torus
boundary components, then the dividing surfaces may be surfaces with es-
sential boundary components on the boundary tori. However, the currently
available versions of the topological decomposition results we use, due to
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Scharlemann-Thompson [ST94] and Saito-Scharlemann-Schultens [SSS16],
assume that the dividing surfaces are closed.

This paper is not entirely self-contained, and relies on the results of
[HM16], however we review the main definitions and results from [HM16]
for the convenience of the reader.

1.1. Metric complexity

In [HM16], we considered the following definition of metric complexity. Let
M be a closed Riemannian 3-manifold, and let f : M → R be a Morse func-
tion, i.e. f is a smooth function, all critical points are non-degenerate, and
distinct critical points have distinct images in R. We define the area of f
to the maximum area of any level set Ft = f−1(t) over all points t ∈ R. We
define the Morse area of M to be the infimum of the area of all Morse
functions f : M → R.

More generally, we may consider maps f : M → X, whereX is a trivalent
graph. Recall that for a Morse function f : M → R there are singularities of
index 0, 1, 2 and 3. The singularities of index 0 and 3 are known as birth or
death singularities respectively, and the level set foliation near the singular
point in M is locally homeomorphic to the level sets of the function x2 +
y2 + z2 close to the origin in R3. For singularities of index 1 and 2, the level
sets near the singular point in M are locally homeomorphic to the level sets
of the function x2 + y2 − z2 close to the origin in R3.

In the case of index 1 or 2, there is a map from a small open ball con-
taining the singular point to the leaf space of the level set foliation. As the
singular leaf divides a small ball about the singular point into three con-
nected components, the leaf space is a trivalent graph with a single vertex
and three edges, and we call such a regular neighbourhood of the critical
point a trivalent singularity. IfX is a trivalent tree, we say a map f : M → X
is Morse if it is a Morse function on the interior of each edge of X, and at
each trivalent vertex v of X the pre-image under f is locally homeomorphic
to a trivalent singularity. We say that the area of f is the maximum area of
Ft, as t runs over all points t ∈ X. The Gromov area of M is the infimum of
the area of f : M → X over all trivalent graphs X, and all Morse functions
f : M → X.

This definition of metric complexity is a variant of Uryson width, studied
by Gromov in [Gro88], though we consider the area of the level sets instead
of the diameter. Alternatively, one may consider it to be a variant of the
definition of the waist of a manifold, but we prefer to call it area, as the
dimension of our spaces is fixed, and the fibers have dimension two.
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1.2. Topological complexity

We now describe the notions of topological complexity we shall consider.
A handlebody is a compact 3-manifold with boundary, homeomorphic to a
regular neighborhood of a graph in R3. Up to homeomorphism, a handlebody
is determined by the genus g of its boundary surface. Every 3-manifold
M has a Heegaard splitting, which is a decomposition of the manifold into
two handlebodies. This immediately gives a notion of complexity for a 3-
manifold, called the Heegaard genus, which is the smallest genus of any
Heegaard splitting of the 3-manifold.

There is a refinement of this, due to Scharlemann and Thompson [ST94],
which we now describe. A compression body C is a compact 3-manifold with
boundary, constructed by gluing some number of 2-handles to one side of a
compact (but not necessarily connected) surface cross interval and capping
off any resulting 2-sphere components with 3-balls. The side of the surface
cross interval with no attached 2-handles is called the top boundary of the
compression body and denoted by ∂+C, and any other boundary components
are called the lower boundary of the compression body, and their union is
denoted by ∂−C. A linear generalized Heegaard splitting,1 which we shall
abbreviate to linear splitting, is a decomposition of a 3-manifold M into a
linearly ordered sequence of (not necessarily connected) compression bodies
C1, . . . C2n, such that the top boundary of an odd numbered compression
body C2i+1 is equal to the top boundary of the subsequent compression
body C2i+2, and the lower boundary of C2i+1 is equal to the lower boundary
of the previous compression body C2i. Let Hi be the sequence of surfaces
consisting of the top boundaries of the compression bodies C2i−1 and C2i.
The complexity c(Hi) of the surface Hi is the sum of the genera of each con-
nected component, and the complexity of the linear splitting is the collection
of integers {c(Hi)}, arranged in decreasing order. We order these complexi-
ties with the lexicographic ordering. The width of the linear splitting is the
maximum value (i.e. the first value) of c(Hi) in the collection {c(Hi)}. The
linear width of a 3-manifold M is the minimum width over all possible linear
generalized Heegaard splittings. As a Heegaard splitting is a special case of
a linear splitting, the Heegaard genus of M is an upper bound for the linear

1We warn the reader that these are often referred to as generalized Heegaard
splittings in the literature; however we wish to distinguish them from a more general
notion described subsequently, which is also occasionally referred to in the literature
as a generalized Heegaard splitting.
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width of M . A linear splitting which gives the minimum complexity of all
possible linear splittings is called the thin position linear splitting.

There is a further refinement of this, described in Saito, Scharlemann
and Schultens [SSS16]. A graph generalized Heegaard splitting, which we
shall abbreviate to graph splitting, and is called a fork complex in [SSS16],
is a decomposition of a compact 3-manifold M into compression bodies
{Ci}, such that for each compression body Ci, there is a compression body
Cj such that the top boundary of Ci is equal to the top boundary of Cj .
Furthermore, for each component of the lower boundary of Ci, there is a
compression body Ck, such that that component of the lower boundary of
Ci is equal to a component of the lower boundary of Ck. We emphasize
that different components of the lower boundary of Ci may be attached
to lower boundary components of different compression bodies. Let {Hi}
be the collection of top boundary surfaces. The complexity of the graph
splitting is the collection of integers {c(Hi)}, arranged in decreasing order.
Again, we put the lexicographic ordering on these complexities. A graph
splitting which realizes the minimum complexity is called a thin position
graph splitting. The width of the graph splitting is the maximum integer
(i.e the first integer) that appears in the complexity. The graph width of a
3-manifold M is the minimum width over all possible graph splittings of M .
As a linear splitting is a special case of a graph splitting, the linear width of
M is an upper bound for the graph width of M . The graph corresponding
to the graph splitting is the graph whose vertices are compression bodies,
with edges connecting pairs of compression bodies with common boundary
components.

1.3. Results

In order to bound metric complexity in terms of topological complexity we
will use the following result:

Theorem 1.1. Let M be a Riemannian 3-manifold with a strongly irre-
ducible Heegaard splitting. Then the Heegaard surface is isotopic to a mini-
mal surface, or to the boundary of a regular neighborhood of a non-orientable
minimal surface with a small tube attached vertically in the I-bundle struc-
ture.

This was announced by Pitts and Rubinstein [PR86] (see also Rubinstein
[Rub05]), and has now been proved by Ketover and Liokumovich [KL17],
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building on work of Colding and De Lellis [CDL03], De Lellis and Pellandrini
[DLP10], and Ketover [Ket13].

In [HM16] we showed:

Theorem 1.2. There is a constant K > 0, such that for any closed hyper-
bolic 3-manifold,

(1) K(linear width(M)) ⩽ Morse area(M) ⩽ 4π(linear width(M)).

In this paper we show:

Theorem 1.3. There is a constant K > 0, such that for any closed hyper-
bolic 3-manifold,

(2) K(graph width(M)) ⩽ Gromov area(M) ⩽ 4π(graph width(M)).

We also expect there to be upper and lower bounds on topological com-
plexity in terms of Uryson width, i.e. using diameter instead of area, but we
do not expect them to be linear.

1.4. Related work in 3-manifolds

It may be of interest to compare our results with recent work of Brock, Min-
sky, Namazi and Souto [BMNS16] on manifolds with bounded combinatorics.
Let C1, . . . Cn be a finite collection of homeomorphism types of compact 3-
manifolds with marked boundary, which we shall refer to as model pieces,
and fix a metric on each one. A 3-manifold M is said to have bounded com-
binatorics if it is a union of (possibly infinitely many) model pieces glued to-
gether by homeomorphisms along their boundaries, with certain restrictions
on the gluing maps, which we do not describe in detail here. In particular, a
manifold with bounded combinatorics is a manifold of bounded topological
width. They show that such a manifold M is hyperbolic, with a lower bound
on the injectivity radius, and the hyperbolic metric is K-bilipshitz homeo-
morphic to the induced metric on M arising from the metrics on the model
pieces. A choice of foliation with compact leaves, containing the boundary
leaves, on each model piece then shows that the metric complexity is linearly
related to the topological complexity for this class of manifolds, where the
linear constants depend on the collection of model pieces.

Note that in our context, a bound on the topological width of the man-
ifold implies that the manifold is a union of compression bodies of bounded
genus, and there are finitely many of these up to homeomorphism. Their
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result assumes restrictions on the gluing maps, but then shows the resulting
manifold is hyperbolic, but the bilipshitz constant K depends on the width
of M , i.e the genus of the compression bodies. We assume that the manifold
M is closed and hyperbolic, and make no restriction on the gluing maps
between the compression bodies, but we show that the linear constants re-
lating topological and metric complexities are independent of the genus of
the compression bodies.

1.5. Outline

In [HM16] we considered the linear case, in which the range of the Morse
function f : M → R is R. Such a Morse function has the property that for
each t ∈ R, the pre-image f−1(t) is compact and separating. For the case
in which the range of the Morse function f : M → X is a graph, one may
consider the lifted Morse function f̃ : M̃ → X̃, where X̃ is the universal cover
of X, and M̃ is the corresponding cover of M . This lifted Morse function
has the property that for each t ∈ X̃, each pre-image f̃−1(x) is compact and
separating, and so many of the arguments from [HM16] go through directly
in this case. In particular, we construct polyhedral approximations to the
level sets of f̃ , and show that they have bounded topological complexity, as
we now describe.

A choice of Margulis constant µ determines a thick-thin decomposition
for M , in which the thin part is a disjoint union of Margulis tubes. We
also choose a Voronoi decomposition determined by a maximal ϵ-separated
collection of points inM . This implies that every Voronoi cell has diameter at
most ϵ, and, given µ, we may choose ϵ small enough such that every Voronoi
cell that intersects the thick part contains an embedded ball of radius ϵ/2.
The thick-thin decomposition of M , and the Voronoi decomposition of M ,
lift to thick-thin decompositions and Voronoi decompositions of the cover
M̃ . We give the details of this construction in Sections 2.1, 2.2 and 2.3.

A separating surface F in M̃ determines a partition of the Voronoi cells,
depending on which side of the surface the majority of the volume of the
(metric) ball of radius ϵ/2 inside the Voronoi cell lies. We will call the bound-
ary between these two sets of Voronoi cells a polyhedral surface S, which is
a union of faces of Voronoi cells, and we can think of this as a combinatorial
approximation to the original surface F .

A key observation from [HM16] is that the number of faces of the poly-
hedral surface in the thick part is bounded by the area of F . This is because
in the thick part of M , the metric ball of radius ϵ/2 in each Voronoi cell
is embedded, so moving the ball along a geodesic connecting the centers of
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the two Voronoi cells produces at some point a metric ball whose volume
is divided exactly in two, giving a lower bound to the area of F near that
point. There are bounds on the number of vertices and edges of any Voronoi
cell in terms of ϵ, so a bound on the number of faces of S in the thick part
gives a bound on the Euler characteristic of S. We are unable to control the
number of faces in the thin part, so we cap off the part of S in the thick part
with surfaces of bounded Euler characteristic contained in the thin part.
This produces surfaces of bounded genus, which we call capped surfaces.

In this way, the lift of a Morse function f̃ : M̃ → X̃ gives rise to a col-
lection of polyhedral surfaces in M̃ of bounded genus. These surfaces are
constant except at finitely many points of X̃, which we call cell splitters,
where a level set divides the ball contained in a Voronoi cell exactly in
half. We give the details of the construction of the capped surfaces and the
properties of the cell splitters in Sections 2.4 and 2.5.

The key step, in Section 2.6, is to show that we may construct these
surfaces equivariantly in M̃ , so they project down to embedded surfaces in
M , with the same bounds on their topological complexity.

Finally, in Section 2.7, by considering the local configuration near a cell
splitter, we show that the regions between the capped surfaces may be con-
structed using a number of handles bounded in terms of the area of the level
sets f̃−1(t), and so this bounds topological complexity of the decomposition
of M given by the capped surfaces in terms of metric complexity of M .

The bound in the other direction is a direct consequence of the bound
from [HM16], though we review the argument in the Section 3 for the con-
venience of the reader.
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2. Gromov area bounds graph width

In this section we show that we can bound the topological complexity of the
manifold in terms of its metric complexity, i.e. we show that graph width is
bounded in terms of Gromov area.

Theorem 2.1. There is a constant K, such that for any closed hyperbolic
3-manifold M ,

graph width(M) ⩽ K(Gromov area(M)).

Let f : M → X be a Morse function onto a graph X, such that the
Gromov area of f is arbitrarily close to the Gromov area of M . Any metric
graph is arbitrarily close to a trivalent metric graph, so we may assume the
graph is trivalent. We now show that we may assume the level sets of f are
connected.

Proposition 2.2. Let M be a Riemannian manifold, and let f : M → X
be a Morse function onto a trivalent graph X. Then there is a trivalent
graph X ′, and a Morse function f ′ : M → X ′ with connected level sets, with
Gromov area(f ′) ⩽ Gromov area(f).

Proof. The level sets of the function f give a singular foliation of M with
compact leaves, which we shall call the level set foliation, and the leaves
of this foliation are precisely the connected components of the pre-images
of points in X. Consider the leaf space L of the level set foliation, i.e. the
space obtained from M by identifying points in the same leaf. As all leaves
are compact, the leaf space is Hausdorff. The leaf space is a trivalent graph,
with vertices corresponding to vertex singularities, and the maximum area
of the pre-images of the quotient map is less than or equal to the maximum
area of the pre-images of f . Therefore, we may choose f ′ to be the leaf space
quotient map f ′ : M → L, which is a Morse function onto a trivalent graph,
and has connected level sets, with the property that the area of the level
sets of f ′ is bounded by the area of the level sets of f . □

In particular, this means that the vertices of X are precisely the critical
values of the Morse function f in which a connected level set splits into
two connected components, or the reverse of this, in which two connected
components are joined together.
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2.1. Morse functions to trees

We would like to work in the cover M̃ of M corresponding to the universal
cover X̃ of the graphX, which will have the key advantage that all pre-image
surfaces are separating in M̃ .

Let p : M̃ → M be the cover of M corresponding to the kernel of the
induced map f∗ : π1M → π1X, and let c : X̃ → X be the universal cover
of X, so X̃ is a tree. Then the map f ◦ p : M̃ → X lifts to a map h =

f̃ ◦ p : M̃ → X̃. Since each leaf Ft in M maps to a single point in X, the
fundamental group of each leaf is contained in ker(f). Therefore, each leaf

in M lifts to a leaf in M̃ , and as the cover is regular, the pre-image of a
point t ∈ X̃ is a disjoint union of homeomorphic copies of Fc(t). In particular,
the area bound for the leaves Ft in M is also an area bound for the leaves
Ht = h−1(t) in M̃ .

M̃ X̃

M X

h = f̃ ◦ p

p c

f

As X̃ is a tree, every point is separating, and so every pre-image surface
Ht = h−1(t) is also separating.

2.2. Voronoi cells

We will approximate the level sets of f by surfaces consisting of faces of
Voronoi cells. We now describe in detail the Voronoi cell decompositions we
shall use, and their properties. The definitions in this section are taken ver-
batim from [HM16], but we include them in this section for the convenience
of the reader.

A polygon in H3 is a bounded subset of a hyperbolic plane whose bound-
ary consists of a finite number of geodesic segments. A polyhedron in H3 is a
convex topological 3-ball in H3 whose boundary consists of a finite collection
of polygons. A polyhedral cell decomposition of H3 is a cell decomposition in
which every 3-cell is a polyhedron, each 2-cell is a polygon, and the edges are
all geodesic segments. We say a cell decomposition of a hyperbolic manifold
M is polyhedral if its pre-image in the universal cover H3 is polyhedral.
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Let X = {xi} be a discrete collection of points in 3-dimensional hyper-
bolic space H3. The Voronoi cell Vi determined by xi ∈ X consists of all
points of M which are closer to xi than any other xj ∈ X, i.e.

Vi = {x ∈ H3 | d(x, xi) ⩽ d(x, xj) for all xj ∈ X̃}.

We shall call xi the center of the Voronoi cell Vi, and we shall write V =
{Vi} for the collection of Voronoi cells determined by X. Voronoi cells are
convex sets in H3, and hence topological balls. By general position, we may
assume that all edges of the Voronoi decomposition are contained in exactly
three distinct faces, the collection of vertices is a discrete set, and there
are no points which lie in more than four distinct Voronoi cells. We shall
call such a Voronoi decomposition a regular Voronoi decomposition, and it
is a polyhedral decomposition of H3. As each edge is 3-valent, and each
vertex is 4-valent, this implies that the dual cell structure is a simplicial
triangulation of H3, which we shall refer to as the dual triangulation. The
dual triangulation may be realised in H3 by choosing the vertices to be
the centers xi of the Voronoi cells and the edges to be geodesic segments
connecting the vertices, and we shall always assume that we have done this.

Given a collection of points X = {xi} in a hyperbolic 3-manifold M , let
X̃ be the pre-image of X in the universal cover of M , which is isometric to
H3. As X̃ is equivariant, the corresponding Voronoi cell decomposition V of
H3 is also equivariant, and furthermore, gives rise to an equivariant Voronoi
decomposition of any cover M̃ of M . The distance condition implies that
the interior of each Voronoi cell V is mapped down homeomorphically by
the covering projection, though the covering projection may identify faces,
edges or vertices of Vi under projection into M . By abuse of notation, we
shall refer to the resulting polyhedral decomposition of M as the Voronoi de-
composition V of M . By general position, we may assume that V is regular.
The dual triangulation is also equivariant, and projects down to a triangu-
lation of M , which we will also refer to as the dual triangulation, though
this triangulation may no longer be simplicial.

We shall write B(x, r) for the closed metric ball of radius r about x in
M , i.e.

B(x, r) = {y ∈ M | d(x, y) ⩽ r}.

We shall write injM (x) for the injectivity radius of M at x, i.e. the radius of
the largest embedded ball in M centered at x. Then the injectivity radius
of M , denoted inj(M), is defined to be

inj(M) = inf
x∈M

injM (x).
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We say a collection {xi} of points in M is ϵ-separated if the distance
between any pair of points is at least ϵ, i.e. d(xi, xj) ⩾ ϵ, for all i ̸= j. Let
{xi} be a maximal collection of ϵ-separated points in M , and let V be the
corresponding Voronoi cell division of M . Since the collection {xi} is max-
imal, each Voronoi cell is contained in a metric ball of radius ϵ about its
center. Furthermore, if the injectivity radius at the center xi is at least 2ϵ,
then as the points xi are distance at least ϵ apart, each Voronoi cell contains
a topological ball of radius ϵ/2 about its center, i.e.

B(xi, ϵ/2) ⊂ Vi ⊂ B(xi, ϵ).

Definition 2.3. LetM be a closed hyperbolic 3-manifold. We say a Voronoi
decomposition V is ϵ-regular, if it is regular, and it arises from a maximal
collection of ϵ-separated points. For any cover M̃ ofM , we say that a Voronoi
decomposition of M̃ is equivariant ϵ-regular, if it is the lift of an ϵ-regular
Voronoi decomposition of M .

A normal surface in a triangulated 3-manifold is a surface that intersects
each tetrahedron in a union of normal triangles and quadrilaterals. One
useful property of ϵ-regular Voronoi decompositions is that the boundary
of any union of Voronoi cells is an embedded surface, in fact an embedded
normal surface in the dual triangulation.

Proposition 2.4. [HM16, Proposition 2.2] Let M be a closed hyperbolic
manifold, and let V be an ϵ-regular Voronoi decomposition. Let P be a union
of Voronoi cells in V, and let S be the boundary of P . Then S is an embedded
surface in M .

Definition 2.5. We shall say a Voronoi cell Vi with center xi is an ϵ-deep
Voronoi cell if the injectivity radius at xi is at least 4ϵ, i.e. injM (xi) ⩾ 4ϵ.
We shall also call centers, faces, edges and vertices of ϵ-deep Voronoi cells
ϵ-deep.

In particular this implies that the metric ball B(xi, 3ϵ) inside an ϵ-deep
Voronoi cell is a topological ball. In the next section we will choose a fixed ϵ
independent of the manifold M , and we will just say deep instead of ϵ-deep.
We shall write W for the subset of V consisting of deep Voronoi cells.

Finally, we recall that there are bounds, which only depend on ϵ, on the
number of vertices, edges and faces of a deep Voronoi cell.
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Proposition 2.6. [HM16, Proposition 2.3] Let M be a closed hyperbolic
3-manifold with an ϵ-regular Voronoi decomposition V, and let W be the col-
lection of deep Voronoi cells. Then there is a number J , which only depends
on ϵ, such that each deep Voronoi cell Wi ∈ W has at most J faces, edges
and vertices.

2.3. Margulis tubes

We will use the Margulis Lemma and the thick-thin decomposition for finite
volume hyperbolic 3-manifolds, and we now review these results.

Given a number µ > 0, let Xµ = M[µ,∞) be the thick part of M , i.e.
the union of all points x of M with injM (x) ⩾ µ. We shall refer to the
closure of the complement of the thick part as the thin part and denote it
by Tµ = M \Xµ.

The Margulis Lemma states that there is a constant µ0 > 0, such that
for any closed hyperbolic 3-manifold, the thin part is a disjoint union of solid
tori, called Margulis tubes, and each of these solid tori is a regular metric
neighborhood of an embedded closed geodesic of length less than µ0. We
shall call a number µ0 for which this result holds a Margulis constant for
H3. If µ0 is a Margulis constant for H3, then so is µ for any 0 < µ < µ0, and
furthermore, given µ and µ0 there is a number δ > 0 such that Nδ(Tµ) ⊆ Tµ0

.
For the remainder for this section we shall fix a pair of numbers (µ, ϵ) such
that there are Margulis constants 0 < µ1 < µ < µ2, a number δ such that
Nδ(∂Tµ) ⊆ Tµ2

\ Tµ1
, and ϵ = 1

4 min{µ1, δ}. We shall call (µ, ϵ) a choice of
MV -constants for H3.

Let (µ, ϵ) be a choice ofMV -constants, and consider an ϵ-regular Voronoi
decomposition of M . The fact that Nδ(∂Tµ) ⊆ Tµ2

\ Tµ1
means that we may

adjust the boundary of Tµ by an arbitrarily small isotopy so that it is trans-
verse to the Voronoi cells, and we will assume that we have done this for
the remainder of this section. Our choice of ϵ implies that the thick part Xµ

is contained in the Voronoi cells in the deep part, i.e. Xµ ⊂
⋃

W∈W
W , so

in particular ∂Xµ = ∂Tµ is contained in the deep part. Furthermore, each
deep Voronoi cell hits at most one component of Tµ.

If M̃ is a cover of M , we will write X̃µ for the pre-image of Xµ in M̃ ,

and similarly T̃µ for the pre-image of Tµ in M̃ . In the case in which M̃ is

a cover of M , the connected components of T̃µ are covers of the connected

components of Tµ. If a connected component of T̃µ is compact, then it is a
solid torus, otherwise it is the universal cover of a solid torus, and we shall
refer to such a component as an infinite Margulis tube. Injectivity radius at
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a point can only increase under taking covers, so the lift of a deep Voronoi
cell is also deep, and so X̃µ is contained in the deep part of M̃ . Although

the thick part of M̃ may be strictly larger than X̃µ, by abuse of notation,

we will sometimes refer to X̃µ as the thick part of M̃ and T̃µ as the thin

part of M̃ .

2.4. Cell splitters

The polyhedral surfaces we construct will be locally constant, except for a
discrete collection of points in the trivalent graph Y , which roughly speaking
correspond to points t ∈ Y for which the level set f−1(t) divide a Voronoi
cell in half. For technical reasons, we use points which divide a ball of fixed
size in the Voronoi cell in half, as we now describe.

Let t be a point in a trivalent tree Y . Then the complement Y \ t has at
most three connected components: if t lies in the interior of an edge, then
there are precisely two connected components, while if t is a vertex, there
are precisely three connected components. It will be convenient to consider
the closures of these components, which are the closed sets obtained by
adding the point t to each connected component of Y \ t. We shall denote
the closures of these connected components of Y \ t by Y ci

t , and we shall
refer to them as the complements of t.

Let M̃ be a cover of a closed hyperbolic 3-manifold, and let h : M̃ → Y be
a Morse function onto a trivalent tree Y . Given t ∈ Y , let Hci

t = h−1(Y ci
t ),

and we shall refer to these as the complements of Ht = h−1(t) in M̃ . As
before, there are either two or three complementary regions depending on
whether t lies in the interior of an edge, or is a vertex in Y .

Definition 2.7. Let M̃ be a cover of a closed hyperbolic 3-manifold, with
an equivariant ϵ-regular Voronoi decomposition V. Let h : M̃ → Y be a
Morse function to a trivalent tree Y , and let V be a Voronoi cell with center
x. Suppose that a point t ∈ Y has the property that for each complementary
region Hci

t , the volume of Hci
t ∩B(x, ϵ/2) ∩ V is at most half the volume of

the topological ball B(x, ϵ/2) ∩ V . Then we say that t is a cell splitter for
the Voronoi cell V .

Proposition 2.8. Let M̃ be a cover of a closed hyperbolic 3-manifold, with
an equivariant ϵ-regular Voronoi decomposition V. Let h : M̃ → Y be a Morse
function to a trivalent tree, and let V be a Voronoi cell with center x. Then
there is a unique cell splitter t ∈ Y for V .
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Proof. We first show existence. Let B be the topological ball B(x, ϵ/2) ∩ V ,
and let v be the volume of this ball. Consider h(B) ⊂ Y . If there is a vertex of
Y which is a cell splitter, then we are done. Otherwise, suppose no vertex of
h(B) is a cell splitter. If t is a vertex in h(B) which is not a cell splitter, then
there is at least one complementary region Y ci

t such thatHci
t ∩B(x, ϵ/2) ∩ V

has volume more than 1
2v, and Y ci

t ∩ h(B) has at least one fewer vertex. So
proceeding by induction, we may reduce to the case in which h(B) contains
an interval I with no vertices such that h−1(I) ∩B(x, ϵ/2) ∩ V has volume
at least 1

2v. In this case, let t0 and t1 be the endpoints of I, and consider
h−1([t0, s]), for s ∈ I. When s = t0, this has volume less than 1

2v, and has
volume greater than 1

2v when s = t1. As the volume changes continuously
with s, there is a point t′ such that Ht′ divides B into two regions, each of
which has volume exactly 1

2v, so t′ is a cell splitter for V .
We now show uniqueness. First suppose t is a cell splitter which is not

a vertex. Then there are precisely two complementary regions Hc1
t and Hc2

t ,
and each of Hc1

t ∩B(x, ϵ/2) ∩ V and Hc2
t ∩B(x, ϵ/2) ∩ V must have equal

volume exactly 1
2v. Any other point t′ has a complementary region which

contains at least one of these complements, and so has volume greater than
1
2v, and so can not be a cell splitter.

Finally suppose t is a cell splitter which is a vertex. Then there are three
complements Hc1

t , Hc2
t and Hc3

t , each of which has volume at most 1
2v. As

each region has volume at most 1
2v, any two regions must have total volume

at least 1
2v. Any other point t′ ∈ Y must have a complementary region which

contains at least two of the complements of Ht, and so has a complement
with volume strictly greater than 1

2v, and so can not be a cell splitter. □

Definition 2.9. We say that a Morse function f : M → Y to a tree Y is
generic with respect to a Voronoi decomposition V if the cell splitters for
distinct Voronoi cells Vi correspond to distinct points ti ∈ Y . We say a point
t ∈ Y is generic if it is not a critical value for the Morse function, and is not
a cell splitter.

We may assume that f is generic by an arbitrarily small perturbation
of f , and we shall always assume that f is generic from now on. Finally, we
remark that a trivalent vertex in Y is not necessarily a cell splitter.

2.5. Polyhedral and capped surfaces

Let M̃ be a hyperbolic 3-manifold with an equivariant ϵ-regular Voronoi de-
composition, and let Q be a 3-dimensional submanifold of M̃ , with boundary
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an embedded separating surface F . In this section we show how to approx-
imate Q by a union of Voronoi cells, which in turn gives an approximation
to F by an embedded surface S which is a union of faces of Voronoi cells.

We say a region R is generic if for every Voronoi cell Vi with center xi,
the region consisting of the intersection of B(xi, ϵ/2) with the interior of Vi

does not have exactly half its volume lying in R. We say a separating surface
F in M̃ is generic if it bounds a generic region.

Let P be the collection of Voronoi cells for which at least half of the
volume of B(xi, ϵ/2) ∩ interior(Vi) lies in Q. We say the P is the polyhedral
region determined by Q. The polyhedral region P may be empty, even if Q
is non-empty. The boundary of P is a polyhedral surface S, which we shall
call the polyhedral surface associated to F = ∂Q, and is a normal surface
in the dual triangulation. We will use the following bound on the number
of faces and boundary components of the intersection of the polyhedral
surface S with the thick part of the manifold, in terms of the area of the
corresponding surface F . If S is a surface, we will write |∂S| for the number
of boundary components of S, and if S′ is a subset of a polyhedral surface
S, we will write ∥S′∥ for the number of faces of S which intersect S′.

Proposition 2.10. [HM16, Proposition 2.10, 2.13] Let (µ, ϵ) be MV -

constants, and let M̃ be a cover of a closed hyperbolic 3-manifold, with an
equivariant ϵ-regular Voronoi decomposition V and thick part Xµ. Then there
is a constant K, which only depends on the MV -constants, such that for any
generic embedded separating surface F in M̃ , the corresponding polyhedral
surface S satisfies:

∥S ∩ X̃µ∥ ⩽ Karea(F ),

and ∣∣∣∂(S ∩ X̃µ)
∣∣∣ ⩽ Karea(F ).

In [HM16], this result is stated for the level set of a Morse function on a
closed hyperbolic manifold, and one may then observe that every separating
surface F is the level set of some Morse function, though in fact, the proof
only uses the fact that F is separating. In [HM16, Proposition 2.10] the
bound is stated in terms of S ∩W , where W is the deep part defined above
in Definition 2.5. As the pre-image of a deep Voronoi cell in M is deep in
M̃ , so the pre-image W̃ of W is deep in M̃ . Then, as S ∩ X̃µ ⊂ S ∩ W̃, the
stated bound follows immediately.

As each polyhedral surface S is closed, each boundary component of the
surface S ∩ X̃µ is contained in T̃µ, so S ∩ X̃µ is a properly embedded surface
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in X̃µ. We now wish to cap off the properly embedded surfaces S ∩ X̃µ

with properly embedded surfaces in T̃µ to form closed surfaces. We warn
the reader that the following definition differs slightly from the definition
in [HM16], as we extend the definition to include the case in which T̃µ has
infinite components.

Definition 2.11. A separating surface F in M̃ gives rise to a polyhedral
surface S, which meets ∂T̃µ transversely, and intersects ∂T̃µ in a collection

of simple closed curves which is separating in ∂T̃µ. We replace S inside the
thin part by surfaces {Ui} which we now describe. For each torus component
Ti in ∂T̃µ choose a subsurface Ui bounded by S ∩ ∂Ti. For each infinite
component Ti, choose a not necessarily connected surface Ui as follows: for
each essential curve in the annulus ∂Ti choose a disc it bounds in Ti, and
then let Ui be the union of these discs with the planar surface bounded
by the remaining inessential curves. We call the resulting surface a capped
surface S+ = (S ∩ X̃µ) ∪

⋃
i Ui.

We will use the following property of the capped surfaces.

Proposition 2.12. Let (µ, ϵ) be MV -constants, and let M̃ be a cover of a
closed hyperbolic 3-manifold M , with thin part T̃µ, and with an equivariant
ϵ-regular Voronoi decomposition V. Then there is a constant K, which only
depends on ϵ, such that for any generic embedded separating surface F in
M̃ , the corresponding capped surface S+ satisfies:

genus(S+) ⩽ Karea(F ).

The proof of this result is essentially the same as the proof of [HM16,
Proposition 2.14], and instead of repeating the entire argument, we explain
the minor extension needed. The only difference is that [HM16, Proposition
2.14] is stated for closed hyperbolic manifolds, whereas Proposition 2.12 is
stated for covers of such manifolds, so the pre-image of the thin part T̃µ may
have infinite Margulis tubes. This makes no difference to the estimates of
the number of faces and boundary components of the resulting polyhedral
surface in terms of the area of the original surface. The extension of the
definition of capped surface to the infinite case only involves capping off
with planar surfaces, so the same genus bounds hold.
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2.6. Disjoint equivariant surfaces

Each collection of points ti in Y corresponds to a collection S+
i of capped

surfaces. In this section we show that if the collection of points is equivariant,
then we may arrange for the capped surfaces to be disjoint and equivariant.

Let M̃ be a cover of a closed hyperbolic 3-manifold M with an equivari-
ant ϵ-regular Voronoi decomposition V. We say a subset U ⊂ M̃ is equivari-
ant if it is equal to the pre-image of its projection to M .

Let W be a discrete equivariant collection of points in X̃, none of which
are either cell splitters or critical points of the Morse function h. We say two
points ti, tj in W are adjacent if the geodesic connecting them in the tree

X̃ does not contain any other point of W . We may choose W such that the
geodesic in X̃ connecting any pair of adjacent points in W contains either
a single cell splitter, a single trivalent trivalent vertex of X̃, or neither of
these two types of points.

Consider the collection S of polyhedral surfaces St, as t runs over W .
As the collection W is equivariant, S is also equivariant. Note that although
each surface in S is individually embedded, each surface in S will share many
common faces with other surfaces in S. We will now make this collection
simultaneously equivariantly disjoint, so that we may push them down to
M to obtain a collection of disjoint surfaces which will act as our splitting
surfaces in a graph splitting of M .

Proposition 2.13. Let M be a closed hyperbolic 3-manifold of injectivity
radius at least 2ϵ, with an ϵ-regular Voronoi decomposition V, and a generic
Morse function f : M → X onto a trivalent graph X with connected level
sets. Let p : M̃ → M be the cover of M corresponding to the kernel of the
induced map f∗ : π1M → π1X, and let c : X̃ → X be the universal cover of
X. Let W be a discrete equivariant collection of points in X̃. Then the collec-
tion of polyhedral surfaces {Sw | w ∈ W} in M̃ is equivariantly isotopic to a
disjoint collection of surfaces {Σw | w ∈ W}, and furthermore this equivari-
ant isotopy may be chosen to be supported in a neighborhood of the 2-skeleton
of the induced Voronoi decomposition of M̃ .

Proof. We now give a recipe for constructing surfaces Σt, for t ∈ W . Each
individual surface Σt will be isotopic to the original St, but the union of the
surfaces Σt will be equivariantly disjointly embedded in M̃ .

We first show that there is a canonical ordering of the polyhedral surfaces
Σt which share a common face. Let Φ be a face of a Voronoi cell in M̃ , and
let V (x1) and V (x2) be the adjacent Voronoi cells. Let t1 and t2 be cell
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splitters for V (x1) and V (x2), so that Hti = h−1(ti) is the surface which
divides Bϵ/2(xi) precisely in half, for i = 1, 2.

We say a point in X̃ is regular if it is not a cell splitter, and not a critical
point for the Morse function h.

Claim 2.14. The collection of regular points in X̃ corresponding to poly-
hedral surfaces Σt which contain the face Φ is precisely the regular points
contained in the geodesic in X̃ from t1 to t2.

Proof. The two embedded surfaces Ht1 and Ht2 divide M̃ into three parts;
call them A,B and C, with A the part only hitting Ht1 , and B the part
hitting both Ht1 and Ht2 .

Let γ be the geodesic in X̃ from t1 to t2. Each point t in γ corresponds
to a surface Ht dividing M̃ at most 3 parts, one of which contains A, and
another containing C. Let Pt be the part containing A. Then, writing |A|
for the volume of a region A,

∣∣Bϵ/2(x1) ∩ Pt

∣∣ ⩾
∣∣Bϵ/2(x1) ∩A

∣∣ ⩾ 1

2

∣∣Bϵ/2(x1)
∣∣

and ∣∣Bϵ/2(x2) \ Pt

∣∣ ⩾
∣∣Bϵ/2(x2) \ C

∣∣ ⩾ 1

2

∣∣Bϵ/2(x2)
∣∣ .

Therefore the two Voronoi cells V (x1) and V (x2) lie in different partitions
of the Voronoi cells determined by t, and so Φ lies in the polyhedral surface
Σt.

Conversely, suppose t does not lie on the path γ, then t divides X̃ into at
most three parts, and γ is contained in exactly one of these parts. This means
that Ht1 and Ht2 are contained in the same complementary component of
Ht, and so Φ cannot be a face of Σt. □

It suffices to show that we can isotope the normal surfaces, preserving
the fact that they are normal, so that they have disjoint intersection in the
2-skeleton of the dual triangulation.

Let e be an edge of the dual triangulation, with vertices x1 and x2,
with corresponding cell splitters t1 and t2. A normal surface Si intersects
e if and only if the corresponding point wi lies in the geodesic [t1, t2] in X̃
connecting t1 and t2. The points wi in e therefore inherit an order from
[t1, t2], and we may isotope the normal surfaces by a normal isotopy so that
they intersect the edge e in the same order. As the interiors of each edge
have disjoint images under the covering translations, and the collection of
edges is equivariant, we may do this normal isotopy equivariantly.
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Let Φ be a triangle in the dual triangulation, with vertices x1, x2 and
x3, and corresponding cell splitters t1, t2 and t3. As above, the collection of
normal surfaces which intersect an edge [xi, xj ] of Φ corresponds to those

wi lying in the geodesic [ti, tj ] in X̃. The union of the three geodesics [ti, tj ]

forms a minimal spanning tree for the three cell splitters in X̃. Let t0 be
the center of this tree, i.e. the unique point that lies in all three geodesics.
Note that the tree may be degenerate, so t0 may be equal to one of the other
vertices.

x1

x3

Φx2

S1

S2

S3

S4

t1

t2 t3

t0

w1

w2
w3

w4

Figure 1: Example of normal surfaces intersecting a face of the dual trian-
gulation.

Normal arcs parallel to the edge [x2, x3] correspond to surfaces which
hit both of the edges [x1, x2] and [x1, x3], so correspond points wi which
lie in both [t1, t2] and [t1, t3], and similarly for the other two cases. The
intersection of these two geodesics in X̃ is [t1, t0], and so the corresponding
surfaces appear in the same order on each of the edges in Φ, and so the arcs
are disjoint. The same argument applies to each vertex of Φ. □

As the resulting surfaces in M̃ are disjoint and equivariant, they project
down to disjoint surfaces in M .

We now show that the polyhedral surfaces, and their complements,
project down homeomorphically into M . As the level set surfaces lift homeo-
morphically to M̃ , the area bound for the level sets of f is also an area bound
for the level sets of h. Therefore, each polyhedral surface contains a bounded
number of faces. The deck transformation group of the universal cover of a
graph is equal to the fundamental group of the graph, which is a free group,
so the orbit of any face consists of infinitely many disjoint translates. If two
lie in the same connected component of a polyhedral surface, then that path
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corresponds to a covering translation, which has infinite order, so in fact the
connected component contains infinitely many faces, which contradicts the
fact that there is a bound on the number of faces in each component.

Each complementary region is compact, so the same argument applied
to the complementary regions shows that they are all mapped down home-
omorphically as well.

2.7. Bounded handles

We now bound the number of handles in a complementary region of the
capped surfaces, which contains a single cell splitter. The following result
will complete the proof of the left hand inequality in Theorem 1.3.

Proposition 2.15. Let (µ, ϵ) be MV -constants, and let M̃ be a cover of a
closed hyperbolic 3-manifold, with an equivariant ϵ-regular Voronoi decom-
position V, and a generic Morse function h : M̃ → Y , where Y is a tree. Let
{ui} be a collection of points in Y , which separate the cell splitters in Y ,
and let {S+

i } be the corresponding collection of capped surfaces. If P is a
complementary component of the capped surfaces in M , the region P has at
most three boundary components, S+

i1
, S+

i2
and S+

i3
say, where the final sur-

face may be empty. Then P is homeomorphic to a manifold with a handle
decomposition containing at most

KGromov area(M)

handles, where K depends only on the MV -constants.

We start with the observation that attaching a compression body P to
a 3-manifold Q along a subsurface S of the upper boundary component of
P , requires a number of handles which is bounded in terms of the Hee-
gaard genus of P , and the number of boundary components of the attaching
surface.

Proposition 2.16. [HM16, Proposition 2.16] Let Q be a compact 3-manifold
with boundary, and let R = Q ∪ P , where P is a compression body of genus
g, attached to Q by a homeomorphism along a (possibly disconnected) sub-
surface S contained in the upper boundary component of P of genus g. Then
R is homeomorphic to a 3-manifold obtained from Q by the addition of at
most (4g + 2 |∂S|) 1-and 2-handles, where |∂S| is the number of boundary
components of S.
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Proof (of Proposition 2.15). If P has two boundary components, then the
argument is exactly the same as [HM16, Proposition 2.15], so we now con-
sider the case in which P has three boundary components, which, without
loss of generality we may relabel S+

1 , S
+
2 and S+

3 . Let t be the cell splitter
corresponding to the region P , and let V be the corresponding Voronoi cell.
As P has three boundary components, t must be a vertex of Y .

We first consider the case in which the Voronoi region V corresponding
to the cell splitter t in h(P ) is disjoint from the thin part T̃µ. Consider the
three polyhedral surfaces S1, S2 and S3, corresponding to the three capped
surfaces, and let Σ = ∪Si ∪ V be the union of the polyhedral surfaces, to-
gether with the Voronoi cell V . By Proposition 2.10, there is a constant K,
which only depends on the MV -constants, such that the number of faces of
Σ in the thick part is at most 3K1Gromov area(M), i.e.

∥Σ ∩ X̃µ∥ ⩽ 3K1Gromov area(M),

where K1 is the constant from Proposition 2.10. The number of boundary
components of each surface Si ∩ X̃µ is also bounded by Proposition 2.10,
and by Proposition 2.6, the Voronoi cell V has a bounded number J of
vertices, edges and faces, where J depends only on the MV -constants. In
particular, there is a constant A, depending only on the MV -constants,
such that P ∩Xµ has a handle structure with at most A(Gromov area(M))
handles.

To bound the number of handles contained in P , we observe that P
is a regular neighbourhood of the 3-complex obtained from capping off
the boundary components of Σ ∩ X̃µ, using the parts of the capped sur-

faces in the thin part, i.e. the union of the components of S+
i ∩ T̃µ over all

three capped surfaces. Each component of S+
i ∩ T̃µ has genus at most one,

and the number of boundary components of Σ ∩ X̃µ is bounded linearly in
terms of Gromov area(M), therefore, there is a constant B, depending only
on the MV -constants, such that the number of handles in P is at most
B(Gromov area(M)), as required.

We now consider the case in which the region P has image h(P ) in
Y which contains the cell splitter t, and the corresponding Voronoi cell V
intersects T̃µ. In this case, the connected components of V ∩ X̃µ need not be

topological balls, and there may be connected components of P ∩ T̃µ whose
boundary components are not parallel.

The connected components of V ∩ X̃µ are handlebodies of bounded genus,
as shown in the following result of Kobayashi and Rieck [KR11]. We state a
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simplified version of their result which suffices for our purposes, see [HM16]
for further details.

Proposition 2.17. [KR11] Let µ be a Margulis constant for H3, M be
a finite volume hyperbolic 3-manifold, let 0 < ϵ < µ, and let V be a regular
Voronoi decomposition of M arising from a maximal collection of ϵ-separated
points. Then there is a number G, depending only on µ and ϵ, such that for
any Voronoi cell Vi, there are at most G connected components of Vi ∩Xµ,
each of which is a handlebody of genus at most G, attached to Tµ by a surface
with at most G boundary components.

Recall that attaching a handlebody of genus G to a 3-manifold along a
subsurface of the boundary with at most G boundary components requires
at most 6G handles:

Proposition 2.18. [HM16, Proposition 2.16] Let Q be a compact 3-manifold
with boundary and let R = Q ∪ P , where P is a compression body of genus g,
attached to Q by a homeomorphism along a (possibly disconnected) subsur-
face S contained in the upper boundary component of P of genus g. Then R
is homeomorphic to a 3-manifold obtained from Q by the addition of at most
(4genus+ 2 |∂S|) 1- and 2-handles, where |∂S| is the number of boundary
components of S.

Therefore, adding a Voronoi cell which intersects ∂Tµ may be realized

by at most 6G2 handles. As each Voronoi cell in M lifts to M̃ , and T̃µ is

the pre-image of Tµ, this same bound holds for adding a Voronoi cell in M̃

which intersects ∂T̃µ.

If the Voronoi cell intersects T̃µ, then there may be components of

P ∩ T̃µ whose boundary surfaces are not parallel. This case is considered
in the proof of [HM16, Proposition 2.15], when the manifold has no infi-
nite Margulis tubes, so it suffices to consider the case of a component of
P contained in an infinite Margulis tube. However, the case of an infinite
Margulis tube in which neither surface is an essential disc is the same as
the ordinary Margulis tube case, and if both surfaces essential discs then
they are parallel. Finally, if exactly one surface is an essential disc, then
the other surface lies in the same homology class, via the component of P
in the infinite Margulis tube, and so, after surgering inessential boundary
components, is also an essential disc. However, the number of boundary
components is at most K1Gromov area(M), and so the total number of ex-
tra handles over all components of P in the infinite Margulis tubes is also
bounded by K1Gromov area(M).
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We may choose the constant K to be the maximum of the constants
arising from the two cases considered above, thus completing the proof of
Proposition 2.16. □

3. Topological complexity bounds metric complexity

In this section we will show bounds for metric complexity in terms of topo-
logical complexity, i.e. the right hand inequality in Theorem 1.3, using The-
orem 1.1.

We start by reminding the reader of the topological properties of thin
position for generalized Heegaard splittings, as shown by Scharlemann and
Thompson [ST94] for the linear case and Saito, Scharlemann and Schultens
[SSS16] for the graph case.

Theorem 3.1. [ST94,SSS16] Let H be a graph splitting that is in thin po-
sition. Then every even surface is incompressible in M and the odd surfaces
form strongly irreducible Heegaard surfaces for the components of M cut
along the even surfaces.

We will use the following result due to Gabai and Colding [CG18, Ap-
pendix A], building on recent work of Colding and Minicozzi [CM16]. It is
not stated explicitly in their paper, but see [HM16, Theorem 3.2] for further
details.

Theorem 3.2. [CG18] Let M be a hyperbolic manifold, with (possibly
empty) least area boundary, with a minimal Heegaard splitting H of genus
g. Then, assuming Theorem 1.1, the manifold M has a (possibly singular)
foliation by compact leaves, containing the boundary surfaces as leaves, such
that each leaf has area at most 4πg.

By Theorem 3.1, we may consider the compression bodies in the graph
splitting in pairs, glued along strongly irreducible Heegaard splittings, and
then Theorem 3.2 guarantees that each pair has a foliation with each leaf
having area at most 4πg. These foliations contain the boundary surfaces as
leaves, and so the foliations on each pair extend to foliations of the entire
manifold, as required.
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