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We show that the periodic η-invariant of Mrowka, Ruberman and
Saveliev provides an obstruction to the existence of cobordisms
with positive scalar curvature metrics between manifolds of di-
mensions 4 and 6. Our proof combines the end-periodic index
theorem with a relative version of the Schoen–Yau minimal sur-
face technique. As a result, we show that the bordism groups
Ω spin,+

n+1 (S1 ×BG) are infinite for any non-trivial group G which
is the fundamental group of a spin spherical space form of dimen-
sion n = 3 or 5.

1. Introduction

A classic problem in global differential geometry is to determine when a
given manifold admits a metric of positive scalar curvature (‘psc’) and if so,
to say something about the classification of such metrics. Fundamental tools
for this study make use of index theory [15] and minimal submanifolds [23],
with many extensions of these methods over the years; see for instance the
surveys [21, 25]. Because the space P(X) of psc metrics on a manifold X is
(if non-empty) infinite dimensional, classification per se is not reasonable,
and one considers such metrics up to deformation, or isotopy. This leads
to the study of the homotopy groups of P(X) and of the associated mod-
uli space M+(X) = P(X)/Diff(X), and index theoretic methods show that
these homotopy groups can be non-trivial [13].

Botvinnik and Gilkey [4, 5] used the Atiyah–Patodi–Singer index theo-
rem [2] to show that, for any odd-dimensional non-simply connected spher-
ical space form Y of dimension at least 5, the moduli space M

+(Y ) has
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infinitely many path components. They further strengthened this result by
introducing a psc spin bordism group Ω spin,+

n (BG), whose definition will be
recalled in Section 3. They showed that the group Ω spin,+

n (BG) is infinite for
every odd n ≥ 5 and G the fundamental group of a non-simply connected
spherical space form of dimension n. They also extended these results to
some non-orientable even-dimensional manifolds.

The second and third authors, together with T. Mrowka, extended [19]
the Atiyah–Patodi–Singer theorem to the setting of even-dimensional mani-
folds with periodic ends. As a consequence, the isotopy results of [4, 5] con-
tinue to hold for many even dimensional orientable manifolds, for instance,
the product of a spherical space form with a circle. (The results in dimen-
sion 4 are somewhat more limited, because [18] psc metrics are unique up to
isotopy in dimension 3). It is natural to ask if these results on classification
up to isotopy actually hold up to bordism.

In this paper, we combine the end-periodic index theory [19] with the rel-
ative version of the Schoen–Yau minimal surface technique due to Botvinnik–
Kazaras [3] to show that the Botvinnik–Gilkey bordism results continue to
hold for orientable manifolds in low even dimensions. The statement of our
result will include a group-theoretic constant rn(G) defined in [5] via the
representation theory of a finite group G.

Theorem 1. Let n = 4 or 6. Let G be a finite group and set Γ = Z×G.
When n = 4, additionally assume that G is the fundamental group of a non-
simply connected 3-dimensional spherical space form, while if n = 6 we as-
sume that r5(G) > 0. Then Ω spin,+

n (BΓ) contains infinitely many elements,
represented by maps f : M → BΓ where M are connected manifolds with
π1(M) ∼= Γ that support psc metrics.

Following the remark after [5, Theorem 0.1], r5(G) > 0 if G contains an
element g which is not conjugate to g−1. This holds for example in any odd
order group.

It is worth noting that the distinct bordism classes in Ω spin,+
6 (BΓ) are ob-

tained by constructing different psc metrics on the same underlying smooth
manifold. In dimension 4, the conclusion is a bit weaker: given an integer
N , there is a 4-manifold that supports at least N bordism classes of psc
metrics. The restriction to relatively low dimensions in Theorem 1 has to do
with possible singularities in an area-minimizing hypersurface in dimensions
greater than 7; it is conceivable that this restriction could be removed using
techniques recently developed in [16, 24]. Theorem 1 recovers an earlier re-
sult of Leichtnam–Piazza [14, Theorem 0.1] in the case of n = 6, but is new
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for n = 4. The approach in [14] utilizes the higher eta-invariants, see [17],
and appears quite different from ours.

Theorem 1 is a consequence of the following result about the periodic
ξ̃–invariants which were introduced in [19].

Theorem 2. Let X0 and X1 be closed oriented Riemannian spin mani-
folds of dimension n = 4 or 6 with positive scalar curvature and a choice of
primitive cohomology classes γ0 ∈ H1(X0;Z) and γ1 ∈ H1(X1;Z) and uni-
tary representations α0 : π1(X0) → U(k) and α1 : π1(X1) → U(k). Suppose
that X0 is bordant to X1 via a positive scalar curvature cobordism and that
both the cohomology classes γ0, γ1 and the representations α0 and α1 extend
to this cobordism. Then

ξ̃α0
(X0,D

+) = ξ̃α1
(X1,D

+).

We prove Theorem 2 by applying the index theorem of [19] to an end-
periodic manifold Z∞ constructed from the psc-cobordism between X0 and
X1. The manifold Z∞ has two periodic ends modeled on the infinite cyclic
covers of X0 and X1 with metrics conformally equivalent to end-periodic
metrics. The ‘middle portion’ of Z∞ is, roughly speaking, a minimal hyper-
surface with free boundary as constructed in Botvinnik–Kazaras [3]; this is
the crucial geometric ingredient of the proof. Though this middle portion
comes equipped with a psc metric, it does not smoothly glue to the given
metrics on the covers of X0 and X1. To produce a smooth metric on Z∞,
we introduce a transition region which may initially have negative scalar
curvature. The main analytic result of the paper, Lemma 3.2, conformally
changes this initial metric on Z∞ to one of positive scalar curvature, without
dramatically disturbing it far away from the transition region.

The paper is organized as follows. In Section 2, we recall the definition
of the invariants ξ̃α in all even dimensions, together with the formula of [19]
expressing ξ̃α in terms of the Dirac index on end-periodic manifolds. We
further extend this formula to a class of end-periodic manifolds with metrics
which are conformally equivalent to end-periodic metrics but are not end-
periodic themselves. Theorem 2 is proved in Section 3 assuming Lemma
3.2. The proof of Lemma 3.2 then occupies the entire Section 4. Finally,
Theorem 1 is proved in Section 5.

After this paper was accepted for publication, the preprint [20] appeared
that gives a different approach to the main theorems of this paper.

Acknowledgments: The broad outline of this project, encompassing both
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[3] and the present paper, took shape during conversations with Boris Botvin-
nik during the 2015 PIMS Symposium on Geometry and Topology of Man-
ifolds. We thank Boris for his role in the project, and the organizers of
the PIMS Symposium for providing a stimulating environment. We are also
grateful to the anonymous referees whose comments helped improve the
paper.

2. Periodic ξ̃–invariants

Let X be a compact even-dimensional spin manifold with a choice of a
primitive cohomology class γ ∈ H1(X;Z) and a Riemannian metric g of
positive scalar curvature. Associated with this data is the spin Dirac operator
D+ = D+(X, g) and, given a representation α : π1(X) → U(k), the twisted
Dirac operator D+

α = D+
α (X, g). The periodic ξ̃–invariant was defined in [19,

Section 8.1] by the formula

ξ̃α(X,D+) =
1

2

(
η(X,D+

α )− k · η(X,D+)
)

using the periodic η–invariants of [19]. We briefly recall the definition. Choose
a smooth function f : X → S1 such that [df ] = γ. Since the metric g has pos-
itive scalar curvature, the twisted Dirac operators D±

z = D± − ln z · df have
zero kernels on the unit circle |z| = 1, and we define

η(X,D+) =
1

πi

∫ ∞

0

∮

|z|=1
Tr

(
df · D+

z e
−tD−

z
D+

z

) dz

z
dt.

The definition of η(X,D+
α ) is similar. Of most importance to us is the fact

that the periodic ξ̃–invariant can be expressed in index theoretic terms,
which is done as follows.

Let us consider an end-periodic manifold with the end modeled on the
infinite cyclic cover X̃ → X corresponding to γ. To be precise, let Y ⊂ X
be a hypersurface Poincaré dual to γ, and let W be the cobordism from Y
to itself obtained by cutting X open along Y . We will assume that Y is spin
bordant to zero, since this is the only case relevant to this paper, and choose
a spin null-cobordism Z. The end-periodic manifold in question is then of
the form

(1) Z∞ = Z ∪ W ∪ W ∪ . . .

where we write ∂W = Y − ∪ Y + and identify each Y + with Y − in the sub-
sequent copy of W , and also identify the boundary of Z with Y − in the
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first copy of W . Let f : Z∞ → R be any smooth function with the property
that f(τ(x)) = f(x) + 1 over the end of Z∞, where τ stands for the covering
translation.

Let g∞ be any metric on Z∞ which matches over the periodic end the lift
of the metric g from X to its infinite cyclic cover. Denote by gZ the induced
metric on Z. The positive scalar curvature condition then ensures that the
Dirac operators D+(Z∞, g∞) and D+

α (Z∞, g∞) are uniformly invertible at
infinity in the sense of Gromov and Lawson [12] and, in particular, their
L2 closures are Fredholm. Of course, the operator D+

α (Z∞, g∞) is only well
defined if the pull-back of α to π1(Y ) extends to a representation of π1(Z),
which we will assume from now on.

Proposition 2.1. Let Z∞ be an end-periodic manifold whose end is mod-
eled on the infinite cyclic cover X̃. Then

(2) ξ̃α(X,D+) = k · indD+(Z∞, g∞) − indD+
α (Z∞, g∞).

Proof. Apply the index theorem [19, Theorem A] to the Dirac operators
D+(Z∞, g∞) and D+

α (Z∞, g∞) to obtain

indD+(Z∞, g∞) =

∫

Z
I (D+(Z, gZ))−

∫

Y
ω +

∫

X
df ∧ ω −

1

2
η(X,D+),

indD+
α (Z∞, g∞) =

∫

Z
I (D+

α (Z, gZ))−

∫

Y
ωα +

∫

X
df ∧ ωα −

1

2
η(X,D+

α ),

where I (D+(Z, gZ)) = Â (Z, gZ) and I (D+
α (Z, gZ)) = Â (Z, gZ) ch(Vα) are

the local index forms, and ω and ωα are transgressed classes such that
dω = I (D+(X, g)) and dωα = I (D+

α (X, g)). The local index forms are re-
lated by I (D+

α (Z, gZ)) = k · I (D+(Z, gZ)) hence the transgressed classes can
be chosen so that ωα = k · ω. Now, subtracting k copies of the first formula
from the second gives the desired result. □

We now wish to prove that a formula similar to (2) holds as well for
certain metrics on Z∞ which are conformally equivalent to the end-periodic
metric g∞ but which do not need to be end-periodic themselves. The metrics
in question will be of the form g′ = σ2 g∞, where σ : Z∞ → R is a positive
smooth function such that

(a) the scalar curvature of g′ is uniformly positive on Z∞, and

(b) both σ and σ−1 are bounded functions on Z∞.
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An example of such a function is the function σ = u2/(n−2), where u is con-
structed in Lemma 3.2.

Proposition 2.2. Let Z∞ be an end-periodic manifold whose end is mod-
eled on the infinite cyclic cover of X. Then, for any metric g′ = σ2 g∞ as
above,

(3) ξ̃α(X,D+) = k · indD+(Z∞, g′) − indD+
α (Z∞, g′).

Proof. First note that the metric g′ has uniformly positive scalar curvature,
therefore, the operators D+(Z∞, g′) and D+

α (Z∞, g′) are uniformly invertible
at infinity so their L2 closures are Fredholm. The Dirac operators on Z∞

corresponding to the metrics g∞ and g′ = σ2 g∞ are related by the formulas

D+(Z∞, g′) = σ−(n+1)/2 ◦ D+(Z∞, g∞) ◦ σ(n−1)/2,

D+
α (Z∞, g′) = σ−(n+1)/2 ◦ D+

α (Z∞, g∞) ◦ σ(n−1)/2.

It follows that, for any L2 spinor ϕ in the kernel of D+(Z∞, g∞), the spinor
ϕ′ = σ−(n−1)/2ϕ is in the kernel of D+(Z∞, g′) and, moreover,

∥ϕ′∥2L2(Z∞,g′) =

∫

Z∞

|ϕ′|2d volg′ =

∫

Z∞

σ|ϕ|2d volg∞ ≤ C ∥ϕ∥2L2(Z∞,g∞)

for some constant C > 0. Since this construction is reversible, it establishes
an isomorphism between the kernels of D+(Z∞, g∞) and D+(Z∞, g′). A sim-
ilar argument applied to the cokernel of D+(Z∞, g∞), and then to the ker-
nel and cokernel of D+

α (Z∞, g∞), establishes the equalities indD+(Z∞, g′) =
indD+(Z∞, g∞) and indD+

α (Z∞, g′) = indD+
α (Z∞, g∞). The statement now

follows from Proposition 2.1. □

3. Cobordisms of positive scalar curvature

We begin by recalling the definition of the bordism group Ω spin,+
n (BG);

see [4, 5]. Given a discrete group G, consider the triples (X, g, f) consisting of
a closed oriented spin manifold X of dimension n, a positive scalar curvature
metric g on X, and a continuous map f : X → BG. Two triples (X0, g0, f0)
and (X1, g1, f1) represent the same class in Ω spin,+

n (BG) if there is a spin
cobordism Z between X0 and X1 which admits a positive scalar curvature
metric gZ such that gZ = gi + dt2 in collar neighborhoods ofXi, i = 0, 1, and
a continuous map Z → BG extending the maps X0 → BG and X1 → BG.
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To get the statement about the fundamental group in Theorem 1, we
need the following lemma, well-known to experts.

Lemma 3.1. Let n ≥ 4 and let G be a finite group. Then any class in
Ω spin,+
n (BG) is represented by a triple (X, g, f) where f∗ : π1(X) → π1(BG)

= G is an isomorphism.

Proof. First note that we may assume that f∗ is surjective. To see this,
choose a finite generating set {γ1, . . . , γk} for Γ. By [10], the spin cobordism
W obtained by adding k 1-handles to X × I has a psc metric extending the
one on X. Evidently, the map f : X → BG extends over W , inducing a map
on π1(W ) ∼= π1(X) ∗ F ⟨g1, . . . , gk⟩ → G that sends the generators gj to γj .
Let (X1, g1, f1) denote the new boundary component of W ; then π1(X1) →
π1(W ) is an isomorphism and so (f1)∗ is a surjection.

Let K denote the kernel of (f1)∗. Since G is finite, K is of finite index in
π1(X1) and hence is finitely generated. Hence one can do a further surgery
on circles representing these elements, preserving the spin structure, and
changing the fundamental group to G. Since n ≥ 4, the circles along which
the surgeries are done have codimension at least 3. Using [10] once more,
the cobordism gotten by adding 2-handles to X1 × I is a spin cobordism
with a psc metric and with a map to BΓ inducing an isomorphism on the
fundamental group. The new boundary component of this cobordism is the
desired representative of the original class in Ω spin,+

n (BΓ). □

From now on, we will assume that 3 ≤ n ≤ 6. Let (X0, g0) and (X1, g1) be n–
dimensional closed Riemannian spin manifolds of positive scalar curvature,
and fix a choice of primitive cohomology classes γi ∈ H1(Xi;Z), i = 0, 1.
According to [22], there exist smoothly embedded volume minimizing hy-
persurfaces Yi ⊂ Xi which are Poincaré dual to γi and which admit positive
scalar curvature metrics gYi

in the same conformal class as the metrics gi|Yi

obtained by restriction.
Cutting Xi open along Yi, where i = 0, 1, we obtain cobordisms Wi with

boundary ∂Wi = Y −
i ∪ Y +

i as in Section 2. Note for future use that the

infinite cyclic covers X̃i → Xi can be written as the infinite unions

X̃i =
⋃

j∈Z

Wi
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with appropriate identifications of the boundary components, and denote
the respective ‘half-infinite’ unions by

X̃−
i =

⋃

j≤0

Wi and X̃+
i =

⋃

j≥0

Wi.

Let us now assume that (X0, g0, γ0) and (X1, g1, γ1) represent the same
class in the psc-bordism group Ω spin,+

n (S1). Then, according to [3, Theorem
5], there exists a spin cobordism Z from Y0 to Y1 with a positive scalar
curvature metric gZ which is a product metric gZ = dt2 + gYi

near Yi, i =
0, 1. The metric gZ does not extend in any obvious way to a positive scalar
curvature metric on the end-periodic manifold

(4) Z∞ = X̃−
0 ∪ Z ∪ X̃+

1 .

To construct such a metric, we proceed as follows. Note that Z∞ has two
ends, one of which, X̃+

1 , is attached to the component Y1 of the boundary

of Z, and the other, X̃−
0 , to the component Y0 with reversed orientation.

Correspondingly, we will write Y −
0 and Y −

1 for the boundaries of X̃−
0 and

X̃+
1 . We will use a similar convention for the boundary components of Wi

so the ‘−’ component will be the one closer to the compact piece. Using [1],
replace the metric gi on Wi, i = 0, 1, with a new metric g′i satisfying the
following conditions :

1) g′i = gi away from a neighborhood of Y −
i ,

2) g′i = dt2 + gYi
near Y −

i , and

3) the conformal class (Wi, [g
′
i]) is Yamabe positive; cf. Section 4.1.

Note that the scalar curvature of g′i may be negative. Using the product
structure of g′i, equip Z∞ with the smooth metric

g∞ =





g0 on
⋃

j≤−1W0

g′0 on
⋃

j=0 W0

gZ on Z

g′1 on
⋃

j=0 W1

g1 on
⋃

j≥1 W1.
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W0 W1

Y +

0 Y −

0 Y −

1 Y +

1

g0 g1dt2 + gY0
dt2 + gY1

Z

Y0 Y1

dt2 + gY0
dt2 + gY1

Figure 1: Initial metric g∞.

The gluing near Z can be visualized in Figure 1. In what follows, we will
use the notations

X = X0 ⊔X1, X̃ = X̃0 ⊔ X̃1, W = W0 ⊔W1, Y = Y0 ⊔ Y1

and, for the two metrics on W ,

gW = g0 ⊔ g1 and g′W = g′0 ⊔ g′1.

We will also fix a smooth function f : Z∞ → R such that f(τ(x)) = x+ 1,
where τ is the covering translation on either end, f is constant on each copy
of Y , f−1([−1, 0]) = Z, and f−1([j, j + 1]) is the jth copy of W . The follow-
ing is our main technical result, which will be proved in the next section. It
roughly states that, in spite of the possible negative scalar curvature that
g′i introduces, the non-compact manifold (Z∞, g∞) admits a well-controlled
conformal change to a uniformly positive scalar curvature metric.

Lemma 3.2. There exists a positive function u : Z∞ → R such that

1) |u− 1| ≤ Ce−Bf for some constants B > 0 and C > 0, and

2) the scalar curvature of the metric u4/(n−2)g∞ is bounded from below by
a positive constant.

With Lemma 3.2 in place, we can complete the proof of Theorem 2.
Assume that (X0, g0, γ0) and (X1, g1, γ1) represent the same class in the
group Ω spin,+

n (S1), and that the representations α0 : π1(X0) → U(k) and
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α1 : π1(X1) → U(k) extend to a representation of the fundamental group of
the psc cobordism. Then the end-periodic manifold (4) admits a uniformly
positive scalar curvature metric g′ to which Proposition 2.2 applies. This
results in the formula

ξ̃α(X1,D
+)− ξ̃α(X0,D

+) = k · indD+(Z∞, g′) − indD+
α (Z∞, g′).

Since the metric g′ has positive scalar curvature, both indices on the right
hand side of this formula must vanish, leading us to the conclusion that

ξ̃α(X0,D
+) = ξ̃α(X1,D

+).

4. Proof of the main lemma

Our proof of Lemma 3.2 will be a modification of the argument from [6,
Proposition 4.6] dealing with a cylindrical Yamabe problem. We begin by
recalling some basic facts about the conformal Laplacian on compact mani-
folds with boundary which will be essential in our proof.

4.1. Conformal Laplacian on compact manifolds with boundary

Let (M, g) be a compact oriented n-dimensional Riemannian manifold with
non-empty boundary ∂M . Denote by ν the outward normal vector to ∂M ,
by Rg the scalar curvature of M , and by Hg the mean curvature of ∂M .
Consider the following pair of operators acting on C∞(M):

(5)

{
Lg = −∆g + cnRg in M

Bg = ∂ν + 2cnHg on ∂M,

where cn = (n− 2)/(4(n− 1)). These operators describe the change in the
scalar and boundary mean curvatures under a conformal change of metric: a
standard computation shows that, for a positive function ϕ ∈ C∞(M), the
scalar and boundary mean curvatures of the metric g̃ = ϕ4/(n−2)g are given
by the formulas

(6)

{
Rg̃ = c−1

n ϕ−(n+2)/(n−2) Lgϕ in M

Hg̃ = 1
2 c

−1
n ϕ−n/(n−2)Bgϕ on ∂M.
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Associated with the operators (5) and every real–valued function 0 ̸=
ϕ ∈ C∞(M) is the Rayleigh quotient

Qg(ϕ)∫

M
ϕ2 dµ

where

(7) Qg(ϕ) =

∫

M

(
|∇ϕ|2 + cnRgϕ

2
)
dµ+ 2cn

∫

∂M
Hgϕ

2dσ

and dµ and dσ denote the volume forms associated to g and g|∂M , respec-
tively. According to the standard elliptic theory,

(8) λ = inf
0 ̸=ϕ∈H1(M)

Qg(ϕ)∫

M
ϕ2 dµ

is the principal eigenvalue of the boundary value problem (Lg, Bg) and there
is a positive function ϕ ∈ C∞(M), unique up to scalar multiplication, such
that

(9)

{
Lgϕ = λϕ in M
Bgϕ = 0 on ∂M.

This eigenvalue problem was first studied by Escobar [8] in the context of
the Yamabe problem on manifolds with boundary.

Let ϕ be a positive solution of (9) and consider the metric g̃ = ϕ4/(n−1)g.
It follows from (6) that the boundary mean curvature of the metric g̃ van-
ishes, and that the scalar curvature of g̃ has a constant sign agreeing with
the sign of λ. In particular, the sign of λ is an invariant of the conformal
class [g] of metric g. A conformal manifold (M, [g]) is called Yamabe positive,
negative, or null if λ is respectively positive, negative, or zero; see Escobar
[7, 8].

4.2. Preliminary eigenvalue estimates

For each positive integer k, denote by Zk the compact submanifold of Z∞

obtained by attaching only the first k copies of W to Z. Let gk be the metric
g∞ restricted to Zk, and λ(k) the principal eigenvalue of the boundary value
problem (9) for the operators (Lgk , Bgk). Since the hypersurfaces Y0 and Y1
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were chosen to be minimal, each Zk has vanishing boundary mean curvature,
and the Rayleigh quotient (8) for λ(k) takes the form

(10) λ(k) = inf
0 ̸=ϕ∈H1(Zk)

∫

Zk

(|∇ϕ|2 + cnRgkϕ
2) dµ

∫

Zk

ϕ2 dµ

Proposition 4.1. There are positive constants C1 and C2 depending only
on the metrics gZ , gW , and g′W such that, for all positive k,

C1 ≤ λ(k) ≤ C2.

Proof. The conformal manifolds (Z, [gZ ]), (W, [gW ]), and (W, [g′W ]) are all
Yamabe positive by construction. As mentioned in Section 4.1, this is equiv-
alent to the positivity of the principal eigenvalue of the boundary value
problem (5). Since the boundaries of (Z, gZ), (W, gW ), and (W, g′W ) are all
minimal, their mean curvatures vanish and the boundary conditions in (5)
reduce to the Neumann boundary conditions, ∂νϕ = 0. This implies that the
principal Neumann eigenvalues λ(LgZ ), λ(LgW ), and λ(Lg′

W
) are all positive.

Let us consider the principal Neumann eigenvalue λ(1) = λ(LgW1
) of the

operator LgW1
. Since W1 is split into (Z, gZ) and (W, g′W ),

λ(LgW1
) = inf

{
QgW1

(ϕ) | 0 ̸= ϕ ∈ H1(W1), ||ϕ||
2
L2 = 1

}

can be estimated from below by

inf
{
QgZ (ϕ1) +Qg′

W
(ϕ2) | ϕ1 ∈ H1(Z), ϕ2 ∈ H1(W ),

||ϕ1||
2
L2 + ||ϕ2||

2
L2 = 1

}

= inf
a∈[0,1]

inf
{
a ·

QgZ (ϕ1)

||ϕ1||2L2

+ (1− a) ·
Qg′

W
(ϕ2)

||ϕ2||2L2

∣∣∣ ϕ1 ∈ H1(Z),

ϕ2 ∈ H1(W ), ||ϕ1||
2
L2 = a, ||ϕ2||

2
L2 = 1− a

}
,

which is in turn estimated from below by

inf
a∈[0,1]

{
a · λ(LgZ ) + (1− a) · λ(Lg′

W
)
}

= min
{
λ(LgZ ), λ(Lg′

W
)
}
> 0.
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By splitting Zk into (Zk−1, gk−1) and (W, gW ) and proceeding inductively,
one can use the above argument to show that

λ(k) ≥ min
{
λ(LgZ ), λ(LgW ), λ(Lg′

W
)
}
> 0

for all positive k. This gives the desired lower bound on the eigenvalues λ(k).
To obtain the upper bound, choose the constant test function ϕ = 1 in the
Rayleigh quotient to obtain

λ(k) ≤
1

vol(Zk)
·

∫

Zk

cnRgk dµ ≤ cn · sup
Zk

(Rgk).

Since the scalar curvature of g∞ is uniformly bounded from above, this gives
the desired upper bound on λ(k). □

4.3. Strategy of the proof

The function u : Z∞ → R whose existence is claimed in Lemma 3.2 will be
obtained as a solution of the equation Lg∞(u) = h, where h : Z∞ → R is a
smooth positive function such that

1) h = cnRg∞ on Z∞ \ Z3 and

2) h ≥ | cnRg∞ | on Z3.

To solve this equation, we will first solve the equation Lg∞(v) = h̃ for the
function h̃ = h− cnRg∞ , which is positive and compactly supported in Z3,
and then let u = 1 + v. The equation Lg∞(v) = h̃ will be solved by the barrier
method.

4.4. The barrier method

Let C1 > 0 be the constant from Proposition 4.1 and introduce the constant

λ̄ =
1

2
min

{
C1 , inf

Z∞\Z3

cnRg∞

}
.

Note that λ̄ is positive, and also that the function cnRg∞ − λ̄ is positive on
Z∞ \ Z3. The two propositions that follow provide two ingredients for the
barrier construction.
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Proposition 4.2. For any point x0 ∈ Z there exists a smooth positive func-
tion w : Z∞ → R such that

{
(Lg∞ − λ̄)(w) = 0 in Z∞

w(x0) = 1.

Proof. It follows from Proposition 4.1 that 0 < λ̄ < λ(k) for all positive k,
hence the operators Lgk − λ̄ with the Neumann boundary conditions are all
invertible modulo constant functions. Since the principal eigenvalue of an
elliptic operator with the Dirichlet boundary condition is greater than or
equal to the principal eigenvalue of the same operator with the Neumann
boundary condition, it follows that Lgk − λ̄ with the Dirichlet boundary
condition is also invertible. The rest of the proof follows the argument of
[26, Theorem 2.1]. For each positive k, consider a smooth solution w′

k of the
problem {

(Lg∞ − λ̄)(w′
k) = 0 in Zk

w′
k = 0 on ∂Zk

which is positive in the interior of Zk. Define wk = w′
k/w

′
k(x0). Then a

standard argument using the Harnack inequality and Schauder estimates
shows that there is subsequence of wk which converges to a positive func-
tion w ∈ C∞(Z∞) on compact subsets of Z∞ in the Ck,α topology. Propo-
sition 4.2 follows. □

Proposition 4.3. There are positive constants B and C3 such that the
function ϕ = e−Bf : Z∞ → R satisfies the inequality

Lg∞(ϕ) ≥ C3 ϕ on Z∞ \ Z3.

Proof. Let B > 0 be an arbitrary constant, to be determined later, and
ϕ = e−Bf . Then

∆g∞ϕ = B2|∇f |2e−Bf − (∆g∞f)Be−Bf

≤ B2max(|∇f |2)e−Bf +max(|∆g∞f |)Be−Bf

= B(Bmax(|∇f |2) + max(|∆g∞f |))ϕ.

This allows us to make the estimate

Lg∞ϕ = −∆g∞ϕ+ cnRg∞ϕ

≥ (−B(Bmax(|∇f |2) + max(|∆g∞f |)) + cnmin(Rg∞))ϕ.(11)
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From the construction of f , we know that max(|∇f |2) and max(∆g∞f) are
both finite. Moreover, the minimum of Rg∞ on Z∞ \ Z3 is positive. Combin-
ing these facts with inequality (11), we conclude that B > 0 can be chosen
small enough so that

Lg∞ϕ ≥ C3 ϕ on Z∞ \ Z3,

where C3 =
1
2 cnmin(Rg∞). □

The barrier for the equation Lg∞(v) = h̃ is now constructed by piecing
together the functions w and ϕ.

Proposition 4.4. There are continuous functions ϕ, ϕ : Z∞ → R which
satisfy the inequalities

Lg∞(ϕ) ≤ h̃ and Lg∞(ϕ) ≥ h̃

weakly. Moreover, there is a positive constant C4 such that |ϕ|, |ϕ| ≤ C4 ϕ
on Z∞ \ Z3.

Proof. We start by choosing constants α, β > 0 such that αw < βϕ on ∂Z3

and both Lg∞(αw) ≥ h̃ on Z∞ and Lg∞(βϕ) ≥ h̃ on Z∞ \ Z3.
Case 1: There exists a positive integer k0 ≥ 4 such that βϕ ≤ αw on

Zk0+1 \ Zk0
. In this case, we define

ϕ(x) :=





αw(x) if x ∈ Z3

min(αw(x), βϕ(x)) if x ∈ Zk0
\ Z3

βϕ(x) if x ∈ Z∞ \ Zk0

and let ϕ = −ϕ. The functions ϕ and ϕ are continuous super- and sub-

solutions of the equation Lg∞(·) = h̃ on Z∞. This follows from the fact that
the minimum (resp. maximum) of two super-solutions (resp. sub-solutions)
is again a super-solution (resp. sub-solution); see for instance [11, Section
2.8].

Case 2: The assumption of Case 1 does not hold. In other words, for
every integer k ≥ 4, there is a point xk ∈ Zk+1 \ Zk such that αw(xk) <
βϕ(xk) and, in particular, αw(xk) < βe−Bk.

Since the the distance between xk and the boundary components ∂Zk

and ∂Zk+1 is less than the diameter of W for all k, the Harnack inequality
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for w provides us with a constant D > 0 such that

αw(x) ≤ Dαw(xk) < Dβe−Bk

for all x ∈ Zk+1 \ Zk. It now follows that there is a constant C4 > 0 such
that αw ≤ C4ϕ on Z∞ \ Z4. In this case, we simply define ϕ = αw and
ϕ = −ϕ. □

Having constructed the barrier, we can put it to use proving the following
existence result.

Proposition 4.5. There exists a smooth function v : Z∞ → R such that

1) Lg∞(v) = h̃ on Z∞, and

2) ϕ ≤ v ≤ ϕ on Z∞.

Proof. For each k ≥ 3, we find a solution vk : Zk → R to the problem

{
Lg∞(vk) = h̃ in Wk

vk = ϕ on ∂Wk.

Since ϕ is a subsolution, one can apply the maximum principle to vk −
ϕ|Zk

to conclude that vk ≥ ϕ|Zk
. Likewise, one concludes that vk ≤ ϕ|Zk

. A
standard argument now shows that vk converges in the C2,α topology to a
smooth function v on Z∞ which satisfies Lg∞(v) = h̃. □

4.5. Finishing the proof

We are now ready to finish the proof of Lemma 3.2. The following proposi-
tion ensures that the function u = 1 + v, where v is the function of Propo-
sition 4.5, is positive and hence can serve as a conformal factor.

Proposition 4.6. The function u = 1 + v solves the equation Lg∞(u) = h.
Moreover, u > 0 on Z∞.

Proof. The following argument is reproduced from the proof of [6, Proposi-
tion 4.6]. From the exponential decay of the function v in Proposition 4.5 it
is clear that u > 0 on Z∞ \ Zk for some sufficiently large k > 3. Let ϕ0 > 0
be a positive eigenfunction corresponding to the principal eigenvalue λD(k)
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of the operator Lgk on Zk with the Dirichlet boundary condition, that is,

{
Lgk(ϕ0) = λD(k)ϕ0 in Zk

ϕ0 = 0 on ∂Zk.

Then one may consider the function u/ϕ0 and calculate as in [6, Proposi-
tion 4.6] that

∆gk

(
u

ϕ0

)
+

2

ϕ0

〈
∇ϕ0,∇

(
u

ϕ0

)〉
− λD(k)

(
u

ϕ0

)
= −

h

ϕ0
< 0.

It follows that at an interior minimum in Zk, the function u/ϕ0 is positive;
the minimum of u/ϕ0 must lie in the interior because ϕ0 = 0 on ∂Zk. □

It follows from formula (6) that the metric u4/(n−2)g∞ has positive scalar
curvature. Since u− 1 = v decays exponentially by Proposition 4.5, the proof
of Lemma 3.2 is complete.

5. Proof of Theorem 1

We will prove Theorem 1 by constructing connected psc manifolds M with
fundamental group Γ and representations α so that the invariants ξ̃α take
on infinitely many distinct values. Note that the connectedness of M is an
essential part of Theorem 1; disconnected examples could be constructed
much more easily.

In dimension six, it follows from [5, Theorem 0.1] that, for each finite
group G with r5(G) > 0, there are closed connected spin manifolds Y 5 which
admit infinitely many psc metrics gi distinguished up to bordism by invari-
ants ξ̃α(Y, gi), where α is a unitary representation of G. By Lemma 3.1
we may assume that π1(Y ) ∼= G. The pull back via projection Z×G → G
gives rise to a unitary representation of Z×G called again α. Since the
periodic η-invariants of [19] satisfy η(S1 × Y,D+

α ) = ηα(Y ) when S1 × Y
is given a product metric, Theorem 2 implies that the periodic invariants
ξ̃α(S

1 × Y, dt2 + gi) are all distinct up to bordism. Note that this argument
gives the a priori stronger conclusion that all of these non-bordant metrics
live on the same manifold.

This argument does not work in dimension 4, because 3-dimensional
space forms support a unique psc metric, up to isotopy [18]. One issue is
that the standard technique for pushing a psc metric across a cobordism,
which is crucial to the constructions in [4, 5], does not work for pushing a
metric across a 4-dimensional cobordism. In general, one is not able to push
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a psc metric across a 5-dimensional cobordism either. However, Section 9.3
in [19] shows how to create psc-cobordisms between 4-manifolds, at the
expense of taking connected sums with some unknown number of copies of
S2 × S2.

For a non-simply connected space form S3/G, the proof of [19, Theo-
rem 9.5], sketched below, shows that for an appropriate α and any N ≥ 1,
there is a non-negative number mN such that

ξ̃α
(
(S1 × (S3/G)) #mN · (S2 × S2)

)

takes on N different values. By letting N go to infinity, we see that
Ω spin,+
4 (S1 ×BG) must be infinite. We note that, in contrast to the 6-

dimensional result, it is not clear if infinitely many non-bordant metrics
could be supported on the same manifold. □

Remark 5.1. The hypothesis in the 6-dimensional case that Y admit a
spin structure can presumably be omitted. This would involve extending
the results of [19] to include ‘twisted’ spin structures as discussed in the
introduction of [5].

Remark 5.2. Because the metrics in the 6-dimensional case are product
metrics, we do not really need the end-periodic index theorem to prove The-
orem 1 in this case; the Atiyah–Patodi–Singer theorem [2] (as extended in
Proposition 2.2) would suffice. On the other hand, it does not seem possible
to prove the 4-dimensional case of Theorem 1 without the use of [19].

For the sake of completeness, we provide here a sketch of the construction
of the metrics on the 4-manifolds described in the proof above. Details can
be found in [19, Section 9]

Write Y = S3/G, and let g be a psc metric descending from the round
metric on S3. Lemma 9.7 of [19] provides a representation α : π1(Y ) → U(k)
for which the invariant ξ̃α(Y, g) is non-zero. For any n, the finiteness of
the spin cobordism group Ω spin

3 (Bπ1(Y )) and some additional topological
arguments are used construct a spin cobordism Vn with π1(Vn) ∼= π1(Y ).
There is an extension α̃ of the representation α so that

∂ (Vn, α̃) = (Y, α) − (nd+ 1) · (Y, α)

Next, cross Vn with a circle to obtain a cobordism Wn from S1 × ((nd+
1) · Y ) (the lower part of the boundary) to S1 × Y . It can be assumed that
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this cobordism has a handlebody decomposition with handles of index only
2 and 3. Write kn for the number of 3-handles.

The argument of [4, 5] would at this point be to push the psc metric from
the bottom end of Wn to S1 × Y , but the presence of the 3-handles prohibits
this, since they are attached along spheres of codimension 2. However, the
psc metric can be pushed across

S1 × ((nd+ 1) · Y )× I

plus the 2-handles. The upper boundary of this manifold is shown to be
(S1 × Y )# kn · (S2 × S2), which therefore acquires a psc metric. By con-
struction, all of these manifolds have fundamental group Z×G, and their
ξ̃α invariants grow linearly with n and hence by Theorem 2, their bordism
classes are distinct. By adding additional copies of S2 × S2 to these mani-
folds, one can obtain diffeomorphic manifolds carrying an arbitrary number
of these distinct bordism classes. □
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